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Abstract

The prevalence of obesity (body mass index (BMI) $30 kg/m2) is higher in African Americans than in European Americans,
even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To
identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280
African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative
markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%)
and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI
(r= 20.042, P = 1.661027). In the dichotomized analysis, we detected two loci on chromosome X as associated with
increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = 23.94);
and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = 24.62). Quantitative analysis identified a third locus at
5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27;
genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in
these regions of chromosomes X and 5 that may be associated with variation in BMI.
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Introduction

Obesity is a highly prevalent condition that increases the risk of

many illnesses such as cardiovascular disease, diabetes, and some

cancers. Familial aggregation studies have shown that both genetic

and environmental factors are involved in the development of

common forms of obesity, and heritability estimates suggest that

approximately 40% of variation in body mass index (BMI) can be

attributed to genetic factors [1,2].

The current increase in prevalence of obesity in the U.S. has

been hypothesized to be the result of genetic susceptibility in an

environment that promotes obesity [3]. James V. Neel in 1962

proposed the ‘‘thrifty gene hypothesis’’ to put these epidemiological

observations in an evolutionary context [4]. He suggested that the

genetic factors that predispose to weight gain might have been

selectively advantageous in ancient environments where food was

scarce, but might have become deleterious in modern environments

where food is plentiful and lifestyles are generally sedentary. Based

on epidemiologic evidence, specific racial/ethnic groups seem to be

particularly susceptible to obesity in the U.S., especially African

Americans, Pima Indians, and Pacific Islanders [3,5]. Data from the

2003–2004 National Health and Nutritional Examination Survey

(NHANES) indicate that African Americans are about 1.5 times

more likely to be obese (defined as BMI $30 kg/m2) than European

Americans even in homogeneous socioeconomic groups [6,7].

Recent genome-wide association studies have shown that

variants in the fat mass and obesity-related gene (FTO) are

significantly associated with obesity in populations of European

origin [8–10]. It was estimated that a ,0.4 kg/m2 rise in BMI is

associated with each copy of the A allele at rs9939609 in

populations of European descent [8]. While the association was

replicated in East Asian populations [11–13], no association was

observed in African Americans [9], although there is evidence that

another SNP (rs3751812) affects the risk of obesity in African

Americans as well [14]. These results suggest that the genetic

factors predisposing to obesity in African Americans at FTO may

be different from that in other populations, although an alternative

explanation for these observations is that the causal variant has not

been identified, and that the linkage disequilibrium patterns to the

causal variant are different in African and non-African popula-

tions.

To screen for genetic variants modulating BMI in African

Americans, we used admixture mapping, a technique that scans

the genomes of recently admixed populations and searches for

genomic regions in people with disease where there is substantial

deviation in one of the parental ancestries compared with the

Author Summary

Obesity is about 1.5-fold more prevalent in African
Americans than European Americans. To determine
whether genetic background may contribute to this
observed disparity, we scanned the genomes of African
Americans, searching for genomic regions where obese
individuals have a difference from the average proportion
of African ancestry. By examining genetic data from more
than 15,000 African Americans, we show that the
proportion of European ancestry is inversely correlated
with BMI. In obese individuals, we detect two loci with
increased African ancestry on chromosome X (Xq13.1 and
Xq25) and one locus with increased European ancestry on
chromosome 5 (5q13.3). The 5q13.3 and Xq25 regions
both contain genes that are known to be involved in
appetite regulation. Our results suggest that genetic
factors may contribute to the difference in obesity
prevalence between African Americans and European
Americans. Further studies of the regions may identify
the causative variants affecting susceptibility to obesity.
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genome average [15–20]. To maximize power to detect variants

affecting BMI, we carried out a pooled admixture mapping

analysis of 15,280 African-American samples from 14 studies,

including the Atherosclerosis Risk in Communities (ARIC) Study,

the Breast Cancer Family Registry (BCFR), the Los Angeles

component of the Women’s Contraceptive and Reproductive

Experiences (CARE) Study, the Dallas Heart Study (DHS), the

Family Investigation of Nephropathy and Diabetes (FIND) Study,

the Genomics Collaborative (GCI) Study, the Health, Aging and

Body Composition (Health ABC) Study, the Jackson Heart Study

(JHS), the Learning the Influence of Family and the Environment

(LIFE) Study, the Multiethnic Cohort of Los Angeles and Hawaii

(MEC), the Osteoporotic Fractures in Men Study (MrOS), the San

Francisco Bay Area Breast Cancer Study (SFBABCS), the Study of

Osteoporotic Fractures (SOF), and the Women’s Circle of Health

Study (WCHS).

Methods

Study Populations and SNP Genotyping
Our analysis was carried out in 15,280 African Americans.

Samples were scanned with at least one of three iteratively

improved and partially overlapping panels of ancestry-informative

markers. The Phase 1 panel was published in Smith et al. 2004

[20] and Reich et al. 2005 [21]. The Phase 2 panel was first

published in Reich et al. 2007 [22]. The Phase 3 panel was first

published in Nalls et al. 2008 [23] (http://www.illumina.com/

downloads/AfricanAmericanAdmixture_DataSheet.pdf). Alto-

gether 4,372 markers were genotyped in the present study, with

a median of 1,411 markers genotyped per sample. We found in

practice that all marker panels provided at least 60% of the

maximum possible information about ancestry.

