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ABSTRACT Population mixture is an important process in biology. We present a suite of methods for learning about population
mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it
possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP)
array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses
and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that
provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern
Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations
of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic
population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the
Tyrolean “Iceman.”

ADMIXTURE between populations is a fundamental pro-
cess that shapes genetic variation and disease risk. For

example, African Americans and Latinos derive their ge-
nomes from mixtures of individuals who trace their ancestry
to divergent populations. Study of the ancestral origin of the
admixed individuals provides an opportunity to infer the
history of the ancestral groups, some of whommay no longer
be extant. The two main classes of methods in this field
are local ancestry-based methods and global ancestry-based
methods. Local ancestry-based methods such as LAMP
(Sankararaman et al. 2008), HAPMIX (Price et al. 2009),
and PCADMIX (Brisbin 2010) deconvolve ancestry at each
locus in the genome and provide individual-level information
about ancestry. While these methods provide valuable insights
into the recent history of populations, they have reduced
power to detect older events. The most commonly used meth-
ods for studying global ancestry are principal component anal-
ysis (PCA) (Patterson et al. 2006) and model-based clustering
methods such as STRUCTURE (Pritchard et al. 2000) and

ADMIXTURE (Alexander et al. 2009). While these are power-
ful tools for detecting population substructure, they do not
provide any formal tests for admixture (the patterns in data
detected using these methods can be generated by multiple
population histories). For instance, Novembre et al. (2008)
showed that isolation-by-distance can generate PCA gradients
that are similar to those that arise from long-distance histor-
ical migrations, making PCA results difficult to interpret from
a historical perspective. STRUCTURE/ADMIXTURE results are
also difficult to interpret historically, because these methods
work either without explicitly fitting a historical model or by
fitting a model that assumes that all the populations have
radiated from a single ancestral group, which is unrealistic.

An alternative approach is to make explicit inferences
about history by fitting phylogenetic tree-based models to
genetic data. A limitation of this approach, however, is that
many of these methods do not allow for the possibility of
migrations between groups, whereas most human popula-
tions derive ancestry from multiple ancestral groups. Indeed
there is only a handful of examples of human groups in which
there is no evidence of genetic admixture today. In this article,
we describe a suite of methods that formally test for a history
of population mixture and allow researchers to build models
of population relationships (including admixture) that fit
genetic data. These methods are inspired by the ideas by
Cavalli-Sforza and Edwards (1967), who fit phylogenetic
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trees of population relationships to the Fst values measuring
allele frequency differentiation between pairs of populations.
Later studies by Thompson (1975); Lathrop (1982); Waddell
and Penny (1996); and Beerli and Felsenstein (2001) are
more similar in spirit to our methods, in that they describe
frameworks for fitting population mixture events (not just
simple phylogenetic trees) to the allele frequencies observed
in multiple populations, although the technical details are
quite different from our work. In what follows we describe
five methods: the three-population test, D-statistics, F4-ratio
estimation, admixture graph fitting, and rolloff. These have
been introduced in some form in earlier articles (Reich
et al. 2009; Green et al. 2010; Durand et al. 2011; Moorjani
et al. 2011) but not coherently together and with the key
material placed in supplementary sections, making it difficult
for readers to understand the methods and their scope. We
also release a software package, ADMIXTOOLS, that imple-
ments these five methods for users interested in applying
them to studies of population history.

The first four techniques are based on studying patterns
of allele frequency correlations across populations. The three-
population test is a formal test of admixture and can provide
clear evidence of admixture, even if the gene flow events
occurred hundreds of generations ago. The four-population test
implemented here as D-statistics is also a formal test for admix-
ture, which not only can provide evidence for admixture but
also can provide some information about the directionality of
the gene flow. F4-ratio estimation allows inference of the mix-
ing proportions of an admixture event, even without access to
accurate surrogates for the ancestral populations. However, this
method demands more assumptions about the historical phy-
logeny. Admixture graph fitting allows one to build a model of
population relationships for an arbitrarily large number of pop-
ulations simultaneously and to assess whether it fits the allele
frequency correlation patterns among populations. Admixture
graph fitting has some similarities to the TreeMix method of
Pickrell and Pritchard (2012) but differs in that TreeMix allows
users to automatically explore the space of possible models and
to find the one that best fits the data (our method does not),
while our method provides a rigorous test for whether a pro-
posed model fits the data (TreeMix does not).

