Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance

Kevin L. Campbell, Jason E.E. Roberts, Laura N. Watson, Jörg Stetefeld, Angela M. Sloan, Anthony V. Signore, Jesse W. Howatt, Jeremy R.H. Tame, Nadin Rohland, Tong-Jian Shen, Jeremy J. Austin, Michael Hofreiter, Chien Ho, Roy E. Weber & Alan Cooper

Supplementary materials include:

Supplementary Figures S1–S12

Supplementary Tables S1–S4

Supplementary Note

SUPPLEMENTARY NOTE

Characterization of Asian/African elephant α -like and β -like globin genes

The α - and β -globin gene families of eutherian mammals have undergone numerous (and in many cases independent) tandem and *en bloc* duplications, interparalog gene conversions, silencing and deletion events since their divergence from metatherians^{1,2}. Unfortunately, inconsistent use of the original Greek alphabet nomenclature system adopted for the loci of these gene clusters fails to reflect their complex evolutionary history, thus making it difficult to not only distinguish paralogous from orthologous sequences among species, but also silenced from functional genes³. We thus adopted the three-letter nomenclature system of Aguileta *et al.*³ to best reflect the evolutionary origin of genes amplified/sequenced in this study. Within each cluster, tandemly duplicated genes are designated with the symbol -T followed by a number that corresponds to their 5' to 3' linkage order, while pseudogenes are indicated by a lowercase "ps". We classified globin-like loci as transcriptionally silent if they possessed a premature stop codon or lacked any of the following important characteristics of functional globin genes^{4,5}: a) a 3 exon/2 intron structure, b) transcriptional control motifs common to the 5' flanking region of α - or β -globin cluster genes, c) an 'ATG' initiation codon, d) 5'/3' GT-AG splice junction signals flanking each intron, and e) an intact poly-A signal in the 3' transcribed flanking region.

Functional mammalian α -like and β -like globin genes are composed of three coding regions (normally comprising 92, 205 and 126 bp, and 89, 223 and 126 bp, respectively) separated by two intervening sequences of variable length, and flanked by transcriptionally important upstream and downstream noncoding regions^{4,5} (see also Supplementary Figs. 2 and 3). We amplified complete, orthologous α -like and β -like globin gene regions from the DNA of Asian (1010 and 2119 bp, respectively) and African (2335 and 1744 bp, respectively) elephants. We then utilized working draft BAC sequences of the African elephant to determine the identity of these two adult-expressed genes. Scaffolds spanning the entire α-globin cluster were downloaded from GenBank (GB AC158446.2, AC160597.2, AC175811.2) and dotmatcher (EMBOSS) software was used to visualize regions of high homology with the three exons of the transcribed African α -like gene product we obtained. The dotplot representation identified six distinct α -like globin loci within the GenBank Loxodonta contigs. BlastN (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and percent identity plots against known paralogs/orthologs were used to characterize the six α-like genes as follows: 5'-HBZ-T1, HBZ-T2, HBK, HBA-T1ps, HBA-T2, HBQ -3'. This result differs slightly from the phylogenetically deduced 5'-HBZ-T1, HBZ-T2, HBA-T1ps, HBA-T2, HBQ -3' cluster arrangement recently published by Hoffmann *et al.*². Exon and mRNA sequences of the African elephant α -like globin product we sequenced precisely matched the Loxodonta HBA-T2 locus.

Two non-overlapping BAC sequences from GenBank (AC167954.3, jxy; AC169166.2, ktd) and the super_3994 contig of the Broad Institute 2× elephant assembly loxAfr1 (May 2005;

http://genome.ucsc.edu/), were also downloaded and examined using the procedures and criteria outlined above. Dotplot comparisons of the *Loxodonta* GenBank contigs against the exon sequences of the transcribed African 'β-like' gene product we obtained revealed five β-like globin loci, while four globin genes were detected in the super_3994 strand, which we attribute to a sequence gap in this later contig. BlastN, dotplot and MATGAT analyses were used to designate these genes as: 5'- *HBE*, *HBG*, *HBDps*, *HBB/D*, *HBBps* –3', which is identical to the phylogenetically deduced arrangement of Opazo *et al.*⁶. Exon and mRNA sequences of our African elephant β-like globin product precisely matched the *HBB/D* locus. Thus, the single adult-expressed hemoglobin component of elephantids is encoded by the *HBA-T2* (α-chain) and *HBB/D* (β/δ-chain) loci. Supplementary Figure 1. Schematic of the redundant overlapping sequencing strategy employed in this study to obtain the complete coding sequence of the *HBA-T2* (α) and *HBB/D* (β/δ) globin genes of woolly mammoth specimen SP1349. The lengths of the three coding exons and intervening sequences for each gene are given. Red and green arrows denote the direction each PCR product was directly sequenced. Cloned regions are outlined, with the number of clones sequenced indicated below each box. The locations of the three mammoth-specific amino-acid substitutions are indicated by arrows.

HBA-T2

Supplementary Figure 2. DNA sequences of African elephant (*Loxodonta africana*), Asian elephant (*Elaphas maximus*) and woolly mammoth (*Mammuthus primigenius*) *HBA-T2* globin genes amplified in this study. Consensus sequences are presented for the two extant species while the 28 separate direct sequencing (F=forward, R=reverse) reactions from woolly mammoth specimen SP1349 are given. The transcribed mRNA sequence is identified by upper case letters, while intervening and nontranscribed flanking sequences are shown in lower case. Initiation (ATG) and stop (TGA) codons are underlined and bold. The 5' mRNA cap site ('CAP') and 3' poly-adenylation signal ('AATAAA') are underlined. Synonymous and nonsynonymous nucleotide changes are denoted by red and bold red characters, respectively. Within each coding block, the translated amino-acid sequences of the expressed woolly mammoth α -globin chain are listed below the corresponding base triplets.

Loxodonta africana Elephas maximus SP1349_Alpha2_R1.3_B05 SP1349_Alpha2_R1.3_C01 SP1349_Alpha2_F1.1_B01 SP1349_Alpha2_F1.1_A05 ValLe	-40 -30 -20 -10 1 .
Loxodonta africana Elephas maximus SP1349_Alpha2_R1.3_B05 SP1349_Alpha2_R1.3_C01 SP1349_Alpha2_F1.1_B01 SP1349_Alpha2_F1.1_A05	1020304050
Loxodonta africana Elephas maximus SP1349_Alpha2_R1.3_B05 SP1349_Alpha2_R1.3_C01 SP1349_Alpha2_F1.1_B01 SP1349_Alpha2_F1.1_A05	60 70 80 90 IVS1→ CGACCACGCTTCGGATTATGTCGCCGAGGCCCTGGAGAGgtgaggatc CGACCACGCTTCGGAT CGACCACGCTTCGGAT CGACCACGCTTCGGATTATGTCGCCGAGGCCCTGGAGAGgtga CGACCACGCTTCGGATTATGTCGCCGAGGCCCTGGAGAGgtga CGACCACGCTTCGGATTATGTCGCCGAGGCCCTGGAGAGgtga yAspHisAlaSerAspTyrValAlaGluAlaLeuGluAr
Loxodonta africana Elephas maximus	cccctgtcccctacttccacgcacctgggctcaacaccaccccactgc cccctgtcccctacttccacgcacctgggctcaacaccaccccactgc
Loxodonta africana Elephas maximus	ccatcgctgggctacaaccaggccggtgtctaggccccaaggccccga ccatcgctgggctacaaccaggccggtgtctaggccccaaggccccga
Loxodonta africana Elephas maximus	tgcccagaccaccgacctcccgccaggggagcccggccctcctatccg tgcccagaccaccgacctcccgccaggggagcccggccctcctatccg
Loxodonta africana Elephas maximus SP1349_Alpha2_R2.2N_B02 SP1349_Alpha2_R2.2N_F02	ccctccctcagaggctgtgtgtgtgtctctccctgttcccctaccctaccc ccctccctcagaggctgtgtgcgctctccctgctcccctaccctaccc cc

Loxodonta africana

AGCGACCTGCACGCTCACAAGCTGAGGGTGGACCCTGTCAACTTCAAG AGCGACCTGCACGCTCACAAGCTGAGGGTGGACCCTGTCAACTTCAAG AGCGACCTGCACGCTCACAAGCTGAGG-------AGCGACCTGCACGCTCACAAGCTGAGG-------AGCGACCTGCACGCTCACAAGCTGAGGGTGGACCCTGTCAACTTCAAG AGCGACCTGCACGCTCACAAGCTGAGGGTGGACCCTGTCAACTTCAAG SerAspLeuHisAlaHisLysLeuArgValAspProValAsnPheLys $IVS2 \rightarrow$

160

210

260

170

220

SP1349 Alpha2 R2.4N D02 SP1349 Alpha2 R2.4N H02 SP1349 Alpha2 F2.4 C02 SP1349 Alpha2 F2.4N G02

Loxodonta africana Elephas maximus

SP1349_Alpha2_F2.3_D01 SP1349_Alpha2_F2.3N_G05 SP1349_Alpha2_R2.4N_D02 SP1349_Alpha2_R2.4N_H02 SP1349_Alpha2_F2.4_C02 SP1349_Alpha2_F2.4N_G02

Loxodonta africana Elephas maximus

Elephas maximus SP1349 Alpha2 R2.3N E01 SP1349 Alpha2 F2.3 D01 SP1349 Alpha2 R2.3N H05 SP1349 Alpha2 F2.3N G05 SP1349 Alpha2 R2.4N D02

Loxodonta africana

SP1349_Alpha2_F2N_A02 SP1349_Alpha2_F2N_E02 SP1349_Alpha2_R2.3N_E01 SP1349_Alpha2_F2.3_D01 SP1349_Alpha2_R2.3N_H05 SP1349 Alpha2 F2.3N G05

Loxodonta africana Elephas maximus

Elephas maximus SP1349 Alpha2 R2.2N B02 SP1349 Alpha2 R2.2N F02 SP1349 Alpha2 F2N A02 SP1349 Alpha2 F2N E02 SP1349 Alpha2 R2.3N E01