The samples were assembled from 14 studies (Table 1). Of

these, six (ARIC, DHS, Health ABC, JHS, MrOS and SOF) were

prospective cohort studies that did not oversample any particular

phenotype, and eight (BCFR, CARE, FIND, GCI, LIFE, MEC,

SFBABCS and WCHS) were studies that oversampled individuals

with particular phenotypes, such as breast cancer, end-stage renal

disease, type 2 diabetes, hypertension, and prostate cancer. Brief

description of each study as well as the number of samples we

analyzed after applying various data quality filters are provided in

Text S1.

In the six prospective cohort studies, anthropometric mea-

surements were performed using study-specific standardized

protocols, and BMI was calculated as weight (in kg) divided by

height (in meters) squared. In the BCFR, SFBABCS and WCHS,

BMI was also calculated from height and weight measures taken

at the time of study interview by trained research staff. In the

remaining studies, BMI was calculated using self-reported weight

and height.

Table 1. Characteristics of 15,280 African American adults by study population.

Diabetes status

Study
No. of
samples

DNA
source

Phase of
marker
panel

Female,
% Age (yrs)

European
ancestry from
autosomes, %

European
ancestry from
the X
chromosome, %

BMI
(Kg/m2)

No. with
information
on diabetes
status

Diabetes,
%

ARIC 3,522 genomic 3 62.1 53.565.8 17.6610.2 14.267.4 29.666.2a 3,450 19.5

BCFRb 268 genomic 2 100.0 50.369.4 22.7612.4 17.969.2 30.366.7a 0 -

CAREb 365 WGA 3 100.0 48.968.0 22.0611.5 17.368.4 27.766.1 0 -

DHS 1,718 genomic 1 57.5 44.8610.2 16.268.2 13.166.1 31.568.2a 1,718 13.6

FINDb 1,445 genomic 3 50.4 48.4612.4 17.168.4 13.966.1 28.867.2 1,445 22.0

GCIb 503 genomic 2 54.5 57.9613.6 15.3611.2 12.668.2 31.667.0 503 8.9

Health ABC 1,172 WGA 2 57.1 73.462.9 20.9612.8 16.769.4 28.565.2a 1,164 21.4

JHS 2,141 genomic 2/3 60.0 52.4611.1 17.969.2 14.566.7 31.967.1a 2,106 17.9

LIFEb 108 WGA 3 100.0 42.265.3 21.3611.0 17.167.9 29.066.9 0 -

MECb 3,199 genomic 1/2/3 31.3 62.768.1 23.4614.0 18.4610.1 28.365.3 1,551 58.9

MrOS 199 WGA 3 0.0 71.765.2 21.2613.6 16.969.9 28.564.4a 182 27.5

SFBABCSb 152 genomic 2 100.0 55.1611.8 22.6614.7 17.9611.0 30.566.0a 0 -

SOF 368 WGA 3 100.0 75.064.7 24.4613.8 19.1610.1 29.965.8a 368 16.3

WCHSb 120 genomic 2 100.0 50.169.3 16.7614.8 13.6611.2 30.366.5a 0 -

Total 15,280 - - 55.7 56.0612.2 19.3611.5 15.568.4 29.866.6 12,487 23.4

Ranges are given in terms of 61 standard deviation. ARIC, Atherosclerosis Risk in Communities Study; BCFR, Breast Cancer Family Registry; CARE, Los Angeles
component of the Women’s Contraceptive and Reproductive Experiences Study, DHS, Dallas Heart Study; FIND, Family Investigation of Nephropathy and Diabetes
Study; GCI, Genomics Collaborative Study; Health ABC, Health, Aging and Body Composition Study; JHS, Jackson Heart Study; LIFE, Learning the Influence of Family and
the Environment Study; MEC, Multiethnic Cohort of Los Angeles and Hawaii; MrOS, Osteoporotic Fractures in Men Study; SFBABCS, the San Francisco Bay Area Breast
Cancer Study; SOF, Study of Osteoporotic Fractures; WCHS, Women’s Circle of Health Study; WGA, whole genome amplification.
aBMI were measured in an actual clinical visit in the six prospective cohort studies and in the BCFR, SFBABCS and WCHS; for others, BMI was calculated from self-
reported weight and height.

bThese studies include case-control studies and so are not a representative cross-section of the populations. BCFR, CARE, LIFE, SFBABCS and WCHS oversampled women
with breast cancer. FIND oversampled individuals with nephropathy. GCI focused on individuals with hypertension. MEC oversampled individuals with type 2 diabetes,
prostate cancer, breast cancer, and hypertension.

doi:10.1371/journal.pgen.1000490.t001
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Estimates of Allele Frequencies in West African and
European American Ancestral Populations

We used previously published genotyping data to estimate the

frequency of each SNP in West Africans and European Americans

[20,24,25]. We only used SNPs for which we were able to obtain

data from both West African (Yoruba) and European American

(CEU) populations from the International Haplotype Map. For

SNPs in the Phase 1 panel, we also added additional genotyping

data from African and European samples, which was the same as

the data collected in Smith et al. 2004 [20].

