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Abstract

Identifying the ancestry of chromosomal segments of distinct ancestry has a wide range of applications from disease
mapping to learning about history. Most methods require the use of unlinked markers; but, using all markers from genome-
wide scanning arrays, it should in principle be possible to infer the ancestry of even very small segments with exquisite
accuracy. We describe a method, HAPMIX, which employs an explicit population genetic model to perform such local
ancestry inference based on fine-scale variation data. We show that HAPMIX outperforms other methods, and we explore its
utility for inferring ancestry, learning about ancestral populations, and inferring dates of admixture. We validate the method
empirically by applying it to populations that have experienced recent and ancient admixture: 935 African Americans from
the United States and 29 Mozabites from North Africa. HAPMIX will be of particular utility for mapping disease genes in
recently admixed populations, as its accurate estimates of local ancestry permit admixture and case-control association
signals to be combined, enabling more powerful tests of association than with either signal alone.
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Introduction

The identification of chromosomal segments of distinct

continental ancestry in admixed populations is an important

problem, with a wide range of applications from disease mapping

to understanding human history. Early efforts to solve this

problem used coarse sets of unlinked markers [1–3] and mostly

focused on populations such as African Americans [4,5] and

Latinos [6–8] that admixed within the past approximately 10

generations. Applying this approach to more anciently admixed

populations has led to ancestry predictions that are ambiguous at

many loci [9]. However, methods based on coarse sets of

markers do not take advantage of the much richer haplotype

information available in genome-wide data. More recent

methods have been designed to use data from genome-wide

scanning arrays [10–12], but these methods do not fully model

linkage disequilibrium (LD) in the ancestral populations. Thus,

they do not capture all of the available information about

ancestry, and can be far from optimal. Furthermore, unless a

trimming step is applied to remove linked markers [11],

unmodeled LD may cause systematic biases in estimated

ancestry, leading to false-positive inferences of a deviation in

ancestry at certain loci [13].

Here, we describe a haplotype-based method, HAPMIX, which

applies an extension of the population genetic model of Li and

Stephens [14] to the problem of local ancestry inference in

populations formed by two way admixture. We apply the method

to simulated mixtures of African and European chromosomes to

show that the resulting local ancestry inference is exceedingly

accurate in comparison to other methods, even in the case of

ancient admixture in which the shorter ancestry segments are

more difficult to infer. As expected from its use of an explicit

population genetic model, HAPMIX makes more complete use of

dense genome-wide data, producing more accurate results. We

examine the sensitivity of local ancestry inference to a wide array

of factors. We also explore the utility of HAPMIX for drawing

inferences about both the ancestral populations and the date of

admixture.

We apply HAPMIX to 935 African American individuals

genotyped at ,650,000 markers. By studying a large set of

individuals from an admixed population of high relevance to

disease mapping, we validate the effectiveness of this method in a
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practical setting and specifically show that the ancestry estimates

are not systematically biased within the limits of our resolution. To

illustrate how the method can provide insights into the history of

an anciently admixed population, we also apply HAPMIX to a

data set of 29 individuals from the Mozabite population of

northern Africa that were genotyped at ,650,000 markers as part

of the Human Genome Diversity Panel (HGDP) [15]. We show

that the Mozabite have inherited roughly 78% ancestry from a

European-related population and 22% ancestry from a population

related to sub-Saharan Africans. Our analysis also shows that the

Mozabite admixture has occurred over a period that began at least

100 generations ago (,2,800 years ago), and that has continued

into the present day. We are able to infer small, ancient, ancestry

segments in the Mozabite, and we demonstrate that the segments

show considerable drift relative to all the other HGDP

populations, consistent with the historical isolation of the Mozabite

population.

Materials and Methods

Ethics statement
For the African American data, informed consent was obtained

from each study participant, and the study protocol was approved

by the institutional review board at either the Johns Hopkins

University or Howard University.

Overview of haplotype-based inference of local ancestry
HAPMIX assumes that the admixed population being analyzed

has arisen from the admixture of two ancestral populations, and

that phased data are available from unadmixed reference

populations that are closely related to the true ancestral

populations (e.g. phased data from HapMap [16]). In theory,

discrepancies between the reference populations and the true

ancestral populations may lead to inaccuracies, but in practice

HAPMIX is robust to this concern under a variety of realistic

scenarios (see below).

The central idea of the method is to view haplotypes of each

admixed individual as being sampled from the reference

populations: for example, haplotypes of an African American

individual could be sampled from phased African and European

chromosomes from HapMap. At each position in the genome,

HAPMIX estimates the likelihood that a haplotype from an

admixed individual is a better statistical match to one reference

population or the other. A Hidden Markov Model (HMM) is used

to combine these likelihoods with information from neighboring

loci, to provide a probabilistic estimate of ancestry at each locus.

The method allows transition at two scales. The small-scale

transitions are between haplotypes from within a reference

population, typically at a scale of every few tens of thousands of

bases [14]. The large-scale transitions are between the reference

populations, at a scale of up to tens of millions of bases for a

recently admixed population such as African Americans. Figure 1

illustrates the method schematically.

An important strength of HAPMIX is the way it analyzes

diploid data from admixed individuals. A naı̈ve way to use

population genetic methods to infer ancestry would be to pre-

process such a data set using phasing software, and then to assume

that this guess about the underlying phased haplotype is correct.

However, phase switch errors that arise from this procedure

(which are common even with the best phasing algorithms [17,18])

would inappropriately force the method to infer ancestry

transitions. HAPMIX circumvents this problem by not assuming

that any one haplotype phase solution is correct. Instead, it uses a

built-in phasing algorithm, similar to that of [17], which allows it

to average inferences about ancestry over all possible phase

solutions within each admixed individual. We treat the reference

populations as fully phased, partly because in some cases, e.g.

African and European chromosomes from HapMap, this phasing

uses unambiguous trio information and is therefore highly

accurate. More importantly, we expect our approach to be robust

to errors in phasing in the reference populations, because these are

unlikely to force inappropriate ancestry switches, in contrast to

phasing errors in the admixed data itself.

HAPMIX is also notable in inferring probabilities for whether

an individual has 0, 1, or 2 alleles of a particular ancestry at each

locus. As our simulations show, these estimates are well-calibrated.

Thus, when the method generates a probability p for an individual

being heterozygous for ancestry at a locus, they are in fact

heterozygous approximately this proportion of the time. A well-

calibrated probability of ancestry at each locus is important for a

variety of applications, and also allows us to evaluate the

robustness of the results.

HAPMIX is fundamentally different from existing methods

such as ANCESTRYMAP and LAMP [1,11]. ANCESTRYMAP

applies a Hidden Markov Model to unlinked SNPs to model

ancestry transitions, while LAMP computes a majority vote of

ancestry information using windows of unlinked SNPs, but neither

of those methods makes use of haplotype information. Another

method for investigating admixture segments, HAPAA, has

recently been published [19]. In common with HAPMIX, the

HAPAA software uses a Hidden Markov Model to model linkage

disequilibrium within populations, and infers ancestry segments.

However, there are also a number of important differences

between our model and that used by HAPAA. First, unlike

HAPAA, we allow for some rate of miscopying of ancestry

segments from the ‘‘wrong’’ population, which we have found

greatly improves our ancestry estimation (instead of this, the

HAPAA software uses a post-hoc ‘‘filtering’’ of inferred segments,

which removes all segments of size below a certain minimum

threshold). Second, we fully allow for unphased data in our model,

while the HAPAA approach requires a prior phasing of the data,

and then attempts to account for the effect of phase-flip errors on

ancestry inference via a heuristic procedure. We believe that these

features of HAPMIX are likely to be critical in unraveling older

admixture events, where ancestry segments are much shorter. A

final advantage of HAPMIX over HAPAA is that it is designed to

Author Summary

The genomes of individuals from admixed populations
consist of chromosomal segments of distinct ancestry. For
example, the genomes of African American individuals
contain segments of both African and European ancestry,
so that a specific location in the genome may inherit 0, 1,
or 2 copies of European ancestry. Inferring an individual’s
local ancestry, their number of copies of each ancestry at
each location in the genome, has important applications in
disease mapping and in understanding human history.
Here we describe HAPMIX, a method that analyzes data
from dense genotyping chips to infer local ancestry with
very high precision. An important feature of HAPMIX is
that it makes use of data from haplotypes (blocks of
nearby markers), which are more informative for ancestry
than individual markers. Our simulations demonstrate the
utility of HAPMIX for local ancestry inference, and empirical
applications to African American and Mozabite data sets
uncover important aspects of the history of these
populations.

Sensitive Ancestry Segment Detection
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produce accurate estimates of uncertainty in inferred segments,

even for old admixture events.

