
Genome-wide association (GWA) studies 
have identified hundreds of common vari-
ants associated with disease risk or related 
traits1 (see the National Human Genome 
Research Institute (NHGRI) Catalog of 
Published Genome-Wide Association 
Studies). These studies have overcome the 
dangers of population stratification, which 
can produce spurious associations if not 
properly corrected2–3. However, accounting 
for population structure is more challenging 
when family structure or cryptic relatedness 
is also present, and these limitations have 
motivated the development of new methods. 
Spurious associations have occurred prima-
rily at markers with unusual allele frequency 
differences among subpopulations2,4, so it is 
crucial that new methods aimed at correcting 
for stratification are evaluated at unusually 
differentiated markers.

The prevailing paradigm in recent years 
has been to use genomic control to measure the 
extent of inflation due to population stratifi-
cation or other confounders, and to correct 
for stratification (if necessary) using methods 
that infer genetic ancestry, such as structured 
association or principal components analysis 
(PCA). A limitation of this strategy is that 
it fails to account for other types of sample 
structure, such as family structure or cryptic 
relatedness5–6. Modelling family structure 

is a necessity in studies with family-based 
sample ascertainment, and there is increas-
ing evidence that cryptic relatedness may 
occur in a wide range of data sets (see below). 
Family-based association tests offer one poten-
tial solution for dealing with family structure. 
More recently, approaches using mixed models 
that incorporate the full covariance structure 
across individuals have been proposed.

Below, we review each of these methods,  
conduct simulations to evaluate their 
performance, discuss stratification in the 
specific context of low-frequency or rare 
variants and conclude with guidelines  
and recommendations.

Detecting stratification
A widely used approach to evaluate whether 
confounding due to population stratifica-
tion exists is to compute the genomic con-
trol λ (λGC), which is defined as the median 
χ2(1 degree of freedom) association statistic 
across SNPs divided by its theoretical 
median under the null distribution7–9. A 
value of λGC ≈ 1 indicates no stratification, 
whereas λGC > 1 indicates stratification or 
other confounders, such as family struc-
ture or cryptic relatedness (see below), or 
differential bias10. P–P plots are a standard 
tool for visualization of test statistics 
(FIG. 1). Values of λGC < 1.05 are generally 

considered benign; we note that inflation 
in λGC is proportional to sample size.

If population stratification exists, it is 
important to distinguish between sub-
population differences that are due to recent 
genetic drift and those that arose from more 
ancient population divergence11. In the 
case of genetic drift, dividing association 
statistics by λGC will provide a sufficient 
correction for stratification. In the case of 
ancient population divergence, markers with 
unusual allele frequency differences that 
lie outside the expected distribution, which 
could be caused by natural selection, make 
stratification a much more severe problem, 
and dividing association statistics by λGC is 
likely to be inadequate. In the case of fam-
ily structure or cryptic relatedness, dividing 
association statistics by λGC will generally 
produce the approximate null distribution, 
although a refinement to the method may 
be needed when there is uncertainty in the 
estimate of λGC (REF. 12). However, even if 
the appropriate null distribution is obtained, 
in general this approach will not maximize 
power to detect true associations. Other 
approaches to correcting for stratification, 
including approaches that also account for 
family structure and cryptic relatedness, are 
described below.

Inferring genetic ancestry
Structured association. Methods that explic-
itly infer genetic ancestry generally provide 
an effective correction for population stratifi-
cation in data sets in which population struc-
ture is the only type of sample structure. In 
the structured association approach, samples 
are assigned to subpopulation clusters (pos-
sibly allowing fractional cluster membership) 
using a model-based clustering program such 
as STRUCTURE13–14, and association statis-
tics are computed by stratifying by cluster 
using a program such as STRAT15. The appli-
cability of this approach to large genome-
wide data sets has historically been limited 
by its high computational cost when allowing 
fractional cluster membership, but faster 
model-based approaches for inferring popu-
lation structure have recently been developed 
(such as the ADMIXTURE software)16. 
Thus, applying structured association to 
both infer population structure and compute 
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association statistics in genome-wide data 
sets is likely to become a practical approach.

Principal components analysis. PCA is a 
tool that has been used to infer population 
structure in genetic data for several decades, 
long before the era of GWA studies17–20. It 
should be noted that top principal compo-
nents do not always reflect population struc-
ture: they may reflect family relatedness19, 
long-range linkage disequilibrium (LD) (due 
to, for example, inversion polymorphisms4) 
or assay artefacts10. These effects can often 
be eliminated by removing related samples, 
regions of long-range LD or low-quality 
data, respectively, from the data used to 
compute principal components. In addition, 
PCA can highlight effects of differential bias 
that require additional quality control21.