SNP Filters
To decrease the likelihood of false-positives in our admixture

scans, we applied a series of filters that had the goal of detecting

and removing any SNPs with problematic genotyping, as

described previously [20–22]. Briefly, we applied three previously

published filters. (1) We applied a ‘‘mapcheck’’ filter that tests

whether the estimate of ancestry obtained based on the

information from that SNP alone is consistent with the estimate

of ancestry obtained from neighboring markers; SNPs with

discrepancies are removed from analysis. (2) We applied a

‘‘freqcheck’’ filter that tests whether the observed frequency of a

SNP in African Americans is statistically consistent with being a

mixture of the frequencies observed in the West Africans and

European American samples that we used to represent the

ancestral populations. (3) We finally applied an ‘‘ldcheck’’ filter

that for each sample, iteratively removes SNPs that are less

informative (in terms of the information content about ancestry)

until none are within 200 kilobases of each other or are in

detectable linkage disequilibrium with each other in the ancestral

West African or European American populations [21,25].

Elimination of Samples with Incomplete Genotype and
Phenotype Data

We required all individuals included in the study to have

complete phenotypic information, including BMI, age at the time

of measurement, and gender. We also required all individuals to

have a full admixture scan, and we removed samples that were

outliers with respect to others in the same cohort in the sense of

having many fewer genotypes, as we found that this predicts less

reliable data. The data for the great majority of the samples we

analyze in this study was reported previously [22–26], and hence

we do not report further details of the sample genotyping here.

Estimating Local and Genome-Wide Ancestry in the
African American Samples

We estimated the European and African ancestry at each locus

and genome-wide using the ANCESTRYMAP software [19].

ANCESTRYMAP uses a Hidden Markov Model (HMM) to

combine the weak information about local ancestry that is

provided by each marker, into a more confident estimate that

takes into account the information from many neighboring

markers. The HMM is nested within a Markov Chain Monte

Carlo method, which accounts for uncertainty in the unknown

parameters: SNP allele frequencies in the West African and

European American ancestral populations, the number of

generations since mixture and the average proportion of ancestry

inherited from ancestral populations. All Markov Chain Monte

Carlo runs used 100 burn-in and 200 follow-on iterations, as

previously recommended [19], except for one longer run of 1,000

burn-in and 2,000 follow-on iterations, which we carried out to

check the stability of our results. Samples with an estimated

percentage of European ancestry of more than 0.85 (n = 27) were

excluded from this analysis.

Calculation of Covariate-Adjusted BMI
Body mass index was defined as described above. For most of

our admixture analysis runs, BMI was adjusted for age, age-

squared, sex and study, using multivariate linear regression

analyses, and the residuals that emerged from this regression

analysis were used for subsequent analysis.

Admixture Mapping Scans Treating BMI as a
Dichotomous Trait

ANCESTRYMAP [19] was used to test whether individuals

with high or low BMI had a proportion of ancestry that was

significantly different from the genome average in the same

samples.

For the dichotomous admixture scans, we defined the top 20%

of samples with the highest residuals of BMI as cases and the

bottom 20% as controls. Because a prior distribution on risk

models is required for the Bayesian statistical analysis in

ANCESTRYMAP [19], we tested a total of 24 pre-specified risk

models and assessed overall evidence of association by averaging

all models. The first eight models specified 0.5-, 0.6-, 0.7-, 0.8-,

1.3-, 1.5-, 1.7- and 2.0-fold increased risk due to inheritance of one

copy of European ancestral allele for cases, with a control risk of 1.

The next eight models used the same set of risk models for cases,

and the control risks were set to be the reciprocal of the case risks.

The last eight models used a case risk of 1, but specified that

controls had risks of 0.5, 0.6, 0.7, 0.8, 1.3, 1.5, 1.7 and 2.0. These

risk models equally tested for both positive and negative

associations of BMI with African ancestry [19].

To assess statistical significance, the ANCESTRYMAP software

provided two scores: a locus-specific score and a case-control score. A

locus-specific score is obtained in cases (i.e., case-only analysis) by

calculating the likelihood of the genotyping data at the SNPs at the

locus under the risk model and comparing it to the likelihood of

the genotyping data at the SNPs at the locus assuming that the

locus is uncorrelated to the phenotype [19]. The ratio of these two

likelihoods is the ‘‘likelihood ratio’’, and the log-base-10 of this

quantity is the ‘‘LOD’’ score. A locus-specific LOD score of .5

has been recommended as criterion for genome-wide significance

and .4 has been recommended as a criterion for genome-wide

suggestiveness [27].