Loxodonta africana

. . . . | | . . . ctccaccaccgctcacctgccacttctccacgcagGATGTTCTTCTCC ctccaccaccgctcacctgccacttctccacgcagGATGTTCTTCTCC ctccaccaccgctcacctgccacttctccacgcagGATGT-----ctccaccaccgctcacctgccacttctccacgcagGA-----------ctgccacttctccacgcagGATGTTCTTCTCC -----gccacttctccacgcagGATGTTCTTCTCC -----CC

200

250

120 130 140 110 150 TTTCCCACCACCAAGACCTACTTTCCTCACTTCGACCTGGGCCATGGC TTTCCCACCACGAGACCTACTTTCCTCACTTCGACCTGAGCCATGGC TTTCCCACCACC------TTTCCCACCACC-----TTTCCCACCACGAGACCTACTTTCCTCACTTCGACCTGAGCCATGGC -----CCAAGACCTACTTTCCTCACTTCGACCTGAGCCATGGC -----GACCTACTTTCCTCACTTCGACCTGAGCCATGGC -----GGC ${\tt PheProThrThrLysThrTyrPheProHisPheAspLeuSerHisGly}$

180

TCTGGCCAGGTCAAGGCACATGGCAAGAAGGTGGGGGAAGCACTGACC

TCTGGCCAGGTCAAGGGACATGGCAAGAAGGTGGGGGAAGCACTGACC

TCTGGCCAGGTCAAGGGACATGGCAAGAAGGTGGGGGAAGCAC----

TCTGGCCAGGTCAAGGGACATGGCAAGAAGGTGGGGGAAGCACTGACC

TCTGGCCAGGTCAAGGGAC------TCTGGCCAGGTCAAGGGACATGGCAAGAAGGTGGGGGAAGCACTGACC

-----CC SerGlyGlnValLysGlyHisGlyLysLysValGlyGluAlaLeuThr

CAAGCTGTTGGCCACCTGGATGACCTGCCTAGCGCCCTGTCTGCACTC

CAAGCTGTTGGCCACCTGGATGACCTGCCTAGCGCCCTGTCTGCACTC

CAAGCT-----

CAAGCTGTTGGCCACCTGGATGAYCTGCCTAGCGCCCTGTCTGCACTC ---GCTGTTGGCCACCTGGATGACCTGCCTAGCGCCCTGTCTGCACTC -----CTGCCTAGCGCCCTGTCTGCACTC -----TGCCTAGCGCCCTGTCTGCACTC

 ${\tt GlnAlaValGly} \\ {\tt HisLeuAspAspLeuProSerAlaLeuSerAlaLeu} \\$

gtgaggagagggaaagacctggaaggtcggggcagcaggccttcctgg

280

270

CAAGCT-----

230

190

240

gMetPhePheSer

96

6

100

290 300

2.4N_G02	gtga
ana	cagggccgagatctgcaaaggtgagcgttccctaacagcccccttgtc cagggccgagatctgcaaaggtgag <mark>g</mark> gttccctaacagcccccttgtc
3.2 C02	cccccttgtc
3.2N E02	cccccttqtc
—	301 310 320 330
ana	ggcccctctctccacagCTCCTGAGCCACTGCCTGCTGGTGACTCTGA
3 2 002	geccect ct ct ccacageTCCTGAGCCACTGCCTGCTGG
3 2N E02	geccect ct ct ccacageTCCTGAGCCACTGCCTGCTGG
3N B02	
200_N2	
3N_H02	
511_1102	LeuLeuSerHisCysLeuLeuValThrLeuS
	340 350 360 370
	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $
ana	GCAGCCACCAACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
	GCAGCCACCAACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
3N_B02	GCAGCCACCAACCCACGGAGCACCCACGGA
3N_D02	GCAGCCACCAACCCACGGAGCACCCACCGGA
3N_H02	GCAGCCACCAACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
3.1N_G02	GCCACCAACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
3N_D03	AACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
3.2_C03	CATGCCTCCCTGG
3.2_F01	AGTTCACCCCTGAGGTCCATGCCTCCCTGG
3_G01	AACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
3.2_H01	TTCACCCCTGAGGTCCATGCCTCCCTGG
3_B02	AACCCACGGAGTTCACCCCTGAGGTCCATGCCTCCCTGG
	${\tt erSerHisGlnProThrGluPheThrProGluValHisAlaSerLeuA}$
	380 390 400 410 420
ana	ΑΓΑΑΓΩΤΤΟΓΙΑΤΑΓΑΑΓΩΑΓΑΑΓΩΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑΤΟΓΙΑ
	ACAAGTTCCTTAGCAACGTGAGCACCGTGCTGACCTCCAAATATCGT
3.1N G02	ACAAGTTCCTCAGCAACGTGAGCACCGTGCTGACCTCCAAAT
3N H02	ACAAGTTCCTCAGCAAC
3N D03	ACAAGTTCCTCAGCAAC
3.2 C03	ACAAGTTCCTCAGCAACGTGAGCACCGTGCTGACCTCCAAAT
3.2 F01	ACAAGTTCCTCAGCAACGTGAGCACCGTGCTGACCTCCAAATATCGT
3 G01	ACAAGTTCCTCAGCAACGTGAGCACCGTGCTGACCTCCAAATATCCT
3.2 H01	

gtgaggagaggggaagacctggaaggtcggggcagcaggccttcctgg gtga-----

SP1349_Alpha2_F2.4_C02 SP1349_Alpha2_F2.4N_G02

Elephas maximus

Loxodonta africana Elephas maximus SP1349_Alpha2_R3.2_C02 SP1349_Alpha2_R3.2N_E02

Loxodonta africana Elephas maximus SP1349_Alpha2_R3.2_C02 SP1349_Alpha2_R3.2N_E02 SP1349_Alpha2_F3N_B02 SP1349_Alpha2_F3N_D02 SP1349_Alpha2_R3N_H02

Loxodonta africana Elephas maximus SP1349_Alpha2_F3N_B02 SP1349_Alpha2_F3N_D02 SP1349_Alpha2_R3N_H02 SP1349_Alpha2_F3.1N_G02 SP1349_Alpha2_F3.2_C03 SP1349_Alpha2_F3.2_F01 SP1349_Alpha2_F3.2_F01 SP1349_Alpha2_F3.2_H01 SP1349_Alpha2_F3.2_H01 SP1349_Alpha2_R3_B02

Loxodonta africana Elephas maximus SP1349_Alpha2_F3.1N_G02 SP1349_Alpha2_R3N_H02 SP1349_Alpha2_R3N_D03 SP1349_Alpha2_F3.2_C03 SP1349_Alpha2_F3.2_F01 SP1349_Alpha2_R3_G01 SP1349_Alpha2_F3.2_H01 SP1349_Alpha2_R3_B02

ACAAGTTCCTCAGCAACGTGAGCACCGTGCTGACCTCCAAATATCGT spLysPheLeuSerAsnValSerThrValLeuThrSerLysTyrArg

Loxodonta africana Elephas maximus SP1349_Alpha2_F3.2_F01

SP1349_Alpha2_R3_G01 SP1349_Alpha2_F3.2_H01 SP1349_Alpha2_R3_B02	TAA GCTGGACCCCAGGAGAGG TAA GCTGGACCCCAGGAGAGG TAA GCTGGACCCCAGGAGAGG
Loxodonta africana Elephas maximus	+50 +60 +70 +80 +90 ATGTGCCACCAAGTCTTTG <u>AATAAA</u> CTCTGAGTGGGCAGCagcctggt ATGTGCCACCAAGTCTTTG <u>AATAAA</u> CTCTGAGTGGGCAGCagcctggt `AATAAA'

Supplementary Figure 3. DNA sequences of African elephant (*Loxodonta africana*), Asian elephant (*Elaphas maximus*) and woolly mammoth (*Mammuthus primigenius*) *HBB/D* globin genes amplified in this study. Consensus sequences are presented for the two extant species while the 21 separate direct sequencing reactions (F=forward, R=reverse) from woolly mammoth specimen SP1349 are given. The transcribed mRNA sequence is identified by upper case letters, while intervening and nontranscribed flanking sequences are shown in lower case. Initiation (ATG) and stop (TGA) codons are underlined and bold. The 5' upstream transcriptional control motifs necessary for transcription of a functional product ('CACCC', 'CCAAT', 'ATA'), the mRNA cap site ('CAP') and the 3' poly-adenylation signal ('AATAAA') are underlined. Synonymous and nonsynonymous nucleotide changes are denoted by red and bold red characters, respectively. Within each coding block, the translated amino-acid sequences of the expressed woolly mammoth β/δ -globin chain are listed below the corresponding base triplets.

