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Historical episodes of natural selection can skew the frequencies of genetic variants, leaving a signature that
can persist for many tens or even hundreds of thousands of years. However, formal tests for selection based
on allele frequency skew require strong assumptions about demographic history and mutation, which are
rarely well understood. Here, we develop an empirical approach to test for signals of selection that compares
patterns of genetic variation at a candidate locus with matched random regions of the genome collected in
the same way. We apply this approach to four genes that have been implicated in syndromes of impaired
neurological development, comparing the pattern of variation in our re-sequencing data with a large-scale,
genomic data set that provides an empirical null distribution. We confirm a previously reported signal at
FOXP2, and find a novel signal of selection centered at AHI1, a gene that is involved in motor and behavior
abnormalities. The locus is marked by many high frequency derived alleles in non-Africans that are of low
frequency in Africans, suggesting that selection at this or a closely neighboring gene occurred in the ances-
tral population of non-Africans. Our study also provides a prototype for how empirical scans for ancient
selection can be carried out once many genomes are sequenced.

INTRODUCTION

Many of the most successful genome-wide scans for signals of
natural selection to date have focused on the ‘long range hap-
lotype test’ (LRH test), which searches for common haplo-
types that extend much longer distances than would be
expected under neutrality (1–3). Although this is a powerful
method, it can only detect the signatures of natural selection
that occurred within the last �10 000 years. An alternative
approach to screening the genome for signatures of selection
is to search for regions where the allele frequency distribution
is distorted compared with the expectation in the absence of
selection (4). Teshima et al. (5) showed that such signals

are sometimes too subtle to be detected with statistical
significance in a genome scan. However, screens for regions
of the genome that have a distorted allele frequency spectrum
do have power to detect a subset of real selection events (5),
and are attractive because they can detect selection events
that are much more ancient than the ones that are accessible
to the LRH test. It has not been possible to carry out such
studies on a large scale in a robust manner, however,
because genome-wide data sets like the International Haplo-
type Map Project (HapMap) (6,7) are strongly affected by
ascertainment bias: non-randomness in the polymorphisms
chosen for analysis (8). Large numbers of genomes are cur-
rently being sequenced, and it should be possible to use
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these data to carry out robust genome-wide scans for distor-
tions in allele frequencies.

The most straightforward way to search for signals of selec-
tion is to compare patterns of genetic variation at candidate
loci to theoretical expectations from a neutral model of popu-
lation history not involving selection. Most such analyses have
assumed a constant-sized ancestral population, an ‘infinite
sites’ model for mutation, a constant rate of recombination
across the genome, and no sequencing error (9–12). However,
deviations from a neutral model can produce false signals of
selection both by skewing the expected values of test statistics,
and by inflating the variance of the underlying distributions of
test statistics (4,10,13–21). The variance effect is particularly
problematic. For example, demographic histories like popu-
lation bottlenecks are predicted to increase variability of test
statistics across loci, even in the absence of natural selection.
This can produce test statistics that appear to be multiple stan-
dard deviations from the mean under the theoretical expectation
for a constant-sized population, but in fact are entirely consistent
with the demographic history expected from a bottleneck.

Here, we focus on an ‘empirical’ approach to searching for
signals of selection in humans. By comparing the pattern of
genetic variation at candidate genes to patterns in random
regions that are in principle all affected by the same history
and the same processes of mutation, recombination and
sequencing error, it should be possible to assess whether the
pattern of genetic variation at tested loci is unusual (22,23).

Two approaches are possible in order to empirically test for
selection: non-parametric and parametric. The most obvious
approach, which is non-parametric, involves rank-ordering
loci according to their value of a test statistic that is sensitive
to selection, and designating significant loci as ones that are
outliers from the distribution. The parametric approach recog-
nizes that the distributions of some test statistics [such as
Tajima’s D (10)] are expected to have about the same shape
whatever the demographic history, except that the parameters
such as the mean and variance vary. By estimating the mean
and variance from the genome wide distribution, it should
be possible to extrapolate the tail, and to confidently infer
P-values that are much more extreme than would be possible
based on the rank ordering method. This is analogous to the
‘Genomic Control’ method that is commonly used to detect
disease alleles in case–control association studies, where an
‘inflation factor’ of the chi-squared distribution is estimated
from the genome-wide data, and the scaled chi-squared distri-

bution is then used to determine P-values with more precision
than would be possible with rank-ordering (24). Below, we
report simulation experiments under different selection scen-
arios, which confirms that the ‘Genomic Control’ method for
detecting selection results in overall higher sensitivities com-
pared with the rank ordering method.

To test the Genomic Control approach for screening for
selection, we chose four candidate genes. All four had pre-
viously shown evidence of positive selection in the last tens
of millions of years on the primate lineage leading to
humans, and all four have been associated with syndromes
impaired neurological development, a category that in anecdo-
tal studies has shown evidence of being unusually affected by
selection during this period (25–33). In this study, we sought
to test the distinct but related hypothesis that these genes have
also been unusually subject to selection in the last few hundred
thousand years since anatomically modern human arose in the
fossil record. We chose one gene (FOXP2) as a ‘positive
control’ since previous studies had found evidence of selective
sweeps (possibly multiple rounds) at this locus (25,34,35). The
other three genes had no evidence of selection within the last
few hundred thousand years at the time when this study was
designed. Mutations at FOXP2 have been shown to affect
comprehension and production of human speech (36).
Mutations at ASPM are associated with neurological impair-
ment and reduced cortical size (37). Mutations at GPR56 are
associated with reductions in the size of the frontal cortex
(38). Mutations at AHI1 are associated with Joubert syndrome
and motor and behavioral abnormalities (39).

We re-sequenced about 15–30 kilobases (kb) from each of
the four genes using long-read Sanger sequencing, focusing on
segments containing mutations that have been documented as
medically important, or containing novel amino acid changes
on the human lineage (Table 1). At FOXP2, we re-sequenced
the region that was analyzed in a previous study (27) (exons
4–8), and also extended the sequencing to another region
spanning exons 14–16 that had not previously been analyzed
(Table 1). For all the regions we examined, we re-sequenced
16 samples of North European ancestry (CEU) and 16 West
Africans from Nigeria (YRI), identified single nucleotide poly-
morphisms (SNPs) using automated software (Methods), and
then genotyped the discovered SNPs within these segments
in 90 CEU and 90 YRI HapMap samples (40,41), using a
nearly identical protocol as was used by the ENCODE
Project to sequence and then genotype about 2.5 Mb of the