To obtain an assessment of the evidence for a risk locus

anywhere in the genome—which we call the ‘‘genome-wide

score’’—we averaged the likelihood ratio for association across all

loci in the genome, and took the log10 to obtain a genome-wide

score. We interpret a genome-wide score.2 as significant and .1

as suggestive as previously recommended [27].

A case-control score was calculated by comparing locus-specific

deviations in European ancestry in cases versus controls at each

locus across the genome. This score tests whether any deviation in

ancestry from the genome-wide average is significantly different

comparing cases with controls [19]. If there is no locus associated

with disease, the case-control score is expected to be distributed

approximately according to a standard normal distribution. For

loci identified by this score, the level of genome-wide significance

was defined as a case-control Z score,24.06 or .4.06 (i.e., an

uncorrected nominal P,561025, or a corrected nominal P,0.05

after conservatively correcting for 1,000 hypotheses tested,

corresponding to independent chromosomal chunks assigned to

either African or European ancestry). The case-control score is

particularly important for X chromosome analyses. Case-only

Admixture Mapping of Obesity
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admixture analyses of the X chromosome are complicated by the

fact that African Americans tend to have lower proportions of

European ancestry on the X chromosome than on the autosomes,

and thus an X-chromosome-wide-specific estimate of ancestry is

required [19]. However, such an X-chromosome-wide estimate of

ancestry is difficult to obtain because of the relatively short size of

the X chromosome. By contrast, a case-control score is robust to

uncertainty in the X-chromosome-wide European ancestry

proportion. A systematic bias in the estimate of ancestry at a

locus is expected to affect controls as much as cases, and hence is

not expected to generate a significant difference between cases and

controls.

Quantitative Admixture Mapping Scans
We have now extended ANCESTRYMAP to also allow for

association analyses of quantitative traits (Text S2). Briefly, we

applied a normal-quantile transformation to the covariate-adjusted

BMI to obtain normally distributed values for subsequent

quantitative admixture scans and regression-based association

analysis. To test for association to a quantitative trait, we applied a

feature, ‘‘qtmode’’, in ANCESTRYMAP (see Text S2 for

mathematical details). In qtmode, each risk model represented a

correlation coefficient (r) of European ancestry with the normally

distributed value of the trait. For this analysis, we tested equally

spaced risk models of r= 0.1, 0.08, 0.06, 0.04, 0.02, 20.02,

20.04, 20.06, 20.08 and 20.1. To determine statistical

significance, we used the same thresholds of locus-specific LOD

and genome-wide scores as described above for the dichotomous

analyses.

Credible Interval for the Position of a Genetic Locus
To calculate a 95% credible interval (CI) for the position of a

locus, we obtained the likelihood ratio for association at each

marker across the chromosome where we found an association.

This provided a Bayesian posterior probability for the position of

the underlying causal variant assuming a flat prior distribution

across the region for the position of the disease locus. The central

region of this peak containing 95% of the area was used as the CI.

Assessing Associations of BMI to Local Ancestry at the
Admixture Peak

Local estimates of ancestry at the admixture peak were obtained

using the ANCESTRYMAP software [19]. Heterogeneity of the

correlations between the local ancestry and BMI across studies was

quantified using the I2 inconsistency metric [28]. To determine the

association of BMI with local ancestry at the admixture peak, we

performed a linear regression analysis, with the transformed BMI

as the dependent variable and the local estimates of ancestry as

independent variables. To determine whether there was evidence

of residual association with local ancestry after adjustment for

global ancestry, we included each individual’s percentage of

genome-wide European ancestry as a covariate in the regression

models. This enabled us to increase power by including all samples

in a quantitative analysis, rather than using only a subset of

samples with the highest 20% and lowest 20% values in the

dichotomous admixture scans described above.

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. All sample collections were carried

out according to institutionally approved protocols for study of

human subjects and written informed consent was obtained from

all subjects.

Results

The demographic and phenotypic characteristics of the 15,280

African Americans included in the admixture scan are summa-

rized in Table 1. Because the individual studies differed in aims,

design and methods of data collection, there was considerable

variation across studies in the distribution of age, sex, BMI, and

frequency of diabetes. For example, there was an extremely high

proportion of type 2 diabetes among the MEC samples (58.9%),

reflecting the fact that these samples included a group of cases with

type 2 diabetes who had been specifically genotyped as part of an

admixture scan (http://www.broad.mit.edu/node/549). Com-

bined across all studies, the mean BMI was 29.866.6 kg/m2,

and 40.2% of the population had BMI $30 kg/m2. Mean BMI

differed significantly across studies (P,0.001).

Estimates of European Ancestry
The average percentage of genome-wide European ancestry in

these samples was 19.3611.5% based on estimates from the

autosomes, and the average percentage of European ancestry on

the X chromosome was 15.568.4%. Because the study samples

came from different resources and locations across the U.S., there

was significant variation in average European ancestry, either

estimated from autosomes or the X chromosome, across studies

(P,0.001).

Percent European Ancestry Was Inversely Associated
with BMI among African Americans

The relationship between BMI and percentage of European

ancestry is shown in Figure 1. BMI was inversely correlated with

European ancestry as estimated from autosomes, an effect that was

weak (r= 20.042) but statistically significant (P = 1.661027) given

the large sample size. It was also significantly correlated with

European ancestry as estimated from the X chromosome

(r= 20.046, P = 1.261028).