Loxodonta africana Elephas maximus SP1349_Delta_Upstr_R_E01 SP1349_Delta_Upstr_R_B02 SP1349_Delta_Upstr_R_G03 SP1349_Delta_Upstr_F_F03 SP1349_Delta_Upstr_F_A02	-160 -150 -140 -130 -120 gcct <u>caccc</u> tgcagaacca <u>caccc</u> tggccttg <u>gccaat</u> ctg:tcacaa gcct <u>caccc</u> tgcagaacca <u>caccc</u> tggcctt <u>ggccaat</u> ctgctcacaa t <u>caccc</u> tgcagaacca <u>caccc</u> tggcctt <u>ggccaat</u> ctgctcacaa t <u>caccc</u> tgcagaacca <u>caccc</u> tggcctt <u>ggccaat</u> ctgctcacaa
Loxodonta africana Elephas maximus SP1349_Delta_Upstr_R_E01 SP1349_Delta_Upstr_R_B02 SP1349_Delta_Upstr_R_G03 SP1349_Delta_Upstr_F_F03 SP1349_Delta_Upstr_F_A02	-110 -100 -90 -80 -70
Loxodonta africana Elephas maximus SP1349_Delta_Upstr_R_E01 SP1349_Delta_Upstr_R_B02 SP1349_Delta_Upstr_R_G03 SP1349_Delta_Upstr_F_F03 SP1349_Delta_Upstr_F_A02 SP1349_Delta_R1N_F02 SP1349_Delta_F1N_E02	-60 -50 -40 -30 -20
Loxodonta africana Elephas maximus SP1349_Delta_R1N_F02 SP1349_Delta_F1N_E02	-10 1 10 20 30 . TACCCAATCAGACACC <u>ATG</u> GTGAATCTGACTGCTGCTGAGAAGACACA TACCCAATCAGACACC <u>ATG</u> GTGAATCTGACTGCTGCTGAGAAGACACA TACCCAATCAGACACC <u>ATG</u> GTGAATCTGACTGCTGCTGAGAAGACACA TACCCAATCAGACACC <u>ATG</u> GTGAATCTGACTGCTGCTGAGAAGACACA ValAsnLeuThrAlaAlaGluLysThrGl Mammoth A G (T12A) change ↓ 40 50 60 70 80

Loxodonta africana Elephas maximus SP1349 Delta R3N E03 SP1349 Delta F3N D03

Loxodonta africana Elephas maximus SP1349_Delta_R3N_E03 SP1349_Delta_F3N_D03

SP1349_Delta_R2_EO2 SP1349_Delta_F2.2_D02 SP1349_Delta_R3N_E03 SP1349_Delta_F3N_D03

Loxodonta africana

Elephas maximus

Loxodonta africana Elephas maximus SP1349_Delta_R2N_H02 SP1349_Delta_F2N_G02 SP1349_Delta_R2N_B01 SP1349_Delta_F2N_A01 SP1349_Delta_R2N_D01 SP1349 Delta F2N C01 SP1349 Delta_R2_EO2 SP1349 Delta F2.2 D02 SP1349 Delta R3N E03

Loxodonta africana Elephas maximus SP1349 Delta R2N H02 SP1349_Delta_F2N_G02 SP1349_Delta_R2N_B01 SP1349_Delta_F2N_A01 SP1349_Delta_R2N_D01 SP1349 Delta F2N C01

Elephas maximus SP1349 Delta R1N F02 SP1349 Delta F1N E02 SP1349 Delta R2N H02 SP1349 Delta F2N G02 SP1349 Delta R2N B01 SP1349 Delta F2N A01 SP1349 Delta R2N D01

Loxodonta africana

SP1349 Delta F2N C01

150 160 170 180 190 CTGTCCACTGCTGAAGCTGTCCTGCACAACGCTAAAGTGCTGGCCCAT CTGTCCACTGCTGACGCTGTCCTGCACAACGCTAAAGTGCTGGCCCAT CTGTCCACTGCTGACGCTGTCCTGCACAACG-------CTGTCCACTGCTGACGCTGTCCTGCACAACGCTAAAGTGCTGGCCCAT

110 100 120 130 140 CTGGTGGTCTACCCATGGACCCGGAGGTTCTTTGAACACTTTGGGGGAC CTGGTGGTCTACCCATGGACCCGGAGGTTCTTTGAACACTTTGGGGGAC CTGGTGGTCTACCCATGGACCCGGAGGTTCTTTGAACACTTTGGGGGAC CTGGTGGTCTACCCATGGACCCGGAGGTTCTTTGAACACTTTGGGGGAC ${\tt LeuValValTyrProTrpThrArgArgPhePheGluHisPheGlyAsp}$

..... caggcactgacttcctctgcaccctgtggtgctttcaccttcagGCTG caggcactgacttcctctgcaccctgtggtgctttcaccttcagGCTG ca----cag----caggcactgacttcctctgcaccctgtggtgctttcaccttcagGCTG -----ctgtggtgctttcaccttcagGCTG gLeu

 ${\tt ttgagtggggctgggcatgtggagacagaacagtctcccagtttctga}$ ${\tt ttgagtggggctgggcatgtggagacagaacagtctcccagtttctga}$ ttgagtggg-----ttgagtggggctgggcatgtggagacagaacag-----ttgagtggggctgggcatgtggagacagaacag-----ttgagtggggctgggcatgtggagacagaacag-----ttgagtggggctgggcatgtggagacag-----ttgagtggggctgggcatgtggagacagaacag--------------gggctgggcatgtggagacagaacagtctcccagtttctga -----atgtggagacagaacagtctcccagtttctga -----a

uAlaLeuSerAr

 \ldots | \ldots | \ldots | \ldots IVS1 \rightarrow GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg ${\tt GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg}$ GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg GGCCCTGAGCAGgtttctatctaggttgcaaggtagacttaaggaggg

90

nValAlaAsnLeuTrpGlyLysValAsnValLysGluLeuGlyGlyGl

AGTCACCAACCTGTGGGGGCAAGGTGAATGTGAAAGAGCTTGGTGGTGA
AGTCACCAACCTGTGGGGGCAAGGTGAATGTGAAAGAGCTTGGTGGTGA
AGTCGCCAACCTG
AGTCGCCAACCTGTGGGGCAAGGTGAATGT
GGCAAGGTGAATGTGAAAGAGCTTGGTGGTGA
CTTGGTGGTGA
GGCAAGGTGAATGTGAAAGAGCTTGGTGGTGA
GGTGAATGTGAAAGAGCTTGGTGGTGA
CAAGGTGAATGTGAAAGAGCTTGGTGGTGA
GGTGAATGTGAAAGAGCTTGGTGGTGA

93

SP1349_Delta_R4_B01

LeuSerThrAlaAspAlaValLeuHisAsnAlaLysValLeuAlaHis

Loxodonta africana Elephas maximus SP1349_Delta_F3N_D03 SP1349_Delta_R4_B01 SP1349_Delta_F4.1N_A01

	200	210	220	230	240
	.	.			
GGCGA	GAAAGTGT	FGACCTCCTTT	GGTGAGGGC	TTGAAGCACC'	TGGAC
GGCGI	GAAAGTGT	IGACCTCCTTT	GGTGAGGGC	CTGAAGCACC'	TGGAC
GG					
GGCGA	GAAAGTGT	IGACCTCCTTT	GGTGAGGGC	CTGAAGCACC'	TGGAC
	AGTGT	IGACCTCCTTT	GGTGAGGGC	CTGAAGCACC'	TGGAC
GlyGl	uLysValLe	euThrSerPhe	GlyGluGly	LeuLysHisL	euAsp

Loxodonta africana Elephas maximus SP1349_Delta_R4_B01 SP1349_Delta F4.1N_A01

	Mammo	oth G T	(A86S)	chang	е	
	250	↓ 260	0	270	28	0
				.	.	
AACCTCA	AGGGCACC	CTTTGCCC	GATCTGA	GĊGAGC	TGCACTG	TGAĊAAG
AACCTCA	AGGGCACC	CTTTGCCC	GATCTGA	GCGAGC	TGCACTG	TGACAAG
AACCTCA	AGGGCACC	TTTT <mark>T</mark> CCC	GATCTGA	GCGAGC	TGCACTG	TGACAAG
AACCTCA	AGGGCACC	TTTT <mark>T</mark> CCC	GATCTGA	GCGAGC	TGCACTG	TGACAAG
AsnLeuL	ysGlyThr	Phe <mark>Ser</mark> A	AspLeuS	erGluL	euHisCy	sAspLys

Loxodoi	nta afi	rica	ana	
Elephas	s maxir	nus		
SP1349	Delta	R4	B01	L
SP1349	Delta	_F4.	.1N_	_A01

Loxodonta africana Elephas maximus

 $tgaatttcctctgtatctctttttactcgactatgtttcatcatttag \\ tgaatttcctctgtatctctttttactcgactatgtttcatcatttag \\$

tccttttttcctgactcacattcttgctttatatcatgctcttattt tccttttttcctgactcacattcttgctttatatcatgctctttattt

aatttcctacgtttttgctcttgctctccctttctcctagtttccttc aatttcctgcgtttttgctcttgctctccctttctcctaatttccttc

cctctgaacagtacccagaatgtgcataccacctctcatccactattt cctctgaacagtacccaaaatgtgcataccacctctcgtccactattt

 $\tt ctgcactggggcaaatccccacccctcctccatatgagggttggaaag ctgcactggggcaaatccccacccctcctccatatgagggttggaaag$

 $gactgaatcaaagaggagaggatcatcgtgctgttctagagtctgtga\\gactgaatcaaagaggaggaggatcatggtgctgttctagagtatgtga$

ttcatttcagacttgaaggataacttgaataatataaaatcaggagta ttcatttcagacttgaaggataacttgaataatataaaatcaggagta

aatggagaggaaagtcagtatctgagaatgaaagatcagaaggtcata aatggagaggaaagtcagtatctgagaatgaaagatcagaaggtcata

<i>Loxodonta africana Elephas maximus</i> SP1349_Delta_R5N_D02 SP1349_Delta_R5N_G03	320 accatgtctgtgtatgtatctacctcttccccatagCTCCTGGGCAAT accatgtctgtgtatgtatctacctcttccccatagCTCCTGGGCAAT CTCCTGGGCAAT CTCCTGGGCAAT LeuLeuGlyAsn
<i>Loxodonta africana Elephas maximus</i> SP1349_Delta_R5N_D02 SP1349_Delta_R5N_G03 SP1349_Delta_F5_F03	330 340 350 360 370
<i>Loxodonta africana Elephas maximus</i> SP1349_Delta_R5N_D02 SP1349_Delta_R5N_G03 SP1349_Delta_F5_F03	380 390 400 410 420
<i>Loxodonta africana Elephas maximus</i> SP1349_Delta_R5N_D02 SP1349_Delta_R5N_G03 SP1349_Delta_F5_F03	430 440 +1 +10 +20 . CTGGCTCACAAATACCAC TGA GATCCTGGCCTGTTCCTGGTATCCATC CTGGCTCACAAATACCAC TGA GATCCTGGCCTGTTCCTGGTATCCATC CTGGCTCACAAATACCAC TGA GATCCTGGCCTGTTCC CTGGCTCACAAATACCAC TGA GATC CTGGCTCACAAATACCAC TGA GATCCTGGCCTGTTCCTGGTATCCATC LeuAlaHisLysTyrHis
<i>Loxodonta africana Elephas maximus</i> SP1349_Delta_F5_F03	+30 +40 +50 +60 +70
Loxodonta africana	+80 +90 +100 +110 +120 .