Table 1. Re-sequenced segments in this study

Gene Re-sequenced
region

Span in
base
pairs

Physical coordinates (HG16) Reason for ascertainment

AHI1 Exon 5–12 23 127 Chr6: 135,748,716-135,771,842 Non-synonymous mutations, causal for Joubert Syndrome; elevated dN/dS (39).
Exon 15–17 4875 Chr6: 135,731,090-135,735,964 Functionally important coding region (39)

ASPM Exon 2–4 6334 Chr1: 194,396,156-194,402,489 Two frameshift deletions in exon 3 causing microcephaly (37); elevated dN/dS (31)
Exon 18 6755 Chr1: 194,356,820-194,363,574 One nonsense mutation causing microcephaly (37); elevated dN/dS (31).
Exon 20–25 6251 Chr1: 194,346,319-194,352,569 One nonsense deletion in exon 21 causing microcephaly (37)

FOXP2 Exon 4–8 26 250 Chr7: 113,818,098-113,844,347 Two human lineage specific mutations (25), and evidence for more recent selection
(25,29)

Exon 14–16 4372 Chr7: 113,855,123-113,859,494 Non-synonymous mutation putatively causal for a severe speech and language
disorder (36)

GPR56 Exon 3–15 15 780 Chr16: 57,458,562-57,474,341 Numerous non-synonymous/missense mutations (38)
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genome at the Broad Institute (7). We applied an array of stat-
istical tests to detect significant deviations at the re-sequenced
regions from the ENCODE comparison data, using four differ-
ent summary statistics of genetic variation: Tajima’s D (10),
Fu and Li’s F (12), and Fay and Wu’s H (11) and FST

between CEU and YRI.
Mekel-Bobrov et al. (42) previously reported an analysis of

genetic variation at ASPM, suggesting that natural selection
occurred at this gene within the last few 10 000 years. Our
own empirical comparisons showed that the pattern at ASPM
was not unusual compared with random regions of the
genome (we published this result as a Technical Comment)
(43). The fact that the patterns of genetic variation at ASPM
stand out from simulations of a history that is meant to be
similar to that of the analyzed populations, but do not stand
out from empirical data, highlights the value of empirical com-
parisons and the difficulty of fully modeling the processes that
produce patterns of genetic variation in real data. Here, we
present the results for all four genes (which necessarily
involves re-reporting the ASPM data), which allows us to
more systematically evaluate the empirical approach. Our
study serves as a proof-of-principle, showing how empirical
comparisons can be used as the basis for robust tests of selec-
tion based on allele frequency skews once many human
genomes are sequenced (44,45).

RESULTS

Genic regions and SNP ascertainment

Previous studies have suggested that AHI1, ASPM, FOXP2
and GPR56 are implicated in neurodevelopmental processes
in the human brain (25,28,31,36–39,42,46) (Table 1). We
re-sequenced eight segments from within the four genes,
choosing the regions based on the fact that they co-localized
either with clusters of non-synonymous sites that are thought
to be responsible for neurological impairment in patients
(36–39), or with amino acid changes that have arisen on the
human lineage in the last tens of millions of years of evolution
based on comparison with other primates (Table 1). These
re-sequenced regions were chosen to span large contiguous
regions when possible, and as a result, most of the sequenced
data were in introns. Our tests for selection were based on
skews in the allele frequency distribution rather than on analy-
sis of amino-acid changes, and hence intronic sequence was
just as valuable as exonic sequence for our analysis.

We designed a SNP ascertainment and genotyping strategy
that closely matched what was used by the ENCODE Project,
allowing us to use �2.5 Mb of the ENCODE data that had
also been genotyped at the Broad Institute as a large-scale
empirical control data set (Supplementary Material, Fig. S1).
We matched the ascertainment strategy of SNPs with
ENCODE in five respects: (a) we used the same set of 16
CEU and 16 YRI samples; (b) we used the same re-sequencing
approach; (c) we used the same SNP calling software and
algorithm; (d) we partially used the same SNP genotyping
method [instead of a round of Illumina Golden Gate genotyp-
ing (47) followed by a round of Sequenom genotyping to fill in
gaps (48), we used two rounds of Sequenom genotyping]; and

(e) we used the same 30 CEU and 30 YRI trios in the
follow-up genotyping (Supplementary Material, Fig. S1).

In total, we discovered 270 SNPs by re-sequencing 16 CEU
and 16 YRI samples. Among the 222 SNPs for which we were
able to design assays, 200 successfully genotyped and passed
our quality control procedures. To ensure identical SNP ascer-
tainments between our project and the ENCODE Project, we
also re-curated the ENCODE genotype data set to include
only the SNPs ascertained in the CEU or YRI (since our
re-sequencing did not includes samples from East Asians).
By matching our data collection to ENCODE, we ensured
that any differences found between the four tested genes and
the control data would be due to unusual patterns (potential
natural selection) in the tested genes.

Qualitative signatures of natural selection at FOXP2
and AHI1

To determine whether there is any evidence of natural selec-
tion at the four genes, we first visually examined the derived
allele frequency (DAF) spectrum of each gene in CEU and
YRI (Fig. 1). After a selective sweep that fixes a newly
arising advantageous mutation in the population, variants
that are linked to it are expected to have skewed frequencies,
with some having a high DAF (if they originally resided on the
selected haplotype and hitchhiked to high frequency during the
selective sweep), and some having a low DAF (suggesting that
they were among the alleles that arose after the sweep) (4).

Figure 1 compares the DAF distribution of SNPs in the four
genes with ENCODE data. In CEU, three genes demonstrate
greater density in both the high and low ends of the DAF dis-
tribution than is expected from ENCODE data (AHI1, ASPM
and FOXP2; Fig. 1A). In YRI, one gene (FOXP2) has an evi-
dently skewed DAF distribution (Fig. 1B).

To provide a more comprehensive picture of the DAF dis-
tribution in the vicinity of the four genes, we also merged
our re-sequencing data with data from HapMap, and visual-
ized the data by plotting the DAF of each SNP against its
physical distance (Fig. 2). Our tests for natural selection
based on allele frequency patterns in the re-sequenced
regions are based on matching only to ENCODE data (pre-
sented in the next section). However, the union with
HapMap shows qualitatively that the same signals of natural
selection that we found at FOXP2 and AHI1 are also present
in the flanking regions that we did not re-sequence (Fig. 2).

