
Human Population Differentiation Is Strongly Correlated
with Local Recombination Rate
Alon Keinan1,2,3*, David Reich1,2

1 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Broad Institute of Harvard and Massachusetts Institute of

Technology, Cambridge, Massachusetts, United States of America, 3 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York,

United States of America

Abstract

Allele frequency differences across populations can provide valuable information both for studying population structure
and for identifying loci that have been targets of natural selection. Here, we examine the relationship between
recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data
sets. We find that population differentiation as assessed by inter-continental FST shows negative correlation with
recombination rate, with FST reduced by 10% in the tenth of the genome with the highest recombination rate compared
with the tenth of the genome with the lowest recombination rate (P%10212). This pattern cannot be explained by the
mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since
human continental populations split. The correlation between recombination rate and FST has a qualitatively different
relationship for FST between African and non-African populations and for FST between European and East Asian populations,
suggesting varying levels or types of selection in different epochs of human history.
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Introduction

Single Nucleotide Polymorphism (SNP) allele frequency differ-

entiation between human populations, usually measured by

Wright’s FST [1,2], has been extensively studied both for

characterizing population structure and demographic history [3–

10], and for detecting loci that have experienced the effects of

natural selection [8,11–15]. In a recent study, Barreiro et al. found

that global, inter-continental human population differentiation has

been shaped in an important way by natural selection, with negative

selection reducing population differentiation and mostly affecting

coding regions, and positive selection increasing population

differentiation and affecting primarily SNPs that are nonsynon-

ymous or in the 59 untranslated regions of genes [16]. In the current

study, we used the variability of recombination rate across the

genome as a tool to learn about how substantially the forces of

natural selection have shaped patterns of inter-continental allele

frequency differentiation across populations. Nucleotides that are in

regions of the genome with low recombination rates are expected to

be more affected by natural selection (due to hitchhiking and

background selection from sites in the vicinity) than nucleotides in

regions of the genome with high recombination rates. By measuring

the extent to which regions of high and low recombination rate

differ in their FST, it may be possible to learn about how much of the

overall differentiation in allele frequencies across populations can be

accounted for by natural selection.

Many studies have documented a positive correlation between

nucleotide diversity and recombination rate in many species, notably

in Drosophila [17–19], humans [10,20–25], and Arabidopsis lyrata

[26]. In Drosophila, humans, and maize, a positive correlation was

also observed between interspecific sequence divergence and

recombination rate [17,22,27–29]. The observed correlation

between nucleotide diversity or divergence and recombination

rate has often been ascribed to natural selection

[18,20,21,23,24,29,30] since directional selection reduces diversity

and its effect on linked neutral sites extends further in regions of

lower recombination rate. Thus, both hitchhiking (associated with

positive selection) [31] and background selection (the ‘‘hitchhik-

ing’’ associated with negative selection) [32], are expected to give

rise to a positive correlation between diversity and recombination

rate [32–35]. A recent analysis in humans modeled the slightly

different effects of hitchhiking and background selection on the

shape of the correlation between nucleotide diversity and

recombination rate and concluded that positive selection better

explains the data [20], while another recent study concluded that

either hitchhiking or background selection explain their results

[22].

A substantial body of research has explored an alternative,

mechanistic explanation for the observed positive correlation

between nucleotide diversity and recombination, which is the

mutagenic effect of recombination [10,17,21,27,36,37,38]. One

way to partially disentangle the mutagenic effect of recombination

from the effect of selection is to normalize nucleotide diversity by

interspecific divergence such as human-chimpanzee divergence,

while making the assumption that large-scale recombination rates

and mutation rates have been unchanged since species divergence
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[10,20,22]. The two aforementioned recent genome-wide studies

reported that a significant correlation of human nucleotide

diversity with recombination rate is preserved following normal-

ization by human-chimpanzee divergence [20,22]. Another recent

study that focused on 40 regions with medium to high

recombination rate reported that a significant correlation of

human diversity with recombination rate vanished following such

normalization [10]. A secondary concern with the approach of

normalizing by interspecific divergence is that it does not take into

account the effect that hitchhiking and background selection may

have had in the ancestral population of humans and chimpanzees

[39]. This effect, which can contribute to the observed correlation

between interspecific divergence and recombination rate, is

expected to weaken the observed normalized correlation of

human nucleotide diversity with recombination rate.

In this study, we examine the relationship between recombina-

tion rate and population differentiation in allele frequencies of

ascertained polymorphisms. For this type of analysis, the

mutagenic effect of recombination is not a confounder, and any

observed correlation is expected to be the result of selection in

human history since the split of the analyzed populations.

Different types of natural selection are expected to affect patterns

of allele frequency differentiation: Positive selection is predicted to

produce a negative correlation between FST and recombination

rate if adaptation is local and selective sweeps drive alleles to high

frequency in some but not all of the populations between which

FST is measured. Selective sweeps are expected to extend less far in

regions of higher recombination rate, and thus allele frequency

differentiation is expected to be higher on average in regions of

low recombination rate [16,30,40,41,42,43]. Negative (purifying)

selection can also produce a negative correlation between FST and

recombination rate. While negative selection is expected to

decrease population differentiation at the site under selection itself

[16,40], background selection decreases the effective population

size at sites linked to negatively selected alleles, thereby increasing

their allele frequency differentiation between populations as

captured by relative measures such as FST [41,43–45]. As the

effect of background selection extends further in regions of lower

recombination rate, higher population differentiation on average is

predicted in such regions. There is also another important

difference between our approach of examining the relationship

between population differentiation and recombination rate, to

previous approaches of comparing nucleotide diversity and

recombination rate. Population differentiation only reflects events

that occurred since two populations split, and hence allows us to

study the effects of natural selection over a circumscribed time

period (as opposed to averaging over the hundreds of thousands of

years of a population’s history).

To empirically examine the correlation of recombination rate

and allele frequency differentiation in human populations, we

needed to examine data sets that were ascertained in a uniform

way across the genome, in a manner that is independent of local

recombination rate. We focused on two data sets: 1,110,338

Perlegen ‘‘class A’’ SNPs [46], as well as 248,886 uniformly-

ascertained SNPs that we previously reported [4] and that are

mostly a subset of the International Haplotype Map (HapMap)

Phase II [9]. These two data sets allowed us to interrogate

population differentiation between North Europeans, East Asians,

African Americans, and West Africans. The aims of this paper are

to probe the correlation between global population differentiation

and recombination rate, and to test whether it is attributable to

natural selection. Once we establish that a strong correlation exists

and that it likely reflects a history of natural selection, we explore

how the impact of selection has varied in different epochs of

human history by characterizing the differentiation between

different pairs of populations that separated at different times.

