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Genome-wide association studies (GWAS) have proven to be a 
powerful method to identify common genetic variants contributing 
to susceptibility to common diseases. Here, we show that 
extremely low-coverage sequencing (0.�–0.5×) captures almost as 
much of the common (>5%) and low-frequency (�–5%) variation 
across the genome as SNP arrays. As an empirical demonstration, 
we show that genome-wide SNP genotypes can be inferred at a 
mean r2 of 0.7� using off-target data (0.24× average coverage) 
in a whole-exome study of 909 samples. Using both simulated 
and real exome-sequencing data sets, we show that association 
statistics obtained using extremely low-coverage sequencing data 
attain similar P values at known associated variants as data from 
genotyping arrays, without an excess of false positives. Within 
the context of reductions in sample preparation and sequencing 
costs, funds invested in extremely low-coverage sequencing can 
yield several times the effective sample size of GWAS based on 
SNP array data and a commensurate increase in statistical power.

Genome-wide association studies have identified over a thousand 
SNPs associated with complex traits1. To date, these studies have 
been carried out using SNP arrays that assay up to 2.5 million 

 polymorphisms at a cost of hundreds of dollars per sample, with these 
data often augmented by imputation of non-genotyped variants using 
the HapMap or 1000 Genomes Project reference panels2–5. At the 
same time, DNA sequencing has emerged as a powerful new technol-
ogy3,6,7, with the first major applications to disease gene discovery 
arising in the course of exome sequencing8. Recent cost reductions 
raise the question of whether sequencing might be a viable alternative 
for GWAS, analogous to RNA sequencing (RNA-seq) in gene expres-
sion studies3,9,10. One limitation to using sequencing for GWAS has 
been the cost of preparing each DNA sample, which historically has 
been at least as expensive as SNP array genotyping. However, this is 
no longer the case; for example, Epicentre offers high-throughput 
sample preparation for roughly $100 per sample (see URLs), and we 
have recently shown that sequencing libraries appropriate for whole-
genome sequencing can be produced for approximately $15 per sample  
on a scale of thousands of samples11. In this paper, we show that, 
by sequencing such libraries at extremely low coverage (0.1–0.5×,  
at an effective sequencing cost of $10–100 per sample) combined 
with genotype calling using 1000 Genomes Project reference panels2,  
the effective sample size per unit cost of this approach is several times 
greater than for the standard GWAS study design using SNP arrays. 
This gap will increase if sequencing costs continue to drop more 
quickly than genotyping costs.

RESULTS
To explore the effectiveness of GWAS based on low-coverage 
sequencing, we simulated sequencing data at various coverage 
levels, accounting for sequencing errors, as well as for variation in 
average coverage across samples and loci. We used the 762 haplo-
types inferred from the 381 European samples of the 1000 Genomes 
Project (Phase 1, June 2011 release) and restricted the analysis to 
10 distinct 5-Mb regions (total of 50 Mb, containing 150,261 SNPs) 
that were randomly chosen to represent the average genome-wide 
recombination rate and SNP density (Supplementary Note and 
Supplementary Table 1). One-half of the haplotypes were used to 
build simulated data, and the other half were used as an imputation 
reference panel. Simulated data were used to infer genotype dosages 
at known SNPs using Beagle12, an imputation engine appropriate for 
the analysis of sequencing data. To assess the accuracy of imputation, 
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we used the squared correlation (r2) between imputed dosages and 
true genotypes, which quantifies the reduction in effective sample 
size in GWAS due to imperfect imputation13 (Online Methods).

The accuracy of imputation, either using just the sequencing 
reads to impute genotypes or using the reads coupled with the 1000 
Genomes Project reference panels2 (Online Methods), are shown 
(Fig. 1). We observed high accuracies at extremely low coverage  
(0.1–0.5×) when reference panels were used (Fig. 1, Supplementary 
Fig. 1 and Supplementary Note). Sequencing at 0.2× coverage 
yielded more than 90% of the effective sample size that was achieved 
by Illumina Human-1M-Duo array plus conventional imputation, 
as assessed by average r2 to SNPs in the 1000 Genomes Project data 
set for both common (>5% minor allele frequency) as well as low-
frequency (1–5% minor allele frequency) variants (Fig. 1). These 
simulation results suggest that sequencing at 0.1–0.5× coverage with 
imputation using the 1000 Genomes Project data sets can, in prin-
ciple, achieve power comparable to high-density SNP arrays. These 
simulation results are robust to model assumptions and parameter 
values (Supplementary Tables 1–3 and Supplementary Note).