Details of haplotype-based inference of local ancestry
Modeling genetic variation in admixed populations. Our

approach to inferring ancestry segments, implemented in

HAPMIX, is based on extending a Hidden Markov Model

(HMM) previously developed by Li and Stephens to model linkage

disequilibrium in population genetic data [14]. This model has

been employed in recent years in various population genetic and

disease mapping settings [20,21]. Informally, given a previous

collection of ‘‘parental’’ haplotypes from a reference population, a

new ‘‘offspring’’ haplotype drawn from the same population is

modeled as a mosaic of these existing haplotypes. This offers a

flexible means to account for local linkage disequilibrium (LD),

because over short distances, the haplotype that an individual

chromosome copies from is unlikely to change.

We extend the Li and Stephens model to allow inference on

ancestry segments for individuals drawn from an admixed

population. We begin by supposing that we have two previously

sampled collections of phased haplotypes, P1 and P2, taken from

two reference populations. For example, HapMap provides

phased haplotypes from the CEU, YRI and JPT+CHB popula-

tions genotyped at over 3 million markers [16]. We further assume

that P1 and P2 have valid data at all sites of interest, with no

missing data. In practice, small amounts of missing data in the

reference populations can be filled in by a pre-processing

imputation step, as has been done for the publicly available

phased HapMap data. We label P1 and P2 as ‘‘parental’’

haplotypes. Next, we sample a new ‘‘offspring’’ haplotype from

an admixed population. We assume that this population is created

from a single admixture event between two populations which are

genetically similar to the two reference populations from which P1

and P2 are drawn. (The reference populations do not need to

exactly match the true ancestral populations, because we allow for

some genetic divergence in our approach.) We will initially

consider the case where we have haploid chromosomes from the

admixed population, and subsequently generalize to the more

typical case involving unphased genotype data from the admixed

population. Throughout this section, we operate in units of genetic

(not physical) distance.

We begin by modeling the ancestry segments. Assume the

admixture event occurred at a single time T generations ago, with

a fraction m1 of the haplotype’s ancestry drawn from population 1,

and m2 = 12m1 from population 2. Because recombination occurs

at each generation, it is natural to model ancestry switches as a

Poisson process along the genome [22], at a rate T per unit of

genetic distance (i.e. T per Morgan). Conditional on the positions

of such switches, each segment is independently drawn from

population 1 or 2 with probabilities m1, m2 respectively. In

particular, this implies that not all ancestry switch points will

actually change the underlying ancestry. This model has been

previously used by other authors [1,22]. Since ancestry cannot be

directly observed, it is natural to view underlying ancestry status as

the ‘‘hidden’’ information in an HMM. Our approach probabi-

listically infers this hidden state at each position along a

chromosome.

To fully specify our model, we must consider the structure of

variation conditional on these admixture segments. Our model

remains computationally tractable while accommodating impor-

tant features typical of real data such as mutation, recombination,

genotyping error, reference populations that are drifted from the

Figure 1. Schematic of the Markov model we use for ancestry inference. The black lower line represents a chromosomal segment from an
admixed individual, carrying a number of typed mutations (black circles). The underlying ancestry is shown in the bottom color bar, and reveals an
ancestry change from the first population (red) to the second population (blue). The admixed chromosome is modeled as a mosaic of segments of
DNA from two sets of individuals drawn from different reference populations (red and blue horizontal lines respectively) closely related to the
progenitor populations for the admixture event. The yellow line shows how the admixed chromosome is constructed in terms of this mosaic. The
dotted line above the bottom color bar shows the reference population being copied from along the chromosome – note that at most positions, this
is identical to the true underlying ancestry, but with occasional ‘‘miscopying’’ from the other population (blue dotted segment occurring within red
ancestry segment). Note also that switches between chromosomes being copied from, representing historical recombinations, are rapid (6 switches),
while ancestry changes, representing recombination since admixture, are much rarer (1 switch). Finally, note that at most positions the type of the
admixed chromosome is identical to that of the chromosome being copied from, but an exception to this occurs at one site, shown as a grey circle,
and representing mutation or genotyping error. In our inference framework, we observe only the variation data for the admixed and reference
individuals: the yellow line, and the underlying ancestry, must be inferred as the hidden states in a HMM.
doi:10.1371/journal.pgen.1000519.g001
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true ancestral populations, and incomplete sampling of diversity in

the reference populations reflected in the samples drawn from

these populations. We assume that all mutant sites take the form of

single nucleotide polymorphisms (SNPs) with two alleles that can

be represented as 0 and 1 (however, our approach could be

extended to more complex mutation models).

We suppose that sections of the genome with true ancestry from

population 1 are formed as mosaics of the haplotypes in the two

parental groups. Specifically, at any given position with this ancestry,

an individual from P1 is copied with probability, and an individual

from population P2 is copied with probability p1 (we call this the

‘‘miscopying’’ parameter for population 1). Conditional on the

parental group chosen, individuals to copy from are chosen

uniformly from the n1, n2 respective individuals in that group.

Switches between individuals occur as a Poisson process with rate r1,

the ‘‘recombination’’ parameter, and at each switch point a new

copy individual is chosen randomly using the above scheme. Finally,

at genotyped SNPs, if the ‘‘offspring’’ copies a ‘‘parent’’ fro 1{p1 m
population 1, the offspring carries an identical type to the particular

parent it copies from with probability (12h1), and carries the other

type with probability h1, the ‘‘mutation’’ parameter. If the offspring

instead copies an individual from the other population 2, the

corresponding mutation parameter is h3. In total this approach leads

to 4 additional parameters: p1, r1, h1 and h3.

For sections of the genome with ancestry from population 2, we

formulate our model in an analogous way, with corresponding

parameters p2, r2, h2 and h3. We note that h3 is shared for both

populations, a choice that is motivated by a genealogical

argument, and has the aim of keeping the total number of

parameters manageable. In total, our model has 9 independent

parameters: T, m1, p1, p2, r1, r2, h1, h2 and h3.

Some additional remarks about the interpretation of these

parameters may be useful. As in the original Li and Stephens

implementation, r1 and r2 relate to historical recombination

parameters. In our parameterization, these parameters depend on

both the effective population sizes of the relevant populations, and

the sample sizes n1 and n2 drawn from these populations. Although

they are not merely a simple function of these quantities, informal

coalescent-based arguments suggest that they will decrease roughly

linearly with n1 and n2, and increase roughly linearly with the

effective population sizes of the reference populations [14]. In

general, because the amount of historical recombination depends on

effective population size, we do not expect r1 = r2, even if n1 = n2.

The mutation parameters h1, h2 and h3 allow for both historical

mutation and genotyping error. The miscopying parameters p1 and

p2 allow similar ‘‘fuzziness’’ in the group copied from within

ancestry segments. If p1~p2~0, ancestry segments corresponding

to population 1 must copy individuals from population 1, and

similarly for population 2. However, setting these parameters equal

to zero is likely to lead to spurious ancestry breaks, and therefore

misestimation of ancestry segments, for at least two reasons. First,

because we only sample a finite number of parental chromosomes,

incomplete lineage sorting can occur. In some parts of the genome,

the offspring chromosome is expected to have a deep coalescence

time with the ancestors of the ‘‘correct’’ parental sample, and may

instead coalesce first with an ancestor of the other parental sample –

and therefore choose a descendant of this ancestor, in the ‘‘wrong’’

parental sample, to copy from. Second, if our reference populations

are somewhat inaccurate relative to the true ancestral populations,

again it is likely that incomplete lineage sorting will occur, even if

our ‘‘parental’’ samples are both large. For these reasons, in practice

we believe that incorporating non-zero miscopying parameters is

important, and in both real data and simulation we find that it

greatly improves our ancestry estimation procedure. Because our

miscopying parameter is designed to allow for regions in the genome

where the offspring chromosome has an unusually deep coalescence

time with the other sample members, allowing the ‘‘miscopying’’ to

occur, miscopied regions are likely to have unusually deep

genealogies. Therefore, we allow a different mutation rate h3 for

such segments, which is typically expected to be higher than h1 or

h2. It might also be desirable to allow a higher recombination rate in

such cases. However, this would result in computational complex-

ities, and we have chosen not to allow such an additional parameter.