Significant signals of selection at FOXP2 and AHI1
compared with empirical data

To assess whether the patterns of genetic variation at each of
the re-sequenced segments are significantly different from
what is expected based on empirical comparisons to data
from random regions, we calculated three statistics that are
designed to be sensitive to a history of selection at a locus:
Tajima’s D (10), Fu and Li’s F (12) and Fay and Wu’s H
(11). Although all these statistics have known mathematical
distributions in the case of a constant-sized population and
an infinite sites model of mutation, human population
history and genetic data are not well described by these
models. To deal with this, we treated these quantities as
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Figure 1. DAF distribution by bin in SNPs from re-sequenced regions compared with SNPs from the �2.5 Mb of ENCODE data (black lines) in (A) CEU and
(B) YRI. The DAF distribution is shown for each gene, merging the different interrogated segments. The derived allele is inferred by comparison with the chim-
panzee allele.
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statistical metrics with unknown distributions, and inferred the
distributions empirically from data obtained from random
regions of the genome. Unmodeled processes like demo-
graphic history should equally affect the entire genome,
whereas selection should cause specific regions to stand out
in a way that we can detect.

To collect empirical comparison data, we selected non-
overlapping windows from the ENCODE data that matched
the genetic distance and number of segregating sites in each
of the tested regions that we analyzed, repeating this procedure
for CEU and YRI separately. The statistical significance of
each re-sequenced segment was then assessed by a direct
rank-ordering technique compared with the empirical control
data. The number of matching windows in the ENCODE
data varied substantially depending on the genetic distance
span and number of segregating sites in the re-sequenced
segment, ranging from as few as 7 (for AHI1 exons 5–12 in
YRI) to no more than 190 (for ASPM exon 18 in YRI;
Tables 2 and 3). Many of the observed test statistics were

more extreme than all windows of the empirical data from
ENCODE (Tables 2 and 3).

FOXP2 showed strong signals of selection, confirming pre-
vious reports of an unusual DAF distribution at the locus (25).
In exons 4–8, Tajima’s D in CEU was below all estimates
from the empirical distribution of ENCODE regions (P ,
0.022), a signal that was also seen in YRI (P , 0.036).
These results are consistent with an episode of natural selec-
tion in the common history of CEU and YRI (35). In contrast,
for exons 14–16 in CEU, the statistics are larger than the
expectation for Tajima’s D (P , 0.011) and Fu and Li’s F
(P , 0.011) (Table 2), which reflects an excess of alleles at
intermediate frequency (Fig. 2C), a pattern that is also seen
in East Asians (not shown). These results could be explained
by a selective sweep followed by genetic drift associated
with the out-of-Africa bottleneck.

The gene showing the strongest deviation from the
ENCODE data is AHI1, particularly at exon 5–12 in CEU
(Table 2), where Tajima’s D and Fu and Li’s F are both

Figure 2. DAF and FST distributions of SNPs ascertained in the regions we re-sequenced (yellow) and HapMap SNPs (grey) within the physical genomic pos-
itions spanned by the genes, in (A) AHI1, (B) ASPM, (C) FOXP2 and (D) GPR56. The exon/intron map for the gene is shown at the top; the DAF plotted against
physical position for CEU and YRI in the middle; and FST compared with percentiles from all of HapMap (90th, 99th and 99.9th) at the bottom. The scale for
each of the genes is different (and hence the density of SNPs is different) because of their different physical distance spans.
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Table 2. Statistical tests in CEU for unusual allele frequencies in re-sequenced segments compared with ENCODE control data

CEU Re-sequenced
region

Genetic distance
span (cM)

#Segregating
sites

Matches in empirical
comparison

Tajima’s D; empirical P-value,
MBB P-valuea; (MBB s)

Fu and Li’s F; empirical
P-valuea; (MBB s)

Fay and Wu’s H;
empirical P-valuea;
(MBB s)

AHI1 Exon 5–12 0.0017 27 28 21.6; 0.071�, 0.0062; (22.74) 21.5; 0.071�; (24.17) 29.6; 0.36; (21.81)

Exon 15–17 0.00040 9 105 21.3; 0.019�, 0.020; (22.33) 21.1; 0.057; (23.44) 22.7; 0.29; (21.03)

ASPM Exon 2–4 0.00024 8 97 21.3; 0.021�, 0.056; (21.91) 20.08; 0.16; (21.72) 22.3; 0.33; (20.82)

Exon 18 0.0028 9 174 0.7; 0.97, 0.93; (20.085) 0.2; 0.33; (21.16) 23.4; 0.22; (21.35)

Exon 20–25 0.000097 9 56 20.2; 0.32, 0.16; (21.41) 1.0; 0.64; (20.37) 22.9; 0.36; (20.96)

FOXP2 Exon 4–8 0.0093 14 93 21.9; 0.022�, 0.0025; (23.03) 20.4; 0.11; (22.40) 26.0; 0.15; (21.70)

Exon 14–16 0.0043 6 186 3.4; 0.011�, 0.0052; (2.79) 2.2; 0.011�; (1.90) 0.1; 0.82; (0.55)

GPR56 Exon 3–15 0.093 25 22 1.9; 0.36, 0.18; (1.33) 1.8; 0.64; (0.53) 0.9; 0.36; (0.81)

aIn each cell, the first value reports the value of the statistic. The second value reports the P-value based on rank-ordering compared with ENCODE data (for Tajima’s D, this is followed by a P-value for a
two-tailed z-test based on the MBB procedure). The third value in parenthesis gives the number of standard deviations (s) from the mean.
�Indicates observed value that is more extreme than all empirical comparisons. Since P-values are 2-sided, the most extreme rank-ordering P-value that is possible is 2/n, where n is the number of windows in
the control data.

Table 3. Statistical tests in YRI for unusual allele frequencies in re-sequenced segments compared with ENCODE control data

YRI Re-sequenced
region

Genetic distance
span (cM)

#Segregating
sites

Matches in empirical
comparison

Tajima’s D; empirical P-value, MBB
P-valuea; (MBB s)

Fu and Li’s F; empirical
P-valuea; (MBB s)

Fay and Wu’s H; empirical
P-valuea; (MBB s)

AHI1 Exon 5–12 0.0017 45 7 20.3; 0.86, 0.73; (20.35) 1.2; 0.86; (0.38) 21.9; 0.86; (20.11)
Exon 15–17 0.00040 14 56 0.4; 0.96, 0.98; (0.020) 1.0; 0.75; (20.17) 0.3; 0.75; (0.43)

ASPM Exon 2–4 0.00024 12 58 0.6; 0.97, 0.94; (0.080) 1.4; 0.79; (0.51) 21.6; 0.38; (20.34)
Exon 18 0.0028 9 190 20.7; 0.32, 0.19; (21.32) 0.8; 0.89; (20.45) 24.8; 0.074; (22.68)
Exon 20–25 0.000097 10 53 0.8; 0.79, 0.74; (0.33) 1.5; 0.68; (0.59) 0.1; 0.98; (0.39)