We investigated whether similar results could be achieved with real 
data by analyzing whole-exome sequencing data from 909 individuals 
of European ancestry, combining samples from the International 
HIV Controllers Study (IHCS) (84), Swedish Schizophrenia Study 
(SCZ) (503) and Autism National Institute of Mental Health (NIMH) 
Controls Study (AUT) (322) (Online Methods)14–18. Whole-exome 
studies enrich the sample DNA for genic content before sequenc-
ing3,19,20 and usually discard data from non-exonic regions. However, 
current DNA capture technologies do not yield perfect enrichment, 
and off-target data can often be substantial, given the high cover-
age of many exome-sequencing studies. For example, in the 909 
exomes included, the average coverage was 0.24× for non-exonic 
regions and more than 60× for exons (Supplementary Fig. 2 and 
Supplementary Note). We explored whether the whole-exome data, 
coupled with imputation based on the 1000 Genomes Project ref-
erence data set, could support a GWAS. We imputed genotypes at 
all polymorphic sites indentified in the European samples of the 
1000 Genomes Project, using sequencing data together with the 
762 haplotypes inferred from the European samples of the 1000 
Genomes Project Phase 1 data (Online Methods), and quantified 

accuracy by comparing imputed calls with Illumina array geno-
typing calls (Online Methods). To remove effects of high coverage 
at or near exons, we removed data at all SNPs covered at more than  
4× (Supplementary Fig. 2). At 0.24× coverage, we observed an aver-
age r2 = 0.71 (s.d. = 0.15) to the genotype calls assayed by genome-
wide SNP arrays, roughly similar in average expected power to a 
conventional GWAS with 71% of the sample size (Supplementary 
Fig. 3, Supplementary Table 4, results averaged by chromosome, 
minor allele frequency and coverage, and Supplementary Note).  
We also quantified the genome-wide accuracy achieved by using 
all data from the whole-exome scan (off-target and on-target data);  
the average r2 value increased to 0.77 when all data from the whole-
exome study were used.

To illustrate how this approach might be used in practice to carry 
out a GWAS, we used the off-target exome data to compute associa-
tion statistics at 103,977 SNPs across the genome using simulated 
phenotypes starting from the genotype calls from the arrays (Online 
Methods). We observed similar association statistics when imputed 
dosages were used compared to SNP arrays under both null (pheno-
type uncorrelated to the genotype) and true nonzero effect sizes 
(Fig. 2, Supplementary Figs. 4–6 and Supplementary Table 5), indi-
cating that our approach is robust to false positives, while accurately 
recovering the association signal when present. In addition, we also 
performed a case-control scan in which the AUT samples were treated 
as controls and the SCZ samples were defined as cases. After adjusting 
for differences in genetic ancestry between the SCZ and AUT samples, 
we observed no association at genome-wide significance, thus further 
emphasizing the robustness of our approach (Supplementary Fig. 7 
and Supplementary Note). To assess the power of detecting true 
positives, in addition to simulated phenotypes, we also carried out a 
case-control study comparing HIV-1 controllers (61) and progressors 
(23) from the IHCS data set (Online Methods). The higher off-target 
coverage (0.5×) in the IHCS data led to an average of r2 = 0.82 to the 
genotype calls at the 398,098 SNPs assayed by arrays in the IHCS 
data14. A similar λGC (genomic control)21 value of 1.05 for imputed 
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Figure 1 Genotype imputation accuracy as function of coverage in 1000 
Genomes Project simulations. Accuracy as function of coverage is shown 
using solid lines for common SNPs (MAF > 5%) and dashed lines for  
low-frequency SNPs (MAF < 5%).
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Figure 2 Observed versus expected association −log10 P values at 
103,977 SNPs across the genome in simulated null data sets over 909 
samples of the combined data set. We observed r2 of 0.64 between 
P values computed in genotyped versus imputed data, similar to 
simulations of association statistics at imputed versus genotyping calls 
(supplementary note). Results for alternate hypothesis of association can 
be found in the supplementary note.
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data compared to 1.04 for directly genotyped data was observed 
(Supplementary Fig. 4 and Supplementary Note). We specifically 
analyzed SNPs that were previously reported to be significantly asso-
ciated with HIV-1 controller status14 and observed similar association 
statistics and effect sizes compared to SNP arrays, both for the entire 
set of 47 previously associated SNPs (Supplementary Table 5 and 
Supplementary Note) and for the subset of 10 SNPs with nominal 
P < 0.05 in the SNP array data (Table 1). The association statistics 
obtained using extremely low-coverage sequencing did not show the 
9% drop that might have been expected given the r2 = 0.91 imputation 
accuracy at these SNPs (ratio between the average −log10 P values at 
imputed versus genotyped data of 1.04), but this can be explained by 
statistical fluctuation (Table 1 and Supplementary Note).