Using top principal components as cov-
ariates corrects for stratification in GWA 
studies21,22, and this can be done using 
software such as EIGENSTRAT. Like struc-
tured association, PCA will appropriately 
apply a greater correction to markers with 
large differences in allele frequency across 
ancestral populations. Unlike initial imple-
mentations of structured association, PCA is 
computationally tractable in large genome-
wide data sets. Related approaches, such as 
multidimensional scaling (MDS) and genetic 
matching, have also proven useful23–25 and can 
be carried out using the PLINK software. 
When genome-wide data are not available 
(for example, in replication studies), struc-
tured association or PCA can infer genetic 
ancestry, and hence correct for stratification, 
using ancestry-informative markers (AIMs)26. 

A common misconception is that AIMs 
should be used to infer genetic ancestry even 
when genome-wide data are available, but in 
fact the best ancestry estimates are obtained 
using a large number of random markers.

A limitation of the above methods is 
that they do not model family structure or 
cryptic relatedness. These factors may lead 
to inflation in test statistics if they are not 
explicitly modelled because samples that are 
correlated are assumed to be uncorrelated. 
Although correcting for genetic ancestry and 
then dividing by the residual λGC will restore 
an appropriate null distribution, association 
statistics that explicitly account for family 
structure or cryptic relatedness are likely to 
achieve higher power owing to improved 
weighting of the data.

Family-based association tests
Family-based studies, in which individuals 
are ascertained from family pedigrees, offer a 
unique solution to population stratification. 
Family-based association tests that focus 
on within-family information (general-
izing the transmission disequilibrium test27) 
are immune to stratification, as transmitted 
and untransmitted alleles have the same 
genetic ancestry28–30, and such tests can be 
performed using the FBAT and QTDT soft-
ware. However, fully powered statistics for 
family-based studies will need to incorporate 
between-family information, which is still 
susceptible to stratification. A recent sug-
gestion is to transform between-family infor-
mation into a rank statistic before combining 
within-family and between-family infor-
mation, guaranteeing that both sources of 

information are immune to stratification31,32.  
This approach performs favourably 
compared with previous family-based 
approaches31,32, but it places an upper bound 
on the statistical power that can be extracted 
from the between-family component of the 
overall signal. This is because the trans-
formed rank statistic cannot be more statis-
tically significant than one divided by the 
number of samples.

Mixed models
Mixed models, which owe their roots to 
applications in animal breeding, can model 
population structure, family structure and 
cryptic relatedness33,34. The basic approach 
is to model phenotypes using a mixture 
of fixed effects and random effects. Fixed 
effects include the candidate SNP and 
optional covariates, such as gender or age, 
whereas random effects are based on a 
phenotypic covariance matrix, which is 
modelled as a sum of heritable and non-
heritable random variation (BOX 1). Mixed 
models have historically been a theoretically 
appealing but computationally intensive 
approach; however, recent computational 
advances (such as the EMMAX and TASSEL 
software) have now made it possible to 
apply them to GWA studies35,36. Methods 
that explicitly model population structure, 
family structure and cryptic relatedness are 
expected to perform better in the presence of 
these complexities than methods that do not, 
and this has now been confirmed35,36. For 
example, in an analysis of seven Wellcome 
Trust Case Control Consortium phenotypes, 
the application of mixed models consistently 

Figure 1 | P–P plots for the visualization of stratification or other 
confounders. The figure shows simulated P–P plots under three scenarios 
for genome-wide scans with no causal markers. a | No stratification: 
p-values fit the expected distribution. b | Stratification without 

unusually differentiated markers: p-values exhibit modest genome-wide 
inflation. c | Stratification with unusually differentiated markers: p-values 
exhibit modest genome-wide inflation and severe inflation at a small 
number of markers.
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yielded values of λGC that were less than 1.01, 
in contrast to other approaches34.

Population structure: a fixed or random 
effect? An important and unanswered ques-
tion is whether population structure should 
be modelled as part of the set of random 
effects, together with family structure and 
cryptic relatedness, or as a separate fixed 
effect requiring principal component covari-
ates and additional model parameters35,36 
(BOX 1). Inclusion in random effects is much 
simpler, and has been shown to provide a 
sufficient correction for stratification in data 
sets from Finland and the UK35.