Results

Population differentiation is inversely correlated with
recombination rate

Our primary set of analyses were carried out on 1,110,338

Perlegen ‘‘class A’’ autosomal SNPs [46]. We used this set of SNPs

since it is the largest data set that we are aware of for which the

ascertainment of SNPs is uniform across the genome. Perlegen

‘‘class A’’ SNPs were discovered by array-based resequencing of 24

human samples of diverse ancestry [46,47]. While this ascertain-

ment scheme is expected to introduce a complicated ascertainment

bias in terms of allele frequency correlations across populations—

since different SNPs were ascertained in different numbers of

samples from different ancestries—this bias is expected to be the

same at every point on the autosomes [46]. Due to the uniform

nature of SNP ascertainment independent of recombination rate,

any correlations that are observed between allele frequency

patterns at these SNPs and recombination rate are not expected

to be due to locus specific differences in SNP ascertainment. For

each SNP, we estimated recombination rate in a 3 Mb stretch

centered on the SNP based on the deCODE genetic map [48]

(Methods), which results in a median across all SNPs of 1.23 cM/

Mb (mean of 1.39 cM/Mb).

To examine whether and how population differentiation

depends on recombination rate, we assigned SNPs to equally-

sized bins according to the recombination rate around them. For

each bin, we estimated global population differentiation for the

SNPs in that bin as the FST between the three population samples,

which consisted of 24 individuals of European ancestry, 24

individuals of Han Chinese ancestry, and 23 African Americans

[46]. Population differentiation shows a strong dependence on

recombination rate, ranging from 0.124860.0009 for the SNPs in

the bin of lowest recombination rate to 0.112560.0006 for the

SNPs in the bin of highest recombination rate, and 0.1213 for all

SNPs combined (Figure 1A). More generally, we find a striking

correlation between population differentiation of SNPs in a bin

and the recombination rate in that bin, with a correlation

coefficient between the two of r = 20.96 (P = 8.961026). A linear

regression of population differentiation as a function of recombi-

nation rate provides a reasonably good fit to the data, and predicts

an average decrease of 0.0048 (4%) in FST for every 1 cM/Mb

Author Summary

A common assumption when analyzing patterns of human
genetic variation is that most of the genome can be
treated as ‘‘nearly neutral,’’ in the sense that the effects of
natural selection on allele frequencies are very small
compared with the influence of population demographic
history. To test the validity of this assumption, we analyzed
data from more than a million human polymorphisms and
summarized allele frequency differences across popula-
tions. We find that, compared with the genome-wide
average, allele frequency differences are 7% reduced on
average in the tenth of the genome with the highest
recombination rate and are 3% increased in the tenth with
the lowest rate. Such a correlation cannot be explained by
demography. Instead, the pattern reflects the fact that
forces of natural selection have had a profound impact on
patterns of variation throughout the genome in the last
100,000 years.

Recombination Shaped Population Differentiation
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increase in recombination rate (Figure 1A). As binning the data by

recombination rate averages out some of the variability across

individual SNPs, we repeated the analysis without binning and

observed a very significant correlation also between FST of single

SNPs and recombination rate around them (r = 20.015;

P%10212).

Statistical framework for relating population
differentiation and recombination rate

To characterize in more detail the relationship between

population differentiation and recombination rate, we designed a

more elaborate statistical framework that overcame three

limitations of the correlation and regression analysis described

above: (i) The previous analysis did not incorporate uncertainty in

FST estimation that is due to a limited number of SNPs in each

bin. (We did estimate standard errors in each bin via bootstrapping

as presented in Figure 1, but did not incorporate these errors into

the inference of the relationship between FST and recombination

rate.) (ii) Because the regression did not incorporate this

uncertainty, we could not apply the analysis to many recombina-

tion rate bins since as the number of SNPs per bin decreased the

noise obscuring the signal increased. (iii) The analysis did not

account for correlation between SNPs due to linkage disequilib-

rium (LD), which is important especially since LD is itself

correlated to recombination rate.

To overcome these limitations, we developed a bootstrapping

framework for estimating several statistics that capture the

relationship between recombination rate and population differen-

tiation. The framework generates many data sets of the same size

as the original using a Moving Block Bootstrap (MBB) [49,50,51].

The MBB works by resampling contiguous runs of SNPs from the

data (with replacement) to appropriately take into account the

effect of correlation between SNPs due to LD [4]. Within each

bootstrap, our statistical framework places the randomly selected

set of SNPs into their associated recombination rate bins, estimates

population differentiation for the SNPs, and measures correlation

and regression statistics between differentiation and recombination

rate along the same lines as the analysis described above. We

estimated statistics by averaging across many bootstraps and

estimated standard errors as the standard deviation of the

estimates across bootstraps. Our estimates thus account for

uncertainty in population differentiation estimation and also

account for dependence among neighboring SNPs. They thus

provide standard errors that we can use for hypothesis testing.

Figure 1. Population differentiation in allele frequencies is inversely correlated with recombination rate. We placed 1,110,338 SNPs
into 10 bins according to the recombination rate in a 3 Mb window centered on each SNP. The x-axis of all panels indicates the recombination rate,
with the values indicated on the ticks corresponding to the edges between 10 bins. For each bin, at an x-axis position corresponding to the median
recombination rate across the SNPs at that bin, the figure presents (A) global population differentiation between African Americans, Europeans, and
Chinese; (B) FST between African Americans and Europeans; (C) FST between African Americans and Chinese; and (D) FST between Europeans and
Chinese. Error bars indicate 61 standard error, which is estimated based on 1,000 moving block bootstraps over the SNPs in the bin. Linear regression
of FST estimates as a function of median recombination rate in each bin is also presented (solid line) and corresponds to (A) 0.1280–0.0048r (B)
0.1138–0.0057r (C) 0.1546–0.0067r and (D) 0.1156–0.0022r. The corresponding correlation coefficient estimates between FST and median
recombination rate are (A) r = 20.962 (P = 8.961026), (B) 20.815 (P = 0.0041), (C) 20.931 (P = 0.0001), and (D) 20.361 (P = 0.306). For comparison,
population differentiation based on all SNPs in all bins combined is also presented (horizontal dotted line). The y-axis range is different between the
four panels but spans 0.02 units in all. Figure S1 repeats Figure 1A for sets of SNPs of different minor allele frequency categories.
doi:10.1371/journal.pgen.1000886.g001