We also evaluated empirical results at lower coverage (0.005–0.5×) 
by subsampling reads with corresponding probability. Because of the 
large number of experiments and the higher non-exome coverage of 
the IHCS data compared to all the 909 samples, we restricted this 
analysis to the 10 distinct 5-Mb regions (total of 50 Mb) in the IHCS 
data set (84 samples). As coverage decreased, we observed a reduc-
tion in accuracy, analogous to our simulations based on the 1000 
Genomes Project data set, restricted to the same set of 6,070 SNPs 
from the array (Fig. 3). At 0.5× coverage, we observed a mean r2 of 

0.82, with s.d. of 0.03 and standard error of 0.01 across the ten regions. 
However, the accuracy of imputation in the IHCS sequencing data 
was lower than in simulations for any level of coverage (Fig. 3). The 
discrepancy between simulations and real data could be an effect 
of increased similarity across haplotypes inferred from the 1000 
Genomes Project Phase 1 data due to the genotype calling and phas-
ing procedure from 4× sequencing data that aggregated informa-
tion across samples (Supplementary Table 6 and Supplementary 
Note). Other possible explanations include nonuniform error rates 
in base-calling and alignment of reads across the genome or simula-
tion parameters that do not perfectly model aspects of the empirical 
data, such as variance in coverage across samples and loci, although 
our experiments suggest that these are unlikely to be the primary 
explanations (Supplementary Note).

DISCUSSION
To explore the economic ramifications of sequencing-based GWAS, 
we considered the tradeoff between the number of samples sequenced 
and average coverage (which affects accuracy). We evaluated the 
expected effective sample size attained with different strategies and 
compared this with the effective sample size that would be obtained 
by genotyping using standard genotyping arrays (for example, the 
Illumina Human-1M-Duo array). We derived all results from empirical  
accuracies using sequencing data sets subsampled from the IHCS 
data, so that results did not rely on any simulation assumptions. We 
compared accuracies only at SNPs genotyped on the array, a con-
servative computation that ignored the potentially greater benefit at 
SNPs not present on the array. We assumed a fixed total budget of 
$300,000, an arbitrarily large number of samples available, a sample 
preparation cost of $30 (conservatively double the cost that we have 
recently shown11) and DNA sequencing cost of $133 per 1× sequenc-
ing (based on the Illumina Network cost of $4,000 for 30× sequencing 
of 50 samples or more, which scales linearly with lower coverage). 
We calculated the effective sample size of a sequencing-based GWAS 
as a function of average coverage, which determines the number of 
samples sequenced under a fixed budget (Online Methods). Under 
zero sample preparation cost and ignoring the benefit of imputation, 
the optimal study design involves sequencing a maximal number of 
samples at minimal coverage22,23. However, when sample prepara-
tion cost and imputation are taken into account, there is an optimal 
number of samples to sequence for any budget. For a fixed budget 
of $300,000, the highest effective sample size (roughly equivalent 
to more than 4,600 genotyped individuals) is achieved at an aver-
age coverage of 0.1× (6,800 samples sequenced at $45 total cost per 

