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Case-control studies are subject to the problem of population stratification, which
can occur in ethnically mixed populations and can lead to significant associa-
tions being detected at loci that have nothing to do with disease. Here, we de-
scribe a way to measure and correct for stratification by genotyping a moderate
number of unlinked genetic markers in the same set of cases and controls in
which a candidate association was found. The average of association statistics
across the markers directly measures stratification. By dividing the candidate
association statistic by this average, a P-value can be obtained that corrects for
stratification. Genet. Epidemiol. 20:4–16, 2001.© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Case-control association studies detect non-random association between an al-
lele and a trait and can be powerful tools for gene mapping [Risch and Merikangas,
1996]. However, when a case-control sample is ethnically mixed or is derived from
a population that experienced mixture during the past few generations, non-random
associations can occur even at markers completely unlinked to a disease locus
[Chakraborty and Weiss, 1988; Lander and Schork, 1994]. In a population that is a
mixture of African Americans and Caucasians, for instance, cases of hypertension
will occur disproportionately among African Americans, who are well known to have
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a higher prevalence of this disease [Kaplan, 1994]. Any alleles that occur more com-
monly in African Americans will tend to be associated to disease, even if they are
completely unlinked to disease-causing loci.

One approach to dealing with the problem of population stratification is to match
the ethnic backgrounds of patients to controls as carefully as possible, a strategy
used by many epidemiologists. However, there is currently no consensus about the
effectiveness of this strategy; a considerable amount of “cryptic stratification” may
remain even after cases and controls are carefully matched. The transmission dis-
equilibrium test (TDT) and related methods (SDT, sib-TDT) circumvent these uncer-
tainties entirely by using control chromosomes from the families of affected
individuals [Horvath and Laird, 1998; Spielman and Ewens, 1998; Ewens and
Spielman, 1995]. However, this generates new problems because it requires the col-
lection of DNA samples from family members, which may be much more difficult
than collecting samples from unrelated cases and controls. What is clearly needed is
a method for using a case-control study even in the presence of stratification and
also for obtaining a quantitative measure of the extent to which a case-control sample
that is designed to be stratification-free in fact meets this criterion.

If stratification exists, it should raise association statistics not only at the candi-
date marker, but also at unlinked markers, and thus by genotyping unlinked markers
in the same set of cases and controls in which the candidate association was de-
tected, it should be possible to adjust for stratification. Suppose that a candidate
association to disease has been detected in a set of cases and controls with an un-
known amount of stratification. To check whether the nominally significant associa-
tion statistic really indicates the presence of a disease-causing gene at the locus, we
suggest recording the association statistics observed at unlinked markers [for related
approaches, see Devlin and Roeder, 1999; Schork et al., 1999]. If the statistic at the
candidate marker is dramatically higher than the statistics at unlinked markers, there
is a strong indication that the candidate marker is near a disease-predisposing gene.
On the other hand, if the association statistic is not much different from those at
unlinked markers, the association may be due to stratification alone.

TERMINOLOGY AND DESCRIPTION OF SIMULATIONS

To explore these issues in depth, we use a terminology and simulation frame-
work that was introduced to investigate a related but quite different problem: how to
detect but not quantify and correct for stratification [Pritchard and Rosenberg, 1999].
Our simulations, for simplicity, assume that the mixed population is derived from
two ancestral populations, 1 and 2, and that the disease prevalences in the two popu-
lations are p1 and p2. For a case-control sample to be stratified, there are two require-
ments: first, that the two mixing populations must have been isolated from each
other long enough that the populations have become differentiated, and second, there
must a difference in disease prevalence between the two populations. This means
that the level of stratification is affected by the disease that is being studied (stratifi-
cation increases along with an increasing difference between p1 vs. p2), in addition to
being affected by the ethnic mixture scenario in the study population. To describe
how the p1 vs. p2 difference affects stratification, we call the probability that a dis-
eased individual comes from population 1, f, and the probability that a healthy indi-
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vidual comes from population 1, g. The variables f and g are related to p1 and p2

according to the equation f(1 – g)/[g(1 – f)] = p1(1 – p2)/[p2(1 – p1)] [Pritchard and
Rosenberg, 1999].