For a typical application of HAPMIX, we expect to have data

from a collection of discrete typed sites. Suppose we have S such

sites, and in addition a map giving the genetic distances

r1,r2,…r(S21) between adjacent pairs of sites. In practice, we

interpolate these distances from the genome-wide recombination

rates estimated using Phase II HapMap [16]. Given the above

parameters, and for a haploid admixed chromosome, we formalize

the transition probabilities as follows. A (hidden) state for position s

is represented by a triplet (i,j,k) where i = 1 or 2 represents ancestry

drawn from population 1 or population 2, j = 1 or 2 records the

population the chromosome copies from at position s (j may be

different from i due to miscopying) and k represents the individual

from which the chromosomal segment is copied. There are

2(n1+n2) possible states. Let ps i, j, k; l, m, nð Þ be the probability of

transitioning from state (i,j,k) to state (l,m,n) between adjacent sites s

and (s+1). Then we have the following:

ps i, j, k; l, m, nð Þ~

1{e{rsTð Þml|
1{pl

nm
if l=i and m~l

1{e{rsTð Þml|
pl

nm
if l=i and m=l

e{rsT| 1{e{rsrlð Þ| 1{pl

nm

z 1{e{rsTð Þml|
1{pl

nm

if l~i and m~l and

j=m or k=nð Þ

e{rsT|e{rsrl ze{rsT

| 1{e{rsrlð Þ| 1{pl

nm

z 1{e{rsTð Þml|
1{pl

nm

if l~i and m~l and

j~m and k~n

e{rsT| 1{e{rsrlð Þ| pl

nm

z 1{e{rsTð Þml|
pl

nm

if l~i and m=l and

j=m or k=nð Þ

e{rsT|e{rsrl ze{rsT

| 1{e{rsrlð Þ| pl

nm

z 1{e{rsTð Þml|
pl

nm

if l~i and m=l and

j~m and k~n

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð0:1Þ

Conditional on the underlying hidden state, let e1
ijk sð Þ denote the

probability of the offspring chromosome being of type 1 at site s, and

tjk be the type of parental individual k in reference population j. Then

e1
ijk(s)~

hid(tjk~0)z(1{hi)d(tjk~1)

h3d(tjk~0)z(1{h3)d(tjk~1)

if i~j

if i=j

�
ð0:2Þ

This probability allows us to calculate the likelihood of the

observed data in the offspring for each possible underlying state.

Sensitive Ancestry Segment Detection
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At sites with missing data in the offspring chromosome, the

appropriate likelihood contribution is simply 1.0.

Choices of parameter settings. Choices of T and m1 are

specific to each application (see below). However, many of the

remaining parameters were fixed in all analyses of both simulated

and real data. As discussed above, it is natural to scale r1 and r2,

as well as h1 and h2, by the numbers of parental individuals n1, n2,

respectively. Our code is parameterized so this is done internally –

arbitrarily labeling the European population as ancestral

population 1, we used recombination parameters r1 = 60,000/n1

per Morgan for the European ancestral population and

r2 = 90,000/n2 per Morgan for the African ancestral population

(with r2.r1 reflecting the larger effective population size of

Africans). Further, we set h1 = 0.2/(0.2+n1) and h2 = 0.2/(0.2+n2),

and h3 = 0.01 (this parameter remains unscaled). Finally, we used

miscopying parameters p1 = p2 = 0.05. These values were arrived

at via a process of trial and error, based on the results of inferring

parameters via the EM algorithm. We have implemented an EM

algorithm approach to parameter estimation that can infer any

subset of the HAPMIX input parameters, or all simulataneously

(see Text S2). This EM approach to parameter inference is

currently only implemented for haploid data from the admixed

population, but we applied it to haploid data derived from a

phasing of diploid data, obtained by running HAPMIX on diploid

admixed samples and using the software to sample random state

paths. This approach might be applied to diploid samples more

generally, and could be potentially be iterated, by updating

phasing based on new parameter sets. However, based on our

simulations we believe that for many applications – for example

whenever the software is applied to African American data - it will

be sufficient to vary T and m1 and fix the remaining parameters at

the values described above.

Inferring probabilistic ancestry segments and sampling

from the posterior with HAPMIX. It is easy to see that

equations (0.1) and (0.2) describe a HMM for the underlying state

(which includes information on ancestry) as we move along the

genome, and that the underlying Markov process is reversible. Given

a set of parameters we can exploit these properties and HAPMIX

implements standard HMM techniques to efficiently infer posterior

probabilities of underlying states, via the forward-backward

algorithm, or sample random state paths from the correct joint

posterior distribution, using a standard modification of this

algorithm. In addition to parameter values, the software takes as

input a recombination map for the regions to be analyzed, phased

‘‘parental’’ chromosomes from the two reference populations, and

‘‘offspring’’ data from the admixed population being analyzed.

A naı̈ve implementation of the forward/backward algorithm

would require computation time proportional to 4S(n1+n2)2, in the

above notation. For the original Li and Stephens model, it is

possible to reduce computation time substantially by using the fact

that many pairs of transition probabilities between states are

identical, which allows terms to be collapsed in the forward (or

backward) algorithm, into expressions involving a single term that

is shared among all destination states. Calculating this shared term

just once per pair of adjacent sites, and then storing, saves

substantial computational effort [14]. Analogously, in our

somewhat more complicated setting we can exploit a similar

phenomenon, so that by calculating and storing a somewhat larger

number of shared terms – one for each group of states of the form

(i,j), giving four in total - HAPMIX can complete the forward/

backward algorithm in time proportional to 2S(n1+n2) (with an

additional scaling constant).

It is straightforward to extend our approach to allow imputation

of missing data, while simultaneously labeling underlying ancestry,

in an analogous manner to methods employed in several existing

approaches to imputation for samples drawn from panmictic

populations [20,21]. We will describe this extension, and its

application to disease mapping, in a separate paper.

Multiple individuals from the admixed

population. Typically, we actually have multiple ‘‘offspring’’

samples (either haploid chromosomes or diploid genotypes, see

below) from the admixed population of interest. For the analyses in

this paper, we used HAPMIX to analyze data from each sample

independently, using the same parental chromosomes in each case.

Although in principle improvements to ancestry inference could

result from considering the problem in multiple samples jointly, there

are formidable computational challenges in adapting our approach

to allow this (one possibility might be to employ MCMC, as used for

unlinked sites [22,23]). To avoid these complications, we simply

model each admixed sample independently, following [21]. Under

this scheme, separate HAPMIX runs for each sample enable

effective parallelization of the software.

Diploid genotype data from the admixed

population. Typically, real data consists of unphased

genotypes for individuals drawn from a population, with

haplotypic phase unknown. Many approaches already exist to

infer phase from such data [17,18]. However, phase switch errors

that inevitably result from applying such algorithms are likely to

result in spurious ancestry switches within regions of the genome

where an individual is heterozygote for ancestry. This would likely

lead to considerable overestimation of the time since admixture

and a reduction in the accuracy of ancestral inference. To avoid

such issues, we have extended our approach to directly analyze

diploid genotype data from the admixed population.

The phasing is implemented using a HMM adapted from that

described above (0.1) and employing a composite hidden state at

each location, of the form (i1,j1,k1,i2,j2,k2) where (i1,j1,k1) represents

the previously defined ‘‘haploid’’ hidden state for the first

chromosome, and (i2,j2,k2) represents the hidden state for the

second chromosome. The state space therefore now has dimension

4(n1+n2)2. Allowing independent transitions between the marginal

states for each chromosome, the terms in (0.1) now naturally

define an HMM for these composite states (for reasons of space,

we do not explicitly list all of the transition probabilities in the

model here). This model could have up to 18 parameters – in our

implementation, for natural biological reasons we assume all

parameters are shared between chromosomes, apart from time

since admixture T and admixture proportion m1, resulting in 11

parameters in total. Further, although our software allows these

two parameters to differ, in all applications considered here we

specify T and m1 to be the same for each chromosome.

Emission probabilities are also adapted from the haploid case.

For genotype data, there are 3 possible emissions at typed sites,

which we denote as genotypes g = 0, 1, or 2, with g counting copies

of the ‘‘1’’ allele. Conditional on the underlying hidden state, let

e
g
ijklmn sð Þ denote the probability of observing genotype g given

underlying state (i,j,k,l,m,n), and define tjk as before to be the type of

parental individual k in reference population j. Then using (0.2)

e0
ijklmn sð Þ~ 1{e1

ijk sð Þ
� �

| 1{e1
lmn sð Þ

� �
e1

ijklmn sð Þ~ 1{e1
ijk sð Þ

� �
|e1

lmn sð Þze1
ijk sð Þ| 1{e1

lmn sð Þ
� �

e2
ijklmn sð Þ~e1

ijk sð Þ|e1
lmn sð Þ

ð0:3Þ

where e1
ijk sð Þ and e1

lmn sð Þ are as defined above.
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Having defined the HMM for this setting, we again use

standard techniques to obtain posterior probabilities on (joint)

ancestry for the two chromosomes, and then sample states from

this posterior distribution. We note that as a by-product of

sampling complete states jointly for the two chromosomes

together, we are phasing the original data with respect to the

underlying ancestry. This may help reduce phasing error rates in

admixed populations compared to methods that ignore local

ancestry, although we do not pursue this issue here.

We can adapt the computational speedups described above to

the diploid setting, so that while a naı̈ve implementation of the

forward algorithm would take time proportional to 16S(n1+n2)4, we

can complete the forward/backward algorithm in time propor-

tional to 4S(n1+n2)2. A further speedup for the diploid setting is

described in Text S2. With these speedups implemented, the

running time of HAPMIX is roughly 30 minutes on a single

processor per diploid genome analyzed (519,248 sites). Because the

computations can be parallelized across admixed individuals (they

can also be parallelized across chromosomes), HAPMIX is

computationally tractable even for very large data sets if a cluster

of computing nodes is available. For example, the running time for

a data set of 1,000 admixed individuals on a cluster of 100 nodes is

roughly 5 hours.