Table 1 statistics attained at known associated snPs in the iHCs

RsID Chr. Position Coverage r2
Association P value  

(−log10) for genotyped data
Association P value  

(−log10) for imputed data Ratio
Effect typed  

(confidence interval)
Effect imputed  

(confidence interval)

rs7756521 6 30848253 0.33 0.96 1.38 1.12 0.81 0.19 (0.01, 0.38) 0.17 (−0.02, 0.36)

rs3094212 6 31085770 0.73 0.96 1.37 1.42 1.03 0.15 (0.01, 0.29) 0.15 (0.01, 0.29)

rs2395471 6 31240692 0.27 0.96 1.38 1.41 1.02 0.14 (0.01, 0.28) 0.14 (0.01, 0.27)

rs9366778 6 31269173 0.43 0.84 1.34 1.87 1.4 0.15 (0.00, 0.29) 0.18 (0.04, 0.31)

rs9264942 6 31274380 0.26 0.69 1.77 2.35 1.33 0.19 (0.04, 0.34) 0.24 (0.08, 0.40)

rs2156875 6 31317347 0.31 0.94 1.56 1.16 0.74 0.17 (0.02, 0.31) 0.13 (−0.01, 0.28)

rs2844529 6 31353593 0.94 0.92 2.53 3.02 1.19 0.21 (0.08, 0.35) 0.23 (0.10, 0.37)

rs2523467 6 31362930 0.63 0.93 2.53 2.39 0.94 0.21 (0.08, 0.35) 0.21 (0.07, 0.34)

rs2596531 6 31387557 0.55 0.94 1.31 1.38 1.05 0.15 (0.00, 0.30) 0.16 (0.01, 0.31)

rs2516513 6 31447588 0.36 0.86 1.53 1.25 0.82 0.18 (0.02, 0.34) 0.15 (−0.00, 0.31)

Average 0.48 0.90 1.67 1.74 1.04a – –

Statistics were computed over genotyped or imputed genotypes (only SNPs with nominal P value < 0.05 in the genotyped data are shown). Chr., chromosome.
aAverage ratio is computed as the ratio of the sum of association P values. Effect is computed assuming a linear additive model associating genotype to phenotype.
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5-Mb regions (total of 50 Mb) of the genome. Dotted lines denote results 
attained in 1000 Genomes Project simulations on the same set of SNPs.
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sample, r2 = 0.65) (Fig. 4a). The optimal value of average coverage 
varies as a function of sample preparation and sequencing costs, but 
we obtained qualitatively similar results for other cost assumptions 
(Supplementary Note). We note that a sequencing-based approach 
can attain a higher effective sample size than SNP arrays, even when 
constraints on sample availability limit the space of available study 
designs (Fig. 4a).

A notable finding is that the effective sample size achieved using 
sequencing-based GWAS with current costs11 is more than six times 
higher than SNP-array genotyping at $400 per sample, correspond-
ing to a large increase in power (Fig. 4b, Supplementary Fig. 8 and 
Supplementary Note). Only if SNP array genotyping is less than 
$70 per sample or if sample preparation and sequencing costs are 
much higher (for example, greater than $120 per sample for sample  
preparation or $1,000 for 1× sequencing) does sequencing-based 
GWAS lose its advantage in terms of statistical power to associate 
variants. If sequencing technology—both in terms of the efficiency 
of library preparation and the cost of sequencing—continues to 
improve more quickly than genotyping technology, the advantage 
of sequencing-based GWAS will increase. We note that a critical 
ingredient for attaining high accuracy at extremely low coverage is 
the availability of large panels of reference haplotypes. As additional 
reference haplotypes over larger numbers of SNPs become avail-
able from the 1000 Genomes Project and other projects, we expect 
the accuracy attained by extremely low-coverage sequencing to  
further increase.

We conclude with several caveats. First, computational methods 
for sequencing-based GWAS are still under development3,7,22,24, 
whereas the SNP array–based GWAS is a proven method that pro-
duces high-quality data that can be analyzed using readily available 
computational tools. Second, sequencing data require additional com-
putational resources beyond what is necessary to analyze conventional 
GWAS data, as the analysis pipeline for sequencing data is typically 
more demanding than for genotyping data. Third, sequencing-based 
GWAS of the type described here do not involve sufficient coverage 
to discover rare variants and to associate them with disease; thus, as 

with SNP arrays, the power of this approach is limited to common and 
(to a lesser extent) low-frequency variants. Fourth, although results 
from our empirical IHCS sequencing data are encouraging, no study 
to date has used sequencing-based GWAS to identify new disease 
risk variants. A priority for future work should be to carry out studies 
that show that this approach can be used to discover new associations 
between genetic variants and common diseases.