To reconstruct the genealogical relationships among the modern samples, we
use a computer simulation based on a coalescent algorithm of Hudson [1991], which
was modified as described by Reich et al. [1999]. Specifically, the ancestral popula-
tion of size N is assumed to have split into the two descendant populations, both of
size N, at a time t = t/2N in the past (t is in generations). In the simulation, a fraction
f of cases and a fraction g of controls are sampled from population 1, and the rest are
sampled from population 2. The samples are connected together via a genealogy that
is produced by the simulation, and we only use genealogies at which mutations—
that is, at least one SNP—have occurred. Mutations are placed on the genealogy
according to a random Poisson process at a rate of 0.2/(4N) per generation, which
very approximately is 200 times the human mutation rate per base pair, and hence is
equivalent to using markers that were identified by screening 200 base-pair DNA
fragments for polymorphisms. Note that although this choice of mutation rate is ar-
bitrary, varying the mutation rate had little effect on our analysis. If a collection of
markers with allele frequencies in a specific range are desired, they can be obtained
by repeating the simulation enough times until markers of the appropriate frequen-
cies are generated (for our purposes in this paper, allele frequency is defined as the
frequency of the less common allele at a marker).

To assess quantitatively the level of association at a marker, it is necessary to
collect information about allele frequencies among cases and controls and record
them in a contingency table (Table I). The classic χ2 statistic with 1 degree of free-
dom can then be calculated:
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Definitions of the variables in expression 1 are provided in Table I. A high χ2 statis-
tic indicates that the difference in allele frequency between cases and controls, n11/
n1* – n21/n2*, is more than could be expected by chance. For instance, a χ2 value >3.8
is significant at the P < 0.05 level in the absence of stratification, and a χ2 value >6.6
is significant at the P < 0.01 level. These classic χ2 cutoffs can only be used when

TABLE I. Standardized Table for Calculation of c2 Values

Allele A Allele B Totals

Cases N11 n12 n1* = n11 + n12

(no. of copies of allele A (no. of copies of allele B
among cases) among cases)

Controls N21 n22 n2* = n21 + n22

(no. of copies of allele A (no. of copies of allele B
among controls) among controls)

Totals n*1 = n11 + n21 n*2 = n12 + n22 n**

n*1 = total number of copies of allele A; n*2 = total number of copies of allele B; n1* = total number of
alleles present in cases; n2* = total number of alleles present in controls; n**  = total number of alleles
genotyped.
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sample sizes are sufficiently large, in particular when the “expected values” in the
four squares of Table I, defined as n1*n*1/n** , n1*n*2/n** , n2*n*1/n** , n2*n*2/n** , are all at
least 5 [Rice, 1995].

A SIMPLE WAY TO DISTINGUISH TRUE FROM FALSE POSITIVES

Figure 1 illustrates how χ2 values for true associations can be distinguished
from χ2 values for markers far away from disease-causing genes even in the pres-
ence of population stratification. The specific scenario that is envisioned is a mix-
ture of two populations, 10% from population 1 and 90% from population 2, in
which the probability of disease in population 1 is four times higher than in popu-
lation 2. In our terminology, this corresponds to g = 0.1, f = 0.31, and we also
assume that t = 0.25. As shown in Fig. 1, real association superimposed on popu-
lation stratification can produce χ2 statistics far higher than are expected from strati-
fication alone; in other words, Distributions 1 and 2 are easily distinguished from
each other. Even for different models of disease causality than the specific one
depicted in Fig. 1 (see legend for details), the distributions should be distinguish-
able. For example, if a candidate marker is just linked to a variant that causes
disease, rather than being causal itself as assumed in Fig. 1, we would still expect
Distributions 1 and 2 to be distinguishable from each other because of linkage
disequilibrium between the candidate marker and the causal variant that is inher-
ited from the parental populations.