Measuring the performance of HAPMIX
Estimate of r2 between predicted and true

ancestry. Irrespective of whether the true ancestry is known (as

in simulations) or unknown (as in real data), an estimate of the r2

between a predicted ancestry vector Y and true ancestry X can be

computed. Within an individual, at each site s, a natural measure of

predicted ancestry is the expected number Ys of haplotypes from one

of the two source populations. If HAPMIX provides accurate

ancestry probabilities, the true number of haplotypes from this

population, Xs, can be thought of as an unknown random variable

which is equal to 0, 1, or 2 with probabilities p0, p1, p2 specified by the

ancestry predictions. We are interested in how correlated the

predicted ancestry Y and true ancestry X are, over samplings from

this distribution of the true ancestry X. A natural way to estimate this

correlation is to calculate the expected squared correlation between

X and Y, which we may approximate using a ratio of means:

E r2
XY

� �
~E

cov X, Yð Þ2

Var Yð ÞVar Xð Þ

 !

&
E cov X, Yð Þð Þ2

Var Yð ÞE Var Xð Þð Þ ,

where the variances and covariances are taken over loci and

individuals, and the expectations over samplings of the ancestry X.

The expected covariance between predicted and true ancestry is

then the mean value of the covariance between X and Y as we

sample ancestry paths at different loci and in different individuals. At

our single locus, we have E(XsYs) = (p1+2p2)2 and

E(Xs) = E(Ys) = p1+2p2. By separately averaging these three

expectations across loci and individuals, we can then calculate

E cov X, Yð Þð Þ analytically. Similarly, we can calculate the variance

of Y, and the expected variance of X, across loci and different

individuals, in a similar way. Combining these variances with the

covariance to estimate correlation, and then squaring, we obtain a

measure of the level of certainty of the ancestry predictions.

Actual r2 between predicted and true ancestry. In

simulated data sets where the true ancestry is known, the

estimated r2 between predicted and true ancestry (which is

computed using ancestry predictions only) can be compared to

the actual r2 between these quantities (comparing ancestry

predictions to true ancestries specified in simulations). As we

confirm in what follows, the estimates of r2 are well calibrated.

Simulations
Simulations of local ancestry inference. We simulated

individuals of admixed African and European ancestry by

constructing their genomes from a mosaic of real Yoruba and

French individuals genotyped on the Illumina 650Y chip as part of

the Human Genome Diversity Panel (HGDP) [15]. We

downloaded data from 20 Yoruba and 20 French individuals

from the HGDP data set and jointly phased them using the

fastPHASE program [18] to form 40 haploid Yoruba and 40

haploid French genomes.

We constructed 40 haploid admixed genomes (n = 1 to 40) from

the 40 haploid Yoruba and 40 haploid French genomes by using

haploid Yoruba genome n and haploid French genome n to

construct admixed genome n, so that ancestral genomes were

never reused. To construct an admixed genome, we began at the

first marker on each chromosome and sampled French ancestry

with probability a and Yoruba ancestry with probability 1-a.

Ancestry was resampled based on an exponential distribution with

weight l (the number of generations since admixture) so that a new

ancestry was sampled with probability 12e2lg when traversing a

genetic distance of g Morgans. Each time ancestry was resampled,

we sampled French ancestry with probability a and Yoruba

ancestry with probability 1-a. For each individual, we used a value

of a to apply to the entire genome by sampling from a beta

distribution with mean 0.20 and standard deviation 0.10 (typical

for African Americans [4]). We simulated values of l = 6 (typical

for African Americans [4]) as well as higher values of l: 10, 20, 40,

60, 100, 200 and 400. Pairs of haploid admixed individuals were

merged to form 20 diploid admixed individuals.

It is important to distinguish between the true ancestry

proportion a in a simulated or real admixed individual and the

parameter m1 used as input to HAPMIX, which may differ from a (if

a is unknown). Similarly, it is important to distinguish between the

true number l of generations since admixture and the parameter T

used as input to HAPMIX. Below we explore the consequences of

inaccurately specifying the parameters m1 and T.

The reference populations used as input to HAPMIX consisted

of 60 YRI individuals (120 haploid chromosomes) and 60 CEU

individuals (120 haploid chromosomes) from the International

HapMap Project [16]. A joint analysis of HGDP and HapMap

data indicated that FST(Yoruba,YRI) = 0.000 and FST(French,-

CEU) = 0.001, so that the reference populations used as input to

HAPMIX were extremely accurate. All HAPMIX simulations

were restricted to 519,248 autosomal markers present in HGDP

data which were polymorphic in phased YRI and phased CEU

data from HapMap. For comparison purposes, we ran the

ANCESTRYMAP, and LAMP-ANC programs on the same

simulated data sets, making use of diploid YRI and CEU genotype

data from HapMap and restricting all input data to subsets of

markers that were unlinked in the reference populations, as

recommended by those methods [1,11]. For the ANCESTRY-

MAP runs, we chose a subset of ,8,000 markers with the largest

YRI-CEU differences that were unlinked in both reference

populations. For the LAMP-ANC runs, we set the LD cutoff to

0.10, causing the program to choose a subset of ,260,000

markers. We note that LAMP-ANC differs from the LAMP

program in that LAMP-ANC makes use of input data from

reference populations [11], which makes it more comparable to

HAPMIX. We attempted to run HAPAA on the same data for
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comparison purposes. However, despite advice from the authors of

the software and extensive effort, we were unable to make the

linked applications that form the HAPAA software suite run on

our computers, and hence we were unable to make this

comparison.

Simulations of local ancestry inference using inaccurate

reference populations. We repeated our simulations at l = 6

and l = 100 using Mandenka from HGDP as the African ancestral

population and Basque from HGDP as the European ancestral

population for simulating admixed individuals. We simulated 20

admixed individuals using Mandenka and Basque data (analogous

to the simulations described above using Yoruba and French data).

We continued to use YRI and CEU as the reference populations

for HAPMIX. A joint analysis of HGDP and HapMap data

indicated FST(Mandenka,YRI) = FST(Basque,CEU) = 0.01. We

note that these discrepancies between the ancestral populations

used to construct these simulated data and the reference

populations used as input to HAPMIX are substantially larger

than the discrepancy between the true African ancestral

population of African Americans and YRI, or the true European

ancestral population of African Americans and CEU [4].

To investigate the scenario of an even more inaccurate

reference population, as well as the asymmetric scenario in which

only one reference population is inaccurate, we also repeated our

simulations at l = 6 and l = 100 using Yoruba from HGDP as the

African ancestral population and Druze from HGDP as the

European ancestral population for simulating admixed individuals.

We simulated 20 admixed individuals using Yoruba and Druze

data as described above, and continued to use YRI and CEU as

the reference populations. A joint analysis of HGDP and HapMap

data indicated that FST(Druze,CEU) = 0.02.

Simulations of local ancestry inference as a function of

data size and parameter settings. We modified our original

simulations at l = 6 and l = 100 to consider different data sizes

and parameter settings. We investigated how the performance of

HAPMIX varies as a function of data size by varying the number

of markers from 5,192 randomly selected markers to the full set of

519,248 markers, and by varying the amount of input data from

YRI and CEU reference populations from 10 haploid

chromosomes to the full set of 120 haploid chromosomes. We

investigated how the performance of HAPMIX varies as a

function of parameter settings by incorrectly specifying either the

European ancestry proportion m1 used as input to HAPMIX (using

values different from a<20%) or the number of generations T

since admixture used as input to HAPMIX (using values different

from l = 6 or l = 100, respectively).

Inference of ancestral populations. By running HAPMIX

in the mode that samples random paths, which produces integer-

valued guesses of local ancestry for each individual and each

marker, it is possible to reconstruct chromosomal segments from

the ancestral populations. We investigated whether these

reconstructed segments provide an accurate proxy for the true

ancestral populations by using allele counts to compute values of

FST (a standard measure of genetic distance [24]) between inferred

ancestral segments and true ancestral populations from our

simulations. Although ancestral individuals are used twice in this

computation (both to simulate admixed individuals whose

ancestral segments are inferred, and in the ancestral populations

themselves), we restricted this analysis to half of the ancestral

individuals for the former and the other half of the ancestral

individuals for the latter, thus preventing any duplication of data in

the computation of FST. We performed this computation both for

our original simulations in which the true ancestral populations

(Yoruba and French) are accurately modeled by the reference

populations used (YRI and CEU), and for our inaccurate ancestral

population simulations in which true ancestral populations (either

Mandenka and Basque, or Yoruba and Druze) are inaccurately

modeled by the reference populations (YRI and CEU). We

restricted these analyses to data simulated using l = 6 and l = 100

only.

