
Text S7
Numerical procedure to identify migration models consistent with our data
The inference procedure in our paper—where we find a six-parameter model of central-western-bonobo history that can fit our data—does not work in the presence of migration, since we are not able to solve the equations analytically.
To address this, we implemented a computer program that obtains the expected branchlengths of the different event classes in the W1W2CHM, C1C2WHM, and CWBHM alignments from specified values of the six parameters in the main model, as well as specified values of western-to-central migration mC and central-to-western migration mW. The program works in the opposite direction from our inference procedure – estimating branchlengths from parameters instead of parameters from branchlengths – enabling us to compare different combinations of parameters in terms of how well they correspond to the known branchlengths.
The program begins with eight input parameters: tECW, tECWB, NC, NW, NWC, NBWC, mW, and mC. The program then moves backward in time in fixed increments (100 generations per increment by default, although we explored smaller increments and found they did not produce substantially different results). For each time increment, the program then determines the probability that the ancestors of the three samples that are studied will be in a particular state (indexed by the population in which the ancestors live, and whether the samples have coalesced to a common ancestor). For example, in the CWBHM alignment:

In the interval 0 < t < tECW, the samples can be in one of the following six states:


W ancestor in western population, C ancestor in central population


W ancestor in western population, C ancestor in western population


W ancestor in central population, C ancestor in central population


W ancestor in central population, C ancestor in western population


W and C ancestors coalesced and in western population


W and C ancestors coalesced and in central population

In the interval tECW<t<tECWB, the samples can be in one of the following two states:

W ancestor and C ancestor uncoalesced


W ancestor and C ancestor coalesced

In the interval t>tECWB, the samples can be in one of the following five states:

W and C and B uncoalesced


WC coalesced, B uncoalesced


WB coalesced, C uncoalesced


CB coalesced, W uncoalesced


WCB all coalesced

In each of the three time intervals, we can calculate the transition probabilities among states. Going back in time in increments, multiplying the state vector by the transition probability matrix at each increment, we track the probability that the ancestors of the individuals today will be in each of the possible states, which in turn determines the branchlengths. We continue moving back in time until there is a 99.999% probability that all lineages are coalesced, to obtain the expected branchlengths for that demography.

We used the software to calculate expected branchlengths for the three different alignments W1W2CHM, C1C2WHM, and CWBHM under a specified demography. We then calculated the corresponding branchlengths in the real data, and summarized both the expected and observed data by seven summary statistics:
Text 7 Table 1: Statistics for summarizing the W1W2CHM, C1C2WHM and CWBHM data

	Statistic
	Description

	hetWC
	western-central divergence

	hetWB
	western-bonobo divergence

	synCWB
	bonobo-western synapomorphy rate in a CWB alignment

	hetWW
	western-western divergence

	synWWC
	western-central synapomorphy rate in a WWC alignment

	hetCC
	central-central divergence

	synCCW
	western-central synapomorphy rate in a CCW alignment


These parameters were estimated from our three real data sets (after correcting for multiple mutations by the EM algorithm), and then compared with the expectation from the numerical model by summing the quantity (observed-expected)×(observed-expected)/expected over all seven quantities, a figure-of-merit inspired by the chi-square statistic. 

We used a hill-climb method to obtain a best fit of our model parameters to the real data. We start by fixing a value of the migration rate parameters. We then find the combination of the population sizes and split times that produce the best fit to the data. We start the hill-climb with a guess about the parameters (in practice we use the set of parameters that we obtain as our best estimate in the absence of migration; that is, the values given in Table 2). We then check whether the fit can be improved by multiplying or decreasing each of the parameters by a factor L. When we can not climb any higher, we reduce L and try again. The hill-climb stops when L < 1.005. The results, for different choices of the migration parameter in the symmetrical model, are shown in Figure 2 of the main paper.
As a test of whether the numerical procedure works, we simulated data under a set of demographic parameters (not allowing any migration between western and central chimpanzees), and then assessed how well the analysis reconstructed these parameters under the assumption of no migration. The match is excellent, as shown in Text 7 Table 2 below.

Text 7 Table 2: Demonstration that the procedure can extract the parameters used in simulation

	
	mC=mW
	tECW
	tECWB
	NW
	NC
	NWC
	NWCB

	Parameters used in simulation
	0
	28,266
	64,169
	9,552
	123,806
	13,885
	20,752

	Parameters emerging from estimation
	0
	28150
	64,180
	9,500
	123,000
	14,000
	20,747
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