Recombination Shaped Population Differentiation
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After applying the bootstrapping framework to the data set, the

correlation between FST and recombination rate remains ex-

tremely significant: r = 20.8960.06 (P%10212). Linear regression

of FST as a function of recombination rate results in a best fitting

relationship of 0.1280–0.0049r, which is very similar to the naı̈ve

analysis; but, importantly, the bootstrapping framework allows us

to perform hypothesis testing based on the standard error

estimates across bootstraps (Table 1). In particular, the recombi-

nation rate regression coefficient of 20.004960.0007 is signifi-

cantly different from zero (P = 2.6610212) as is a t-statistic for the

significance of the linear regression coefficient: 26.0962.18

(P = 0.0051; Table 1). This further supports the conclusion that

recombination rate is a significant explanatory variable of

population differentiation. Increasing the number of recombina-

tion rate bins from 10 to 40 yielded similar results (Table 1), except

that the greater number of bins allows for a more consistent

application of the regression analysis, resulting in a more

significant departure of the t-statistic from zero: 25.4560.99

(P = 3.561028). We use 10 recombination rate bins in all following

analyses.

Stronger impact of recombination rate on population
differentiation in genes

We cannot envision any demographic or mechanistic explana-

tion that would produce a correlation between recombination rate

and allele frequency differentiation as observed and we hypoth-

esize that our observations reflect a history of natural selection.

Natural selection is usually expected to increase population

differentiation at linked neutral sites [16,30,40,41,42,43,44,45],

an effect that is expected to extend over longer physical distances

in regions of lower recombination rate. A prediction of an

explanation based on natural selection is that the effect would be

more marked in regions that are more likely to be influenced by

selection, such as genes. To test this prediction, we identified a

subset of 21,391 SNPs in the data that are in coding exons (cSNPs)

and first considered the differentiation of this subset of SNPs

without regard to recombination rate. Consistent with the results

of Barreiro et al. [16], we found that the set of cSNPs exhibits a

significantly higher (P = 9.061024) population differentiation:

0.126560.0016 compared with 0.121260.0006 for non-coding

SNPs (ncSNPs).

The novel signal of a negative correlation to recombination rate

that we observed is more pronounced in genes: The slope of the

regression of FST as a function of recombination rate is steeper for

cSNPs than for ncSNPs (Figure 2). Interestingly, the regression

predicts that for very high recombination rate, where the

hitchhiking/background selection effect is expected to be weak,

population differentiation is similar between cSNPs and ncSNPs

(Figure 2). This suggests that selection may be the driving force

behind both the higher population differentiation generally

observed in genes and the correlation of population differentiation

and recombination rate.

To test formally whether selection has an impact on the

correlation with recombination rate above and beyond the general

effect of increased population differentiation in genes, while

controlling for the characteristically different recombination rate

in genes, we repeated the bootstrapping framework analysis on

cSNPs and compared it with analysis of ncSNPs (Table 1). As

expected from the higher differentiation in genes, the constant

coefficient of the linear regression is larger for cSNPs (Table 1;

P = 0.005). Furthermore, as predicted if selection explains the

correlation with recombination rate, the regression’s slope is also

steeper for cSNPs, 20.008160.0022 vs. 20.004860.0007,

though due to the limited number of cSNPs this result is only

borderline significant (P = 0.076; Table 1). To account for the

possibility that the regression slope is steeper merely due to the

differentiation in genes being generally higher, we compared the

slope normalized by the regression constant coefficient, which

captures the percentage change in population differentiation for

each 1 cM/Mb (Table 1). This normalized slope is also steeper in

Table 1. Bootstrapped correlation and regression coefficient estimates of FST as a function of recombination rate in Perlegen data.

Global FST Pairwise FST

All SNPs
All SNPs
(40 bins) Coding SNPs

Non-coding
SNPs

AA vs.
Europeans AA vs. Chinese

Europeans vs.
Chinese

Number of SNPs 1,110,338 1,110,338 21,391 1,088,947 1,110,338 1,110,338 1,110,338

b0 6 stderr (p-value) 0.128060.0012
(%10212)

0.127760.0011
(%10212)

0.138160.0038
(%10212)

0.127960.0012
(%10212)

0.113760.0014
(%10212)

0.154760.0015
(%10212)

0.115660.0018
(%10212)

b1 6 stderr (p-value) 20.004960.0007
(2.6610212)

20.004660.0007
(5.0610211)

20.008160.0022
(2.361024)

20.004860.0007
(7.0610212)

20.005760.0008
(1.0610212)

20.006760.0010
(2.1610211)

20.002160.0010
(0.036)

r 6 stderr (p-value) 20.886260.0567
(%10212)

20.647660.0678
(%10212)

20.680160.1286
(1.261027)

20.882360.0561
(%10212)

20.769760.0589
(%10212)

20.844860.0635
(%10212)

20.324460.1544
(0.036)

t 6 stderr (p-value) 26.092662.1758
(0.0051)

25.451260.9889
(3.561028)

22.877561.0702
(0.0072)

25.895061.9773
(0.0029)

23.525360.6955
(4.061027)

24.795961.2800
(1.861024)

21.014760.5389
(0.0597)

b1/b0 6 stderr 20.037960.0052 20.035860.0049 20.058560.0147 20.037660.0053 20.049960.0064 20.043060.0059 20.018560.0088

To characterize the correlation between FST and recombination rate, we applied the MBB-based bootstrapping framework (Methods) in several scenarios. These
scenarios include considering global FST between all three populations genotyped in the Perlegen data set, as well as considering pairwise FST. For the global FST (first
four columns), we performed an analysis on all SNPs based on 10 and 40 recombination rate bins (all other analyses are with 10 bins), and performed separate analyses
of coding SNPs and non-coding SNPs. For pairwise FST (last three columns), we repeated the analysis for FST between each pair of populations (AA in column heading
stands for African Americans). For each analysis, the table reports five summaries of the correlation between FST and recombination rate: The regression coefficients of
FST = b0+b1r, where FST is estimated across all SNPs in a bin and r is the median recombination rate in that bin, the correlation coefficient r across bins between FST and
r, a t-statistic t for the significance of the linear coefficient of the above regression, and a normalized regression coefficient b1/b0. For each of these statistics, the average
and standard deviation (stderr) across 1,000 bootstraps is reported, as well as a p-value based on a two-sided z-test for the mean being different from zero (except for
the last statistic). When comparing between different scenarios (columns), we note that comparing b1 alone does not account for FST being generally higher in one
scenario than the other, and thus we compare b1/b0, which captures the predicted relative change in FST as a function of recombination rate. We also note that r and t
cannot be compared between some of the different scenarios since they depend on the number of SNPs analyzed.
doi:10.1371/journal.pgen.1000886.t001
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genes (20.058560.0147 vs. 20.037660.0053), though the result

is only suggestive (P = 0.09).