FOXP2 Exon 4–8 0.0093 40 56 21.1; 0.036�, 0.056; (21.91) 0.5; 0.18; (21.49) 210.2; 0.18; (21.87)
Exon 14–16 0.0043 9 165 20.8; 0.16, 0.15; (21.45) 20.4; 0.061 (22.10) 23.3; 0.12 (21.79)

GPR56 Exon 3–15 0.093 41 21 0.1; 0.86, 0.44 (20.78) 0.4; 0.095�; (22.28) 22.3; 0.86; (20.36)

aIn each cell, the first value reports the value of the statistic. The second value reports the P-value based on rank-ordering compared with ENCODE data (for Tajima D, this is followed by a P-value for a
two-tailed z-test based on the MBB procedure). The third value in parenthesis gives the number of standard deviations (s) from the mean.
�Indicates observed value that is more extreme than all empirical comparisons. Since P-values are 2-sided, the most extreme rank-ordering P-value that is possible is 2/n, where n is the number of windows in
the control data.
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outside the distribution of matched windows from ENCODE
(P , 0.071; Table 2). The re-sequencing data from AHI1
exons 15–17 in CEU provides further evidence of selection,
with Tajima’s D falling outside the distribution of windows
from ENCODE (P , 0.019; Table 2). However, AHI1 does
not show any evidence for selection in YRI, suggesting that
the selection probably occurred in the ancestors of CEU
after the split from YRI (Table 3).

We found almost no evidence for selection in ASPM or
GPR56, in either CEU or YRI, by any test (Tables 2 and 3).
The only exception was in ASPM exons 2–4 in CEU, where
we observe an unusually low Tajima’s D statistic that is
more extreme than the values seen in all 97 empirical compari-
sons (P , 0.021) (Table 2); however, this is the only signal of
selection at this gene that we observed by any test. We con-
clude that the gene does not show evidence of selection after
correcting for multiple hypothesis testing, confirming our pre-
vious report about patterns of variation at this gene (43).

Genomic Control, an improvement on empirical methods
to detect selection

A major limitation of non-parametric searchers for selection
using empirical methods is that the P-values can only be as
significant as the number of regions to which a test statistic
is compared (at least when significance is assessed by
rank-ordering comparison regions and assessing where a test
statistic falls). This is particularly problematic for empirical
comparison data sets that are small or based on contiguously
re-sequenced regions (such as the ENCODE regions and
whole-genome re-sequencing data), since correlation in genea-
logical histories among neighboring loci means that there are
effectively fewer comparison regions than would be expected
if all the windows were unlinked. As a result, even if a test
statistic at a candidate gene for selection is more extreme
than is observed in all N regions to which we empirically
compare it, in the face of the correlation among regions we
cannot confidently say that the P-value is ,1/N.

To address these limitations, we used a Genomic Control
method. The Genomic Control method is inspired by an idea
from case–control association studies (24). The idea is that

even if the distribution of a test statistic sensitive to selection
has a mean and variance that is systematically different from
what is expected under the constant-sized model due to the
fact that the true demographic history is different, the para-
metric shape of the distribution may be conserved regardless
of the demographic history. Thus, the Genomic Control strat-
egy uses the empirical comparison data set to estimate quan-
tities like the mean and variance of the distribution (taking
into account uncertainty in these quantities), and then com-
pares the test statistic for the candidate selected loci to these
distributions.

We focused our exploration of the Genomic Control method
on the Tajima’s D statistic, which is expected to approximately
conform to a normal distribution whether for a constant-sized or
a non-constant-sized population, which we confirmed by exam-
ining the real ENCODE data (Supplementary Material, Fig. S2).
We estimated the mean and variance of the Tajima’s D distri-
bution from the ENCODE data, while taking into account
increased uncertainty in these parameters due to correlation in
genealogical histories within an ENCODE region by a
Moving Block Bootstrap (MBB) (Materials and Methods). It
allowed us to assess the statistical significance of our obser-
vations, taking into account the limited data set size and
linkage disequilibrium (LD) in the data set.

We carried out coalescent simulations to test the perform-
ance of our empirical methods for screening for selection—
and in particular Genomic Control—under different selection
and demographic scenarios. Eight different selection scenarios
were simulated, involving the selected allele occurring within
the tested region or at some distance from the tested region,
and four different selection intensities (selection coefficients
of 0.1, 0.05, 0.01 and 0.005) (Methods, Table 4). We com-
pared the simulated selected loci to unselected regions
500 kb in size (chosen to match the size of the ENCODE
regions), and analyzed all the data using the same procedure
as our real data. The demography we explored for the simu-
lations of selection was that of a constant-sized population
(Table 4). For the simulations of non-selected regions, we
also explored population bottlenecks and expansions
(Methods). Simulating histories that are not that of a constant-
sized population is important, as it allowed us to verify that

Table 4. Simulations of empirical tests of selection

Simulated selection scenario Empirical approaches for detecting selection
Genomic Control
power (%)

Rank method
power (%)

s ¼ 0.1, causal mutant in the middle of a 30 kb region 94 92.7
s ¼ 0.05, causal mutant in the middle of a 30 kb region 91.9 88.5
s ¼ 0.01, causal mutant in the middle of a 30 kb region 60.9 54.3
s ¼ 0.005, causal mutant in the middle of a 30 kb region 35.8 29.1
s ¼ 0.1, causal mutant at 220 kb to the 30 kb region 13 10
s ¼ 0.05, causal mutant at 220 kb to the 30 kb region 3.4 2.7
s ¼ 0.01, causal mutant at 220 kb to the 30 kb region 2 1
s ¼ 0.005, causal mutant at 220 kb to the 30 kb region 1.4 0.8
False positive rate for simulated neutral regions under a constant sized population model 2.3 0.2
False positive rate for simulated neutral regions under a population growth model 0.5 1
False positive rate for simulated neutral regions under a population bottleneck growth model 2.8 0.8
False positive rate for simulated neutral regions under a population growth model compared with control regions

under a constant size model (this highlights the false-positives that arise under traditional tests of selection)
41.0 35.3
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demographies like expansions and bottlenecks do not inflate
the false-positive rate in empirical scans for selection, as
they do in traditional non-empirical scans that compare
observed data to the theoretical expectation for a constant-
sized population.

The simulations confirmed that the empirical approach does
not result in an inflated false-positive rate in screens for selec-
tion (Table 4). Interestingly, the Genomic Control method had
a somewhat higher power for detecting selection (by �5–
10%) compared with the non-parametric rank order approach.
We believe that this reflects the fact that Genomic Control can
more accurately estimate statistical significance for data points
that fall outside the empirical rank order distribution; however,
Genomic Control provides no increased power compared with
rank ordering for data points that fall within the empirical dis-
tribution. Both empirical approaches had very little power to
detect selection when selection occurred at some distance to
the region of interest (Table 4).