Loxodonta africana

Loxodonta africana Elephas maximus

Loxodonta africana Elephas maximus

Elephas maximus

gacgagatgggggggggagcagaagttactaagaaactgaccattgtggctat

gacgagatgggggggggagcagaagttactaagaaactgaccattgtggctat

 $\tt ttttcattttggtgggagtaaatttgggctagtgtgtgggcaacataa$

 $\tt ttttcattttggtgggagtaaatttgggctagtgtgtgggcaacataa$

atgggtttcaccccattgtctcagaggccaagctggattgctttgtta

 ${\tt atgggtttcaccccattgtctcagaggccaagctggattgctttgtta$

Elephas maximus

Supplementary Figure 4. Clones of the woolly mammoth (SP1349) *HBB/D* region including the β/δ 12Ala SNP at nucleotide position 37 (indicated in red), amplified in Adelaide using the SP1349_Delta_F1N/SP1349_Delta_R1N primers (see Supplementary Table 2). Dots indicate identical bases to those found in the direct sequence reads (top line; taken from Supplementary Fig. 3). The small amounts of sequence variation detected in clones is consistent with ancient DNA template damage⁷, but is at sufficiently low levels to be indistinguishable from background enzymatic error rates, which indicates that SP1349 has excellent ancient DNA preservation. Importantly, no variation is detected at the key non-synonymous nucleotide substitution at codon 12.

	-60	-50	-40	-30	-20
					.
Woolly mammoth HBB/D	caqctqctqt	ttacactcactt	ctqacacaac	ctqtqttqacta	gcaac
SP1349 Delta F1N R1N M13R H10			_ 		
SP1349 Delta F1N R1N M13R D09					
SP1349 Delta F1N R1N M13R F10					
SP1349 Delta F1N R1N M13R A10					
SP1349 Delta F1N R1N M13R E10					
SP1349 Delta F1N R1N M13R B10					
SP1349 Delta F1N R1N M13R F09					
SP1349 Delta F1N R1N M13R G09					
SP1349 Delta F1N R1N M13R C10					
SP1349 Delta F1N R1N M13R G10					
SP1349 Delta F1N R1N M13R D10					
SP1349 Delta F1N R1N M13R H09					к
SP1349 Delta F1N R1N M13R E09					
	-10	1	10	20	30
		.			
Woolly mammoth HBB/D	tacccaatca	acacc ATG GT	GAATCTGACTC	GCTGCTGAGAAG	ACACA
SP1349 Delta F1N R1N M13R H10					
SP1349 Delta F1N R1N M13R D09					
SP1349 Delta F1N R1N M13R F10					
SP1349 Delta F1N R1N M13R A10					
SP1349 Delta F1N R1N M13R E10					
SP1349 Delta F1N R1N M13R B10					
SP1349 Delta F1N R1N M13R F09					
SP1349 Delta F1N R1N M13R G09					
SP1349 Delta F1N R1N M13R C10					
SP1349 Delta F1N R1N M13R G10					
SP1349 Delta F1N R1N M13R D10					
SP1349 Delta F1N R1N M13R H09					
SP1349 Delta F1N R1N M13R E09					
	40	50	60		
	.↓		.		
Woolly mammoth HBB/D	AGTCGCCAAC	CTGTGGGGCAAG	GTGAATGT		
SP1349 Delta F1N R1N M13R H10	• • • • • • • • •				
SP1349 Delta F1N R1N M13R D09	.				
SP1349 Delta F1N R1N M13R F10					
SP1349 Delta F1N R1N M13R A10					
SP1349 Delta F1N R1N M13R E10					
SP1349 Delta F1N R1N M13R B10	G				
SP1349 Delta F1N R1N M13R F09					
SP1349 Delta F1N R1N M13R G09					
SP1349 Delta F1N R1N M13R C10					
SP1349 Delta F1N R1N M13R G10					
SP1349 Delta F1N R1N M13R D10					
SP1349 Delta F1N R1N M13R H09					
SP1349 Delta F1N R1N M13R E09	•••••	••••••••••••	••••••		

Supplementary Figure 5. Clones of the woolly mammoth (SP1349) HBB/D region covering the $\beta/\delta 86$ Ser and $\beta/\delta 101$ Gln SNPs at nucleotide positions 259 and 304, respectively (indicated in red), amplified in Adelaide using the primers SP1349 Delta F4.1N/SP1349 Delta R4 (see Supplementary Table 2). Dots indicate identical bases to those found in the direct sequence reads (top line; taken from Supplementary Fig. 3). The very small amounts of sequence variation within the clones are consistent with ancient DNA damage (G A/C T transition substitutions)⁷, and are indistinguishable from background enzymatic error rates. This confirms that the preservation of DNA in SP1349 is of very high quality. Importantly, no variation is detected around the non-synonymous nucleotide substitutions at codons 86 and 101.

	181	190	200	210	220	230
			.	.		.
Woolly mammoth <i>HBB/D</i>	GTGCTGGCC	CATGGCGAG	AAAGTGTTGA	CCTCCTTTG	GTGAGGGCCTG	AÀ
SP1349 F4.1N R4 M13R A01					A	••
SP1349 F4.1N R4 M13R E02						
SP1349 F4.1N R4 M13R G02						
SP1349 F4.1N R4 M13R C01						
SP1349 F4.1N R4 M13R E01						
SP1349 F4.1N R4 M13R G01						
SP1349 F4.1N R4 M13R D01						
SP1349 F4.1N R4 M13R F02						
SP1349 F4.1N R4 M13R H01						
SP1349 F4.1N R4 M13R F01						
						•••
		240	250	260	270	280
	1					1
Woolly mammoth HBB/D	CCACCTCCA	CAACCTCAA	· · · · · · · · CCCC&CCTTT	CCCATCTC		· I CTT
SD1349 F4 1N R4 M13R Δ 01	OCACCIOUR	ichnee i chh	OUGCACCITI	CCOATCIO	AUCOAUCIUCA	
SII349 F4 IN DA MI3D F02				•••••	•••••	••
SPI349 F4.1N PA M13P C02				•••••	•••••	••
SFI349 F4.1N PA M12P C01				•••••	•••••	••
$SFI349_F4.IN_R4_MI3R_C01$ $CD13A9_FA_1N_DA_M13D_F01$		• • • • • • • • • •		••••	•••••	••
SPI349 P4.IN R4 MISK E01		•••••• т		•••••	•••••	••
$SFI349_F4.IN_R4_MI3R_G01$		1	•••••	••••	•••••	••
$SFI349_F4.IN_R4_MI3R_D01$		• • • • • • • • • •		••••	•••••	••
$SPI349_F4.IN_R4_MI3R_F02$			•••••	••••	•••••	••
$SPI349_F4.IN_R4_MI3R_H0I$			•••••	••••	•••••	••
SPI349_F4.IN_R4_MI3R_F01		• • • • • • • • • •		•••••	•••••	••
		290	200	210		
	1				· · · · · · · · · · · · · · · · · · ·	
Maalla mammath HDD /D						_
WOOLLY Mammoth HBB/D	GIGACAAGC	TGCACGIGG	ATCCTCAGAA	ITTCAGGgt	gagtetaggag	a
SP1349_F4.IN_R4_M13R_A01		• • • • • • • • • •	· · · · · • • • • •	• • • • • • • • • •	••••	•
SP1349_F4.IN_R4_M13R_E02		• • • • • • • • • •	· · · · · • • • • •	• • • • • • • • • •	••••	•
SP1349_F4.IN_R4_M13R_G02		• • • • • • • • • •	· · · · · • • • • •	• • • • • • • • • •	••••	•
SP1349_F4.1N_R4_M13R_C01		• • • • • • • • •	· · · · · • • • • • •	• • • • • • • • • •	•••••	•
SP1349_F4.1N_R4_M13R_E01		• • • • • • • • •	· · · · · • • • • • •	• • • • • • • • • •	•••••	•
SP1349_F4.1N_R4_M13R_G01		• • • • • • • • • •	· · · · · • • • • •	• • • • • • • • •	•••••	•
SP1349_F4.1N_R4_M13R_D01			•••••	• • • • • • • • •	•••••	•
SP1349_F4.1N_R4_M13R_F02			· · · · · • • • • • •		•••••	•
SP1349_F4.1N_R4_M13R_H01			•••••		••••	•
SP1349 F4.1N R4 M13R F01						•

Supplementary Figure 6. SNP targeting of the woolly mammoth specific A G substitution at codon 12 (Leipzig). Two to three independent PCR reactions were conducted on DNA extracted from three mammoth specimens. Note: SP1349 is the individual from which the complete HBA-T2 and HBB/D coding sequences were determined (Supplementary Figs. 2–5). Clone sequences without primers (Delta_Hem_SNP1_F and Delta_Hem_SNP1_R) are given; dots indicate identical bases to those found in the woolly mammoth HBB/D gene (see Supplementary Fig. 3). The mammoth specific A G substitution at position 37 is indicated in red and was consistently recovered in the clones from PCR amplicons of specimens SP1349 and SP1419. Notably, this substitution was also detected in a 454 sequence read from specimen M4 (GenBank SRR006688.110153), which was the primary source of the complete mammoth nuclear genome sequence⁸. The expected G was also found in all three PCR reactions conducted on specimen SP1421, although exceptions were found in the first two PCR experiments. Such sequence variation is commonly observed in clones of PCR products from ancient specimens, and generally represents transition mutations characteristic of cytosine deamination on one or other of the source template strands⁷. This pattern is common in ancient DNA when small numbers of templates initiate PCR reactions, and the resulting clones exhibit high frequencies of G A/C T transition substitutions at a few positions⁷. The amount of sequence variation in the clones from the three specimens indicate that the DNA preservation in SP1349 is considerably better than the other two. Importantly, all "blank" (no DNA) negative controls revealed no sign of contamination.