URLs. The 1000 Genomes Project, June 2011 Phase 1 release, 
http://www.1000genomes.org/node/506; Beagle, http://faculty. 
washington.edu/browning/beagle/beagle.html; MACH, http://www.
sph.umich.edu/csg/abecasis/MACH/index.html; Picard, http://picard.
sourceforge.net/index.shtml; GATK, http://www.broadinstitute.
org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit; Epicentre  
sample preparation, (accessed on 1 November 2011), http://www.
epibio.com/; NIMH controls, https://www.nimhgenetics.org/ 
available_data/controls/; Illumina Human1M-Duo array, http://www.
illumina.com/products/human1m_duo_dna_analysis_beadchip_
kits.ilmn; Illumina Network, http://investor.illumina.com/phoenix.
zhtml?c=121127&p=irol-newsArticle&id=1561106; The International 
HIV Controllers Study, http://www.hivcontrollers.org/; sample  
repository research concept sheet, http://cfar.globalhealth.harvard.
edu/fs/docs/icb.topic938249.files/Harvard%20CFAR%20Concept%
20Sheet%20Template%20.docx.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. AUT data (phs000298.v1) and SCZ data (phs000473. 
v1.p1) have been deposited at dbGaP. IHCS data are available by 
direct request from P. Richtmyer (prichtmyer@partners.org); inves-
tigators  can submit a concept sheet detailing their study design, 
research questions and other needs in order to request access to 
IHCS genetic data. The concept sheet with detailed instructions can 
be downloaded (see URLs). Requests will be reviewed on the basis 
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of scientific merit, feasibility and potential overlap with accepted 
concept sheets or ongoing investigations.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Simulation of sequencing data based on the 1000 Genomes Project data set. 
For our simulations, we used the 381 diploid European individuals from the 
Phase 1 release of the 1000 Genomes Project (June 2011)2. The 381 individu-
als included 87 Centre d’Etude du Polymorphisme Humain (CEPH) indi-
viduals of Northern European ancestry (CEU), 93 Finnish individuals from 
Finland (FIN), 89 British individuals from England and Scotland (GBR), 98 
Tuscan individuals (TSI) and 14 individuals from the Iberian peninsula (IBS). 
Genotype calls and haplotype phase were inferred from low-coverage sequenc-
ing (4×) using an imputation strategy that borrowed information across samples  
and loci. The 762 haplotypes were divided at random between two panels of 
381 haplotypes; one panel was used to build simulated data, and the other was 
used as an imputation reference panel. We simulated data for 100 samples  
by randomly sampling (without replacement) pairs of haplotypes from the 
simulation panel. All simulation results were generated over ten distinct 5-Mb  
regions across the genome (for a total of 50 Mb), which were randomly chosen 
to represent the average genome-wide recombination rate and SNP density 
(Supplementary Note). Reads spanning polymorphic sites identified in the 
1000 Genomes Project were simulated assuming a fixed error rate of 1%, per-
locus coverage multipliers were drawn from a gamma distribution Γ(α,β), 
with shape parameters α = 4 and β = 1/α and mean = 1 (ref. 25), and per-
sample coverage multipliers were drawn from a normal distribution N(1,0.2) 
(matching the empirical IHCS sequencing data), with negative values set to 0. 
Reads were sampled assuming a Poisson distribution, with the mean equal to 
the average coverage × the per-locus multiplier × the per-sample multiplier.  
Results were generally insensitive to the choice of simulation parameters  
(with the exception of average coverage per sample) (Supplementary Note).

Imputing genotypes from sequencing data. Genotypes can be inferred 
from sequencing data by either (i) inferring genotypes independently at each 
SNP in each individual, (ii) making use of allele frequencies inferred from 
all sequenced individuals, (iii) making use of linkage-disequilibrium (LD)  
patterns inferred from sequenced individuals or (iv) making use of LD  
patterns inferred from sequenced individuals as well as reference panels of 
haplotypes7,22,24,26. Here, we focused on methods (iii) and (iv), using a two-
step imputation approach (see Supplementary Note for details and results of 
other approaches). In the first step, we computed genotype likelihoods at all 
polymorphic loci identified in the 1000 Genomes Project data set independ-
ently for each individual. We disregarded all observed alleles that did not 
match either the reference or alternate allele identified in the 1000 Genomes 
Project data set and computed likelihoods of zero, one or two copies of the 
1000 Genomes Project data set reference allele at all SNPs identified in the 
Phase 1 release of the 1000 Genomes Project. Reads that did not overlap any 
polymorphic sites were discarded. In the second step, the genotype likelihoods 
for all loci in all samples (with or without the reference panel of haplotypes, 
381 in total for simulations) were passed to the Beagle imputation software12 
with default parameters (with ‘like’ for the genotype likelihoods and ‘phased’ 
for the reference haplotypes).