Inference of date of admixture. By comparing the overall

likelihoods produced by HAPMIX at various parameter settings, it

is possible to evaluate which parameters provide the best fit to the

data, irrespective of whether or not the choice of parameter

settings significantly impacts the accuracy of local ancestry

inference. We investigated how effectively the number of

generations l since admixture can be inferred in this way by

running HAPMIX at various values of T and computing overall

likelihoods, using the data sets simulated at l = 6, l = 20 and

l = 100. We also simulated a double-admixture scenario in which

a 50%/50% admixture of Yoruba and French occurred at l = 100

followed by a 50%/50% admixture of that population and French

at l = 6 (we call this the l = 6+100 run (with a = 75%)). We

optimized T at a granularity of 1 for the l = 6 and l = 20

simulations and a granularity of 5 for the l = 100 and l = 6+100

simulations.

Analysis of 935 African American samples
We used HAPMIX to analyze 935 African American samples

collected from volunteers living in the Baltimore–Washington,

D.C. metropolitan region and genotyped on the Illumina 650Y

chip as part of an asthma study. All subjects gave verbal and

written consent. The Johns Hopkins and Howard University

Institutional Review Boards (IRBs) determined that the samples

were consented for genetic research, but not for public release of

genotype data. Roughly half of these samples were asthma cases

and half were non-asthmatic controls, but all phenotypic

information was ignored in the current study (disease mapping

analyses of these data will be described elsewhere; K. Barnes et al.,

unpublished data). We note that irrespective of whether asthmatic

cases considered separately exhibit an admixture association

signal, one would not expect to observe such a signal in a

combined analysis of all 935 samples ignoring phenotypic

information, due to dilution of the signal. The analyses were

restricted to 510,324 autosomal markers which passed quality

controls in the 935 African Americans and were polymorphic in

phased YRI and phased CEU data from HapMap. We ran

HAPMIX using YRI and CEU as input reference populations,

setting m1 = 20% and running at various values of T to infer the

date of admixture (see above). For comparison purposes, we also

ran the ANCESTRYMAP and LAMP-ANC programs on this

data, in each case restricting all input data to a subset of markers

that were unlinked in the reference populations, as described

above.

To draw inferences about the ancestral populations of African

Americans, we ran HAPMIX in the mode that samples random

paths to reconstruct chromosomal segments from the ancestral

populations (see above), and used the resulting allele counts to

compute FST values between the inferred ancestral segments and

the reference populations (YRI and CEU), as well as additional

populations genotyped as part of the HGDP. To estimate the

number of ancestry segment changes in each of the 935 African

American individuals, we inferred ancestry using the most likely

state at each site, and identified ancestry transitions from these

ancestry states, assuming zero changes between pairs of SNPs with

identical ancestry states.

To produce an estimator of the number of generations since

admixture for each individual with .20 ancestry segments, we
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note that the genetic map used as input to the software has total

length 35.5 Morgans. For an individual with admixture proportion

a, we expect to observe a fraction 2a(1-a) of all recombination

events occurring since admixture (i.e. those that result in a change

in ancestry). Given l generations since admixture, we therefore

expect to see a total of 142 l a(1-a) events in a diploid individual.

Estimating a using the observed genome-wide ancestry proportion

m for that individual, if N ancestry transitions are observed, then a

natural moment estimator of the number of generations since

admixture is

l̂l~
N

4m 1{mð Þ|35:5
:

We excluded 3 clear outlier individuals who had more than 20

inferred generations of admixture, because we believe this is likely

to indicate partial ancestry from a third source population in these

individuals.

Analysis of 29 Mozabite samples
We analyzed 29 Mozabite samples from the HGDP data set. A

total of 30 Mozabite individuals were originally genotyped as part

of the HGDP, but one individual (HGDP01281) was excluded due

to cryptic relatedness. We ran HAPMIX on the 29 Mozabite

individuals using YRI and CEU as the input reference

populations. We inferred the number of generations since

admixture that provided the best fit to the data, and computed

FST values between the inferred ancestral segments and the

reference populations (YRI and CEU), as described above for the

African American data set.

Analysis of other HGDP populations
We ran HAPMIX on a total of 13 populations from the HGDP

data that were of African, European, or Middle Eastern ancestry.

For each population, we used YRI and CEU as the input reference

populations, and estimated the European-related mixture propor-

tion. For populations with European-related ancestry that was

estimated to be more than 0% and less than 100%, we also

estimated the number of generations since mixture.

Web resources
The HAPMIX software is available for downloading at the

following URL: http://www.stats.ox.ac.uk/,myers/software.

html.

Results

Simulations
Simulations of local ancestry inference. We began by

examining the performance of HAPMIX in a set of 20 simulated

admixed individuals, with an average of 80% African ancestry and

20% European ancestry, and generated with admixture occurring

6 generations ago (l = 6; see Materials and Methods). These

parameters were chosen to be in the range of typical values for

African Americans. We implemented a simulation framework in

which admixed individuals were constructed using genotype data

from the Human Genome Diversity Project, but modeled using

reference populations from HapMap (see Materials and Methods).

We compared the local ancestry estimates produced by HAPMIX

(probabilities of 0, 1, or 2 copies of European ancestry) to the true

values of local ancestry that were simulated. These simulation

results suggest that our method is likely to provide near optimal

ancestry reconstruction in African Americans: the squared

correlation between predicted and true number of European

copies (across all samples) was equal to 0.98, and discernment of

ancestry transitions was extremely sharp, as seen in a plot of the

predicted vs. true number of European copies for an admixed

sample on chromosome 1 (Figure 2A). For comparison purposes,

we also computed local ancestry estimates using the

ANCESTRYMAP and LAMP-ANC programs [1,11] (see

Materials and Methods). (We chose not to explicitly compare

HAPMIX to additional recently developed methods such as

SABER, LAMP, uSWITCH and uSWITCH-ANC [10–12] ,

because in previous work the LAMP-ANC method—which we do

compare HAPMIX to—has been shown to perform

approximately as well as each of those methods in a range of

scenarios [11].) The squared correlation between predicted and

true number of European copies was equal to 0.86 for

ANCESTRYMAP, 0.83 for LAMP-ANC and discernment of

ancestry transitions was less sharp or sometimes missed entirely

(Figure 2A).

A more challenging setting for ancestry inference is when

admixture occurs further back in time, resulting in smaller

ancestry segments. We therefore repeated the above comparisons

with increasing lambda (Figure 3). The results show a uniformly

better performance by HAPMIX relative to the other two

methods, with the comparative advantage of HAPMIX increasing

with time since admixture.

To investigate whether the probabilities of 0, 1, or 2 copies of

European ancestry reported by HAPMIX are well-calibrated, we

binned the predicted probabilities into bins of size 0.05 and

compared, for each x = 0,1,2 and for each bin, the average

predicted probability vs. the actual frequency in simulations of

having x copies of European ancestry. For example, in the l = 6

simulation, restricting to instances in which the predicted

probability of 1 copy of European ancestry was between 0.05

and 0.10, the average predicted probability of 1 copy of European

ancestry was 0.07 and the true frequency of 1 copy of European

ancestry was 0.08, which is close to 0.07. More generally, we

observed that HAPMIX predictions from our l = 6 and l = 100

simulations were well calibrated for each value of x = 0,1,2

(Figure 4). The calibration of intermediate bins appears visually

worse for the l = 6 simulation; however, the proportion of the

genome that is in the most extreme bins where the method is

certain is 98%, 97%, 99%, for x = 0,1,2 in these simulations, and

hence the reliability of the probabilities remains good for recently

admixed populations too.

We also used the HAPMIX predictions to compute an estimate

of the squared correlation between predicted and true #European

copies (see Materials and Methods). We obtained estimates of 0.98

for the l = 6 simulation and 0.83 for the l = 100 simulation, which

are identical to the true r2 values of 0.98 for l = 6 and 0.83 for

l = 100, consistent with the finding that HAPMIX predictions are

well calibrated.

Although most of our simulations focused on individuals of

mixed African and European ancestry, we also considered a more

general set of two-way mixtures of African, European, Chinese

and/or Japanese populations. We again observed that HAPMIX

outperformed other methods (see Text S1). Furthermore, although

HAPMIX is currently implemented assuming only two reference

populations, we were able to attain accurate results in a more

complex scenario of three-way admixture, by running HAPMIX

in a two-way mode using different choices of reference populations

(see Text S1).

Simulations of local ancestry inference using inaccurate

reference populations. In many real-world settings, the true
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reference populations for a particular admixture event may not

have had suitable genetic data gathered, or may no longer exist.

To test for the effect of this situation on HAPMIX, we repeated

our simulations at l = 6 and l = 100 using 20 admixed samples

that were simulated using Mandenka and Basque individuals

but modeled using reference populations YRI and CEU, which

are inaccurate reference populations (see Materials and

Methods). For l = 6, the squared correlation between

predicted and true #European copies remained high at 0.95,

only marginally worse than the 0.98 obtained using accurate

reference populations. For l = 100, the squared correlation was

0.76, again only slightly worse than the 0.83 obtained using

accurate reference populations. In short, the effects of these

levels of inaccuracy in the reference populations (FST = 0.01) are

relatively small.