Characteristically different correlation for different
population pairs

We next considered the effect of recombination rate on

population differentiation between each pair of populations

separately. A negative correlation is observed between all pairs

of populations, but the pattern is qualitatively different across

population pairs (Figure 1B–1D and Table 1). The regression

predicts a larger effect size, as assessed by the percentage change in

FST per cM/Mb (to account for the varying levels of population

differentiation between different populations), for FST between

African Americans and Europeans and for FST between African

Americans and Chinese, than for FST between Europeans and

Chinese (P = 0.004 and P = 0.021; Table 1). We observed no

significant difference in effect size for FST between African

Americans and Europeans and for FST between African

Americans and Chinese (P = 0.43; Table 1). When we considered

single SNPs, without binning the data by recombination rate, we

observed a very significant correlation with recombination rate for

African American–European FST (r = 20.0183; P%10212), as well

as for African American–Chinese FST (r = 20.0147; P%10212),

but no correlation with recombination rate for European–Chinese

FST (r = 0.0002; P = 0.81).

The weaker correlation for the FST between European and

Chinese populations is driven by a dip in differentiation at very

low recombination rate loci (Figure 1D), which is not at all what is

seen in the comparison of African and non-African populations

(Figure 1B and 1C). This curve shows a qualitatively non-

monotonic pattern, which motivated us to perform a quadratic

regression fitted within the bootstrapping framework. The

regression is concave and includes very significant linear

(P = 3.061024) as well as quadratic (P = 1.861025) terms.

Conversely, quadratic regression gives a non-significant quadratic

term for FST between African Americans and each of the other

two populations and if anything is slightly convex. As expected, for

single SNP analysis (without binning by recombination rate), linear

regression is very significant for FST between African Americans

and either non-African population (P%10212). For FST between

Chinese and Europeans, however, linear regression is not

significant (P = 0.81), while a quadratic regression is very

significant (P%10212).

These results suggest a qualitatively different effect of recom-

bination rate on allele frequency differentiation for different pairs

of human populations and in different epochs of human history. In

particular, most of the signal we observed of a correlation between

recombination rate and FST of all three populations (Figure 1A) is

attributable to selection that occurred either on the non-African

lineage before the split of Europeans and Chinese or on the

African lineage. While African American allele frequencies are a

mixture of African and European allele frequencies, which are

hence averaged in this analysis, a non-monotonic pattern such as

observed between Europeans and Chinese is not observed in

comparisons of African Americans and non-Africans.

Replication with uniformly ascertained subsets of
HapMap

Considering the complexity of the ascertainment scheme [46], it

is plausible that some features of the ascertainment of Perlegen

‘‘class A’’ SNPs would be correlated with recombination rate. In

particular, though an effort has been made to mask repeat

intervals [46], it is still possible that repeat content and GC content

affect sequencing depth in the ascertainment panel [52]. If the

same genomic features are also correlated with recombination

rate, this could affect the correlation between FST and recombi-

nation rate. However, GC and repeat content are expected if

anything to produce a correlation in the opposite direction to the

one we observed, as these features are associated with lower

resequencing depth, which would be expected to bias SNPs

toward having a higher minor allele frequency. High minor allele

frequency SNPs are empirically observed to be more differentiated

than lower frequency SNPs (Figure S1), which would be expected

to generate a positive correlation between recombination rate and

FST since these features are associated with higher recombination

rate.

To replicate our results in an independent data set with less

complex ascertainment, we applied similar analyses on a data set

of uniformly-ascertained SNPs that we previously reported, where

ascertainment was carried out in two chromosomes of known

ancestry in a way that is independent of the effect of genomic

features on coverage and where the discovery in two chromosomes

cannot result in a frequency bias associated with recombination

rate [4,5]. This data set is mostly composed of subsets of SNPs

from HapMap II and for which genotype information is available

in 60 unrelated West Africans (YRI), 60 unrelated European

Americans (CEU), and 90 unrelated East Asians (ASN, denoting

the combined CHB and JPT samples). Another advantage of this

data set, in addition to the simplified ascertainment process, is that

it includes a West African population, as opposed to the African

American population of the Perlegen data set, for which analysis

has been complicated by the admixture of European ancestry. We

estimated recombination rate around 248,886 such uniformly-

ascertained autosomal HapMap SNPs, which we then used to

Figure 2. Population differentiation is more strongly correlated
with recombination rate in genes than outside of genes. Global
population differentiation between African Americans, Europeans, and
Chinese is presented for coding SNPs (cSNPs). Except for focusing on
the 21,391 SNPs in coding exons, the figure is identical to Figure 1A. In
addition to the linear regression of FST estimates as a function of the
median recombination rate in each bin (solid line; 0.1381–0.0081r), the
linear regression for the rest of the data set (non-coding SNPs) is
provided (dashed line; 0.1278–0.0048r), which is very similar to the
regression based on the entire data set (Figure 1A). The correlation
coefficient between FST of cSNPs and median recombination rate is
20.752 (P = 0.012).
doi:10.1371/journal.pgen.1000886.g002

Recombination Shaped Population Differentiation
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repeat all analyses that we had applied in the previous sections to

the Perlegen SNPs (Figure 3; Table S1).

Results from the analysis with uniformly-ascertained subsets of

HapMap replicated the previous results based on the Perlegen

data. In particular, we replicated the strong negative correlation

between global population differentiation and recombination rate

(Figure 3A), and obtained a significant negative correlation

coefficient (P = 0.001) and recombination rate regression coeffi-

cient (P = 0.004) based on the bootstrapping framework (Table

S1). Furthermore, similar to the pattern in the Perlegen data set,

we observed significant linear correlations with recombination rate

for pairwise FST between YRI and CEU (P = 0.008 for correlation

and P = 0.024 for regression coefficient) and for FST between YRI

and ASN (P = 1.061025 and P = 3.061024), but not for FST

between CEU and ASN (P = 0.59 and P = 0.59; Table S1), with

the latter exhibiting the same non-monotonic relationship

(Figure 3D) that we observed in the Perlegen data (Figure 1D).