However, population structure is actually 
a fixed effect (that is, its effect as a function 
of genetic ancestry is the same for all sam-
ples), and spurious associations might result 
if it is modelled as a random effect based on 
overall covariance, particularly in the case of 
unusually differentiated markers. Modelling 
population structure as a fixed effect provides 
a higher level of certainty in correcting for 
stratification but requires running PCA (or a 
similar method) to infer the genetic ancestry 
of each sample36. If family structure is present, 
inferring genetic ancestry by PCA is a chal-
lenge because family relatedness may lead to 
artefactual principal components19. A possible 
solution is to compute principal components 
using SNP loadings inferred from a set of unre-
lated samples, either by using a different set of 
samples from those in the disease study or by 
using an unrelated subset of samples from the 
disease study37. This is likely to be sufficient 
when the set of unrelated samples used is very 
large relative to the magnitude of population 
structure effects. However, unless sample 
sizes are very large, principal components 
computed from external SNP loadings will  
be biased towards zero owing to statistical 
noise in the SNP loadings11,38. This motivates  
further work on PCA in related samples.

Modelling phenotypes as fixed. Mixed 
models model phenotypes using a fixed set 
of genotypes. However, as an alternative to 
mixed models, genotypes can be modelled 
using a fixed set of phenotypes, a theoreti-
cally appealing approach that makes fewer 
assumptions about phenotypic covariance 
structure39,40. Simulations in the absence of 
unusually differentiated markers have shown 
that using the genotypic covariance matrix 
to account for both population and family 
structure can effectively control spurious 
associations under a variety of settings39; this 
can be done using the ROADTRIPS software. 
However, in the case of unusually differenti-
ated markers, normality assumptions (about 

genotype distributions) underlying the test 
statistics will be violated, and stratification 
may lead to confounding unless principal 
component covariates are used. The question 
of whether to model random effects only or 
to include principal component covariates as 
fixed effects is analogous to the mixed model 
framework. When viewing phenotypes as 
fixed, principal component covariates may be 
essential. as modelling only random effects 
leads to a uniform correction factor in the 
absence of missing data39.

Simulations
We carried out two simulations to show the 
properties of the above methods in correcting 
for stratification at normally differentiated  
or unusually differentiated markers in the 
presence or absence of family structure.  
We considered a case–control study with  
two subpopulations, POP1 and POP2,  
with 300 cases and 200 controls from POP1 
and 200 cases and 300 controls from POP2. 
We simulated 99,900 normally differentiated 
markers based on FST (POP1,POP2) = 0.01 
(REF. 41) and 100 unusually differentiated 
markers based on allele frequency difference 
equal to 0.6 with both minor allele frequen-
cies uniformly distributed on [0.0,0.4]21. In 
simulation 1, all individuals were unrelated. 
In simulation 2, all individuals from POP1 

were unrelated and individuals from POP2 
included 80 case–case sibling pairs, 40 case–
control sibling pairs and 130 control–control 
sibling pairs. We computed λGC for each of the 
following methods: an uncorrected Armitage 
trend test, EIGENSTRAT21, EMMAX without 
principal component covariates35, EMMAX 
with principal component covariates35 and 
ROADTRIPS39. All principal component 
runs used only one principal component, but 
the additional inclusion of random princi-
pal components has little effect on results21. 
Power to detect causal variants may vary 
between methods, but our focus here was 
on correcting false-positive associations. We 
did not simulate the approach described in 
REF. 31, as this method is completely immune 
from stratification, ensuring a value of 1.00 in 
all entries of the table; this approach has 
appealing properties, but may have reduced 
power in some instances (see above). We 
note that the method of REF. 39 with prin-
cipal component covariates incorporated 
is an approach of potentially high interest, 
but it is not currently implemented in the 
ROADTRIPS software.

The results of the simulations are shown 
in TABLE 1. EIGENSTRAT is effective in cor-
recting for population stratification at both 
normally and unusually differentiated mark-
ers (simulation 1) but does not control for 

 Box 1 | Mixed models

Simple linear models
Simple linear models represent the phenotype Y

 
as a function of fixed effects X:

Y = XB + 

Here, X denotes the genotype at the candidate marker in addition to optional covariates, such as 

gender or age, B denotes coefficients of fixed effects and  is a normally distributed noise term 

that accounts for unexplained variation in Y.