It is important to point out that all four of the methods
described in the previous paragraph measure allele frequency
correlations among populations using the f-statistics and
D-statistics that we define precisely in what follows. The
expected values of these statistics are functions not just of
the demographic history relating the populations, but also
of the way that the analyzed polymorphisms were discovered
(the so-called ascertainment process). In principle, explicit
inferences about the demographic history of populations
can be made using the magnitudes of allele frequency corre-
lation statistics, an idea that is exploited to great advantage
by Durand et al. (2011); however, for this approach to work,
it is essential to analyze sites with rigorously documented
ascertainment, as are available, for example, from whole-
genome sequencing data. Here our approach is fundamentally

different in that we are focusing on tests for a history of
admixture that assess whether particular statistics are consis-
tent with 0. The expectation of zero in the absence of admix-
ture is robust to all but the most extreme ascertainment
processes, and thus these methods provide valid tests for ad-
mixture even using data from SNP arrays with complex ascer-
tainment. We show this robustness both by simulation and
with application to real data. In some simple scenarios, we
also demonstrate this robustness theoretically. Furthermore,
we show that ratios of f-statistics can provide precise esti-
mates of admixture proportions that are robust to both details
of the ascertainment and to population size changes over the
course of history, even if the f-statistics in the numerator and
denominator themselves have magnitudes that are affected by
ascertainment.

The fifth method that we introduce in this study, rolloff, is
an approach for estimating the date of admixture which
models the decay of admixture linkage disequilibrium in the
target population. Rolloff uses different statistics from those
used by haplotype-based methods such as STRUCTURE
(Pritchard et al. 2000) and HAPMIX (Price et al. 2009). The
most relevant comparison is to the method of Pool and
Nielsen (2009), who like us are specifically interested in
learning about history, and who estimate population mixture
dates by studying the distribution of ancestry tracts inherited
from the two ancestral populations. A limitation of the Pool
and Nielsen (2009) approach, however, is that it assumes that
local ancestry inference is perfect, whereas in fact most local
ancestry methods are unable to accurately infer the short an-
cestry tracts that are typical for older dates of mixture. Pre-
cisely for these reasons, the HAPMIX article cautions against
using HAPMIX for date estimation (Price et al. 2009). In con-
trast, rolloff does not require accurate reconstruction of the
breakpoints across the chromosomes or data from good surro-
gates for the ancestors, making it possible to interrogate older
dates. Simulations that we report in what follows show that
rolloff can produce unbiased and quite accurate estimates for
dates up to 500 generations in the past.

Materials and Methods

Throughout this article, unless otherwise stated, we consider
biallelic markers only, and we ignore the possibility of recurrent
or back mutations. Our notation in this article is that we write
f2 (and later f3, f4) for statistics: empirical quantities that we
can compute from data, and F2 (and later F3, F4) for corre-
sponding theoretical quantities that depend on an assumed
phylogeny (and the ascertainment). We define “drift” as the
frequency change of an allele along a graph edge (hence drift
between two populations A and B is a function of the difference
in the allele frequency of polymorphisms in A and B).

The three-population test and introduction
of f-statistics

We begin with a description of the three-population test.
First we give some theory. Consider the tree of Figure 1A.
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We see that the path from C to A and the path from C to B
just share the edge from C to X. Let a9, b9, c9 be allele fre-
quencies in the populations A, B, C, respectively, at a single
polymorphism. Define

F3ðC;A;BÞ ¼ E½ðc92 a9Þðc92 b9Þ�:

We, similarly, in an obvious notation define

F2ðA;BÞ ¼ E
h
ða92b9Þ2

i

F4ðA;B;C;DÞ ¼ E½ða92 b9Þðc92 d9Þ�:

Choice of the allele does not affect any of F2, F3, F4 as
choosing the alternate allele simply flips the sign of both
terms in the product. We refer to F2(A, B) as the branch
length between populations A and B. We use these branch
lengths in admixture graph fitting for graph edges.