However, the differences between the populations are not

significant, which we hypothesize is due to the smaller number

of SNPs that we analyzed compared with the Perlegen data.

Discussion

In this study, we have explored whether local recombination

rate is associated with allele frequency differentiation across

human populations when examined on a genome-wide scale. The

negative correlation we find in the Perlegen data set (the larger of

the two data sets we analyzed) corresponds to an average decrease

of 4% in FST for every 1 cM/Mb increase in recombination rate.

This correlation is mostly driven by the differentiation between

African and non-African populations, where the decrease in FST is

5% for every cM/Mb. The differentiation of European and East

Asian populations shows a qualitatively different, inverse U-shaped

relationship with recombination rate. These results are present in

both the data sets we analyzed, and unlike similar results for

nucleotide diversity are not sensitive to the mutagenic effect of

recombination. By considering only data sets that have been

uniformly-ascertained, we also ruled out the possibility that the

correlation is due to ascertainment biases correlating with

recombination rate.

We considered various explanations for these observations, all

involving natural selection. We first considered evolution favoring

higher recombination rate in functionally important elements,

which could potentially contribute to the higher recombination

rate observed in genes, and which could also generate a

correlation between recombination rate and allele frequency

differentiation. However, we realized that this would generate a

correlation in the opposite direction to what we observe: This is

expected to result in a higher recombination rate in functionally

important regions, which exhibit higher differentiation on average

(Figure 2), leading to a positive correlation between the two, while

we observe the opposite pattern.

The only force we could identify that can explain the

observation of a negative correlation between recombination rate

and FST is directional selection; that is, hitchhiking linked to

positively selected alleles (sweeps) or background selection linked to

Figure 3. Confirmation of the correlation of allele frequency differentiation and recombination rate in uniformly-ascertained
subsets of HapMap. Similar to Figure 1, we placed 248,886 uniformly-ascertained HapMap SNPs into 10 bins according to the recombination rate
and estimated for each bin (A) global population differentiation between YRI, CEU, and ASN (ASN denotes the combined CHB and JPT samples); (B)
FST between YRI and CEU; (C) FST between YRI and ASN; and (D) FST between CEU and ASN. Linear regression as a function of the median
recombination rate (solid line) is (A) 0.1473–0.0026r (B) 0.1541–0.0028r (C) 0.1819–0.0046r, and (D) 0.1060–0.0005r. The corresponding correlation
coefficient estimate between FST and median recombination rate is (A) r = 20.526 (P = 0.118), (B) 20.482 (P = 0.158), (C) 20.634 (P = 0.049), and (D)
20.066 (P = 0.857).
doi:10.1371/journal.pgen.1000886.g003

Recombination Shaped Population Differentiation

PLoS Genetics | www.plosgenetics.org 6 March 2010 | Volume 6 | Issue 3 | e1000886



negatively selected alleles. Evidence for this explanation comes

from the stronger negative correlation between population

differentiation and recombination rate in coding regions, though

we did not have enough data to establish the difference between

coding SNPs and the rest of the genome with high statistical

significance. Hitchhiking of recent, geographically localized

selective sweeps, after the split of African and non-African

populations is a potential explanation of these results, especially

considering the magnitude of the effect we observed, since it is

expected to increase population differentiation and to have a more

marked effect in regions of lower recombination. Alternatively,

background selection also has the potential to increase population

differentiation, because it is expected to decrease within-popula-

tion diversity at regions linked to loci under negative selection,

which will have a more marked effect in regions of lower

recombination.

The different nature of the effect these two selective forces have

on population differentiation should make it possible to distinguish

them in finer-scale studies [41]. Specifically, selective sweeps are

expected to act relatively quickly and to affect large distance scales,

whereas background selection is expected to act slowly on slightly

deleterious alleles, suggesting that these two forces will operate on

different size scales. Thus, it may be possible to distinguish their

impact by repeating our analyses at different distance scales once a

genetic map with higher resolution becomes available.

A striking observation in our study is the qualitatively different

relationships between recombination rate and allele frequency

differentiation for different pairs of populations, suggesting that

selection has acted in different ways over different epochs of

history. A possible explanation for the stronger correlation

observed between African and non-African populations, compared

to that between Europeans and East Asians, is the smaller effective

population size in non-African population history compared with

African history since they diverged. Although in general a reduced

effective population size makes selection less efficient, it can

increase the impact of background selection on patterns of genetic

variation since weakly deleterious mutations are less efficiently

purged from the population, thereby reaching higher frequencies

which results in more extensive background selection when they

are purged [32,53]. More background selection and less efficient

positive selection in populations with smaller size may in principle

explain the qualitatively different relationship that we observed

between recombination rate and allele frequency differentiation of

European and East Asian populations vs. African and non-African

populations. While this explanation remains speculative, a recent

study supports this possibility by showing that there are

proportionally more deleterious mutations segregating in Europe-

ans than in African Americans [54].

Another scenario that could potentially produce different FST

patterns between different pairs of populations is if selective sweeps

were shared to different extents across populations. When an allele

that arose in one population and is under selection enters a second

population via migration, FST at linked neutral sites can actually

be reduced between the two populations since hitchhiking effectively

takes variation from the between-population component and

injects it into the within-population component [43,55,56]. Such

global selective sweeps predict a positive correlation between FST

and recombination rate. Europeans and East Asians exchanged

genes more recently than both did with Africans, and hence a

larger fraction of selective sweeps are expected to be shared

between these two populations, introducing a component of

positive correlation between FST and recombination rate. The

signature of global selective sweeps is expected to decay differently

with genetic distance from the selected site than the decay due to

local sweeps [56], and thus in principle could result in an inverse

U-shaped relationship between FST and recombination rate. A

limitation of this explanation for our observations, however, is that

the phenomenon of reduced FST due to a global selective sweep

has only been demonstrated for populations that are much more

diverged than human populations [56].

