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Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci 

on chromosomes 5 and X  

 

Supplementary Methods 

Text S2. Details of quantitative trait analysis 

A major challenge in admixture mapping is to be able to scan not only for a trait that is 

dichotomous (such as healthy or having a disease), but also to identify associations of ancestry to 

a quantitative trait (QTL) such as systolic or diastolic blood pressure, an individual's HDL or 

triglyceride level, or BMI. The ANCESTRYMAP software was originally designed to analyze a 

dichotomous trait, but here, we extend it to allow mapping of a QTL. 

For our admixture mapping analysis we use a full Bayesian model, and hence we need to 

explicitly model how ancestry confers risk for disease. For our model of quantitative trait risk we 

assume as we did for a dichotomous trait in Patterson et al., 2004 [1] that θ(i) is the proportion of 

European ancestors for individual i, and a is the proportion at a locus of interest (this can be 

either 0, 1 or 2 European alleles). We assume as for the dichotomous trait analysis that in our 

population of African Americans, θ is Beta distributed. Our past experience shows that this is a 

reasonable, albeit crude, approximation. We then explore how well an individual's value for a 

quantitative trait q(i) is predicted by their local ancestry state a, controlling for their overall 

proportion of ancestry θ(i). We make the assumption that the quantitative trait q(i) for individual 

i is normally distributed, which can be enforced for a QTL by applying a non-parametric ‘probit’ 
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transformation; that is, rank-ordering all observations and then applying an inverse normal 

transformation.  

Our strategy for searching for a QTL locus is to compute a Bayes Factor F at each 

MCMC iteration and at each locus in the genome, which scores for the locus being associated to 

the trait, versus not associated. We then average F across iterations, as we do with a dichotomous 

trait, to get an overall assessment of the weight of evidence for association at the locus. 

To be more explicit about our model, we set for individual i at a particular locus: 
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Here, µ is the mean of θ for the entire population, a is the number of European chromosomes at 

the locus, which has mean 2θ(i), and c0n0 is a Gaussian residual term. We assume n0 is standard 

normal, so that the standard deviation of the residual is c0. We are interested in detecting 

association with ancestry at a particular locus in the genome, and not just with the average 

ancestry across the genome. Our Bayesian scoring carefully deals with this by building the 

average genome ancestry component into the null model. Thus, in equation (1), the second term 

deals with the overall effect on the QTL of an individual’s ancestry being different from the 

population average, and the third term deals with the effect of the local ancestry state compared 

to its expectation 2θ(i), in the absence of an association to the QTL. 

We will assume that the correlation between genome-wide ancestry θ and the quantitative 

trait q is known. As part of our Bayesian model, we then specify the fraction of the remaining 

quantitative trait variance explained by the locus. This is similar to specifying the risk factor 
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associated with a disease locus as we do in our original discrete trait analysis [1]. Easy formulae 

from the theory of the Beta distribution now allow us to calculate c0, c1, and c2. 

To calculate the likelihood, we note that the probability density of q(i) is given as: 
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where N (x; m, v) is the density of a normal variable, mean m variance v. We will take the null 

model to be the above model with c2 = 0. Thus under the null, local ancestry does not affect the 

observation q. The MCMC that we will implement samples model parameters from the posterior 

distribution under the null. This is only slightly more complex than the MCMC of Patterson et 

al.[1] The Bayesian scoring can then be carried out just as in the dichotomous trait analysis, but 

using equation (2). We omit the easy details. 

Summarizing, equation (1) is a direct ‘generative’ model for the quantitative trait. Natural 

extensions of the Bayesian methods in ANCESTRYMAP for dichotomous traits are then easy to 

derive and implement. 
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