Dichotomous Admixture Scans Identified Two Signals on
Chromosome X

The dichotomous admixture scans detected evidence of

genome-wide significant associations between markers on the X

chromosome and higher BMI (Table 2 and Figure 2). By

comparing the 20% of samples with the highest and lowest

covariate-adjusted BMI, we identified the strongest association for

high BMI at Xq25 (locus-specific LOD = 5.94). The genome-wide

score was 3.22, substantially exceeding our genome-wide threshold

for significance. At the same locus, we also observed a case-control

Z score of 23.94 standard deviations (nominal P = 8.161025),

which also supported an association at this locus, with obese cases

having lower European ancestry than non-obese controls.

Interestingly, we found another admixture peak at Xq13.1.

Although the LOD score at Xq13.1 was far from significant

(locus-specific LOD = 2.22), this locus had the strongest case-

control Z score, 24.62 (nominal P = 3.861026), anywhere in the

genome. The associations at Xq13.1 was nominally genome-wide

significant (P = 3.861023) after conservatively correcting for 1,000

hypotheses tested.

To examine the potential impact of heterogeneity across the

studies on our admixture-generated signals, we carried out a series

of subgroup analyses (Table 2). When BMI was adjusted for

diabetes in samples with information on diabetes status, the

association signal at Xq25 grew stronger, with the locus-specific

LOD score rising to 6.92, the genome-wide score rising to 3.98,

and the case-control Z-score becoming less significant at 23.25.

To take into account potential measurement errors from self-
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reported BMI in 40% of the samples, we also performed

admixture scans restricting the samples to those from the six

prospective cohort studies where BMI was clinically measured.

Similarly strong evidence of association at Xq25 (locus-specific

LOD = 6.00; genome-wide score = 3.03) was found. We also

carried out an analysis in which we excluded individuals with

diabetes to avoid problems related to co-morbidity and treatment.

After removing these samples (a drop of 23.4% of the sample size),

the signal of association became weaker but remained suggestive

(locus-specific LOD = 4.21).

Because the admixture peaks we identified were located on

chromosome X, which has a different copy number in men and

women, we also performed analyses for each gender separately to

explore whether the strength of association differed significantly

Figure 1. Scatter-plots of BMI vs. the estimated percentage of European ancestry. (A) Percentage of European ancestry was estimated
based on the autosomes. (B) Percentage of European ancestry was estimated based on chromosome X. Data are plotted using 20% of the samples
(selected at random) for better visualization.
doi:10.1371/journal.pgen.1000490.g001

Table 2. Summary of results from dichotomous admixture scans for BMI.

Xq25 Xq13.1 5q13.3

Run Description
No. of cases/
controlsa

No. of
SNPsb

Genome-
wide score

Peak LOD
score

Case-
control Z
score

Peak
LOD
score

Case-
control Z
score

Peak
LOD
score

Case-
control Z
score

1 All African Americans 3,055/3,056 3,902 3.22c 5.94d 23.94 2.22 24.62 2.48 4.03

2 106more iterations for run 1 3,055/3,056 3,902 3.10c 5.80d 23.94 2.07 24.62 2.12 4.02

3 African Americans with information on
diabetes status, BMI additionally adjusted for
diabetes

2,496/2,498 3,757 3.98c 6.92d 23.25 2.55 24.57 2.58 4.23

4 African Americans in the six prospective
cohort studiese

1,824/1,825 3,543 3.03c 6.00d 23.78 1.68 24.19 2.24 3.02

5 Non-diabetic African Americans 1,914/1,914 3,737 1.46 4.21 23.13 2.25 24.28 1.50 3.05

6 Male African Americans 1,351/1,353 3,716 1.38 0.96 22.69 4.40 24.12 0.40 1.60

7 Female African Americans 1,703/1,705 3,646 1.36 4.15 23.00 21.06 22.10 20.23 3.30

8 All African Americans, drop every even SNP 3,055/3,056 2,057 2.02c 4.78 24.30 1.29 24.74 1.58 3.80

9 All African Americans, drop every odd SNP 3,055/3,056 2,049 1.29 4.10 23.83 0.90 24.78 1.34 3.24

10 Best-fit multiplicative model for run 1 (0.73
multiplicative risk for chromosome X)

3,055/3,056 3,902 4.57c 7.24d 23.94 2.71 24.62 2 4.03

11 Best-fit multiplicative model for run 3 (0.70
multiplicative risk for chromosome X)

2,496/2,498 3,757 5.25c 8.16d 23.25 3.25 24.57 2 4.23

BMI was adjusted for age, age-squared, sex and study for all runs, except for runs 6 and 7, where analysis was performed in each gender group and thus not adjusted for
sex.
aCases: 20% with the highest covariate-adjusted BMI; controls: 20% with the lowest values.
bThe number of SNPs analyzed after applying a series of quality filters.
cGenome-wide scores.2 are formally significant; scores.1 are suggestive.
dLOD scores.5 are formally significant; scores.4 are suggestive.
eThe six cohorts composed 94% of all samples with clinically measured BMI.
doi:10.1371/journal.pgen.1000490.t002
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between males and females. We found that the evidence of

association at Xq25 was stronger in females (locus-specific

LOD = 4.15; N = 1,703) than in males (locus-specific

LOD = 0.96; N = 1,351), and that the association signal at

Xq13.1 in males grew stronger with the local LOD score rising

to 4.40 (Run 6 and 7 in Table 2). In the more comprehensive

linear regression analysis of local ancestry, there was a significant

gender difference at Xq13.1 (P,0.026; see below for details).