Principal components analysis (PCA) addresses the issue of population substructure by including 

principal component covariates in X to explicitly model the ancestry of each individual. If 

genotype is not causally related to phenotype but genotype and phenotype are both correlated to 

ancestry, test statistics will be inflated. Using PCA to explicitly model genetic ancestry removes 

this confounding effect. However, PCA only accounts for fixed effects of genetic ancestry; it does 

not account for relatedness between individuals, which may also cause inflation in test statistics.

Linear mixed models
Linear mixed models represent the phenotype Y as a function of fixed effects X plus random 

effects u:

Y = XB + u + 

Here, u denotes a component of the overall noise variance u + ε that is distributed according to 

a kinship matrix K. Thus, u represents the heritable component of random variation and  

represents the non-heritable component of random variation.

The kinship matrix K is defined according to the pairwise genotypic similarity of individuals,  

so its structure is influenced by population structure, family structure and cryptic relatedness. 

The parameter  relates this structure to the phenotype
 
Y.  captures the extent to which 

genetically similar individuals are phenotypically similar, thus removing confounding effects. 

The optimal formulation of K, the importance of including principal component covariates in 

fixed effects X and the effects of these choices have not yet been fully explored.
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family structure (simulation 2). EMMAX 
corrects for both stratification and popula-
tion structure except for a modest residual 
inflation at unusually differentiated markers, 
which is completely removed by EMMAX 
with principal component covariates; if the 
number of unusually differentiated markers 
is small, modest inflation at such markers may 

not be a major concern. ROADTRIPS cor-
rects for family structure but not for popula-
tion stratification at unusually differentiated 
markers, although the incorporation of 
principal component covariates could poten-
tially address this limitation. We note that for 
each method, dividing association statistics 
by residual λGC is guaranteed to produce 

statistics with λGC = 1, but this approach may 
be inadequate for spurious associations at 
unusually differentiated markers and/or  
may not maximize power if family structure  
(or cryptic relatedness) is not fully modelled.

Low-frequency and rare variants
GWA studies have largely focused on  
common variants, but because most genetic  
heritability34 remains unexplained, future work 
will increasingly focus on variants of low 
minor-allele frequency (0.5% < MAF < 5%) 
or rare variants (MAF < 0.5%)42. First, new 
low-frequency variants will be identified by 
the 1000 Genomes Project and included in 
next-generation genotyping arrays. Here, the 
issues are generally similar to those involv-
ing common variants, except that deviation 
from model specification is more likely — for 
example, if normality assumptions are vio-
lated or the genotypic variance of a SNP var-
ies across subpopulations43. Second, exome 
resequencing projects will aim to identify 
genes in which individuals with extreme 
phenotypes have an aggregate excess or defi-
ciency of rare non-synonymous variants44. 
Differences in the range of allele frequencies 
across ancestral populations make stratifica-
tion a potential concern, but genetic ancestry 

Table 1 | Effectiveness of different approaches for correcting for stratification

Simulation 1, 
FST = 0.01

Simulation 1, 
Δ = 0.6

Simulation 2, 
FST = 0.01

Simulation 2, 
Δ = 0.6

Armitage trend 1.40 48.4 1.57 48.3

EIGENSTRAT 1.00 1.00 1.17 1.14

EMMAX* 1.00 2.05 1.01 1.62

EMMAX* + principal 
components

1.00 1.02 1.01 1.01

ROADTRIPS 1.00 48.4 1.00 48.3

We list the genomic control  (
GC

) of each method for normally differentiated markers (F
ST

 = 0.01) and 
unusually differentiated markers (  = 0.6) in simulation 1 and simulation 2. In each case, 

GC
 was computed 

as the median 2 (1 degree of freedom) statistic (restricting to the subclass of markers tested) divided by 
0.455. EIGENSTRAT corrects for population structure (simulation 1), EMMAX and ROADTRIPS correct for 
family structure and for population structure at normally differentiated markers (F

ST
 = 0.01), and EMMAX + 

principal components corrects for family structure and for population structure at normally or highly 
differentiated markers (F

ST
 = 0.01 or  = 0.6). We note that the approach of REF. 31 is immune to all of these 

confounders, implying a value of 
GC

 = 1.00 for each column of the table. *EMMAX can use either the 
identity by descent (IBS) or Balding–Nichols estimate of the kinship matrix35. Results for IBS are shown in 
the table, and results for Balding–Nichols are (from left to right) 1.00, 1.91, 1.00 and 1.28 for EMMAX and 
1.00, 1.03, 1.00 and 0.99 for EMMAX + principal components.