	10	20	30	40	50	60
			. .↓			
Mammoth HBB/D	CTGACTGCT	GCTGAGAAGA	CACAAGTCG	CCAACCTGTG	GGGCAAGG	TGAAT
Elephas HBB/D	010101001		Δ	00121001010	000011100	
Loxodonta HBB/D		•••••	Α			
Loxodonta HPDpg				 тс л		· · · · · · · · · · · · · · · · · · ·
Loxodonta HBDpS	•••••			ст		
Loxodonica HBE	1.1 m m	.AG1		.A.GI		• • • • •
LOXOGOIILA HBG	1.1		.IGCIAA	.A.GA		· · · · · · .
Human HBD			. TGCT A	ATGC	A.	
Human HBB	· · · · · · · · · · · · · · · · · · ·	.AG1		. TGC	• • • • • • • •	C
Delta_Hem_SNP1_F		•••••	•••	~~~~~~~	~~~~~~~	~~~~
Delta_Hem_SNP1_R	~~~~~~~	~~~~~~~~~~	~~~~~~	~~~~		
SP1349 1 cl1	~~~~~~	.~~~~~~~~~	~~~	~~~~~	~~~~~~	~~~~
SP1349 1 cl2	~~~~~~~	~~~~~~~~~~~	~~~	~~~~~	~~~~~~	~~~~
SP1349 1 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~
SP1349 2 cl1	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~
SP1349 2 cl2	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~A	~~~~~	~~~~~~	~~~~
SP1349 2 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~~
SP1349 2 cl4	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~
SP1349 2 cl5	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~~	~~~~~
SP1349 2 cl6	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~~	~~~~~
SP1349 2 cl7	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~~	~~~~~
SP1419 1 cl1	~~~~~~~	~~~~~~~~~~~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 1 cl2	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 1 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 2 cl1	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 2 cl2	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 2 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~TT.	~~~~~	~~~~~~	~~~~
SP1419 2 cl4	~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~T	~~~~~	~~~~~~	~~~~
SP1419 2 cl4	~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~TT.	~~~~~	~~~~~~	~~~~
SP1419 3 cl1	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~ ~ ~ ~	~~~~~~	~~~~
SP1419 3 cl2	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~
SP1419 3 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~~	~~~~~
SP1419 3 cl4	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~ A	~~~~~	~~~~~~	~~~~
SP1419 3 $c15$						~ ~ ~ ~ ~ ~
			••••••	••••		
SP1421 1 cl1	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	~~~~~	~~~~~~	~~~~
SP1421 1 cl2	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~A	~~~~~	~~~~~~	~~~~
SP1421 1 cl3	~~~~~~~	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~A	~~~~~	~~~~~~	~~~~

SP1421	1	cl4	~~~~~~~~~~~~~A
SP1421	2	cl1	~~~~~~~~~~~~~~~A
SP1421	2	c12	~~~~~~~~~~~~~~~~
SP1421	2	cl3	~~~~~~~~~~~AA
SP1421	2	cl4	~~~~~~~~~~~~~~~~
SP1421	2	c15	~~~~~~~~~~~~~~~~
SP1421	2	cl6	~~~~~~~~~~AA
SP1421	2	cl7	~~~~~~~AA
SP1421	3	cl1	~~~~~~~~~~~~~~~~
SP1421	3	cl2	~~~~~~~~~~~~~~~
SP1421	3	cl3	~~~~~~~~~~~~~~~~
SP1421	3	cl4	~~~~~~~~~~~~~~~

Supplementary Figure 7. SNP targeting of the woolly mammoth specific G T substitution at codon 86 (Leipzig). Unfortunately, no sequence reads from the mammoth genome project⁸ covered this region. Anywhere from two to five independent PCR reactions were conducted on DNA extracted from four mammoth specimens. Note: SP1349 is the individual from which the complete HBA-T2 and HBB/D coding sequences were determined (Supplementary Figs. 2-5). Clone sequences without primers (Delta_Hem_SNP2_F and Delta_Hem_SNP2_R) are given; dots indicate identical bases to those found in the woolly mammoth HBB/D gene (see Supplementary Fig. 3). The mammoth specific G T substitution at position 259 is indicated in red, and was consistently obtained from all clones of SP1349. However, numerous clones from the two less well-preserved specimens possessed "G" at this site, as observed in the Loxodonta and Elephas HBB/D gene, and the Loxodonta gamma (HBG), epsilon (HBE) and beta pseudogene (HBBps) loci. Since all "blank" (no DNA) negative controls revealed no sign of contamination, it appeared likely that one of the mammoth β -cluster paralogs had been co-amplified in the PCR reaction, due to the lack of suitable templates in the early rounds of the PCR. This result is also possibly exaggerated because it is very difficult to design gene-specific primers within the exon regions used here (as opposed to the larger amplifications performed in Adelaide; Supplementary Figs. 1–5 above). To investigate this issue further, and determine which of the β -cluster loci had amplified, a second reverse primer (Delta_Hem_SNP2_R_new; Table S3) was designed to amplify several distinguishing SNPs immediately outside the initially targeted region, and used on two problematic mammoth samples (SP1420, SP1421). The sequences of these clones (shown below the clones for the same specimen) show that the most likely explanation is that in addition to the target HBB/D locus, the mammoth HBG gene had co-amplified in some of the PCRs of both SP1419 and SP1421. It is important to note that since changes in the flanking region sequences mean that the primers would strongly preferentially bind to any authentic HBB/D loci that were present, if there had been any modern elephant contamination present it would have been highly likely to result in elephant HBB/D sequences (i.e., not HBG or HBE paralogs). However, we also cannot entirely discount the possibility that these two individuals are heterozygotic at this site.

	230	240	250	260	270	280
				.↓	.	.
Mammoth HBB/D	AAGCACCTGG	ACAACCTCAA	GGGCACCTT	TTCCGATCTGA	GCGAGCTGCA	CTGTG
Elephas HBB/D				.G		
Loxodonta HBB/D				.G		
Loxodonta HBDps	TA			C.G	.т	
Loxodonta HBBps		TTG		.GC.GA.	.TA	
Loxodonta HBE	AA		AG	.G.TA.G	A	
Loxodonta HBG	A			.G.TA.G		
Human <i>HBD</i>	GCT		T	TC.G	.Т	
Human HBB	GCT			.GACA	.Т	
Delta_Hem_SNP2_F	~		. ~~~~~~~	~~~~~~~~~	~~~~~~	~~~~~
Delta_Hem_SNP2_R	~~~~~~~	~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~	•••••	~~~~~
D_Hem_SNP2_R_new	~~~~~~~	~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~		
SP1349 1 cl1	~~~~~~~	~~~~~~	~	•••	~~~~~~	~~~~~
SP1349 1 cl2	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 1 cl3	~~~~~~~	~~~~~~	~	•••	~~~~~~	~~~~~
SP1349 1 cl4	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 1 cl5	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 2 cl1	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 2 cl2	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 2 cl3	~~~~~~~~	~~~~~~	~	••••	~~~~~~	~~~~~
SP1349 2 cl4	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 2 cl5	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 2 cl6	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 3 cl1	~~~~~~~	~~~~~~	~	••••	~~~~~~~	~~~~~
SP1349 3 cl2	~~~~~~~~~	~~~~~~	~	••••	~~~~~~	~~~~~
SP1419 1 cl6	~~~~~~~~	~~~~~~	~	••••	~~~~~~	~~~~~
SP1419 2 cl1	~~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~	••••	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~

SP1419 2 cl6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 3 cl3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CD1/10 2 cl6	
SP1419 5 C16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 1 Cl1	~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~~~~
SP1419 1 cl2	~~~~G. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 1 cl3	
CD1410 1 cl4	
SP1419 1 C14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 1 cl5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 1 cl7	G
SP1419 2 cl2	G ~~~~~~~~
SP1419 2 C13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 2 cl4	~~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~
SP1419 2 cl5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SD1419 2 cl7	Т. С.
SPI419 3 CII	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 3 cl2	~~~~G. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1419 3 cl4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SF1419 5 C15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1420 new cl1	~~~~~
SP1420 new cl2	
CD1420 new $cl2$	
SPI420 New CIS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1420 new cl4	~~~~~
SP1421 1 cl2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 C19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 4 cl1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	••••••
SP1421 4 C12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 4 cl3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 4 cl4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
901421 A c15	
SP1421 4 C16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 4 cl7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 4 cl8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GD1421 1 al1	C
SP1421 1 C13	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl4	~~~~G. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl5	
CD1421 1 cl6	
SF1421 1 C10	
SP1421 1 cl7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl8	~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 cl10	
$c_{} = c_{}$	
SP1421 1 C113	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 1 CI14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 2 cl1	~~~~~
SP1421 2 cl2	
SP1421 2 C13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 2 C14	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 2 cl5	~~~~~.G. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 2 cl6	
CD1421 2 c17	
DFIHAL A CI/	
SP1421 3 cl1	~~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~
SP1421 3 cl2	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 3 cl3	~~~~~~~~~~~~~~~~
SD1421 2 al4	λ C
$\begin{array}{c} \mathbf{D}\mathbf{F}1421 \mathbf{D} \mathbf{C}14 \\ \mathbf{C}\mathbf{D}1401 \mathbf{D} \mathbf{C}14 \end{array}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 3 C15	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 3 cl6	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 3 cl7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SD1/21 5 all	с.
DETHAT D CIT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1421 5 C12	~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421 5 cl3	~~~~~G.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SP1421	5	cl4		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	5	cl5		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	5	cl6		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	5	cl7		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	5	cl8		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	5	cl9		~~~~~~~~~~~~~~~G.~~~~~~~~~~~~~~~~~
SP1421	ne	ew 1	cl1	~~~~~~~~~~~~~~~~G.TA.G.~~~~~~~~~~~~~
SP1421	ne	ew 1	cl2	~~~~~~~~~~~~~~~~G.TA.G.~~~~~~~~~~~~~
SP1421	ne	ew 1	cl3	~~~~~~~~~~~.AG.TA.G.~~~~~~~~~~~~~~~
SP1421	ne	ew 1	cl4	~~~~~~~~~~~~~~~~G.TA.G.~~~~~~~~~~~~~
SP1421	ne	ew 2	cl1	~~~~~~~~~~~~~~~~G.TA.G.~~~~~~~~~~~~~
SP1421	ne	ew 2	cl2	~~~~~~~~~~~~~~~G.TA.G.~~~~~~~~~~~~~