To further study the pattern observed between different pairs of

populations, we explored the relationship between FST and

recombination rate in additional populations by studying data

from HapMap 3, which genotyped 1,184 individuals from 11

populations [57]. A concern with the HapMap 3 data for our

analysis is that the genotyping was carried out using SNP arrays

(Affymetrix Human SNP array 6.0 and Illumina Human1M) that

are affected by SNP ascertainment biases in a way that correlates

with recombination rate [9]. Nevertheless, we observe the same

qualitative results in the HapMap 3 data: We replicated our

finding of a very strong negative correlation between FST and

recombination rate, with an average decrease of 3% in global FST

between all 11 populations for every 1 cM/Mb increase in

recombination rate (Figure 4A). For pairwise FST, the same

observations we made with the Perlegen data are also observed,

with a quadratic regression being concave only for inter-

continental FST between European and Asian populations

(Figure 4B and 4C).

In addition to qualitatively replicating our findings, analysis of

HapMap 3 data allows us to generalize them to additional

populations. A striking result is that the relationship between FST

and recombination rate is stronger for FST between pairs of

closely-related populations, whether within or outside Africa: FST

between a West African sample and Maasai (of mixed West

African and East African ancestry [57]) decreases by an average of

6% for every 1 cM/Mb (Figure 4D), FST between Italians and

individuals of North-Western European ancestry decreases by

10% for every cM/Mb (Figure 4E), and FST between Japanese and

individuals of Chinese ancestry decreases by 4% (Figure 4E). In

view of the large effective population size in recent human history

since each of these pairs of populations have split, these

observations support the possibility that the different patterns

observed between different pairs of populations are due to natural

selection operating more efficiently in the context of larger

population sizes. We observed a weak convex relationship with

recombination rate for FST between closely-related populations in

a quadratic regression analysis (Figure 4D–4E), which is

intriguingly opposite to what was observed between Europeans

and Asians (Figure 1D and Figure 4C). On the other hand, these

observations do not seem to support the possibility that the

different patterns are due to selective sweeps being shared to

different extent across different pairs of populations since the level

of gene flow between HapMap 3 closely-related populations likely

have had been higher than that between continents. These results,

while interesting, should be viewed with caution due to the

confounder of ascertainment bias. It will be possible to test these

observations further by analyzing data from the 1000 Genomes

Project, where whole-genome sequencing will generate data that is

largely free of ascertainment bias for many of the HapMap 3

populations as well as additional populations [58].

The approach presented in this study allows not only a

comparison of the effect selection has on allele frequency

differentiation at different historical times, but also a comparison

across different compartments of the genome. Repeating the

analysis on Perlegen ‘‘class A’’ X-linked SNPs (to contrast with the

autosomal analyses we report above), we observed a very

significant correlation between global population differentiation

of X-linked SNPs and recombination rate, with a correlation
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coefficient of 20.86 (P = 0.001) when partitioning the data into 10

bins (Figure S2). The small number of X-linked SNPs available for

analysis (26,074) does not allow any conclusive results in

comparison with the autosomes. However, the relationship

between X-linked population differentiation and recombination

rate is suggestively more marked than the relationship we observed

for autosomal population differentiation with linear regression

predicting a decrease of 24% in FST for every 1 cM/Mb increase

in recombination rate (compared with 4% predicted for the

autosomes). If this suggestive result is verified, it will point to

natural selection playing more of a role in allele frequency

differentiation on chromosome X than on the autosomes. This

observation is especially interesting in light of our recent finding

that chromosome X exhibits higher allele frequency differentiation

between Africans and non-Africans than would be expected from

L the effective population size of the autosomes [5]. If natural

selection operated more powerfully in some sense on chromosome

X than on the autosomes during the human dispersal out of Africa,

it could be a plausible explanation for the increased frequency

differentiation on chromosome X. From a theoretical point of

view, we are not aware of a model that can explain how the effects

of selection could be amplified on chromosome X relative to the

autosomes during the out of Africa dispersal. However, it should

be possible to test this hypothesis empirically by analyzing data

from whole-genome sequencing, which will allow a much more

accurate analysis for chromosome X.

More generally, these results show that comparing the

relationship of differentiation and recombination rate between

different genomic regions and in different populations is a

promising direction to be explored in future studies with larger

data sizes. In addition to using this approach to study natural

selection, by extrapolating the prediction of population differen-

tiation to ‘‘infinite’’ recombination rate it might be possible to

predict the level population differentiation that is due to genetic

drift alone, separate from the effect of selection, since every

nucleotide becomes independent of selection at nearby sites.

(Population differentiation is still affected by natural selection at

the sites directly under selection.) Models of demographic history

would be expected to be more accurate if one used the prediction

of FST for high recombination rate, rather than the genome-wide

average. This is in the same spirit of studies targeting regions of

high recombination rate and far from functional elements to infer

Figure 4. The relationship between population differentiation and recombination rate in the larger set of HapMap 3 populations.
We placed 1,326,404 autosomal HapMap 3 SNPs (release 2) [57] into 10 bins according to recombination rate and estimated for each bin (A) global
population differentiation between all 11 populations, and (B–E) population differentiation between pairs of populations. To avoid clutter, (B–E)
depict only the linear (dashed lines) and quadratic (solid lines) regression of FST estimates as a function of the median recombination rate in each bin
and partition the populations-pairs as follows: (B) FST between an African and a non-African population, where a negative correlation is observed with
recombination rate, and where the quadratic regression is convex, (C) FST between a population of European, East Asian, or South Asian ancestry and
a second population of a different one of these three ancestries, which shows a concave quadratic regression for all pairs of populations, and which
recapitulates the result observed between North Europeans and East Asians in the uniformly-ascertained datasets (Figure 1D and Figure 3D). (A
weaker phenomenon is observed for the South Asian GIH sample, which may be due to this population being somewhat related to both Europeans
and East Asians [70], thereby confounding the North European–East Asian signal), (D) FST between two African populations, which shows a much
steeper linear regression compared to intercontinental FST, as well as a convex quadratic regression, and (E) FST between closely-related non-African
populations (within either Europe or East Asia; genome-wide FST,0.008), showing a very steep linear regression and a convex quadratic regression.
FST based on all SNPs in all bins combined is presented as a horizontal dotted line and is equal to 1 in panels B–E since these present normalized FST

values obtained by dividing each value by the genome-wide FST for the same pair of populations. Population codes are as follows: WAF (‘‘West
African’’) is a combined sample of YRI (Yoruba in Ibadan, Nigeria) and LWK (Luhya in Webuye, Kenya); EAS (‘‘East Asia’’) is a combined sample of CHB
(Han Chinese in Beijing, China), CHD (Chinese in Metropolitan Denver, CO, USA), and JPT (Japanese in Tokyo, Japan); EUR (‘‘Europe’’) is a combined
sample of CEU (ancestry from Northern and Western Europe) and TSI (Toscani in Italia); GIH is a sample of Gujarati Indians in Houston, TX, USA; MKK is
a sample of Maasai in Kinyawa, Kenya; and CHI (Chinese) is a combined sample of CHB and CHD.
doi:10.1371/journal.pgen.1000886.g004
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human demographic history [10,59–61]. To illustrate this type of

analysis, we note that for global FST in the Perlegen data set, the

genome-wide estimate is 0.121, while it is 0.113 for the SNPs in

the bin with 10% highest recombination rate (Figure 1). For

studies that attempt to infer history—for example, the time of split

between human populations—this adjustment in FST would have a

profound effect. The effect would be even larger if extrapolating to

higher recombination rates.