Application of Genomic Control strengthens the selection
signal at FOXP2 and AHI1

We applied the empirical approach to screening for selection
to real data from the four genes. We found significant
results at FOXP2 and AHI1, but not at the other genes. The
P-values inferred by Genomic Control in CEU are highly
significant for AHI1 exons 5–12 (P ¼ 0.0062), FOXP2 exons
4–8 (P ¼ 0.0025) and FOXP2 exons 14–16 (P ¼ 0.0052)
(Table 2). In YRI, the MBB indicates marginally significant
signals at FOXP2 exons 4–8 (P ¼ 0.056). The P-values at
AHI1 and FOXP2 obtained by the Genomic Control approach
are more extreme than those we obtained using the non-
parametric rank-ordering approach, reflecting the fact that
the Genomic Control approach allows us to extrapolate
P-values further into the tail of the distribution.

The Genomic Control analysis finds no evidence for selec-
tion at ASPM, consistent with our published Technical
Comment (43). The strongest signal is in CEU in exons 2–4
(P ¼ 0.056), which is not significant after correcting for mul-
tiple hypothesis testing. At exon 18, the region previously
highlighted as potentially containing a selected variant (42),
there is no evidence for selection (P ¼ 0.93), and this region
is not in LD with exons 2–4. We also found no evidence
for selection in the ASPM gene when it is treated as a whole
(combining the three re-sequenced segments).

Analysis of allele frequency differentiation highlights
alleles at AHI1

We also examined the allele frequency differentiation between
CEU and YRI at all SNPs using the FST statistic (49,50). If
selection occurred after the separation of North Europeans
and West Africans, selected loci would be expected to be unu-
sually differentiated in frequency across populations. On the
other hand, selection that occurred before population separ-
ation is not expected to affect frequency differentiation.

We compared FST in the re-sequenced segments using the
entire HapMap Phase II data set (41) as an empirical
control. (The comparison with HapMap data is conservative
for our analysis, and hence we do not need to restrict our

analysis to comparison with ENCODE regions; Materials
and Methods.) We observed a handful of highly differentiated
SNPs (.99th percentile) in the re-sequenced segments, with
the most striking signal at AHI1. When we extended the analy-
sis to all HapMap Phase II SNPs (Fig. 2A), we observed even
higher differentiation at the proximal end of AHI1. Here, the
FST estimates of 10 different SNPs fall between the 99.9th
and 99.99th percentile of HapMap.

The extraordinarily high SNP frequency differentiation at the
proximal end of AHI1—about 220 kb away from the
re-sequenced segments (Fig. 2A and Table 5)—suggests that
if selection indeed occurred at AHI1, it may not have been in
the re-sequenced segment, but could equally well have been
centered elsewhere, with the speed of the selective sweep (due
to a strong selective coefficient) being responsible for the
large size of the affected locus. When we visually examined
the DAF pattern around AHI1 in HapMap over a larger region
than is shown in Supplementary Material, Fig. S4, it is in fact
not clear whether the putative selective signal is due to variation
at AHI1 at all. The DAF pattern is distorted in CEU over a region
that extends to a couple of megabases, and this region contains
many known genes in addition to AHI1 (Supplementary
Material, Fig. S4). Thus, although AHI1 is an interesting candi-
date gene for selection, we cannot rule out the possibility that the
signal we observe is due to hitchhiking from a powerful selective
sweep at a neighboring gene.

We also explored whether the evidence of high frequency
derived alleles is unique to CEU, or whether it is also present
in other non-African populations. Table 5 shows the frequencies
for all SNPs across about 2 Mb centered at AHI1 that were
highly differentiated in frequency between West Africans and
North Europeans, with DAF , 17% in YRI and DAF . 83%
in CEU. The observation of a high DAF in CEU always
coincides with a high DAF in CHB and JPT. For 10 SNPs, we
were also able to obtain data from Human Genome Diversity
Panel (HGDP) samples (51), which showed the same high
DAF pattern in all non-Africans with the possible exception of
West Oceanians (Papuans and Melanesians). In contrast, all
the HGDP African populations, including the San and Mbuti
hunter-gatherers, had low derived allele frequencies at these
sites (Table 5). These results indicate that the putative selection
event near AHI1 probably occurred in the common history of
non-Africans, around the time of the dispersal out of Africa.

In contrast with the pattern at AHI1, there is no similar signal
of high FST between Africans and non-Africans at FOXP2, con-
sistent with inference from previous studies that the selection
event occurred more than a hundred thousand years ago (25).
In particular, the fact that the selection signal is shared in
CEU and YRI suggests that at least some of the selection at
this locus occurred before these two populations diverged.

LRH tests do not detect recent positive selection at the four
genes

We carried out LRH analyses (2,52,53) to test for evidence of
more recent positive selection. The rationale for LRH is that a
selective sweep can drive an advantageous allele to high fre-
quency rapidly enough that the haplotype background on
which the allele arises does not have much time to break
down by recombination. Regions that have experienced
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recent positive selection can thus have a distinct signature of a
high frequency allele associated with long-range LD. The
LRH test (2,52,53) is particularly sensitive to selection that
occurred in the past �10 000 years of history (53).

To carry out the LRH analyses, we integrated our data with
HapMap to achieve greater marker density in the four genic
regions. For each application of the LRH test, we used a single
SNP as a core SNP (Materials and Methods). Comparing to the
background of random genetic variants in CEU in all of
HapMap Phase II, 4 SNPs in AHI1 and 8 in GPR56 exceeded
the 99th percentile with nominally significant P-values (Fig. 3A
and Supplementary Material, Table S1a). In YRI a handful of
SNPs in ASPM (n¼ 11), FOXP2 (n¼ 18) and GPR56 (n¼ 4)
exceeded the 99th percentile, and some SNPs in ASPM (n¼ 5)
and FOXP2 (n¼ 3) even exceeded the 99.9th percentile. Although
these results are intriguing, many SNPs were tested and thus there
is a multiple hypothesis testing concern (1204 tests in CEU and
1804 in YRI, including tests on both sides of the core SNPs). It

has previously been observed that SNPs with extreme relative
extended haplotype homozygosity (REHH) signals can be
observed in a genome scan without being convincingly associated
with signals of natural selection (1). Frazer et al. (41) rec-
ommended an empirical rule of thumb, which was to identify
regions as strong candidates for selection only if .10% of SNPs
within a 100 kb region have an LRH score [ln(REHH) deviation
from the genome-wide average] greater than 3.92. When we
apply this criterion, none of the genes crossed the threshold, con-
sistent with the failure of these four genes to emerge as strong can-
didates in previous genome-wide scans (1,3).