Glossary

Ancestry-informative markers
Genetic markers ascertained for large differences in  
allele frequency between subpopulations that are 
genotyped to infer genetic ancestry in new samples.

Armitage trend test
A standard χ2(1 degree of freedom) association test 
computed as the number of samples times the squared 
correlation between genotype and phenotype.

Cryptic relatedness
Sample structure due to distant relatedness  
among samples with no known family relationships.

Differential bias
Spurious differences in allele frequencies between cases 
and controls due to differences in sample collection, 
sample preparation and/or genotyping assay procedures.

Exome resequencing
A study design in which exon capture technologies are 
used to obtain resequencing data covering all exonic 
regions for each individual in the study.

Family-based association tests
A class of association tests that uses families with  
one or more affected children as the subjects rather  
than unrelated cases or controls. The analysis treats  
the allele that is transmitted to (one or more) affected 
children from each parent as a ‘case’ and the 
untransmitted alleles as ‘controls’ to avoid the effects  
of population structure.

Family structure
Sample structure due to familial relatedness  
among samples.

FST
A measure of the genetic distance between two populations 
that describes the proportion of overall genetic  
variation that is due to differences between populations.

Genetic drift
Random fluctuations in allele frequencies over time due to 
sampling effects, particularly in small populations.

Genetic heritability
The proportion of the total phenotypic variation in a given 
characteristic that can be attributed to additive genetic 
effects. In the broad sense, heritability involves all additive 
and non-additive genetic variance, whereas in the narrow 
sense, it involves only additive genetic variance.

Genetic matching
A method of association testing in which cases and 
controls are matched for genetic ancestry, as inferred by 
principal components analysis or other methods.

Genomic control
A method for detecting (or detecting and correcting for) 
stratification based on the genome-wide inflation of 
association statistics.

Mixed models
A class of models in which phenotypes are modelled using 
both fixed effects (candidate SNPs and fixed covariates) 
and random effects (the phenotypic covariance matrix).

Multidimensional scaling
A dimensionality reduction technique, similar to principal 
components analysis, in which points in a high-dimensional 
space are projected into a lower-dimensional space while 
approximately preserving the distance between points.

Population structure
Sample structure due to differences in genetic  
ancestry among samples.

Principal components analysis
A dimensionality reduction technique used  
to infer continuous axes of variation in genetic  
data, often representing genetic ancestry.

Rank statistic
A statistic describing the rank, across markers,  
of association of each marker. Rank statistics  
can be transformed into quantiles of a standard  
normal distribution that can be combined with  
other statistics.

SNP loadings
The correlations of each SNP to a given principal 
component in principal components analysis.  
The principal component coordinates of each  
sample are proportional to the sum of normalized 
genotypes weighted by SNP loadings.

Structured association
A method for correcting for stratification in  
which samples are assigned to subpopulation  
clusters and evidence of association is stratified  
by cluster.

Transmission disequilibrium test
A family-based association test involving  
case–parent trios in which alleles transmitted  
from parents to children are compared with 
untransmitted alleles.
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can be inferred from genotyping array data 
from the same samples, if available, and 
included as a covariate. Finally, the advent of 
whole-exome or whole-genome resequenc-
ing raises the question of whether rare vari-
ants can be used to infer genetic ancestry 
with greater precision, perhaps using differ-
ent methods from those currently applied to 
common variants.

Conclusion
Many different methods of correcting for 
stratification have been developed, and all of 
these methods have important advantages. 
Although mixed models are relatively  
new and untested, they seem to offer a 
practical and comprehensive approach for 
simultaneously addressing confounding due 
to population stratification, family structure 
and cryptic relatedness.

In studies in which stratification is not 
a serious concern, an appealing and simple 
approach is to use mixed models without 
including principal component covariates. 
This approach could be applied in studies of 
populations of homogeneous ancestry, stud-
ies of structured populations in which struc-
ture is due to very recent genetic drift and 
studies of any population in which PCA or 
related methods, applied to either the entire 
sample or a subset of unrelated samples, indi-
cate that there is no substantial stratification 
(that is, phenotypes are not highly correlated 
with any of the top principal components).

For studies that do not meet any of the 
above criteria, an alternative approach is to 
use mixed models with principal component 
covariates. In family-based studies in which 
the within-family component contributes 
much of the overall statistical power, the 
approach of REF. 31 may also prove useful. In 
data sets that do not contain family structure 
or cryptic relatedness, simpler association 
tests (with or without principal component 
correction, based on above criteria) will 
probably be sufficient21,23.
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