A limitation of this study is the genetic map available. We chose

to use a pedigree-derived human genetic map [48] since it is based

on the direct observation of recombination events. Population-

based genetic maps that are based on patterns of LD in a

population [62–65] are sensitive to the increase in LD due to

natural selection [66,67], the very force which effect we sought to

analyze. In future studies of these phenomena, it will be valuable

to use genetic maps that are based on the direct observation of

recombination events and that have a higher spatial resolution. As

recombination rates vary on a fine-scale [68] and background

selection may occur at a somewhat different genetic distance scale

than hitchhiking, a finer-scale map should allow a better

characterization of the relationship between population differen-

tiation and recombination rate and improved statistical power in

capturing its causes. Supporting this view, a recent study

examining the correlation between nucleotide diversity and recombi-

nation rate in Drosophila found it to be non-significant when

recombination rate was estimated in 2 Mb windows and to be

significant when finer-scale heterogeneity in recombination rate

was considered in the analysis [17].

In conclusion, we have shown that genome-wide human

population differentiation in allele frequencies is significantly

correlated with recombination rate on a megabase scale, demon-

strating that natural selection has had a profound effect on allele

frequency distributions averaged over the last hundred thousand

years. While these results likely reflect the effects of hitchhiking and

background selection, disentangling the strengths of these two forces

will require extending the analyses presented in this paper. One

important direction is to use genetic maps that have fine spatial

resolution, which may shed light on the detailed distribution of

selective coefficients that have shaped allele frequency differentia-

tion. A second direction in which these results can be extended is to

compare more populations of continentally diverse ancestry. This

should facilitate an exploration of the relationship between

recombination rate and population differentiation during different

epochs of human evolution, and should allow a better understand-

ing of how demographic history has shaped the impact of natural

selection on patterns of human genetic variation.

Methods

Perlegen data
To examine the correlation between SNP allele frequency

differentiation and recombination rate in a way that is not sensitive

to the confounder of recombination rate-dependent SNP ascer-

tainment, we limited our main analysis to autosomal Perlegen

‘‘class A’’ SNPs [46]. These SNPs, encompassing ,69% of SNPs

in the Perlegen data set [46], were uniformly discovered by array-

based resequencing of 24 human samples of diverse ancestry from

the NIH Polymorphism Discovery Resource [47]. All SNPs

discovered in this way were genotyped in 24 European Americans,

23 African Americans, and 24 Han Chinese from the Los Angeles

area, which were all unrelated to each other and also unrelated to

the individuals in the discovery set [46]. We used liftOver (http://

genome.ucsc.edu/cgi-bin/hgLiftOver) to convert genomic posi-

tions from build 34 (hg16) used in the Perlegen data set to build 35

(hg17) and discarded SNPs for which this conversion failed. We

then estimated recombination rate around each SNP and

discarded SNPs for which it could not be accurately estimated

(see below). Following these filters, we were left with 1,110,338

autosomal SNPs with recombination rate estimates. Out of these,

we also identified 21,391 coding SNPs according to the UCSC

Known Genes track [69] for separate analysis.

Uniformly ascertained HapMap data
We replicated our results in a data set of SNPs that were

uniformly ascertained as polymorphic in exactly two chromosomes

of the same ancestry and genotyped in all HapMap samples [5],

including 60 West Africans from Ibadan, Nigeria (YRI), 60

European Americans from Utah, USA (of North European

ancestry; CEU), and 90 East Asians (ASN; 45 Han Chinese from

Beijing, China (CHB) and 45 Japanese from Tokyo, Japan (JPT),

which we pooled for analysis). We considered only samples that

were unrelated to each other and also unrelated to the few

individuals in the discovery sets. In a previous study using these

uniformly ascertained SNP sets, we were interested in learning

about features of human genetic variation that are not due to known

effects of natural selection, and hence in that study we filtered genes,

conserved non-coding loci, and regions that were putatively affected

by selective sweeps [5]. As we were interested in exploring the effect

of selection on population differentiation in the current study, we

relaxed these filters. Furthermore, we pooled together SNPs

discovered using different pairs of chromosomes since we were

only concerned with the ascertainment being uniform genome-wide

and independent of LD, which resulted in 248,886 SNPs for which

we could accurately estimate recombination rate.

Recombination rate estimation
We determined recombination rate around each SNP based on

the deCODE genetic map [48]. We considered a three megabase

(Mb) window centered on each SNP and determined the genetic

length in centimorgan (cM) for each window by subtracting the

genetic position of the start from that of the end position of the

window. The genetic position of the start and end positions were

each determined by linearly interpolating, according to distance,

the genetic position of the nearest marker in the genetic map on

each side. We discarded the SNP from further analysis in cases

where (i) the window’s start position is before the chromosome

start position, (ii) the window overlaps a centromere, or (iii) the

window overlaps a telomere. To place SNPs into bins according to

recombination rate, we chose bin boundaries such that an equal

number of SNPs fell into each bin. We also repeated the main

analyses while modifying the window length around each SNP

from 3 Mb to either 1 Mb or 5 Mb and obtained similar results

(Figure S3 and Figure S4). Similar results were also obtained when

we masked out an additional 5 Mb of each telomeric region and

on each side of each centromere, showing that our results are not

explained by unusual patterns at these regions (Figure S5).