DISCUSSION

We have carried out a re-sequencing study of four genes relevant
to neurological development, and applied an array of statistical
tests to examine the hypothesis of selection during the last few
hundred thousand years of human evolution at these loci. We con-

Table 5. Derived allele frequencies for SNPs in the vicinity of AHI1 that are highly differentiated between African and non-African populations

SNP Build34 Region HapMap HGDP
CEU
(%)

CHBþJPT
(%)

YRI
(%)

European
(%)

West
Asian
(%)

Central and
South Asian
(%)

East
Asian
(%)

East
Oceanian
(%)

Native
American
(%)

African
(%)

rs7453135 134,439,442 proximal 85 99 10 79 72 77 96 65 98 19
rs9688660 134,445,499 proximal 85 99 10
rs9321439 134,708,764 proximal 84 77 6
rs6922545 134,709,544 proximal 84 77 8
rs7775514 134,712,805 proximal 84 77 6
rs9493942 134,713,104 proximal 85 77 7 77 60 83 85 100 98 18
rs726948 134,714,168 proximal 85 77 13
rs2327484 134,714,298 proximal 85 77 13 78 60 83 86 96 98 26
rs1052502 135,587,135 AHI1 95 86 6 93 85 90 89 30 96 25
rs7741046 135,595,272 AHI1 95 91 8
rs2327612 135,597,189 AHI1 97 97 13
rs2142956 135,597,202 AHI1 97 97 13
rs7766656 135,598,171 AHI1 92 91 8 92 87 90 92 30 97 30
rs6933077 135,598,904 AHI1 97 97 15
rs9483826 135,600,086 AHI1 97 97 8
rs7765602 135,601,578 AHI1 97 97 14
rs7765971 135,601,742 AHI1 97 97 14
rs7756167 135,603,575 AHI1 95 91 8
rs9389294 135,787,775 AHI1 94 92 17
rs9402709 135,793,821 AHI1 94 92 17
rs4896149 135,797,073 AHI1 95 92 17
rs958072 135,808,136 distal 94 92 17
rs9494266 135,832,143 distal 94 92 15 92 86 94 91 43 96 28
rs7752627 135,856,515 distal 94 92 15
rs9483910 136,461,542 distal 99 86 7
rs9321552 136,462,182 distal 99 86 7
rs3823159 136,463,297 distal 99 86 7 100 94 95 84 46 57 25
rs6570067 136,477,401 distal 99 86 7
rs1480642 136,480,098 distal 99 86 8
rs3734548 136,488,969 distal 98 78 7
rs3799396 136,492,042 distal 98 78 7
rs7753890 136,496,827 distal 99 79 7 97 91 89 84 37 98 24
rs11154872 136,778,327 distal 87 64 15
rs3778308 136,786,352 distal 87 64 15
rs9399183 136,798,058 distal 87 64 15 82 81 79 61 32 68 24

Note: This table reports all HapMap Phase II SNPs in the AHI1 region where we observe DAF , 17% in YRI and DAF . 83% in CEU. Most of these SNPs have a
similarly elevated DAF in CHBþJPT, suggesting that the selective sweep at this locus occurred in the common ancestral population of North Europeans and East
Asians after the split from West Africans. Where available, we also report data for the Human Genome Diversity Panel (HGDP) (51) for a wider range of
populations, pooling samples into seven geographical regions following Ref. (61). The only non-African populations that do not consistently exhibit high derived
allele frequencies across these regions are East Oceanians.
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firmed the previously reported evidence of natural selection at
FOXP2, and in particular showed that it likely occurred prior to
the divergence of West African and North European populations,
since the signal is shared in these two populations (35). We also
highlighted a genomic region containing AHI1 as likely to have
been affected by selection. At this locus, there is high differen-
tiation between Africans and non-Africans throughout a region
of a couple of megabases including AHI1, suggesting that the
sweep occurred in a population that accounts for a larger pro-

portion of ancestry in non-Africans than in Africans. The
pattern also provides some intriguing hints about the duration
of the putative selective sweep. Since the region of high frequency
differentiation spans about 0.02 Morgans, we hypothesize that
there was an intense period of selection during which the allele
swept through the population in not much more than 1/0.02 ¼
50 generations. This calculation is intentionally approximate, as
the goal of this study is to show how empirical comparisons
can establish evidence of natural selection rather than to quantify

Figure 3. Empirical significance of the LRH test for all SNPs in the four genes for (A) CEU and (B) YRI. We merged the SNPs discovered in the re-sequenced
genic segments with the HapMap SNPs within each gene, and used each SNP across the span as a core to carry out a LRH test, separately reporting the scores at
both sides of the core (2,52). LRH values were split into 20 bins (0–5, 5–10, 10–15, . . . , 95–100%) by their respective allele frequency, and compared to the
empirical LRH distribution obtained from the HapMap SNPs using the same LRH methods. A few SNPs in ASPM and FOXP2 in YRI exceed the 99.9th per-
centile when compared with the HapMap. However, after accounting for multiple hypotheses testing, none of the genes stands out as showing an unusual LRH
test compared with the genome-wide distribution (Supplementary Material, Table S1).
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the parameters of selection. A modeling analysis could obtain a
more precise estimate.

Our confirmation of a previously detected signal of natural
selection at FOXP2, and our detection of a novel signal near
AHI1, provides some evidence for the hypothesis that genes
that appear to be important in syndromes affecting neurologi-
cal development, also are candidates for selection in the last
few hundred thousand years. A gene’s relevance to neurologi-
cal impairment syndromes is no guarantee of selection,
however, as we did not find a signal at either ASPM [contra-
dicting the result of (42)] or GPR56 (5). Moreover, in the
case of AHI1, the selection signal is so broad that our results
do not distinguish between whether AHI1 itself or a neighbor-
ing locus was the subject of selection.

Our study is also significant as a proof-of-principle for how
empirical comparisons can add rigor to studies of natural
selection using the distribution of allele frequencies. Many
past studies have been re-sequenced a gene, and then com-
pared the observed patterns to expectations from computer
simulations to assess whether the tested genes stand out
(25,28,42,46). However, comparing a candidate gene to a
large empirical control data set collected in the same way
can provide evidence for selection that is more reliable than
these comparisons with theoretical expectations (22,54,55).
A novel feature of this study methodologically is the introduc-
tion of a Genomic Control approach to selection studies,
where we empirically infer the parameters of a statistical dis-
tribution of a test statistic sensitive to selection (like Tajima’s
D)—taking into account LD in the data using a MBB
analysis—and then assess statistical significance by comparing
with this parametric distribution instead of using a simple
rank-ordering approach. Genomic Control offers the special
advantage—which will be important in future studies—that
it can estimate the statistical significance of strong selection
signals with much more precision than would be possible
with a rank-ordering approach that can only measure a
P-value that is as significant as 1 divided by the number of
comparisons that are made. Comparisons to empirical data
to establish evidence for selection will become all the more
important once uniformly ascertained genetic variation data
sets become available on a genome-wide scale (44), which
will permit studies such as the one we report here to be
carried out on all genes simultaneously.