Suppose as an example that a χ2 statistic of 20 is observed at a candidate
marker, which would be significant at the P < 0.000008 level in the absence of
stratification. To assess whether this is significant even in the presence of stratifi-
cation, we imagine that 19 unlinked markers are drawn randomly from Distribu-
tion 1 in Fig. 1 and that all have χ2 values <20. Thus, the candidate association
statistic is in the top 5% of studied markers and the inferred significance level is P
< 0.05. To establish a precise P-value using this method, a very large number of
markers would be required. A more efficient approach is to directly use the values
of the χ2 statistics at unlinked markers to quantitatively estimate the P-value in the
presence of stratification.

QUANTITATIVE ASSESSMENT OF POPULATION STRATIFICATION

To measure the stratification in a case-control sample, it is necessary to assess
the degree of elevation of χ2 values compared to the null expectation in an
unstratified scenario. An obvious summary statistic is the mean χ2 value across
unlinked loci (χ–2), which is expected to be m = 1 in the absence of stratification
[Rice, 1995] and should rise in the presence of stratification. Using simulations,
we discovered a surprisingly simple relationship between m and the percentiles of
the χ2 distribution in a stratified population. When m is plotted against the 95th and
99th, and in fact every percentile of the χ2 distribution, the scatterplot takes the
form of a straight line that goes through the origin, although the relationship be-
gins to break down for very large values of m (Fig. 2). The slope of the line can
then be determined because in the absence of stratification, m = 1 and the χ2 per-
centile is its published value [e.g., Rice, 1995]:
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Fig. 1. Empirical distributions of χ2 values in the presence of population stratification, calculated for the demographic model de-
scribed in the text. The disease model (for Distribution 2) is such that individuals who carry two, one, or zero copies of the disease-
associated allele contract disease with frequencies 16%, 4%, and 1%, respectively. Population stratification causes 27% of replicates
for unlinked markers to be nominally associated at the P < 0.05 level (χ2 > 3.8). However, despite this elevation of χ2 values even at
the markers not associated with disease (Distribution 2), the χ2 values for true associations, shown in Distribution 1, are easily distin-
guishable. Distribution 1: unlinked markers, shaded columns; Distribution 2: disease-causing polymorphism, solid columns.
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Equation (2) implies that in the presence of stratification, the χ2 distribution changes
only by being stretched out by a factor m, but the overall shape of the distribution
remains fixed. This applies not only for the 100 case and 100 control situation de-
picted in Fig. 2, but for a wide range of sample size configurations and even for
unequal numbers of cases and controls. Devlin and Roeder [1999] obtained the same
result using a purely statistical argument that is not based on simulations or on popu-
lation genetic assumptions. Equation (2) thus appears to be quite general, although
our simulations indicate that it breaks down for extreme cases of stratification, a
result not obtained by other investigators. In particular, µ tends to underestimate the
95th percentile of the distribution for large values of µ (Fig. 2).

To explain Equation (2) and its breakdown for large values of m, we recall that
the classical χ2 probability distribution has a shape determined by the variance of a
normally distributed variable [Rice, 1995]. The χ2 distribution applies for our test

Fig. 2. The mean of the empirical χ2 distribution versus the 95th and 99th percentiles, obtained by
coalescent computer simulations for 100 cases and 100 controls. The following parameter combina-
tions were considered: g = (0.05, 0.1, 0.3, and 0.4), t = (0.025, 0.05, 0.1, 0.2 and 0.4), and relative risks
of disease population 1 compared to population 2 (p1/p2) of 2, 4, and 8. Eighty-five thousand simula-
tions were performed for each of the 60-parameter combinations, and the results were binned into
seven allele frequency ranges (15–20%, 20–25%, 25–30%, 30–35%, 35–40%, 40–45%, and 45–50%),
each of which was used to calculate a mean and 95th percentile cutoff. The line fitted to the scatterplot
gives a remarkably good match to the data, except when stratification is severe, in which case the
mean may overestimate the cutoff.
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statistic (Expression 1) because the difference in allele frequency between cases and
controls, which is at the core of Expression 1, approximately follows a normal distri-
bution in the limit of large sample size. In the face of population stratification, the
statistic appears to continue to be distributed normally, with the only difference that
the variance is larger due to differentiation (genetic drift) between the parental popu-
lations. The magnitude of the increase, which stretches out the χ2 distribution with-
out changing its shape as in fact we observe in our simulations, is m. When
stratification becomes too extreme, the filling of squares of Table I becomes non-
normal, which leads to the breakdown of Equation(2) for high values of m, and the
scatter of points around the fitted line in Fig. 2. Indeed, a computer program that
generates random fillings of Table I using a gamma probability distribution with
fixed mean but changing variance not only regenerates the behavior described by
Equation (2), but also predicts its observed breakdown for extremes of stratification.