Supplementary Figure 8. SNP targeting of the woolly mammoth specific G C substitution at codon 101 (Leipzig). Unfortunately, no sequence reads from the mammoth genome project⁸ covered this region. Three independent PCR reactions were conducted on DNA extracted from each of three mammoth specimens. Note: SP1349 is the individual from which the complete HBA-T2 and HBB/D coding sequences were determined (Supplementary Figs. 2–5). Clone sequences without primers (Delta Hem SNP3 F and Delta Hem SNP3 R) are given; dots indicate identical bases to those found in the woolly mammoth HBB/D gene (see Supplementary Fig. 3). The mammoth specific G C substitution at position 304 is indicated in red and was consistently obtained from all clones of SP1349, and was present in clones of both the less well-preserved mammoth specimens (SP1419 and SP1421). However, numerous clones of the latter two also possessed sequences consistent with the Loxodonta *HBBps*, *HBE*, and *HBG* loci, potentially indicating that other genes from the mammoth β -globin cluster had been co-amplified. However, further investigation revealed that dog and human contaminants detected in four separate 'blank' negative controls (Blk) were a perfect match for the sequence variants, strongly suggesting that they were in fact a result of contamination. It is important to note that since changes in the flanking region sequences around the genes in the β -globin cluster mean that the primers would strongly preferentially bind to any authentic *HBB/D* loci that were present, so that if any modern elephant contamination were present it would have been highly likely to result in elephant HBB/D sequences (*i.e.*, not *HBBps* or *HBE* or *HBG* paralogs) in the SP1349, SP1419 and SP1421 clones; this was not found.