Our F-values should be viewed as population parameters,
but we note that they depend both on the demography and
choice of SNPs. In Appendix A we give formulae that use
sample frequencies and that yield unbiased estimates of the
corresponding F parameters. The unbiased estimates of F
computed using these formulae at each marker are then
averaged over many markers to form our f-statistics.

The results that follow hold rigorously if we identify the
polymorphisms we are studying in an outgroup (that is, we
select SNPs based on patterns of genetic variation in popula-
tions that all have the same genetic relationship to populations
A, B, C). Since only markers with variation in A, B, C are
relevant to the analysis, then by ascertaining in an outgroup
we ensure that our markers are polymorphic in the root pop-
ulation of A, B, C. Later on, we discuss how other strategies for
ascertaining polymorphisms would be expected to affect our
results. In general, our tests for admixture and estimates of
admixture proportion are strikingly robust to the ascertain-
ment processes that are typical for human SNP array data,
as we verify both by simulations and by empirical analysis.

Suppose the allele frequency of a SNP is r at the root. In
the tree of Figure 1A, let a9, b9, c9, x9, r9 be allele frequencies
in A, B, C, X, R. Condition on r9. Then

E½ðc92 a9Þðc92 b9Þ� ¼ E½ðc92 x9þ x92 a9Þðc92 x9þ x92 b9Þ� ¼ E
h
ðc92x9Þ2

i
$ 0

since E[a9|x9] = x9, and E[x9 2 b9] = E[r9 2 b9 2 (r9 2 x9)]
= 0. If the phylogeny has C as an outgroup (switching B, C
in Figure 1A), then a similar argument shows that

E½ðc92 a9Þðc92 b9Þ� ¼ E
h
ðr92c9Þ2

i
þ E

h
ðr92x9Þ2

i
$ 0:

Figure 1 f-statistics: (A) A simple phylogenetic tree,
(B) the additivity of branch lengths; the genetic drift
between (A, B) computed using our f-statistic-based
methods is the same as the sum of the genetic drifts
between (A, B) and (B, C), regardless of the population
in which SNPs are ascertained, (C) phylogenetic tree
with simple admixture, (D) a more general form of
Figure 1C, (E) example of an outgroup case, and (F)
example of admixture with an outgroup.
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There is an intuitive way to think about the expected values
of f-statistics, which relies on tracing the overlap of genetic
drift paths between the first and second terms in the qua-
dratic expression, as illustrated in Figure 2 and discussed
further in Appendix B. For example, E[(c9 2 a9)(c9 2 b9)]
can be negative only if population C has ancestry from pop-
ulations related to both A and B. Only in this case are there
paths between C and A and C and B that also take opposite
drift directions through the tree (Figure 1C and Figure 2),
which contributes to a negative expectation for the statistics.
The observation of a significantly negative value of f3(C; A,
B) is thus evidence of complex phylogeny in C. We prove this
formally in Appendix C (Theorem 1). In Appendix D, we

also relax our assumptions about the ascertainment process,
showing that F3 is guaranteed to be positive if C is unadmixed
under quite general conditions, for example, polymorphic in
the root R and in addition ascertained as polymorphic in any
of A, B, C. It is important to recognize, however, that a history
of admixture does not always result in a negative f3(C; A, B)-
statistic. If population C has experienced a high degree of
population-specific drift (perhaps due to founder events after
admixture), it can mask the signal so that f3(C; A, B) might
not be negative.

An important feature of this test is that it definitively
shows that the history of mixture occurred in population C;
a complex history for A or B cannot produce negative F3(C;

Figure 2 Visual computation of expected
values of F2, F3, and F4 statistics. See
Appendix 2 for a discussion of this figure.
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A, B). To explain why this is so, we recapitulate material
from Reich et al. (2009). If population A is admixed then if we
pick an allele of A, it must have originated in one of the admix-
ing populations. Pick alleles a, b from populations A and B and
g1, g2 independently from C, coding 1 for a reference allele,
0 for a variant, etc. Thus, F3(C; A, B) = E[(g1 2 a)](g2 2 b)].
Suppose population A is admixed; B and C are not admixed.
The allele a sampled from population A can take more than
one path through the ancestral populations. F3(C; A, B) can
then be computed as a weighted average over the possible
phylogenies, in all of which the quantity has a positive expec-
tation because A and B are now unadmixed (Appendix B and
Figure 2). In conclusion, the diagram makes it visually evident
that if F3(C; A, B) , 0 then population C itself must have
a complex history.