We also repeated our simulations at l = 6 and l = 100 using 20

admixed samples that were simulated using Yoruba and Druze but

modeled using reference populations YRI and CEU, (see

Materials and Methods). The squared correlation between

predicted and true number of European copies was 0.97 at l = 6

and 0.79 at l = 100, as compared to 0.98 and 0.83 using accurate

reference populations. Thus, HAPMIX is robust to rather

inaccurate (FST = 0.02) reference populations, and to the asym-

metric case where only one reference population is inaccurate.

Simulations of local ancestry inference as a function of

data size and parameter settings. We investigated how the

accuracy of HAPMIX varies with data size, by varying either the

number of markers or the number of reference chromosomes, in

our l = 6 and l = 100 simulations (see Materials and Methods).

Accuracy as a function of the number of markers is displayed in

Figure 4A, which shows that as few as 50,000 random markers are

close to optimal for l = 6 but that hundreds of thousands of

markers are needed to produce optimal results in the more

challenging case where l = 100. Accuracy as a function of the

number of reference chromosomes is displayed in Figure 4B,

which shows that as few as 40 chromosomes (phased from 20

diploid samples) from each reference population are close to

optimal.

We also investigated how the accuracy of HAPMIX is affected

when the parameters used as input are inaccurately specified (see

Materials and Methods). Results of our simulations in which the

genome-wide ancestry proportion m1 was inaccurately specified

(different from the value a used to simulate the data) are displayed

in Table 1. We observed that even if m1 is very inaccurate (e.g. by a

factor of 4), there is no effect on results for l = 6 and only a

minimal effect (which primarily affects the genome-wide average

of HAPMIX ancestry estimates, but not their correlation with true

ancestry) for l = 100. Results of our simulations in which the

Figure 2. Comparison of ancestry estimates produced by HAPMIX, ANCESTRYMAP, and LAMP-ANC. (A) Results comparison for a
simulated recently admixed sample on chromosome 1. On each plot, the y-axis denotes the number of European chromosomal copies predicted by
each method. The centromere of the chromosome is blanked out in white. The top plot shows the true number of European chromosomes, while the
subsequent labeled plots show the results of applying each respective method. (B) Results comparison for a real African American individual across
chromosome 1. Plots are constructed as in (A). We note the visible similarity to the simulation results.
doi:10.1371/journal.pgen.1000519.g002
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number of generations T since admixture was inaccurately

specified (different from the value l used to simulate the data)

are displayed in Table 2. We observed that even if T is very

inaccurate (e.g. by a factor of 2 to 5), there is no effect on results for

l = 6 and only a minimal effect for l = 100. Thus, HAPMIX

appears to be extremely robust to parameter misspecification.

Inference of ancestral populations. We are interested in

applying HAPMIX to improve our understanding of ancestral

populations contributing to admixture events. To explore the

usefulness of the software for this purpose, we analyzed segments

of inferred African or inferred European ancestry from our l = 6

and l = 100 simulations to investigate how closely they

corresponded to the true ancestral populations used to simulate

admixed individuals (see Materials and Methods). We chose to use

FST, a commonly applied summary statistic, to quantify differences

between the inferred and actual ancestral populations. In the l = 6

simulations using Yoruba and French ancestral populations, which

closely match the YRI and CEU reference populations, the FST

values between segments of inferred ancestry and the

corresponding ancestral populations were equal to 0.001,

indicating a tight correspondence (Table 3). The l = 100

simulations produced a similarly tight correspondence (Table 3),

even though values of local ancestry could only be inferred with

moderate accuracy (Figure 3). The correspondence between

inferred ancestral segments and true ancestral populations

remained reasonably tight even when the true ancestral

populations (either Mandenka and Basque, or Yoruba and

Druze) were inaccurately modeled by the reference populations

(YRI and CEU) used for inference (Table 3). Thus, HAPMIX

shows promise for reconstructing ancestral populations that are

somewhat different from available reference populations.

Although the correspondence between inferred ancestral

segments and true ancestral populations is reasonably tight, it is

not perfect, with FST values as large as 0.007 between inferred

Figure 3. Accuracy of HAPMIX, ANCESTRYMAP, and LAMP-ANC predictions for various values of l, the number of generations since
admixture. For each admixture time, results are based on analyzing 20 admixed individuals, simulated using an average genome-wide proportion of
80% African and 20% European ancestry. For each method, we plot the squared correlation between predicted and true number of European copies
as a function of l.
doi:10.1371/journal.pgen.1000519.g003
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European segments and the European ancestral population in the

Yoruba/Druze simulations (Table 3). Interestingly, the European

population with this high FST value contributed only 20% of the

ancestry on average in our simulations. We hypothesized that rare

erroneous ancestral segments might be having a disproportionate

effect on FST estimation for this group, particularly at sites where

only a few simulated individuals really had ancestry from the

Druze, where errors might dominate. Consistent with this idea,

when we restricted our analysis to only positions where we inferred

at least 5 chromosomes from the European population, results

Figure 4. Properties of HAPMIX. (A) For simulated admixed data sets, constructed as described in Materials and Methods using l = 6 and l = 100,
we plot the r2 between predicted and true number of European chromosomal copies, as a function of the number of markers genotyped across the
genome. (B) The same as part A, except we now fix the number of markers genotyped at 500,000, and vary the number of input chromosomes used
to predict ancestry (for full details, see text). (C) Calibration of uncertainty estimates produced by HAPMIX. For the l = 6 simulations, and for each of
x = 0, x = 1, and x = 2 we compare the average probability of x copies of European ancestry predicted by HAPMIX to the true frequency of having x
copies of European ancestry, binning the predicted probabilities of x copies of European ancestry into bins of size 0.05. If the method were perfectly
calibrated, the results would lie along the line y = x (thin black line). Note that for l = 6, ancestry is normally inferred with high certainty, and over 98%
of data points fall into the most extreme two bins. (D) The same as part A, except using l = 100. Both the last two plots show reasonable calibration of
HAPMIX.
doi:10.1371/journal.pgen.1000519.g004
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were considerably more accurate (FST = 0.004 for l= 100 and

FST = 0.003 for l= 6). Also consistent with this hypothesis, when

we repeated the Yoruba/Druze simulations with 50% European

ancestry, results were considerably more accurate (0.001 or less for

all FST values corresponding to Table 3, for both l= 6 and

l= 100 and for both European and African segments). Thus,

although greater potential for inaccuracy exists in the inference of

segments of an ancestral population which on average contributes

only a small number of chromosomes to the admixed sample,

there is hope of increasing accuracy in this context by appropriate

filtering of results.

Inference of date of admixture. Our results show that

supplying the correct value of the number of generations since

admixture to HAPMIX has virtually no impact on the accuracy of

inference of local ancestry (Table 2). Nonetheless, inferring the

date of admixture remains an important aim for making inferences

about history. We tested the effectiveness of HAPMIX in inferring

the date of admixture by computing likelihoods at different values

of T, using data that was simulated at l = 6, l = 20 and l = 100

(see Materials and Methods). The highest likelihoods were

obtained at T = 6, T = 17 and T = 75, respectively, with steep

likelihood functions leaving little predicted uncertainty in these

estimates. Thus, inference of date of admixture is imperfect—with

a moderate bias towards underestimation for larger of values of

l—but still potentially useful.

We also tried running HAPMIX to infer the date of admixture

using data simulated under a double-admixture scenario

(l = 6+100) (see Materials and Methods). This data set violates

the model assumption of a single admixture event producing an

exponential distribution of ancestry segment lengths. In this

simulation, the highest likelihood was obtained at T = 45,

intermediate between the true admixture times. In the context of

multiple admixture events, the HAPMIX date estimate can be

loosely interpreted as an estimate of the number of crossover

events per unit of genetic distance that have occurred since

admixture. We expect this estimate to lie within the time period

spanned by the admixture events.

Analysis of 935 African American samples
We ran HAPMIX on 935 African American samples to obtain

local ancestry estimates at each location in the genome (see

Materials and Methods). Although the true number of European

copies at each locus is unknown, the probabilities produced by

HAPMIX provide an estimate of the squared correlation between

predicted and true number of European copies (see Materials and

Methods). Our estimate was r2 = 0.98, which implies that

HAPMIX can provide close to full power for admixture mapping

of disease genes in African Americans. We also ran the

ANCESTRYMAP and LAMP-ANC programs on these data

[1,11] (see Materials and Methods). Discernment of ancestry

transitions was much sharper for HAPMIX compared to the other

methods, as seen in a plot of number of European copies predicted

Table 1. HAPMIX accuracy as a function of ancestry
proportion parameter.

m1

l = 6 simulated data: r2

(aaverage)
l = 100 simulated data: r2

(aaverage)

0.05 0.98 (0.20) 0.82 (0.18)

0.10 0.98 (0.20) 0.83 (0.19)

0.20 0.98 (0.20) 0.83 (0.20)

0.40 0.98 (0.20) 0.83 (0.21)

0.80 0.98 (0.20) 0.83 (0.22)

We list both the r2 between true and inferred ancestry, and the genome-wide
average aavg of HAPMIX ancestry estimates, as a function of the parameter m1

used as input to HAPMIX, for data simulated at l = 6 and l = 100. Results for
HAPMIX runs in which the ancestry proportion was specified correctly are
underlined.
doi:10.1371/journal.pgen.1000519.t001

Table 2. HAPMIX accuracy as a function of date of admixture
parameter.