	290 300 310
	$ \dots $
Mammoth HBB/D	CAAGCTGCACGTGGATCCTCAGAATTTCAGGqtqaqtctaqqaqa-
Elephas HBB/D	G
Loxodonta HBB/D	
Loxodonta HBDps	TGt
Loxodonta HBBps	ATGCt.qa
Loxodonta HBE	
Loxodonta HBG	
Human HBD	ct
Human HBB	t.qc
Dog HBD	
Dog HBB	qt.qc
Delta Hem SNP3 F	
Delta Hem SNP3 R	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 1 cl1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 1 cl2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 1 cl3	~~~~~~~~~~~~~
SP1349 1 cl4	~~~~~~~~~~~~~
SP1349 1 cl5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 2 cl1	~~~~~~~~~~~
SP1349 2 cl2	~~~~~~~~~~~
SP1349 2 cl3	~~~~~~~~~~
SP1349 2 cl4	~~~~~~~~~~
SP1349 2 cl5	~~~~~~~~~~~~
SP1349 2 cl6	~~~~~~~~~~
SP1349 3 cl1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 3 cl2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SP1349 3 c3	~~~~~~~~~~~~
SP1349 3 c4	~~~~~~~~~~~~
SP1349 3 c5	~~~~~~~~~~~
$SP1419 \perp CII$	~~~~~~~~~~~~~
CD1410 1 cl 4	~~~~~~~~~~~~
SF1419 I CI4	~~~~~~~~~~~~
SPI4IS I CIS	~~~~~~~~~~
SPI4IS I CIS	~~~~~~~~~~
SP1419 2 C12	~~~~~~~~~~~~
SP1419 2 C17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SP1419 3 cl1	~~~~~~~~~~~~~C~~~~~~~~~~~~~~~~~~~~	~~~
CD1410 2 al2		
SF1419 5 C12		~~~
SP1419 3 cl4	~~~~~~~~~~~~~C~~~~~~~~~~~~~~~~~~~~	~~~
CD1410 1 alo	C C	
SP1419 1 C12	~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 1 cl6	~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~~	~~~
7 [0 1 0 1 0] 7	C C	
SF1419 1 C17		~~~
SP1419 1 cl9	~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~~	~~~
CD1410 1 al10	C C	
SF1419 1 C110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 1 cl11	~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~	~~~
CD1410 1 al12	C C	
SF1419 I CI1Z	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 cl1	~~~~~~~~~~~CGC~~~~~~~~~~~~~~~~~~~~~	~~~
CD1/19 2 cl3	с с	
SFIFID Z CIS		~~~~
SP1419 2 cl4	~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~	~~~
SD1419 2 cl5	Concernation C	~~~~
SP1419 2 C16	~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 cl8	concerned G Concerned concerned	~~~
SP1419 2 cl9	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~	~~~
SD1419 2 cl10	Conservation C	~~~~
SP1419 2 C111	~~~~~~~~~.G C~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 cl12	~~~~~~~~~~~ G C~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 C113	~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 cl14	~~~~~~~~~~~ G C~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 2 cl15	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~	~~~
SP1419 3 cl3	concerned G Concerned	~~~
SP1419 3 C15	~~~~~~~~~.G C~~~~~~~~~~~~~~~~~~~~	~~~
SP1419 3 cl6	concerned G Concerned	~~~
SP1419 3 cl7	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~	~~~
SD1421 1 cl1		
SFI4ZI I CII		~~~~
SP1421 1 cl3	~~~~~~~~~~~~~	~~~
SD1421 1 cl4		
SP1421 3 cl1	~~~~~~~~~~~~~~	~~~
CD1/21 3 cl2	G	
	.0	
SP1421 3 cl3	~~~~~~~~~~~~~	~~~
SD1421 3 cl4		~~~~
SFI4ZI S CI4	•••••••	~~~~
SP1421 3 cl5	~~~~~~~~~~~~~	~~~
SD1421 3 cl6		~~~~
511121 5 610	• • • • •	
SP1421 1 Cl2	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~	~~~
SP1421 2 cl1	~~~~~~~~~~~ G C~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1421 2 C12	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~	~~~
SP1421 2 cl3	concerned G Concerned	~~~
SP1421 2 C14	~~~~~~~~~.G C~~~~~~~~~~~~~~~~~~~~	~~~
SP1421 2 cl5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
SP1421 2 C16	~~~~~~~~~~	~~~
SP1421 2 cl7	~~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~	~~~
	~~ ~	
BIK 1 CI1	~~~~~~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~	~~~
Blk 1 cl2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
	22	
BIK 1 CI3	~~~~~~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~	~~~
Blk 1 cl4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
BIK 2 CII	~~~~~~~~	~~~
Blk 2 cl2	~~~~~~~~~~.G C~~~~~~~~~~~~~~~~~~~	~~~
BIK 2 CI3	~~~~~~~~	~~~
Blk 2 cl4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~
DIK Z CID	~~~~~~~~~~~	~~~
Blk 3 cl1	~~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~	~~~
DIK 5 CIZ	~~~~~~~~~.GC~~~~~~~~~~~~~~~~~~~~~~~	~~~
Blk 3 cl3		
	~~~~~~~.G C~~~~~~~~~~~~~~~~~~~~~~	~~~
	······	~~~
Blk 3 cl4	GC	~~~
Blk 3 cl4 Blk 3 cl5	······	~~~~
Blk 3 cl4 Blk 3 cl5 Blk 3 cl6		~~~~
Blk 3 cl4 Blk 3 cl5 Blk 3 cl6		~~~~
Blk 3 cl4 Blk 3 cl5 Blk 3 cl6 Blk 3 cl7	······································	~~~ ~~~ ~~~
Blk 3 cl4 Blk 3 cl5 Blk 3 cl6 Blk 3 cl7 Blk 4 cl1	······································	~~~~ ~~~~ ~~~~
Blk 3 cl4 Blk 3 cl5 Blk 3 cl6 Blk 3 cl7 Blk 4 cl1		~~~~ ~~~~ ~~~~ ~~~~

Blk	4	cl3	~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~~~~~
Blk	4	cl4	~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Blk	4	c15	~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Blk	4	c16	~~~~~CGC~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Supplementary Figure 9. Amino-acid alignment of 50 mammalian  $\beta$ -globin chain sequences. Dots indicate identical amino-acids to those present in the woolly mammoth, while deletions in the sequence are denoted by a dash. The three mammoth-specific changes (shaded in red) are extremely rare in mammalian Hbs. Specifically, the key mammoth residue change at position 101 is only found in one other species (*Eulemur fulvus*; brown lemur), though here it is almost certainly countered by a charge compensating change (Arg Thr) at position 104 (which interacts with residue 101 and is highlighted in green; see Supplementary Fig. 10). The three residues ( $\beta$ 8Lys,  $\beta$ 76 Lys and  $\beta$ 77His) implicated in lowering the oxygenation enthalpy of bovine and Arctic ruminant Hbs^{9,10,11} are shaded in light blue; these three residues are found in nearly all ruminants (box) strongly suggesting they were present in the ancestor of this lineage. Note, however, that these residues do not form an 'additional' Cl⁻ binding site in elephantid Hbs (see Supplementary Fig. 12).

	1 1 2 1 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4
	15050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505050505055555555
Afrotheria	
Mammuthus primigenius	VNLTAAE <mark>K</mark> TQV <mark>E</mark> NLWGKVNVKELGGEALSRLLVVYPWTRRFFEHFGDLSTADAVLHNAKVLAHGEKVLTSFGEGL <mark>KH</mark> LDNLKGTF <mark>S</mark> DLSELHCDKLHVDP <mark>E</mark> NFRLLGNVLVIVLARHFGKEFTPDVQAAYEKVVAGVANALAHKYH
Elaphas maximus	
Loxodonta africana	
Trichechus inunguis	.HPE. <mark>.</mark> AL.IGAYGQS.S.IMN.PKFD <mark></mark> EDA AEEECS.EAQ
Procavia capensis	.HDAA.TGK.D.YGQNIMPKSDNAQEVHE
Echinops telfairi	.HM.DKL.TTMLD.DAA.AETLG.VQGS.CMD.PQKH.LGDG.NHDHFYAAE
Xenarthra	
Bradypus tridactylus	.H.ADD. <mark>.</mark> AA.SA.H.H.E.FGSSSFSKK
Dasypus novemcinctus	SDA.LAND.EDCGQSTPAFAKKMNAKEKMVDWHMH.CFQ
Laurasiatheria	
Sus scrofa	.H.S.E. <mark>.</mark> EA.LGD.VGQSNMG.PKKQSD <mark></mark> AKQEI.VRL.HD.NFQ
Lama glama	
Camelus bactrianus	.H.SGDNA.HGSK.D.VGS
Bos taurus	-ME. AA.TAFK.D.VGQSQSMN.P.KKD.SN.MDAAE.KVNVL.DFQR.
Bison bonasus	-ME. <mark>.</mark> AA.TAFH.D.VGQSSMNKKD.SN.M <mark></mark> .DAAE.KVVL.DFQTR.
Bubalus bubalis	-ME. <mark>.</mark> AA.TAFH.D.VGQSNN.PKKD.SN.M <mark></mark> DAAEKVVL.DFQR.
Odocoileus virginianus	-ME. <mark>.</mark> AA.TGFDVV.AGQQS.GMG.PKKRDA.S <mark></mark> DA.AENEVNGLVDFQR.
Rangifer tarandus	-MSE. AA.TGFK.D.V.AGQQSIMDKKRDA.SDDA.AKEVDVLD.QTR.
Alces alces	-ME. <mark>.</mark> AA.TAFK.D.VGQQMKEKRDA.S <mark></mark> .DA.AKEVEL.D.QTR.
Tragelaphus strepsiceros	-ME. <mark>.</mark> AA.TAFK.D.VGQSMN.PKKDSN.M <mark></mark> DAAEKVEL.D.QTR.
Capra hircus	-ME. <mark>.</mark> AA.TGFK.D.VGQSMNKKDSN.M <mark></mark> DAQEKVH.SLL.EFQR.
Ammotragus lervia	-ME. <mark>.</mark> AA.TGF.SK.DDV.AGQQSMN.PKKDSN.M <mark></mark> DAHEVH.SVL.DFQTR.
Ovis aries	ME. <mark>_</mark> AA.TGFK.D.V.AGQSMNKKDSN.VO <mark>.</mark> DAQE
Tapir terrestris	.E.,GE.,AA.LA.,D.,DEDKV,G.,,Q.,DS.,,A.,MG.P.,K.,K.,H.,D.VH.,D.VV.,AQ.,,E.,.,V.,QQ.,A.,EL,.,Q.,,
Ceratothermium simum	.EEAA.LADKED.VGQDSPAMGKKHD.VHAAEVKQELQ
Equus caballus	Q.SGEAA.LADEE.VGQDSNPGMG.PKKHVHAAEVDELS.Q
Tursiops truncatus	.H.,GE. <mark>.</mark> SA.TAE.VGQSMK.PN.KK.QA <mark></mark> DAAEVEL.SQT
Balaenoptera acutorostr.	.HE. <mark>.</mark> SA.TAAE.VGQAMK.PKKASD <mark></mark> DATEEELQ
Hippopotamus amphibius	.HE. <mark>.</mark> DA.LGQ.VGQSSMN.PKKDAD <mark></mark> AAEEVTELQR.
Felis silvestris	GFEGL.NGD.VGQSSIMSKKNSDNI.DA.AKECHHD.N.QFQ
Canis familiaris	.HESL.SGD.VGIQDSPMSKKNSDNAKEKCHQQQQ
Ursus maritimus	.HGESL.TGD.VGQDSSIMN.PKKNSDNAKEKCHQQQQQQ
Rousettus aegyptiacus	.H.SGEAA.TAK.E.VGQDSS.SMS.PKKDSQSAKECQQQ
Myotis velifer	.HDAA.SGD.VGQTSN.AMG.SKKNNVASEQG.FQ.LALT
Erinaceus europaeus	.HEAL.TGK.E.FGQDSSMG.PKAQ.M.D.I.N
Suncus murinus	.H.SGEAC.TGED.V.AGQDSS.SMG.PKKH.LVANAKEVSKPFQ
Talpa europaea	.H.SGEGL.TGMD.VGQDSS.S.IMGKKN.ITD.V.NYAKEECNLGQAFQLT
Euarchontoglires	
Cavia porcellus	.H <mark>.</mark> SAILDG.I.AGQKS.S.IMS.H.KS.AAS <mark></mark> .QDAKEMI.AH.HPSCTFQT
Rattus norvegicus	.HD., AA.NGPDDVGQ.Y.DSS.S.IMG.PKK. INA.ND.,AHAH
Oryctolagus cuniculus	.H.SSESA.TAE.VGQSS.NMN.PKKAA.SSAKESHQQQQQQ

Homo sapiens	.H. PE. KA.TAD.VGQSPMG.P. K. K. GA.SD. AATEC. H. P. Q.
Macaca mulatta	.H. PE. SN. TTD. VGLQSSPMG. PKKGA. SDNAQEKCHQQQ.
Ateles geoffroyi	.HGEAA. TAD.VG
Eulemur fulvus	TL.S.E.NAH.TSD.EKVGVENA.S.AVQSSPSA.MG.P.KKSA.SHVAQ
Lemur variegates	TF. PE.NGH.TSEKVGQSSP.IMG.P.KKSA.SHAQVAEKHND.S.QTFQT
Tarsius bancanus	.HDAA.TAD.EDVGQDSPAMG.AKKNA.SMAAKECHQQT