Additivity of F2 along a tree branch

In this article we consider generalizations of phylogenetic
trees where graph edges indicate that one population is
a descendant of another. Consider the phylogenetic tree in
Figure 1B, and a marker polymorphic at the root. Drift on
a given edge is a random variable with mean 0. For if A / B
is a graph edge, with corresponding allele frequencies a9, b9,

E½b9ja9� ¼ a9:

This is the martingale property of allele frequency diffusion.
Drifts on two distinct edges of a tree are orthogonal, where
orthogonality of random variables X, Y simply means that
E[XY] = 0. In our context this means that the drifts on
distinct edges have mean 0 and are uncorrelated.

A valuable feature of our F-statistics definition is that
branch lengths on the tree (as defined by F2) are additive.
We illustrate this with an example from human history (Fig-
ure 1B). (We note that all examples in this article refer to
human history, although the methods should apply equally
well to other species.) In this example, A, and C are present-
day populations that split from an ancestral population X. B
is an ancestral population to C. For instance, A might be
modern Yoruba, C a European population, and B an ancient
population, perhaps a sample from archeological material of
a population that existed thousands of years ago. We as-
sume here that we ascertain in an outgroup (implying poly-
morphism at the root) and again assume neutrality and that
we can ignore recurrent or backmutations. Then we mean
by additivity that

F2ðA;CÞ ¼ F2ðA;BÞ þ F2ðB;CÞ

for

E
h
ða92c9Þ2

i
¼ E

h
ða92b9þ b92c9Þ2

i

¼ E
h
ða92b9Þ2

i
þ E

h
ðb92c9Þ2

i
þ 2E½ða92 b9Þðb92 c9Þ�;

but the last term is 0 since the change in allele frequencies
(drifts) X / A, X / B, B / C are all uncorrelated.

We remark that our F2-distance resembles the familiar
Fst, but is not the same. In particular, parts of a graph that
are far from the root (in genetic drift distance) have F2 re-
duced. Some insight into this effect is given by considering
the simple graph

R/
t1 A/

t2 B;

where t1, t2 are drift times on the standard diffusion time-
scale (two random alleles of B have probability e2t2 that
they have not coalesced in the ancestral population A).

If r9, a9, b9 are allele frequencies in R, A, B, respectively,
then F2(A, B) = E[(a9 2 b9)2]. Write Er9, Ea9 for expectations
conditional on population allele frequencies r9, a9. Then
Ea9½ða92b9Þ2� ¼ a9ð12 a9Þð12 e2t2Þ (Nei 1987, Chap. 13).
Moreover Er9½a9ð12 a9Þ� ¼ r9ð12 r9Þe2t1. Hence

F2ðA;BÞ ¼ E½r9ð12 r9Þe2t1ð12 e2t2Þ�:

Informally the drift from R / A shrinks F2(A, B) by a factor
e2t1 . Thus expected drift is additive,

F2ðR;BÞ ¼ F2ðR;AÞ þ F2ðA;BÞ;

but the drift does depend on ascertainment. For a given edge,
the more distant the root, the smaller the drift. A loose
analogy is projecting a curved surface, such as part of the
globe, into a plane. Locally all is well, but any projection will
cause distortion in the large. Additivity in F2 distances is all we
require in what follows. We note that there is no assumption
here that population sizes are constant along a branch edge,
and so we are not assuming linearity of branch lengths in time.

Expected values of our f-statistics

We can calculate expected values for our f-statistics, at least
for simple demographic histories that involve population
splits and admixture events. We assume that genetic drift
events on distinct edges are uncorrelated, which as men-
tioned before will be true if we ascertain in an outgroup,
and our alleles are neutral.

We give an illustration for f3-statistics. Consider the de-
mography shown in Figure 1C. Populations E, F split from
a root population R. G then was formed by admixture in
proportions a: b (b = 1 2 a). Modern populations A, B, C
are then formed by drift from E, F, G. We want to calculate the
expected value of f3(C; A, B). Assume that our ascertainment
is such that drifts on distinct edges are orthogonal, which will
hold true if we ascertained the markers in an outgroup.