MATERIALS AND METHODS

Human subjects

For the SNP discovery stage of this study, we re-sequenced the
same CEU and YRI DNA samples used in the ENCODE
Project, including 16 CEU (NA11829, NA11830, NA11831,
NA11832, NA11992, NA11993, NA11994, NA11995,
NA12003, NA12004, NA12005, NA12006, NA12154,
NA12155, NA12156 and NA12236) and 16 YRI (NA18486,
NA18489, NA18498, NA18499, NA18501, NA18502,
NA18505, NA18507, NA18510, NA18511, NA18516,
NA18517, NA18519, NA18520, NA18522 and NA18523).
The ascertained SNPs were then genotyped in 90 CEU and
90 YRI samples from the HapMap Project (30 father–
mother–child trios from each population, containing 120 inde-

pendent chromosomes) to characterize these SNPs in larger
numbers of samples. This study on de-identified human
samples was approved by the Institutional Review Boards of
Harvard Medical School and the Massachusetts Institutes of
Technology.

Sequencing of the selected gene segments and genotyping
of SNPs

We used an ABI 3730 DNA Analyzer (ABI, USA) to
re-sequence eight segments selected from these four genes
(AHI1, ASPM, FOXP2 and GPR56), ranging from about
15–30 kb in size. We could not sequence the entire intronic
and exonic span of all these genes, and hence we prioritized
the segments that seemed most likely to be important for
human evolution or disease based on other lines of evidence.
Segments were chosen based on two subjective criteria: first,
they span nucleotides that have been medically documented
to cause neurological impairment when mutated; and second,
they contain amino acid changing substitutions that have
arisen since divergence from other primates (Table 1).
Within these constraints, we selected segments that were as
contiguous as possible, which meant that in practice, our
data set contained much more intronic than exonic sequence.

After the re-sequencing was complete, SNPs were identified by
a combination of the PolyPhred and PolyDhan programs, using
the same protocol as was used at the Broad Institute to identify
SNPs in 2.5 Mb regions for the ENCODE Project. (The other
2.5 Mb of re-sequencing data in the ENCODE Project was gath-
ered at the Human Genome Sequencing Center at the Baylor
College of Medicine. We did not include the Baylor data in the
present study as a somewhat different protocol was used to dis-
cover and genotype SNPs, and we wished our own data to be
maximally comparable to the ENCODE data.)

We designed primers for follow-up genotyping using the Assay
Design 3.0 software (Sequenom) and attempted to genotype the
SNPs identified by re-sequencing in the 30 CEU and 30 YRI
trios (father–mother–child) from HapMap using the
mass-spectrometry-based MassArray platform (Sequenom)
(48). A total of 200 SNPs passed our quality control criteria (poly-
morphic and .50% genotyping success rate). The average geno-
typing success rate across all samples (90 CEU and 90 YRI) was
81%. In all analyses except for phasing haplotypes, we only uti-
lized data from the 120 unrelated chromosomes. The data are
available at http://genetics.med.harvard.edu/~reich.

Physical and genetic maps

We used the July 2003 human reference genome sequence to
determine physical positions (NCBI Build 34/hg16), and the
Oxford high-resolution genetic map (56) to matching
ENCODE regions to our tested regions in their genetic dis-
tance span. When no genetic position was available at a
given physical position, it was interpolated based on the
genetic and physical positions of the closest flanking SNPs
for which data were available.
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Generating an empirical data set for examining the DAF
spectrum

To extract an empirical data set to which we could compare
the regions we re-sequenced, we defined non-overlapping
windows spanning each of the five ENCODE regions.
Windows were sized to match the genetic distance span as
well as the number of segregating sites in each corresponding
interrogated segment (we randomly dropped segregating sites
from a window in the ENCODE data when there were more
segregating sites than in a test region). On the basis of these
matched windows from the ENCODE data set, we assessed
the statistical significance of the regions we analyzed by
rank-ordering the statistics obtained from each of the interro-
gated segments within the empirical distribution obtained from
all ENCODE windows. We used the publicly available
Bioperl PopGen module (40) to compute the Tajima’s D
(10) and the Fu and Li’s F (12) selection statistics. The Fay
and Wu’s H test was implemented based on the method
described in Ref. (11). These statistics have different sensi-
tivities. Tajima’s D test searches for an excess of rare alleles
and is sensitive to positive or negative selection. Fay and
Wu’s H statistic tests for an excess of high frequency
derived alleles, which is a signature of a selective sweep. Fu
and Li’s F statistic focuses on singleton alleles, which can
arise during positive selection. We inferred the ancestral and
derived states of SNPs by aligning with the chimpanzee
genome as in Ref. (43).

Using Genomic Control to assess statistical significance
using a parametric distribution while accounting for
correlation among ENCODE windows

We were concerned that our ability to detect statistically very
significant loci was limited by the number of empirical com-
parison regions. We therefore wished to develop a method
that would be able to use the fact that a test statistic was not
just a moderate outlier, but quantitatively very separated
from the values observed at other loci, to be able to detect
more extreme signals in the face of limited empirical compari-
son data.

We call this approach to detecting loci affected by natural
selection ‘Genomic Control’, based on the related method
that was developed by Devlin and Roeder for genome-wide
disease association studies (24). The idea is that the genomic
distribution of a test statistic sensitive to natural selection
may have a mean and variance that are skewed from the
expectations of a simplistic model of demographic history.
However, the Genomic Control idea assumes that once the
mean and variance of the distribution are estimated, it
should be possible to use the fact that the tail of the distri-
bution can be inferred to assess the significance of even
extreme observations. This makes it possible to obtain
P-values that are much more accurate than are obtainable by
a simple rank-ordering method, which can only produce a
P-value as extreme as the number of comparisons that is made.

Genomic Control does not add information compared with
the rank-ordering when a test statistic is within the distribution
of the windows from the empirical comparison data.