IMPLEMENTING THE CORRECTION FOR POPULATION STRATIFICATION

For the example of 19 unlinked markers presented above, we assume that the χ2

values, drawn randomly from Distribution 1 in Fig. 1 and presented in increasing
order, are 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.5, 0.6, 0.8, 1.1, 1.7, 3.5, 6.3, 7.3, 8.1, 9.3,
19.1, and hence that the mean association statistic is χ–2 = 3.1. We now show how to
use this estimate of m to make a direct quantitative correction for stratification. Since
the observed association statistic at the candidate marker is 20, we obtain an equiva-
lent χ2 value in an unstratified population of 20 × 3.1 = 6.5, corresponding to a
significance level of P < 0.011 using a standard χ2 table of significance levels. How-
ever, it may be that the true m is actually greater than the estimate of 3.1, and to
calculate a conservative P-value it is necessary to use the largest m consistent with χ–2.
Table II provides the maximum factor by which the true m could be in excess of the
observed mean χ2 value (at the 95% confidence level) for different numbers of un-
linked markers used for estimating m. A 95% upper confidence limit on m of course
does not translate to a P-value for detecting an association. If this upper limit on m is
used, however, it becomes possible to say that with 95% confidence, the resulting P-
value is conservative. Note that Table II is calculated on the basis of the analytically
known form of the χ2 distribution in the absence of stratification, but since the
distribution’s shape is the same regardless of the level of stratification, the table is
appropriate for any stratification scenario. For the present example with 19 markers,
the maximum m consistent with the data is χ–2 × 1.59 = 4.9 at the 95% confidence
level, which leads to an equivalent χ2 value of 20 × 4.9 = 4.1 and a conservative
significance level of P < 0.043. Likelihood-based methods of finding a maximal m
consistent with the data are also possible. For example, based on a likelihood analy-
sis, Devlin and Roeder [1999] suggest taking the median of the χ2 values, dividing it
by 0.675, and squaring the result to obtain a more robust estimate of m. We have not
directly compared the two estimators of m, but for either approach it is likely that no
more than a few dozen markers will need to be genotyped to obtain a fairly accurate
estimate of m.

It is critical to emphasize the generality of the method we have introduced. The
method should apply even if the number of cases and controls is not what is shown in
Fig. 2 and even if there are unequal numbers of cases and controls. In addition, al-
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though our simulations did not consider mixtures of three or more populations, there is
no theoretical reason to expect that the multiplicative scaling of the χ2 distribution will
not hold for these cases. Indeed, Devlin and Roeder [1999] considered the mixing of
three or more populations analytically and showed that the multiplicative scaling holds
equally well for these scenarios as it does for the mixing of two populations.

THE ISSUE OF ALLELE FREQUENCY MATCHING

So far we have assumed that the association statistics at unlinked markers can
be compared to those at the candidate marker to calculate significance cutoffs. How-
ever, from a rigorous point of view, allele frequencies at the unlinked and candidate
markers have to be identical for the χ2 statistics to be truly comparable. The χ2 statis-
tics are calculated on the basis of Table I, and two fillings of the table can only be
compared properly if the marginal sums in the two tables (n1*, n2*, n*1 and n*2) are

TABLE II. Look-up Table for Obtaining an Upper Bound on m

Maximum factor by which m can exceed
No. of markers the mean χ2 value at the 95% confidence level