We recapitulate some material from (Reich et al. 2009,
Supplementary S2, Sect. 2.2). As before let a9, b9, c9 be
population allele frequencies in A, B, C, and let g9 be the
allele frequency in G and so on:

F3ðC;A;BÞ ¼ E½ðc92 a9Þðc92 b9Þ�:

We see by orthogonality of drifts that

F3ðC;A;BÞ ¼ E½ðg92 a9Þðg92 b9Þ� þ E
h
ðg92c9Þ2

i
;
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which we write as

F3ðC;A;BÞ ¼ F3ðG;A;BÞ þ F2ðC;GÞ: (1)

Now, label alleles at a marker 0, 1. Then picking chromo-
somes from our populations independently we can write

F3ðG;A;BÞ ¼ E½ðg12 a1Þðg22 b1Þ�;

where a1, b1 are alleles chosen randomly in populations A, B
and g1, g2 are alleles chosen randomly and independently in
population G. Similarly, we define e1, e2, f1, and f2. However,
g1 originated from E with probability a and so on. Thus

F3ðG;A;BÞ ¼ E½ðg1 2 a1Þðg2 2 b1Þ�
¼ a2E½ðe1 2 a1Þðe22 b1Þ�

þ b2E½ðf1 2 a1Þðf2 2 b1Þ�
þ abE½ðe1 2 a1Þðf12 b1Þ�
þ abE½ðf12 a1Þðe1 2 b1Þ�;

where a1, a2 are independently picked from E and b1, b2
from F. The first three terms vanish. Further

E½ðf1 2 a1Þðe1 2 b1Þ� ¼ 2 E
h
ðe12f1Þ2

i
:

This shows that under our assumptions of orthogonal drift
on distinct edges,

F3ðC;A;BÞ ¼ F2ðC;GÞ2abF2ðE; FÞ: (2)

It might appear that Figure 1C is too restricted, as it assumes
that the admixing populations E, F are ancestral to A, B and
that we should consider the more general graph shown in
Figure 1D. But it turns out that using our f-statistics alone
(and not the more general allelic spectrum) that even if a, b
are known, we can obtain information only about

a2uþ b2y þ w:

Thus in fitting admixture graphs to f-statistics, we can, with-
out loss of generality, fit all the genetic drift specific to the
admixed population on the lineage directly ancestral to the
admixed population (the lineage leading from C to G in
Figure 1C).

The outgroup case

Care though is needed in interpretation. Consider Figure 1E.
Here a similar calculation to the one just given shows (again
assuming orthogonality of drift on each edge) that

F3ðC;A; YÞ ¼ F2ðC;GÞ þ b2F2ðF; XÞ2abF2ðE; XÞ: (3)

Note that Y has little to do with the admixture into C and we
obtain the same F3 value for any population Y that splits off
from A more anciently than X.

We call this case, where we have apparent admixture
between A and Y, the outgroup case, and it needs to be care-
fully considered when recovering population relationships.

Estimates of mixing proportions

We want to estimate, or at least bound, the mixing pro-
portions that have resulted in the ancestral population of C.
With further strong assumptions on the phylogeny we
can get quite precise estimates even without accurate surro-
gates for the ancestral populations (see Reich et al. 2009 and
the F4-ratio estimation that we describe below, for examples).
Also if we have data from populations that are accurate sur-
rogates for the ancestral admixing population (and we can
ignore the drift post admixture), the problem is much easier.
For instance, in Patterson et al. (2010) we give an estimator
that works well even when the sample sizes of the relevant
populations are small, and we have multiple admixing pop-
ulations whose deep phylogenetic relationships we may not
understand. Here we show a method that obtains useful
bounds, without requiring full knowledge of the phylogeny,
although the bounds are not very precise. Note that although
our three-population test remains valid even if the popula-
tions A, B are admixed, the mixing proportions we calculate
are not meaningful unless the assumed phylogeny is at least
roughly correct. Indeed even discussing mixing from an an-
cestral population of A hardly makes sense if A is admixed
itself subsequent to the admixing event in C. This is discussed
further when we present data from Human Genome Diversity
Panel (HGDP) populations.