T r2 for l = 6 simulated data r2 for l = 100 simulated data

2 0.98 n/a

4 0.98 n/a

6 0.98 0.68

8 0.98 0.72

10 0.98 0.77

20 0.98 0.81

40 0.97 0.83

100 0.94 0.83

200 n/a 0.83

400 n/a 0.80

We list the r2 between true and inferred ancestry as a function of the parameter
T used as input to HAPMIX, for data simulated at l = 6 and l = 100. Results for
HAPMIX runs in which the date of admixture was specified correctly are
underlined. We did not attempt runs in which T differs from the correct date of
admixture by a factor of .20.
doi:10.1371/journal.pgen.1000519.t002

Table 3. Inference of ancestral populations.

trueAFR trueEUR l FST(inferredAFR,trueAFR) FST(inferredEUR,trueEUR)

Yoruba French l = 6 0.001 0.001

Yoruba French l = 100 0.000 0.003

Mandenka Basque l = 6 0.000 0.003

Mandenka Basque l = 100 0.001 0.003

Yoruba Druze l = 6 0.000 0.006

Yoruba Druze l = 100 0.001 0.007

For admixed samples simulated at l = 6 and l = 100 from an ancestral African population (trueAFR) and an ancestral European population (trueEUR), we report the value
of FST between segments of African ancestry (inferredAFR) or European ancestry (inferredEUR) inferred by HAPMIX and the true ancestral populations.
doi:10.1371/journal.pgen.1000519.t003
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by each method for an African American sample on chromosome

1 (Figure 2B). This is expected from our results on simulated data

(Figure 2A).

In addition to verifying that predictions are accurate on

average, it is also important to check that there are no regions

of the genome showing systematically inaccurate ancestry

predictions. Such regions could produce spurious signals of

selection after admixture in scans of control individuals, or

spurious admixture association signals in scans of disease cases

[13]. Because such scans examine the tail of the observed

distribution, even a single region where results are biased could

be a serious confounder. With this in mind, we computed the

average ancestry across all samples for each locus in the genome,

as predicted by either HAPMIX or ANCESTRYMAP, and then

searched for unusual deviations. HAPMIX estimates ranged

between 16% and 22% European ancestry, and ANCESTRY-

MAP estimates ranged between 16% and 21%, with a mean of

19% for both methods. These small deviations from the mean are

not statistically significant (nominal P-value = 0.001 for the most

extreme value over hundreds of independent loci) and can be

attributed to sampling variation in the individuals analyzed.

We used HAPMIX to estimate the value of l (the number of

generations since admixture) that provided the best fit to the

African American data set by computing likelihoods at different

values of T (see Materials and Methods). We obtained an estimate

of l = 7, which matches the value of l = 7.0 inferred by

ANCESTRYMAP on the same data, and is similar to the value

of l = 6.3 previously inferred by ANCESTRYMAP on other

African American data sets [4]. We also used inferred segments of

African or European ancestry to estimate FST values between the

true ancestral populations of African Americans and the two

reference populations used here (YRI and CEU, as well as African

and European populations from the HGDP) (see Materials and

Methods). We obtained estimates of 0.001 for the FST between the

true African ancestral population and YRI, and 0.001 for the FST

between the true European ancestral population and CEU. This is

consistent with estimates of FST = 0.001 derived from the t
parameter inferred by ANCESTRYMAP on the same data

(FST = 0.5/t), and consistent with our previous findings that YRI

and CEU provide accurate reference populations for admixture

analysis of African Americans [4,25]. Correspondingly, among the

HGDP populations the lowest FST to the true African ancestral

population was obtained for the Yoruba population

(FST = 0.0008). The Bantu South African, Mandenka and Bantu

Kenya groups had the next lowest values (FST,0.007), and all

other African populations showed FST.0.035. This supports a

West African origin for the African ancestry segments in African

Americans, in agreement with historical records. For the

European ancestral population, the lowest FST was with French

(FST = 0.0013) with Italian, Orcadian, Tuscan, Russian, Basque

and Adygei then showing increasing values, but FST,0.01 in all

cases. This is supportive of a North-West European origin for the

majority of the European segments, again agreeing with historical

records.

We sought to investigate whether our precise ancestry inference

revealed a correlation between time since admixture and ancestry

proportion across individuals. For each individual separately, we

estimated a time since admixture (Materials and Methods). The

mean estimated time across individuals was 6.62 generations, in

close agreement with our l = 7 estimate. However, different

individuals showed admixture time estimates ranging from 1.25

generations to 13 generations. Plotting ancestry proportions

against these time estimates revealed a striking trend (Figure 5),

whereby those individuals carrying higher levels of European

ancestry clearly show more recent estimated admixture times.

Because individuals with the lowest proportion of European

admixture have an estimate admixture time of ,10 generations,

these results demonstrate continuing admixture between Europe-

ans and African Americans over at least 10 generations. Our

estimation of admixture time involves rescaling the raw count of

ancestry switches, according to the fraction of recombination

events since admixture expected to lead to ancestry switches, in a

manner dependent on the overall ancestry proportion in the

genome (Materials and Methods). We note that individuals with

30%–50% African ancestry show unscaled ancestry switch counts

much smaller than for those individuals with 50%–70% African

ancestry (p = 0.0007 by Wilcoxon rank sum test), despite the fact

that in both groups we expect to observe the same proportion,

42%–50%, of all recombination events, ruling out the idea that the

observed trend is simply a consequence of the rescaling.

Analysis of 29 Mozabite samples
We analyzed 29 HGDP samples from the Mozabite population

of North Africa, which has previously been reported to inherit a

mixture of both European-related ancestry and ancestry related to

sub-Saharan Africans [15,26] (see Materials and Methods). We

therefore continued to use YRI and CEU as input reference

populations, to identify segments of sub-Saharan African-related

ancestry, and European-related segments. Our analysis aimed to

shed light on the origins of the admixing populations, as well as the

period in which historical admixture occurred. Runs at a wide

range of input m1 values all indicated approximately 80%

European-related ancestry on average, and thus we fixed the

input m1 parameter at 80% and ran HAPMIX using a range of

input T values. The highest likelihood was obtained at T = 100

generations. In this run, the average % European-related ancestry

of all samples was equal to 78% and the estimated r2 between

predicted and true number of European copies was 0.79, which is

identical to the value we observed in our l = 100 simulations using

inaccurate reference populations.

We further investigated whether local ancestry inference in

Mozabite samples matches our expectations from simulated data

by simulating an anciently admixed sample with admixture

parameters chosen to be similar to Mozabite. Specifically, we

assumed 80% European and 20% African ancestry (French and

Yoruba from HGDP) and 100 generations since admixture.

HAPMIX results on chromosome 1, along with true ancestry, are

displayed in Figure 6. We see that HAPMIX is fairly accurate, but

not perfectly accurate, in inferring segments of African ancestry.

For comparison, HAPMIX results on chromosome 1 for three

different Mozabite individuals are displayed in Figure 7. Results

are discussed below, but look generally similar, apart from showing

some much larger ancestral segments, to Figure 6.

Different Mozabite individuals within our sample had different

estimates of sub-Saharan African ancestry proportions, with a

majority at close to 20%, but several individuals having a

somewhat higher fraction. Exploration of the causes of this

variation (Figure 7) revealed a systematic tendency for those

individuals with higher proportions of sub-Saharan African

ancestry to have large (tens of megabases) segments in their

genome with an African origin. Such large segments are only

consistent with admixture within the last 20–30 generations,

showing the admixture process has continued into more recent

times. In fact, the individual with the highest estimated proportion

(75%) of sub-Saharan African ancestry had at least one inferred

non-European chromosome throughout virtually their entire

genome (Figure 7), consistent with admixture in the last

generation, and demonstrating that the admixture process

Sensitive Ancestry Segment Detection
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continues today in the Mozabite population. When we restricted

our HAPMIX-based dating inference to those two individuals with

the highest estimated sub-Saharan African ancestries, we found

that the highest likelihood was obtained at 10 generations, much

lower than the 100 generations estimated for the combined

dataset. In conclusion, the data are most consistent with a model in

which individuals from sub-Saharan Africa have been genetically

interacting with the Mozabite population as an ongoing process

for at least the last 100 generations (,2800 years) and probably

considerably longer, given the underestimation properties of our

dating method in simulations, and the likely contribution of recent

admixture in producing this estimate. Overall, we were encour-

aged by the ability of HAPMIX to infer both long and short blocks

of distinct continental ancestry in this anciently admixed

population.