1 3.84
2 3.01
3 2.60
4 2.37
5 2.21
6 2.10
7 2.01
8 1.94
9 1.88

10 1.83
12 1.75
14 1.69
16 1.65
18 1.61
20 1.57
24 1.52
28 1.48
32 1.45
36 1.42
40 1.40
45 1.37
50 1.35
60 1.32
65 1.30
70 1.29
80 1.27
90 1.26

100 1.24

Note: The maximum factor by which m can exceed the mean χ2 value at the α% confidence level,
assuming that n unlinked markers have been genotyped, can be obtained using the general formula
χ2

n,a /n, where χ2
n,a is the a percentile of the χ2 distribution with n degrees of freedom. Table II can be

obtained, for example, by looking up values of χ2
n,0.95 in any standard statistical table [e.g., Rice, 1995]

and dividing by n.
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the same. In practice, there are many situations for which allele frequency matching
does not need to be stringent, but if there does turn out to be a strong requirement for
allele frequency matching, a very large number of markers would have to be screened
before identifying a few that are appropriate for comparison. To investigate when
allele frequency matching is required and when it is not, we carried out a wide-
ranging simulation study (Devlin and Roeder [1999] and Schork et al. [1999] did not
consider this matter at all).

Figures 3 and 4 describe the effect of allele frequency on the χ2 distribution,
focusing on the 95th percentile as a surrogate for the entire distribution (for example,
the 99th percentile would have shown the same behavior due to Equation [2]). Figure
3 assumes 100 cases and 100 controls and covers the 5–50% frequency range, whereas
Fig. 4 assumes 250 cases and 250 controls and covers the 1–10% frequency range
(the 95th percentile increases with increasing sample size, which explains why the
95th percentiles tend to be higher in Fig. 4 than in Fig. 3; results for other numbers of
cases and controls can be extrapolated from these figures as described below). Each
trace corresponds to a single demographic scenario, and following the trace horizon-
tally shows how the 95th percentile of the χ2 distribution (that is, the P < 0.05 cutoff)
changes with allele frequency. For example, the trace indicated by an arrow in Fig.
3B (g = 0.1, f = 0.31 and t = 0.2) is flat for allele frequencies >15%, which means
that allele frequency matching is not required as long as the frequencies of the candi-
date marker and unlinked markers are all >15%. In most real studies, in which clini-
cians attempt to match the ethnicities of controls to those of cases, we expect that the
level of stratification will be even less than in this specific example (currently, how-
ever, there are no empirical data to support this). Hence, we believe that for most
candidate markers with allele frequencies >15%, the requirement for allele frequency
matching will not be stringent at all: any unlinked marker with an allele frequency
>15% will be a useful match.

The type of stratification that pertains in a given case-control study is in general
not known in the sense that it is unknown on which trace in Figs. 3 or 4 a particular
study falls. Hence, the only way to assess whether allele frequencies need to be
carefully matched is to estimate m directly and to see which curves in Figs. 3 and 4
are consistent with m. Suppose as an example that there are 100 cases and 100 con-
trols and that m is estimated as 2.4. The 95th percentile cutoff can then be estimated
as 9.1 = 2.4 × 3.8 (Equation [2]). Percentile cutoffs around 9.1 are typical of the
example highlighted in Fig. 3B, for which the trace is nearly flat, and hence allele
frequency matching for this case will not be important unless the candidate marker
allele frequency is below approximately 15%.