In addition to the two peaks on chromosome X, using

dichotomous admixture scans we observed a few interesting

regions (Figure 2 and Table S1), particularly locus 5q13.3 (locus-

specific LOD = 2.48, Table 2). This locus is unique in that even

though its LOD score was far from statistical significance, it had

the strongest increase in European ancestry in individuals with

high BMI compared to individuals with low BMI (case-control Z

score = 4.03, nominal P = 5.661025). The case-control score was

marginally significant at genome-wide level, suggesting that higher

BMI was, though counter-intuitively, associated with greater

European ancestry at 5q13.3 locus.

Quantitative Admixture Scans Detected a Third Locus on
Chromosome 5

By including all African-American samples and using BMI as a

continuous trait, our quantitative admixture scan supported and

strengthened the evidence of association at 5q13.3 locus (Figure 3).

The peak locus-specific LOD score was 6.27 and the genome-wide

score was 3.46, both reaching the thresholds for genome-wide

significance.

Evidence of Association between Admixture-Generated
Signals and Continuous BMI

The local estimate of European ancestry was also extracted for

each individual at each of the three admixture peaks and analyzed

for association with continuous BMI (Model 1 in Table 3). Higher

local European ancestry both at Xq13.1 and Xq25 was

significantly and inversely associated with lower values of

transformed BMI (P = 2.2610211 and P = 4.5610210, respective-

ly). To examine whether these associations could be fully explained

by the significant association between BMI and genome-wide

ancestry (discussed above), we further adjusted for genome-wide

European ancestry in the multivariate analysis. The residual

association of local ancestry with BMI after adjusting for genome-

wide ancestry remained significant at both Xq13.1 (P = 1.961027)

and Xq25 (P = 4.161026) (Model 2 in Table 3), indicating that

local ancestry had an effect on BMI above and beyond genome-

wide ancestry. Both associations were nominally genome-wide

significant (P = 1.961024 and P = 4.161023) after conservatively

correcting for 1,000 hypotheses tested. A naive analysis suggests

that each additional copy of a European ancestral allele at either

the Xq13.1 or the Xq25 peak is independently associated with a

BMI decrease of ,0.1 Z-score units on average (equivalent to

,0.64 kg/m2 and accounting for 0.3% of the variance in BMI,

after adjusting for age, age-squared, sex and study). The true

genetic effects are expected to be somewhat weaker because of

discovery bias.

The association at the 5q13.3 peak was particularly interesting

in that it did not achieve statistical significance until the genome-

Figure 3. The quantitative admixture scans for genetic loci affecting BMI. The quantitative admixture scans identified an association peak at
5q13.3 with a locus-specific LOD score of 6.27 and a genome-wide score of 3.46, both reaching the thresholds for genome-wide significance.
doi:10.1371/journal.pgen.1000490.g003

Figure 2. The dichotomous admixture scans for genetic loci affecting BMI. The locus-specific LOD score (red line) and the case-control Z
score (blue gray line) are shown for Run 1 in Table 2: BMI was adjusted for age, age-squared, sex and studies. A signal at genome-wide significant
level (locus-specific LOD = 5.94) was detected at Xq25. The Xq25 peak was also supported by the case-control statistic (Z score = 23.94, P = 8.161025).
Another peak on chromosome X was observed at Xq13.1 (locus-specific LOD = 2.22). Although its LOD score did not reach statistical significance, it
had the largest magnitude case-control Z score of 24.62 (P = 3.861026) anywhere in the genome. Moreover, we observed an admixture signal at
5q13.3 (locus-specific LOD = 2.48), which did not reach significance, but had the strongest positive case-control Z score across the genome (Z
score = 4.03, P = 5.661025).
doi:10.1371/journal.pgen.1000490.g002
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wide estimate of European ancestry was added into the analysis.

This was presumably because the locus effect was in the opposite

direction to the genome-wide ancestry effect (thus, the effects

cancel in the unadjusted analysis). Each additional copy of a

European ancestral allele at 5q13.3 was significantly

(P = 5.861027) associated with an increase in BMI of 0.09 Z-

score units (naively equal to ,0.59 kg/m2, accounting for 0.3% of

the variance in BMI), which was nominally significant

(P = 5.861024) after correcting for the approximately 1,000

independent hypotheses tested.