Allele frequency differentiation estimates
To estimate pairwise allele frequency differentiation between

populations, we used the FST statistic as formulated in ref. [4]. In

the context of the current study, these FST estimates are almost

identical to the estimates obtained based on the estimator of Weir

and Cockerham [1]. Global allele frequency differentiation was

calculated as the average FST over all population-pairs. We

estimated pairwise and global FST across all SNPs in each

recombination rate bin. We also estimated FST standard errors (for

presentation in Figure 1, Figure 2, Figure 3, Figure 4, and Figures

S1, S2, S3, S4, S5) based on bootstrapping 1,000 random sets of
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SNPs from each bin using the moving block bootstrap (MBB) [49–

51], randomly resampling contiguous runs of SNPs to take into

account the effect of correlation between SNPs in LD [4]. We

applied the same bootstrapping procedure to estimate FST for all

SNPs irrespective of bins, and used the standard errors for z-tests

to determine whether the genome-wide FST values are different,

e.g. between cSNPs and ncSNPs.

Bootstrapping framework
We randomly resampled 1,000 data sets of SNPs from the set of

all SNPs using MBB. For each of these sets, we started by

stratifying resampled SNPs into bins according to their recombi-

nation rate, and then repeated the procedure that was used to

analyze the original data set. Specifically, we estimated FST, and

then estimated the correlation and regression between FST in a bin

and the bin’s median recombination rate r. Averaging across all

1,000 resamplings, we obtained accurate estimates for several

correlation and regression statistics: (i) The coefficients of the

linear regression FST = b0+b1r, (ii) the correlation coefficient across

bins, (iii) a t-statistic for the significance of the linear coefficient of

the above regression, and (iv) a normalized regression coefficient

b1/b0. We estimated standard errors of these statistics as the

standard deviation across resamplings. Hence, these standard

errors account for the problem that nearby SNPs do not provide

independent observations due to LD.

Based on averaged estimates across resamplings and their

standard errors, we performed two-sided z-tests for the significance

of each statistic (Table 1 and Table S1). We also compared

estimates from analyses of different data: Testing for a significantly

higher ratio of the regression coefficients (b1/b0) for cSNPs than for

ncSNPs (one-sided z-test) and for a significantly different ratio

between different pairs of populations (two-sided z-test). We also

reported hypothesis testing for whether b0 and b1 by themselves are

higher in cSNPs than ncSNPs (one-sided z-test).

Supporting Information

Figure S1 Relationship between population differentiation

and recombination rate for different minor allele frequencies

(MAFs). We divided 1,110,338 SNPs into 4 categories according to

their MAF: (A) MAF#0.125, (B) 0.125,MAF#0.25, (C)

0.25,MAF#0.375, and (D) 0.375,MAF (#0.5). For each

category, we partitioned SNPs into 10 bins according to the

recombination rate around each SNP and presentation is similar to

Figure 1A. Linear regression of FST estimates as a function of the

median recombination rate in each bin (solid line) is (A) 0.0855–

0.0010r (B) 0.1222–0.0048r (C) 0.1371–0.0059r, and (D) 0.1434–

0.0065r. The corresponding correlation coefficient estimates

between FST and median recombination rate is (A) r = 20.691

(P = 0.0269), (B) 20.960 (P = 1.061025), (C) 20.954 (P =

1.961025), and (D) 20.865 (P = 0.0012). We emphasize that

natural selection being the force behind the correlation between

population differentiation and recombination rate can entail a (non-

causal) relationship between MAF and recombination rates since

selection changes allele frequencies. Nevertheless, the correlation of

population differentiation and recombination rate is very significant

for all categories of common SNPs (B–D). The results are not as

significant, though a correlation is observed, for SNPs of low MAF

(A), likely due to the effect of negative selection on allele frequencies.

Found at: doi:10.1371/journal.pgen.1000886.s001 (1.15 MB EPS)

Figure S2 Population differentiation in allele frequencies is

inversely correlated with recombination rate on chromosome X.

We placed 26,074 Perlegen ‘‘class A’’ X-linked SNPs into 10 bins

according to the recombination rate in a 3 Mb window centered on

each SNP. The x-axis of all panels indicates the recombination rate,

with the values indicated on the ticks corresponding to the edges

between the 10 bins. For each bin, at an x-axis position

corresponding to the median recombination rate across the SNPs

at that bin, the figure presents global population differentiation

between African Americans, Europeans, and Chinese. Error bars

indicate 61 standard error, which is estimated based on 1,000

moving block bootstraps over the SNPs in the bin. Linear regression

of FST estimates as a function of the median recombination rate in

each bin is also presented (solid line), corresponding to 0.2272–

0.0552r. The corresponding correlation coefficient between FST

and median recombination is r = 20.860 (P = 0.0014). For

comparison, population differentiation based on all SNPs in all

bins combined is also presented (horizontal dotted line).

Found at: doi:10.1371/journal.pgen.1000886.s002 (0.01 MB EPS)

Figure S3 Results when recombination rate is estimated in a

5 Mb window. The figure mirrors Figure 1, except for the use of a

5 Mb window centered on each SNP for estimating its

recombination rate (Methods).

Found at: doi:10.1371/journal.pgen.1000886.s003 (1.12 MB EPS)

Figure S4 Results when recombination rate is estimated in a

1 Mb window. The figure mirrors Figure 1, except for the use of a

1 Mb window centered on each SNP for estimating its

recombination rate (Methods).

Found at: doi:10.1371/journal.pgen.1000886.s004 (1.15 MB EPS)

Figure S5 Results when filtering regions near centromeres and

telomeres. In the main analyses a SNP was discarded if the 3 Mb

around it overlaps either a centromere or a telomere. To more

cautiously account for the possibility of our results being sensitive

to centromeric or telomeric regions, we repeated the analysis while

also discarding SNPs for which the 3 Mb window around them is

within 5 Mb of such a region (namely, the SNP is within 6.5 Mb

of such a region). The figure mirrors Figure 1, except for the

application of this additional filter, following which the SNPs were

re-partitioned into 10 bins by recombination rate.

Found at: doi:10.1371/journal.pgen.1000886.s005 (1.15 MB EPS)

Table S1 Bootstrapped correlation and regression coefficient

estimates of FST as a function of recombination rate in uniformly-

ascertained subsets of HapMap. The table mirrors Table 1, except

that we applied the analysis to a different data set of uniformly-

ascertained subsets of HapMap SNPs. We analyzed global FST

between all three HapMap populations, as well as pairwise FST

between each pair of populations.

Found at: doi:10.1371/journal.pgen.1000886.s006 (0.07 MB

DOC)
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