When sample sizes are different than the ones used to generate the figures, it
will be necessary to make an additional adjustment to use the figures. According to
our simulations, as well as the equations of Devlin and Roeder [1999], the difference
between a χ2 value in a stratified sample and its equivalent in an unstratified sample
increases linearly with sample size. The linear rise of the χ2 elevation with sample
size makes sense because the χ2 distribution measures variance, and variance—in
this case, the additional variance due to stratification—also increases linearly with
sample size. For example, if the 95th percentile of a χ2 distribution is estimated as 9.8
= 3.8 + 6 in a sample with 300 cases and 300 controls, the 95th percentile if only 100
cases and 100 controls were sampled would be 5.8 = 3.8 + (6 ÷ 3).
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Fig. 3. Behavior of χ2 distributions as a function of allele frequency for allele frequencies of 5–50% and for 100 cases and 100
controls. Each trace corresponds to a unique combination of parameters, and plots 95th percentile cutoffs as a function of allele
frequency. Lower levels of stratification are represented by traces at the bottom of the graph, which show that the 95th percentile
χ2 cutoffs are close to 3.8, the expected value in the absence of stratification. The following parameter combinations were consid-
ered: g = (0.05, 0.1 and 0.3), t = (0.025, 0.05, 0.1, 0.2 and 0.4), and p1/p2 values of 2, 4, and 8. Eighty-five thousand simulations
were performed for each of the 45 parameter combinations, and the results were binned into nine allele frequency bins that were
used to calculate a 95th percentile.
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Fig. 4. Behavior of χ2 distributions as a function of allele frequency for allele frequencies of 1–10% and for 250 cases and 250
controls. Fifty thousand simulations were performed for each stratification scenario. Otherwise, parameters are identical to those in
Fig. 3. For low frequencies, the 95th percentile cutoffs tend to be highly dependent on frequency. Hence, stringent allele frequency
matching is required for low frequency alleles.
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To summarize, for well-designed case-control studies, in which egregious mix-
ing of populations is avoided, the degree of stratification might be expected to be
moderate, and stringent frequency-matching will not be required unless the candi-
date allele frequency is <15%. For many practical case-control studies, we therefore
envision that no allele frequency matching will be required. When stratification is
extreme, which is only likely to occur in very poorly designed case-control studies
but can be assessed directly by estimating m, it may be necessary to match allele
frequencies more closely (perhaps by matching to within a 5–10% frequency win-
dow around the candidate marker). Finally, for low allele frequencies, allele fre-
quency matching may need to be quite stringent, since 95th percentile cutoffs change
relatively quickly as a function of frequency in this range, especially for allele fre-
quencies <5% (Fig. 4).

DISCUSSION

We have described an approach for teasing out evidence of true association in
the context of stratification. The method is easy to implement, and requires the geno-
typing of only a moderate number of unlinked markers (e.g., a few dozen markers).
Using this approach, it is possible to distinguish the level of association that arises
on account of population stratification alone from the quantitatively greater associa-
tion that occurs when a candidate marker is actually associated to a disease-causing
variant. In addition, the method makes it possible to assess empirically the degree of
stratification in a case-control sample.

For most types of candidate markers, our method entails only a small amount of
additional laboratory work, beyond what would be required in a traditional case-
control study, to correct for stratification. Hence, the method is practicable for many
reasonable scenarios. For candidate markers with low allele frequencies, our method
will be more difficult to implement because of a requirement for careful allele fre-
quency matching. Allele frequency matching should not constitute a major obstacle
in the long term, however, because efforts to identify large numbers of SNPs and
characterize their allele frequencies are underway. For example, as a result of the
“SNP Consortium” and related projects, there will soon be so many published mark-
ers with known allele frequencies that it will be adequate to consult a published
database to identify a sufficient number of frequency-matched markers.

In addition to showing how to correct for stratification in case-control studies,
methods such as the one we report have other important implications. For example,
it should be possible to re-evaluate published studies by genotyping at unlinked mark-
ers in the original samples, thereby determining whether the published associations
are likely to be real or attributable to stratification. Our method should also help
quantify how much cryptic stratification typically exists in case-control studies—
until now a subject of speculation and theory rather than empirical data. It may be
that epidemiologists who carefully match controls to cases usually succeed in elimi-
nating cryptic stratification; on the other hand, it is also possible that substantial
stratification persists. If the latter, then the preference by some investigators for fam-
ily-based controls will have been justified in the absence of methods to correct di-
rectly for stratification. The debate about the extent of cryptic stratification should
soon be settled due to this work and related reports, simply by measuring stratifica-
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tion (m) in a few real case-control samples. The important work of understanding the
genetic basis of disease will then be able to move forward unfettered by worries that
stratification may cause false-positive associations.
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