For the two peaks on chromosome X, we further examined

whether the effects of the local ancestry on BMI were modified by

gender. The local ancestry at Xq13.1 tended to be more strongly

associated with BMI in males than in females. After adjusting for

genome-wide European ancestry, the gender difference at Xq13.1

was significant (P for heterogeneity = 0.026, Model 2 in Table 3),

which was in line with our results of dichotomous admixture scans.

At Xq25, the effects of local ancestry did not show significant

heterogeneity (P.0.05) between the two gender groups, either

before or after adjusting for genome-wide European ancestry. A

potential mechanism for the difference in the strength of

association in men and women at the Xq13.1 locus is that women

carry two copies of chromosome X whereas men carry only one,

and hence this may simply reflect a difference in the genetics of the

two genders on chromosome X.

Since our analysis pooled data from 14 studies, we also

examined whether the strength of the admixture associations to

BMI on chromosomes X and 5 differed across studies. Local

ancestry estimates at each of the three admixture peaks were used

to check for homogeneity of their correlation with BMI across

studies. There was no evidence of heterogeneity across studies (all

P.0.05, I2 = 0%) at any of the three peaks (Table S2).

95% Credible Interval for the Three Loci
We constructed 95% CI for each of the three loci identified.

The 95% CI for the chromosome 5 locus spanned from 69.2 to

77.2 Mb (an ,8 Mb region) on build 35 of the human genome

reference sequence. The 95% CI for the higher admixture peak on

chromosome X spanned from 114.4 to 124.4 Mb (an ,10 Mb

region), and then 95% CI for the other chromosome X admixture

peak spanned from 47.8 to 89.2 Mb, a much broader region

(,40 Mb).

Discussion

We have carried out admixture mapping analyses to search for

genomic regions associated with BMI. This pooled analysis of

samples from 14 studies is the largest admixture scan reported to

date. In more than 15,000 individuals, we identified a locus on

chromosome 5 where greater local European ancestry was

associated with higher levels of BMI (P = 5.861027), and two

regions on chromosome X where greater local European ancestry

was associated with lower levels of BMI (both P,5.061026). Each

of these three associations was above and beyond the contribution

of genome-wide European ancestry, and each reached genome-

wide significance.

One of the major strengths of this study is its large sample size,

with over 15,000 African Americans. However, the large sample

also introduced complications in that it required the pooling of

several studies which potentially introduced various types of

heterogeneity to the study samples. For example, we included

individuals with either self-reported BMI or clinically measured

BMI in the present study. It is well known that individuals tend to

under report their body weight and that this measurement error is

potentially more common among heavier individuals. Moreover,

this type of measurement error can reduce the statistical power of

a study. To assess the potential effects of such measurement error,

we performed subgroup analysis by restricting the samples to those

from the six population-based cohort studies, where body weight

and height were clinically measured according to study protocols

(samples in the six cohorts represented 94% of all samples with

measured BMI) and found the two sets of results to be largely

comparable. Additional subgroup analyses, as shown in Table 2,

also confirmed the robustness of our findings [21,25,26].

The inverse correlation between BMI and percentage of

European ancestry estimated on the genome-wide scale confirmed

Table 3. Linear regression analysis of BMI on local European ancestry at the three admixture peaks.

Model 1: Local ancestry only
Model 2: Local ancestry, ancestry from
autosomes as a covariate

Model 3: Local ancestry, ancestry from
the X chromosome as a covariate

Admixture peaks Reg. Coef. (95% CI) P value Reg. Coef. (95% CI) P value Reg. Coef. (95% CI) P value

5q13.3 0.03 (20.01, 0.06) 0.071 0.09 (0.06, 0.13) 5.861027 - - -

Xq13.1

Both sexes 20.13 (20.16, 20.09) 2.2610211 20.11 (20.14, 0.07) 1.961027 20.10 (20.14, 0.06) 2.261026

Males 20.15 (20.23, 20.08) 3.561025 20.16 (20.23, 20.08) 4.061025 20.16 (20.24, 20.08) 6.461025

Females 20.10 (20.14, 20.06) 7.261026 20.06 (20.10, 20.01) 0.022 20.04 (20.09, 0.01) 0.089

P for heterogeneity between sexesa = 0.676 P for heterogeneity between sexesa = 0.026 P for heterogeneity between sexesa = 0.016

Xq25

Both Sexes 20.13 (20.17, 20.09) 4.5610210 20.10 (20.15, 20.06) 4.161026 20.10 (20.14, 20.05) 4.361025

Males 20.11 (20.19, 20.03) 0.008 20.11 (20.20, 20.03) 0.011 20.11 (20.19, 20.02) 0.017

Females 20.12 (20.16, 20.07) 5.261026 20.06 (20.12, 20.01) 0.022 20.05 (20.11, 0.01) 0.091

P for heterogeneity between sexesa = 0.882 P for heterogeneity between sexesa = 0.358 P for heterogeneity between sexesa = 0.281

Reg. Coef., regression coefficient: the change in Z score for each additional copy of the European ancestry allele; CI, confidence interval. In both-sex-combined analysis,
BMI was adjusted for age, age-squared, sex and study, and then normal-quantile transformed. Sex-stratified analysis was performed in each gender group and thus not
adjusted for sex.
aBy Z test for difference between the two the regression coefficients.
doi:10.1371/journal.pgen.1000490.t003
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the results from previous studies of smaller sample size and fewer

markers [29,30]. However, while genome-wide ancestry is likely

correlated with local ancestry, it cannot fully capture ancestry

information at each locus as there exists variation across the

genome in the effects of locus-specific ancestry on obesity. In

particular, local European ancestry at 5q13.3 was positively

associated with BMI, providing the first evidence of a genome-

wide significant ancestry association being in the opposite direction

to the overall epidemiological association.