Tupaia glis	.H.SGEAA.TGDLEKVQSLGSIQDSSPSMS.PKKSDNAKERCNPEQFQ
Marsupialia	
Didelphis marsupialis	.HSE. NCITTI.S. Q. DQTG.MTGSSPGMS.S. QAAV
Macropus eugenii	.HENAITSAIEQTGISDN.KMS.PAVADAI.NAKEKIICEI.A.V.WQ.L
Macropus giganteus	.HENAITSVAIEQTGISDN.KMA.PAVADAI.NAKEKII.CEI.T.V.WQ.L
Monotremata	
Tachyglossus aculeatus	.H.SGSA.THNGVSQSSMGKADANAKAKENRVSEAWQ.L.SSH
Ornithorhynchus anatinus	.H.SGGSA.TINGQAS.GMG.P.KADAN.DAKENRIVS.D.S.EWQ.L.SH.G

Supplementary Figure 10. Molecular model illustrating altered electrostatic interactions in mammoth hemoglobin (Hb) arising from the  $\beta/\delta$ -globin chain E101Q substitution. The carboxyl group of  $\beta/\delta$ 101Glu in R state Asian elephant Hb (A) interacts closely with the guanidino group of  $\beta/\delta$ 104Arg of the same chain. This interaction is weakened in mammoth oxyHb causing the R state to lose one hydrogen bond (B). However, in comparison to Asian elephant deoxyHb (C), the uncharged  $\beta/\delta$ 101Gln residue of mammoth deoxyHb interacts electrostatically with both the N_e-nitrogen of  $\beta/\delta$ 104Arg and the carboxyl group of  $\alpha$ 94Asp (D).



Supplementary Figure 11. Side view surface model of a chimeric Asian elephant (left) and woolly mammoth (right) deoxyhemoglobin molecule. The locations of the three mammoth-specific amino-acid substitutions are highlighted in blue, while regions highlighted in yellow denote residues ( $\beta/\delta$ 1Val,  $\beta/\delta$ 82Lys,  $\beta/\delta$ 143His) implicated in 2,3-bisphosphoglycerate (BPG) binding. The mammoth  $\beta/\delta$ 101Gln residue is spatially distant from this site and hence does not alter the phosphate sensitivity of the Hb moiety. The mammoth  $\alpha$ -globin chain is represented by a backbone diagram.



Supplementary Figure 12. The effect of the chloride ion concentration on the oxygen affinity (half-saturation pressure;  $P_{50}$ ) and cooperativity coefficients ( $n_{50}$ ) of woolly mammoth, Asian elephant, bovine and adult human hemoglobin at 25°C and in the absence of 2,3-bisphosphoglycerate. Data from human and bovine Hbs taken from refs 12 and 13, respectively. Mammoth, elephant and human Hb were measured at pH 7.4 while that of bovine Hb was measured at pH 7.2.



Supplementary Table 1. Primary/external primers used to amplify woolly mammoth *HBA-T2* and *HBB/D* globin genes from woolly mammoth specimen SP1349 (Adelaide).

Frag ID	Primer name	5' to 3' sequence	Frag size including primers	Bp of sequence data
HBA-T2 F1	SP1349_Alpha2_F1.1	CGCTTCTGATCTCCACACAGACTC	155	112
110/11211	SP1349_Alpha2_R1.3	GTAGGGGACAGGGGGATCC	155	
HBA-T2 F2	SP1349_Alpha2_F2N	TCCCTGTTCCCCTACCCTAC	- 100	62
	SP1349_Alpha2_R2.2N	GTGAGGAAAGTAGGTCTT	Frag size including primers         155         100         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         1209         184         214         202         239         145	02
HBA-T2 F3	SP1349_Alpha2_F2.3	CACGCAGGATGTTCTTCT	140	104
	SP1349_Alpha2_R2.3N	GTCATCCAGGTGGCCAAC	110	101
HBA-T2 F4	SP1349_Alpha2_F2.4	GAAGGTGGGGGAAGCACTGA	140	102
	SP1349_Alpha2_R2.4N	CCAGGTCTTCCCCTCTCC	Frag size including primers         155         100         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         1209         184         214         202         239         145	102
HBA-T2 F5	SP1349_Alpha2_F3N	AGGTGAGCGTTCCCTAACAG	117	77
	SP1349_Alpha2_R3.2	CATGGACCTCAGGGGTGAAC	,	
HBA-T2 F6	SP1349_Alpha2_F3.1N	CTCTCTCCACAGCTCCTG	- 117 - 153 - 189 - 209	115
	SP1349_Alpha2_R3N	CTGGGGTCCAGCTTAACGAT		
HBA-T2 F7	SP1349_Alpha2_F3.1N	CTCTCTCCACAGCTCCTG	189	
	SP1349_Alpha2_R3	GGAGGAAGGCCAGTGGCA		
HBB/D F1	SP1349_Delta_F1	CAGGACCAGGGTTGGGCA	- 209	
	SP1349_Delta_R1	GCAACCTAGATACAAACCTGCT	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
HBB/D F2	SP1349_Delta_F2	GCTGAGAAGACACAAGTCACCAACC	- 184	
	SP1349_Delta_R2	CAGGGTGCAGAGGAAGTCAGTGC		
HBB/D F3	SP1349_Delta_F3	TGGGCATGTGGAGACAGAACA	214	
	SP1349_Delta_R3	AGCCCTCACCAAAGGAGGTC	211	
HBB/D F4	SP1349_Delta_F4.1	TGACGCTGTCCTGCACAACG	202	
	SP1349_Delta_R4	CTACAAAGTGAAAAGAAAAAATAGAATG	202	
HBB/D F5	SP1349_Delta_F5	TGTATGTATCTACCTCTTCCCCATAG	239	
	SP1349_Delta_R5	GAGAGTTGGCATTATTTTCCCAAA		
HBB/D	SP1349_Del_Upstr_F	TGGCTGTCATCATTCAGGCC	145	105
promoter	SP1349_Del_Upstr_R	GTTGTGTCAGAAGTGAGTGT	110	

Frag ID	Primer name	5' to 3' sequence	Frag size including primers	Bp of sequence data
	SP1349_Alpha2_F2.3N	GTTCTTCTCCTTTCCCACCACCAA	130	00
11DA-1215	SP1349_Alpha2_R2.3N	GTCATCCAGGTGGCCAAC	150	00
	SP1349_Alpha2_F2.4N	GGGAAGCACTGACCCAA	122	97
11DA-1214	SP1349_Alpha2_R2.4N	CCAGGTCTTCCCCTCTCC	152	
	SP1349_Alpha2_F3N	AGGTGAGCGTTCCCTAACAG	112	70
п <b>D</b> А-12 ГЈ	SP1349_Alpha2_R3.2N	ACCTCAGGGGTGAACTCCGT	112	12
	SP1349_Alpha2_F3.2	GTGACTCTAAGCAGCCACC	120	01
пра-12 го	SP1349_Alpha2_R3N	CTGGGGTCCAGCTTAACGAT	120	81
	SP1349_Alpha2_F3.2	GTGACTCTAAGCAGCCACC	146	107
пDA-12 Г/	SP1349_Alpha2_R3	GGAGGAAGGCCAGTGGCA	140	
	SP1349_Delta_F1N	GGGCATATAAGGAAGAGTAGTGC	169	126
ΠΒΒ/ΟΓΙ	SP1349_Delta_R1N	CCTCACCACCAAGCTCTTTC		
	SP1349_Delta_F2N	CACAAGTCACCAACCTGTGG	152	113
ΠΒΒ/Ο Γ2	SP1349_Delta_R2N	GCCTGTCAGAAACTGGGAGA	155	
	SP1349_Delta_F2.2	GACTTAAGGAGGGTTGAGTG	07	44
1100/01/21	SP1349_Delta_R2	CAGGGTGCAGAGGAAGTCAGTGC	07	
	SP1349_Delta_F3N	CAGAACAGTCTCCCAGTTTCTG	101	177
	SP1349_Delta_R3N	AAAGGAGGTCAACACTTTCTCG	171	1//
	SP1349_Delta_F4.1N	GCTGTCCTGCACAACGCTAAA	109	140
1100/01/4	SP1349_Delta_R4	CTACAAAGTGAAAAGAAAAAATAGAATG	190	149
HBB/D E5	SP1349_Delta_F5	TGTATGTATCTACCTCTTCCCCATAG	212	166
ΠΟΙΟΓΟ	SP1349_Delta_R5N	CAGAGATAGCATCTCGGGAAA	213	100

Supplementary Table 2. Secondary/internal primers used to amplify the woolly mammoth *HBA-T2* and *HBB/D* globin genes from woolly mammoth specimen SP1349 (Adelaide).

			Frag size	Bp of
Frag ID	Primer name	5' to 3' sequence	including	sequence
			primers	data
B/812 SNP	Delta_Hem_SNP1_F	CTGACTGCTGCTGAGAAGACAC	51	11
p/012 511	Delta_Hem_SNP1_R	ATTCACCTTGCCCCACAG	51	
	Delta_Hem_SNP2_F	AGCACCTGGACAACCTCAAG	19	11
β/δ86 SNP	Delta_Hem_SNP2_R	GCAGCTCGCTCAGATCG	40	
	Delta_Hem_SNP2_R_new	CACAGTGCAGCTCGCTCA	54	16
B/8101 SND	Delta_Hem_SNP3_F	CAAGCTGCACGTGGATCC	46	7
p/0101 SINF	Delta_Hem_SNP3_R	GTCTCCTAGACTCACCCTGAA	40	/

Supplementary Table 3. Primers used to replicate mammoth specific non-synonymous substitutions of the *HBB/D* globin gene (Leipzig).

Supplementary Table 4. Primer pairs used to convert the Asian elephant pHE27E plasmid into the mammoth pHE27M plasmid via site-directed mutagenesis. The mutated codons are underlined.

Amino-acid change	5' to 3' sequence
K5N of α-chain	GGAGGAATAACATATGGTCTTAAGTGAT <u>AAC</u> GACAAGACCAACGTCAAG
	CTTGACGTTGGTCTTGTCGTTATCACTTAAGACCATATGTTATTCCTCC
T12A of β/δ-chain	GCTGAGAAGACACAAGTG <u>GCC</u> AACCTGTGGGGGCAAGG
	CCTTGCCCCACAGGTTGGCCACTTGTGTCTTCTCAGC
A86S of β/δ-chain	CTGGACAACCTCAAGGGTACCTTT <u>TCC</u> GATCTGAGCGAGCTG
	CAGCTCGCTCAGATCGGAAAAGGTACCCTTGAGGTTGTCCAG
E101Q of β/δ-chain	GACAAGCTGCACGTGGACCCT <u>CAG</u> AATTTCAGGCTCCTG
	CAGGAGCCTGAAATTCTGAGGGTCCACGTGCAGCTTGT

#### **Supplementary Information References**

- 1. Hardies, S. C., Edgell, M. H. & Hutchison III, C. A. Evolution of the mammalian beta-globin gene cluster. *J. Biol. Chem.* **259**, 3748-3756 (1984).
- 2. Hoffmann, F. G., Opazo, J. C. & Storz, J. F. Rapid rates of lineage-specific gene duplication and deletion in the alpha-globin gene family. *Mol. Biol. Evol.* **25**, 591-602 (2008).
- 3. Aguileta, G., Bielawski, J. P. & Yang, Z. Proposed standard nomenclature for the α- and βglobin gene families. *Genes Genet. Syst.* **81**, 367-371 (2006).
- Garrick, M. D. & Garrick, L. M. in *Red Blood Cells of Domestic Mammals* (eds Agar N. S. & Board, P. G.) 165-207 (Elsevier, Amsterdam, 1983).
- 5. Myers, R. M., Tilly, K. & Maniatis, T. Fine structure genetic analysis of a beta-globin promoter. *Science* **232**, 613-618 (1986).
- Opazo, J. C, Sloan, A. M., Campbell, K. L. & Storz, J. F. Origin and ascendency of a chimeric fusion gene: the beta/delta-globin gene of paenungulate mammals. *Mol. Biol. Evol.* 26, 1469-1478 (2009).
- Brotherton, P. *et al.* Novel high-resolution characterization of ancient DNA reveals C>U-type base modification events as the sole cause of *post mortem* miscoding lesions. *Nucleic Acids Res.* 35, 5717-5728 (2007).
- 8. Miller, W. *et al.* Sequencing the nuclear genome of the extinct woolly mammoth. *Nature* **456**, 387-390 (2008).
- 9. Clementi, M. A., Condò, S. G., Castagnola, M. & Giardina, B. Hemoglobin function under extreme life conditions. *Eur. J. Biochem.* **223**, 309-317 (1994).
- De Rosa M. C., Castagnola, M., Bertonati, C., Galtier, A. & Giardina, B. From the Arctic to fetal life: physiological importance and structural basis of an 'additional' chloride-binding site in haemoglobin. *Biochem. J.* 380, 889-896 (2004).
- Fronticelli, C. *et al.* Allosteric modulation by tertiary structure in mammalian hemoglobins. Introduction of the functional characteristics of bovine hemoglobin into human hemoglobin by five amino acid substitutions. *J. Biol. Chem.* **270**, 30588-30592 (1995).
- 12. Weber, R.E. Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function. *J. Appl. Physiol.* **72**, 1611-1615 (1992).
- Perutz, M. F., Fermi, G., Poyart, C., Pagnier, J. & Kister, J. A novel allosteric mechanism in haemoglobin: structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin. *J. Mol. Biol.* 233, 536-545 (1993).