In much of the work in this article, we analyze some
populations A, B, C and need an outgroup, which split off
from the ancestral population of A, B, C before the popu-
lation split of A, B. For example, in Figure 1E, Y is such an
outgroup. Usually, when studying a group of populations
within a species, a plausible outgroup can be proposed.
The outgroup assumption can then be checked using the
methods of this article, by adding an individual from
a more distantly related population, which can be treated
as a second outgroup. For instance, with human popu-
lations from Eurasia, Yoruba or San Bushmen from sub-
Saharan Africa will often be plausible outgroups.1 Our
second outgroup here is simply being used to check a phy-
logenetic assumption in our primary analysis, and we do
not require polymorphism at the root for this narrow pur-
pose. Chimpanzee is always a good second outgroup for
studies of humans.

Consider the phylogeny of Figure 1F. Here a, b are
mixing parameters (a + b = 1) and we show drift dis-
tances along the graph edges. Note that here we use a,
b,. . ., as branch lengths (F2 distances), not sample or pop-
ulation allele frequencies as we do elsewhere in this arti-
cle. Thus, for example, F2(O, X) = u. Now we can obtain
estimates of

1 There is no completely satisfactory term for the ‘Khoisan’ peoples of southern Africa;
see Barnard (1992, introduction) for a sensitive discussion. We prefer ‘Bushmen’
following Barnard. However, the standard name for the HGDP Bushmen sample is
‘San’ in the genetic literature [for example Cann et al. (2002)], and we use this
specifically to refer to these samples.
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Z0 ¼ u ¼ F3ðO;A;BÞ
Z1 ¼ uþ aa ¼ F3ðO;A;CÞ
Z2 ¼ uþ bb ¼ F3ðO;B;CÞ
Z3 ¼ uþ aþ f ¼ F2ðO;AÞ
Z4 ¼ uþ bþ g ¼ F2ðO;BÞ
Z5 ¼ uþ hþ a2ðaþ dÞ þ b2ðbþ eÞ ¼ F2ðO;CÞ:

We also have estimates of

F ¼ h2abðaþ bÞ ¼ F3ðC;A;BÞ:

Set Yi = Zi 2 Z0, i = 0. . .5, which eliminates u. This
shows that any population O which is a true outgroup
should (up to statistical noise) give similar estimates for Yi
(Figure 1F). We have three inequalities:

a$ Y1=Y3
b$ Y2=Y4

abðaþ bÞ# 2F:

Using aa = Y1, bb = Y2 we can rewrite these as

Y1=Y3#a#12 Y2=Y4
aðY2 2 Y1Þ$ 2F2 Y1;

giving lower and upper bounds on a, which we write as
aL,aU in the tables of results that follow. These bounds can
be computed by a program qpBound in the ADMIXTOOLS
software package that we make available with this article.

Although these bounds will be nearly invariant to choices
of the outgroup O, choices for the source populations A, B
may make a substantial difference. We give an example in
a discussion of the relationship of Siberian populations to
Europeans. In principle we can give standard errors for the
bounds, but these are not easily interpretable, and we think
that in most cases systematic errors (for instance, that our
phylogeny is not exactly correct) are likely to dominate.

We observe that in some cases the lower bound exceeds
the upper, even when the Z-score for admixture of population
C is highly significant. We interpret this as suggesting that our
simple model for the relationships of the three populations is
wrong. A negative Z-score indeed implies that C has a complex
history, but if A or B also has a complex history, then a re-
covered mixing coefficient a has no real meaning.

Estimation and normalization

With all our f-statistics it is critical that we can compute un-
biased estimates of the population F-parameter for a single
SNP, with finite sample sizes. Without that, our estimates will
be biased, even if we average over many unlinked SNPs. The
explicit formulae for f2, f3, f4 that we present in Appendix A
(previously given in Reich et al. 2009, Supplementary Mate-
rial) are in fact minimum variance unbiased estimates of the
corresponding F-parameters, at least for a single marker.