The 95% CI for the chromosome 5 peak harbors a number of

genes, including the cocaine and amphetamine regulated tran-

script (CART) gene, which is a candidate for modulating obesity.

CART is a hypothalamic neuropeptide that transmits a physio-

logical anorexigenic signal and is involved in appetite regulation

[31,32]. Experiments have also shown that CART knock-out mice

have increased body weight compared with wild type mice [33].

Genomic regions containing the CART gene have also been linked

to both BMI and serum leptin levels in a study of French

Caucasian families [34]. SNPs in the 59 upstream region have

been reported to be associated with obesity in Japanese [35] and

French [36]. However, association studies in European-related

populations [37,38] and Pima Indians [39] have not found

associations between BMI and the CART gene in these

populations, and to our knowledge no published studies have

studied CART variants in African Americans. Further mapping

work is needed to determine whether the CART gene or other

genetic variants in the interval may influence the risk of obesity.

There have been very few studies reporting linkage of obesity

with markers on the X chromosome [40], yet three prior studies

also reported either suggestive or significant linkage of obesity to

the q arm of chromosome X [41–43]. Although these three studies

were performed in European-American families, they all mapped

the obesity locus to the Xq23–q24 region, which overlaps with the

95% CI of the highest admixture peak on chromosome X in our

study. The 95% CI in our study contains one particular gene that

may be a candidate for obesity susceptibility. The gene solute

carrier family 6 member 14 (SLC6A14) is involved in serotonin

synthesis and serotonergic receptor mechanisms that have been

implicated in appetite control and body weight regulation [44–46].

Nominally significant evidence of association between BMI and a

SNP (22510C/G) in SLC6A14 was observed in ,1,800 samples

from Finland and Sweden (P = 0.003), and females were found to

contribute most to this particular observed association [43]. The

gender difference observed in the previous study [43] is in line with

the results from our dichotomous admixture scans at this locus,

although the difference observed between men and women in our

study did not reach statistical significance. Another potential

candidate gene near the highest admixture peak is the cullin 4B

(CUL4B) gene. CUL4B was recently identified as a causative gene

for an X-linked mental retardation syndrome, which was

associated with several clinical features, including central obesity

[47].

Although we did not detect a significant association in the

region of the FTO gene, we noticed that the second highest

admixture peak (locus-specific LOD = 3.68) identified in our

quantitative scans was on chromosome 16, about 5.6 Mb away

from the FTO gene, and its 99% CI spanned 51.5 to 66.8 Mb (on

build 35 of the human reference sequence), which is a region that

includes the FTO gene. (However, FTO is outside the 95% CI.)

Further fine-mapping analysis may determine whether additional

variations in FTO may explain the intriguing admixture signal in

this region. The melanocortin-4 receptor (MC4R) gene, located on

chromosome 18q21.32, is the second obesity-susceptibility gene

discovered by genome-wide association studies in individuals of

European origin [48,49]. However, our dichotomous and

quantitative admixture scans did not identify any admixture

signals on chromosome 18q.

In summary, we have carried out a genome-wide admixture

mapping scan in 15,280 African Americans and have identified

three loci, 5q13.3, Xq13.1 and Xq25, that may harbor genetic

variants associated with variations in BMI. The local ancestry

associations to BMI at each of the three admixture-generated

peaks were statistically significant, suggesting the presence of a

genetic effect at these loci above and beyond the effects of genome-

wide ancestry. Follow-up fine mapping and focused analysis of

each locus using data that emerge from genome-wide association

studies in African Americans with measured BMI will be crucial to

determine whether these regions harbor genetic variants predis-

posing to obesity.

The present study is also methodologically significant in

illustrating how searches for genes in African Americans and

diverse populations can result in the detection of genetic loci that

have eluded discovery in European-derived populations, perhaps

because the underlying variants are too rare in the latter

populations. However, there is no reason to think that the three

loci we have identified are biologically important only in African

Americans. Replication and fine-mapping studies in other ethnic

groups, including Hispanic Americans and Pacific Islanders, with a

similar risk of obesity to African Americans, and even European

Americans and East Asians with a lower but still important rate of

this condition, may further elucidate these regions of the genome.

Studying multiple populations to fine-map a locus highlighted in

an admixture scan can be more informative than studying any one

population, as was previously demonstrated by our use of a multi-

ethnic cohort to fine-map prostate cancer risk factors at 8q24 [50].
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