Which modern-day populations are most closely related to the

founder populations for the Mozabite? Following the promising

results of our simulation study, we used inferred segments of

African-related or European-related ancestry to estimate FST

values between the true ancestral populations of the Mozabite and

the two reference populations (YRI and CEU). We obtained

estimates of 0.034 for the FST between the true African ancestral

population and YRI, and 0.026 for the FST between the true

European ancestral population and CEU. Substituting various

HGDP Bantu-African and European/West Asian populations for

YRI and CEU in the FST computations yielded similar results,

Figure 5. Correlation between ancestry proportion and estimated time since admixture in African Americans. Each grey point shows
an estimate of the time l since admixture corresponding to one of 935 analysed African American individuals (Materials and Methods). The red line
shows sliding averages of 20 individuals, binned according to increasing African ancestry proportions.
doi:10.1371/journal.pgen.1000519.g005
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with FST values ranging between 0.02 and 0.04. For the African

founder population, the West African Mandenka and Yoruba

populations, and another HGDP Bantu population, ‘‘BantuKe-

nya’’, had the smallest FST values (0.034–0.035). For the

European-related founder population, the Italians and Tuscans,

closely followed by the Palestinians, had the smallest FST values

(0.021–0.022), suggesting an origin in South-East Europe or the

Middle East. Although care should be taken in interpreting these

values, they indicate that the ancestral segments of Mozabite are

significantly diverged from extant Bantu-African and European-

related populations. To verify this, we ran principal components

analysis on the Mozabite samples together with French and

Yoruba samples from HGDP, using the EIGENSOFT software

[27]. Results are displayed in Figure 8. The first eigenvector

indicates, as expected, that the Mozabite samples are intermediate

between Europeans and sub-Saharan Africans, consistent with the

admixture detected by HAPMIX, and identifying the same two

outlier samples with much higher African ancestry. In support of

our FST analysis on the ancestry segments, the second eigenvector

appears mainly to separate the Mozabite from the other

populations, indicating that they are not perfectly modeled as a

linear combination of European and African ancestry. Apart from

the 2 individuals with much higher African ancestry, the

EIGENSOFT plot identifies a further set of 8 Mozabite

individuals showing reduced genetic drift (i.e. second eigenvector

coefficients), and much more variable ancestry estimates relative to

the full set (Figure 8). For these 8 samples, HAPMIX gave a

maximum likelihood estimate of 75 generations for the admixture

event, again noticeably lower than 100 generations for the full

dataset and demonstrating more recent admixture in these

individuals. Therefore, we observe a correlation between time

since admixture across different individuals, and level of genetic

drift relative to modern-day European and African populations. A

hypothesis consistent with this finding is that genetic drift has

occurred in the Mozabite population itself, during or after

admixture, in way that has affected both African and European

ancestral segments. Alternatively, the founder populations may

have gradually drifted during the thousands of years of admixture

that have affected this group.

Analysis of other HGDP populations
To understand the performance of HAPMIX on real

populations with a wider range of histories, we applied the

method to 13 different HGDP populations that were of African,

Middle Eastern, or European origin. Using YRI and CEU as

ancestral populations, HAPMIX inferred that 5 of these

populations had greater than 0% and less than 100% European-

related ancestry (Table 4). The estimates of European-related

ancestry in these 5 populations range from 2%–97%, and the

numbers of generations since mixture range from 60–120. The

Figure 6. Local ancestry estimates produced by HAPMIX for a simulated anciently admixed sample on chromosome 1, simulated
using 80% European and 20% African ancestry, with the admixture occurring 100 generations ago. As in Figure 2, the top plot shows
the truth, while the second plot shows the HAPMIX inference. We plot the true number of African chromosomes on chromosome 1 (top plot),
together with the number of African copies predicted by HAPMIX (bottom plot).
doi:10.1371/journal.pgen.1000519.g006
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three Middle Eastern populations (Bedouin, Palestinian, and

Druze) all show a substantial African-related mixture (3%–9%

African-related ancestry). The inferred dates of 60–90 generations

correspond to about 2,000–4,000 years ago – contemporaneous

with our estimate of the oldest admixture time for the North

African Mozabite population – taking into account the fact that

HAPMIX systematically underestimate mixture dates by up to

25% for mixtures this old (see simulations above). These results are

historically interesting, allowing us to conclude that there is likely

to be African ancestry in Middle Eastern populations today that

dates to population mixture that occurred in Biblical times. The

West African Mandenka population appear to have received

ancestry from outside sub-Saharan Africa around the same period

or before (120 generations ago). This mixture may not be

unexpected, given the Mandenka’s geographical location relatively

close to the Sahara, and suggests that gene flow across the Sahara

has occurred in both directions. Finally, the Middle Eastern results

contrast with results for the HGDP European populations, where

Figure 7. Local ancestry estimates produced by HAPMIX for three real Mozabite individuals on chromosome 1. The plots are
constructed as for Figure 5, and show HAPMIX estimates of the number of sub-Saharan African copies across chromosome 1 for three individuals
chosen for having different genome-wide African ancestries: 20% (top plot), 29% (middle plot) and 75% (bottom plot). The top plot looks similar to
Figure 5, while the much longer segments seen in the two individuals with more African ancestry indicate more recent admixture with sub-Saharan
Africans.
doi:10.1371/journal.pgen.1000519.g007
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we consistently estimate the African mixture proportions at close

to 0%.

Discussion

We have described a method that takes advantage of haplotype

information to accurately infer segments of chromosomal ancestry

in admixed samples, even in the case of ancient admixture. The

method is likely to be useful both for disease mapping in admixed

populations and for drawing inferences about human history, as

our empirical analyses of samples from African American and

HGDP populations have demonstrated. The ability to reconstruct

chromosomal segments from ancestral populations that contrib-

uted to recent or ancient admixture is a particular advance, as it

implies that genetic analyses need not be restricted to extant

populations but can also be applied to populations that have only

left admixed descendents today [28]. By reconstructing allele

frequencies and haplotypes from these populations, extensions of

HAPMIX may be able to learn about population relationships as

they existed at the time of the Neolithic agricultural migrations or

even before. An open question is how far back in time HAPMIX

will be able to probe the histories of anciently admixed

populations. The simulations of Figure 3 suggest that HAPMIX

has power in theory to produce informative estimates of local

ancestry even for populations that admixed 400 generations – over

10,000 years ago.

HAPMIX has particularly important applications for disease

gene mapping, especially in African Americans where the ancestry

estimates are exceedingly accurate and where we have shown that

Figure 8. Principal components analysis of Mozabite, French, and Yoruba samples from the HGDP.
doi:10.1371/journal.pgen.1000519.g008

Table 4. Results of application of HAPMIX to 13 populations
from HGDP that are of African, Middle Eastern or European
ancestry, using YRI and CEU as the reference populations.

Population
No. of
samples

Estimated percent
European ancestry
from HAPMIX

Estimated
generations since
mixture from
HAPMIX

Yoruba 21 0% N/A

Mandenka 21 2% 120

Mozabite 26 77% 100

Bedouin 45 91% 90

Palestinian 41 93% 75

Druze 39 97% 60

Adygei 16 100% N/A

Basque 24 100% N/A

French 28 100% N/A

Italian 12 100% N/A

Orcadian 14 100% N/A

Russian 25 100% N/A

Tuscan 8 100% N/A

We removed outlier samples from each population using PCA (by making plots
like Figure 8, and removing samples that were outliers from the group). For
samples with estimated European-related ancestry .0% and ,100%, we also
inferred the number of generations since mixture.
doi:10.1371/journal.pgen.1000519.t004
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they are not systematically biased. With the accurate estimates of

ancestry that emerge from HAPMIX it should be possible to carry

out dense case-control association studies with hundreds of

thousands of markers, which simultaneously test for admixture

association [1–3] and case-control association, providing more

power to detect disease associations from the data than that can be

obtained from either approach alone.

While our analyses show that HAPMIX—because of its explicit

use of a population genetic model—has better power to infer

locus-specific ancestry than many recent methods, the method also

has some limitations in the range of scenarios in which it can be

used. For example, it is not currently designed for the analysis of

mixtures of more than two ancestral populations, and it requires

the use of reference populations. Future directions for extending

the HAPMIX method include allowing more than two ancestral

populations, using the admixed samples as a pool of reference

haplotypes instead of relying on input haplotypes from reference

populations, and automating the fitting of model parameters. In

addition, although determining the number of generations since

admixture with high accuracy is not necessary for effective

inference of local ancestry, our results motivate additional work to

enable detection of multiple admixture events at different points in

time in order to refine the inferences that can be made about

human history.
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