To implement the Genomic Control idea we needed to first
assess whether the test statistics that we analyzed could be
well approximated by a parametric distribution. To assess
this, we applied a leave-one-out cross-validation procedure
in which we considered each window from the ENCODE
control data set in turn and estimated the number of standard
deviations by which it fell outside the distribution formed by
applying the MBB procedure to the rest of the windows. We
found that the normal distribution provided an excellent fit to
the Tajima’s D statistic (P ¼ 0.61 for rejection of normality
by a x2 goodness-of-fit test; Supplementary Material,
Fig. S1), with only 4% of cross-validations rejecting the
null hypothesis of no selection at a 95% confidence level.
Fu and Li’s F and Fay and Wu’s H did not fit a normal distri-
bution (P , 1026; Supplementary Material, Fig. S1), or any
of the other parametric distributions we examined (not
shown). As the number of windows in the leave-one-out pro-
cedure was small, we did not attempt to study the empirical
distribution of these statistics in the cross validation, or to
transform the distributions to a parametric distribution that
we could handle.

In applying our empirical tests for selection (not only
Genomic Control, but also the simple outlier approach), we
were also concerned that when we observed values of test stat-
istics that were more extreme than those in all windows of
matched size in the ENCODE data, we would be overestimat-
ing statistical significance because this procedure assumes that
all windows are independent whereas in fact they are corre-
lated due to LD. The reason for this is that there are effectively
fewer empirical comparisons than would be expected from the
number of windows.

To account for LD among neighboring windows in the
ENCODE data within our Genomic Control framework, we
bootstrapped 10 000 random data sets of windows using the
MBB (57,58). The MBB accounts for the correlation
between SNPs in different windows by randomly re-sampling
contiguous runs of windows from the data in each bootstrap,
allowing us to derive estimates of the mean and standard devi-
ation of each allele frequency spectrum selection statistic in a
way that is not sensitive to the presence of LD.

Simulations to evaluate the performance of the empirical
screens for selection

The simulations of selection were carried out with SelSim
(59). Each simulated sample contained 100 haplotypes with
a length of 30 kb, meant to approximately match the settings
of our real data. We assumed a constant recombination rate
of 1.25 cM/Mb and a mutation rate of 1028 per nucleotide
per generation. All selection scenarios assumed a constant
population size. Selection was simulated via a two-deme
structured-coalescent model, where we assumed random fre-
quency trajectories and an additive model for the effect of
the allele. For simplicity, we simulated completed selective
sweeps that fixed in the current generation. For four of the
simulated scenarios, we assumed that the advantageous
mutant was located in the middle of the region, and for the
other four scenarios, we assumed the advantageous mutants
were 220 kb outside the 30 kb region. For both positions of
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the selected mutant, we simulated with selection coefficients
of 0.1, 0.05, 0.01 and 0.005.

For the neutral simulations, we used the MS Software (60)
to simulate 500 kb regions (mimicking the size of the
ENCODE regions), and used the same number of haplotypes,
and the same settings of recombination and mutation rate, as
the selection scenarios. We simulated both a constant-sized
demographic history (to match the selection simulations),
and also a demographic history meant to mimic that of the
North European population in our study and including
another model in which the population experienced a severe
‘Out of Africa’-like population bottleneck. In the population
growth model, the population began with a constant size of
3000, which reduced to 2000 at a time of 3500 generations
ago, and then increased instantaneously to 100 000 at a time
of 350 generations ago. In the population bottleneck model,
the population began with a constant size of 10 000, and then
experienced a bottleneck 1380 generations ago during which
the population size was reduced instantaneously to a size
of 330 for 100 generations [resulting in a bottleneck intensity
T/2N ¼ 0.151 (51)], and then increased instantaneously 1280
generations ago to a constant size of 10 000 and remained at
that size until the present. Although these population growth
and bottleneck models do not accurately represent the true
population history of human populations, they produces patterns
of genetic variation that are roughly similar to what we observe
in real human populations from HapMap (51), and they allow
us to qualitatively explore the performance of our method
under such a wide range of demographic histories.

All the simulated data were analyzed using the same set of
analysis software as our real data, and the null distribution of
Tajima’s D was generated by sampling sub-windows from the
500 kb regions. The threshold for statistical significance was
set so that the false positive rate was 1%, and the cutoff of
D for the 1% significance level was then determined and
used to determine statistical power.

In the course of our simulations, we confirmed that
ENCODE data set is of sufficient size to support robust appli-
cation of the Genomic Control method. To show this, we ran-
domly sampled five 500 kb simulated regions, and found that
the inferred Tajima’s D distribution is not significantly different
from what was found when more regions were sampled (Stu-
dent’s t-test P-value ¼ 0.33). The ability to build up a robust
expectation for a statistic under the null hypothesis of no selec-
tion, whereas using only a limited amount of data, is an impor-
tant advantage for our parametric Genomic Control approach
compared with the non-parametric rank-order approach.

FST analysis to test for extreme allele frequency
differentiation between populations

We estimated FST based on the reference and variant allele
counts in CEU and YRI, using the formula in Refs. (49,50).
To assess statistical significance, we rank-ordered the values
observed in our gene segments and compared with the
values of all SNPs in the HapMap Phase II data set (the per-
centile is then reported as a P-value). It is conservative to
compare FST to the entire HapMap, since as we show in Sup-
plementary Material, Fig. S2, it is only modestly different

from ENCODE, and the difference is in the direction that
the HapMap distribution has more SNPs with high FST values.

LRH test analysis

EHH is defined as ‘the probability that two randomly chosen
chromosomes carrying a tested core allele are homozygous
at all SNPs for the entire interval from the core allele to a
given distance’ (52). REHH, which we use as our LRH stat-
istic, is ‘the ratio of the EHH on the tested core allele com-
pared with the EHH of the grouped set of core alleles at the
region not including the core haplotype tested’ (52). The
goal of the REHH statistic is to use the alleles at a site that
are not hypothesized to be under selection as an internal
control for local variation in recombination rates. To prepare
data for LRH analysis, we merged our genotyping data with
the HapMap Phase II data (41) for 500 kb flanking either
side of the gene. We considered each SNP inside the
re-sequenced regions as a ‘core’ for carrying out the LRH
test, and compared with random loci as an empirical control
data set. Several previous studies have reported that LRH stat-
istics are not much affected by ascertainment bias (1,21,52),
justifying the use of HapMap data for the LRH analysis. We
assessed REHH in both directions from the core SNP at a dis-
tance where haplotype heterozygosity including all sites
between the core and the chosen marker broke down to 4%
of its value at the core SNP (this is recommended as a maxi-
mally powerful distance by the Sweep software package).
Because we were analyzing multiple core SNPs in each
genic region, we used the approach of Ref. (2) to correct for
multiple hypothesis testing, requiring more than 10% of the
SNPs within a 100 kb region to have ln(REHH) at least 3.92
standard deviations higher than the genome-wide distribution
for SNPs of the same derived frequency.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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