Imputing genotypes from GWAS arrays. Imputation from the Illumina 
Human-1M-Duo array was simulated by masking all genotypes at SNPs  
(in the 50-Mb simulated region) not present on the array and then performing 
imputation at all polymorphic loci identified in the European samples of the 
1000 Genomes Project Phase 1 data set, using the remaining reference panel of 
haplotypes (381 in total). We used MaCH27 imputation software with default 
parameters: −rounds 40 –greedy –mle –mldetails.

Metric for imputation accuracy. Imputation accuracy was measured by the 
squared Pearson’s correlation coefficient (r2) between imputed dosages and 
genotypes typed on the arrays.

Simulated phenotypes. Starting from the typed genotype calls (g), we 
simulated continuous randomly ascertained phenotypes as Y = gβ + ε, with  
ε = N(0,1). β = 0 represents the null model of no association between  
genotype and phenotype.

IHCS whole-exome data set. Genome-wide SNP genotyping and whole-
exome sequencing data for 84 samples were obtained from the IHCS14, with 43 
samples genotyped on the Illumina HumanHap 650Y array and 41 sequenced 
on the Human-1M-Duo array. Of the 84 samples, 61 were HIV-1 controllers 
enrolled by the IHCS, and 23 were enrolled by the AIDS Clinical Trials Group. 
Only unrelated samples of European ancestry with high genotyping rates 
(>95%) were included after filtering out SNPs with low MAF (<1%), missing 
data (>2%) or departure from Hardy-Weinberg equilibrium (P < 1 × 10−6). The 
SNP sets were intersected to obtain 398,098 SNPs genotyped in all samples. 
Imputation was performed using all the 762 available 1000 Genomes Project 
Phase 1 haplotypes as opposed to 381 for simulations using non-overlapping 
regions of 2.5 Mb in size with 250 kb of flanking sequence on either side.

Combined whole-exome data set. Exome sequencing for the Autism NIMH 
Controls (AUT, 322 samples), for the SCZ set (503 samples) and for the IHCS set 
(84 samples) was carried out at the Broad Institute14–18. We only used samples  
ascertained as controls in the AUT and SCZ data (from individuals with no 
presence of disease). Exons were captured using Agilent 38Mb SureSelect v2 
Libraries and were sequenced using either an Illumina HiSeq2000 or Illumina 
Genome Analyzer II instrument. All samples met the criterion of >90% of 
targeted bases having >10× coverage and >80% of targeted bases having >20× 
coverage. Reads were mapped to the hg19 reference genome using the Burrows-
Wheeler Aligner (BWA) and were processed with Picard and GATK (see URLs). 
The SCZ samples were genotyped on the Affymetrix 5.0 or 6.0 platforms. The 
AUT samples were genotyped on the Affymetrix 500K array. Genotype data 
across all samples (SCZ, AUT and IHCS, 909 in total) was merged with SNPs 
filtered by missing data and departure from Hardy-Weinberg equilibrium. 
Genotype likelihoods obtained using GATK28 were passed to Beagle in win-
dows of 1 Mb with 250 kb of flanking sequence on either side to impute all SNPs 
identified as polymorphic in the haplotypes of the European 1000 Genomes 
Project Phase 1 data. In total, 103,977 genome-wide SNPs, both genotyped and 
imputed from sequencing across all 909 samples, were used in all experiments 
over combined data (Supplementary Note). To remove effects of high coverage 
at or near exons, we removed data at all SNPs covered at more than 4×.

Association statistic for GWAS. A standard test for association in GWAS is the 
Armitage trend test21,29, equal to N times the squared correlation between geno-
types G (0, 1 or 2) and phenotypes Φ (0 or 1), where N is the number of samples. 
This statistic extends to imputed data by using genotype dosages. The value of 
the statistic decreases by a factor of r2 if computed at a genotyped or imputed 
SNP in partial LD with the causal SNP13. To estimate the expected association 
statistic in a GWAS over a set of N samples sequenced at average coverage c, we 
first estimated the accuracy r2(c) attained at coverage c by subsampling IHCS 
data. We then estimated the expected association statistic as Nρ2(G,Φ) r2(c).
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