The expected (absolute) values of an f-statistic, such as f3,
strongly depends on the distribution of the derived allele
frequencies of the SNPs examined; for example, if many

SNPs are present that have a low average allele frequency
across the populations being examined, then the magnitude
of f3 will be reduced. To see this, suppose that we are com-
puting f3(C; A, B), and as before a9, b9, c9 are population
frequencies of an allele in A, B, C. If the allele frequencies are
small, then it is obvious that the expected value of f3(C; A, B)
will be small in absolute magnitude as well. Importantly,
however, the sign of an f-statistic is not dependent on the
absolute magnitudes of the allele frequencies (all that it
depends on is the relative magnitudes across the populations
being compared). Thus, a significant deviation of an f-statistic
from 0 can serve as a statistically valid test for admixture,
regardless of the ascertainment of the SNPs that are analyzed.
However, to reduce the dependence of the value of the f3-
statistic on allele frequencies for some of our practical com-
putations, in all of the empirical analyses we report below, we
normalize using an estimate for each SNP of the heterozygos-
ity of the target population C. Specifically, for each SNP i, we
compute unbiased estimates T̂i, B̂i of both

Ti ¼ ðc92 a9Þðc92 b9Þ
Bi ¼ 2c9ð12 c9Þ:

Now we normalize our f3-statistic computing

f⋆3 ¼
P

iT̂iP
iB̂i

:

This greatly reduces the numerical dependence of f3 on the
allelic spectrum of the SNPs examined, without making much
difference to statistical significance measures such as a Z-score.
We note that we use f3 and f ⋆3 interchangeably in many places
in this article. Both of these statistics give qualitatively similar
results and thus if the goal is only to test if f3 has negative
expected value then the inference should be unaffected.

D-statistics

The D-statistic test was first introduced in Green et al.
(2010) where it was used to evaluate formally whether
modern humans have some Neandertal ancestry. Further
theory and applications of D-statistics can be found in Reich
et al. (2010) and Durand et al. (2011). A very similar sta-
tistic f4 was used to provide evidence of admixture in India
(Reich et al. 2009), where we called it a four-population
test. The D-statistic was also recently used as a convenient
statistic for studying locus-specific introgression of genetic
material controlling coloration in Heliconius butterflies
(Dasmahapatra et al. 2012).

Let W, X, Y, Z be four populations, with a phylogeny that
corresponds to the unrooted tree of Figure 3A. For SNP i
suppose variant population allele frequencies are w9, x9, y9,
z9, respectively. Choose an allele at random from each of the
four populations. Then we define a “BABA” event to mean
that the W and Y alleles agree, and the X and Z alleles agree,
while the W and X alleles are distinct. We define an “ABBA”
event similarly, now with the W and Z alleles in agreement.

Ancient Admixture 1071



Let Numi and Deni be the numerator and denominator of the
statistic:

Numi ¼ PðBABAÞ2 PðABBAÞ ¼ ðw92 x9Þðy92 z9Þ
Deni ¼ PðBABAÞ þ PðABBAÞ ¼ ðw9þ x922w9x9Þðy9þ z92 2y9z9Þ:

For SNP data these values can be computed using either
population or sample allele frequencies. Durand et al.
(2011) showed that replacing population allele frequencies
(w9, y9, etc.) by the sample allele frequencies yields unbiased
estimates of Numi, Deni. Thus if w, x, y, z are sample allele
frequencies we define

N̂umi ¼ ðw2 xÞðy2 zÞ
D̂eni ¼ ðwþ x2 2wxÞðy þ z2 2yzÞ

and, in a similar spirit to our normalized f3-statistic f ⋆3 we
define the D-statistic D(W, X; Y, Z) as

D ¼
P

iN̂umiP
iD̂eni

;

summing both the numerator and denominator over many
SNPs and only then taking the ratio. If we ascertain in an
outgroup, then if (W, X) and (Y, Z) are clades in the pop-
ulation tree, it is easy to see that E[Numi] = 0. We can
compute a standard error for D using the weighted block
jackknife (Busing et al. 1999). The number of standard
errors that this quantity is from zero forms a Z-score, which
is approximately normally distributed and thus yields a for-
mal test for whether (W, X) indeed forms a clade.

More generally, if the relationship of the analyzed pop-
ulations is as shown in Figure 3B or Figure 3C and we ascer-
tain in an outgroup or in {W, X} then D should be zero up to
statistical noise. The reason is that if U is the ancestral pop-
ulation to Y, Z and u9, y9, z9 are population allele frequencies
in U, Y, Z, then E[y9 2 z9|u9] = E[y9|u9]2 E[z9|u9] = 0. Here
there is no need to assume polymorphism at the root of the
tree, as for a SNP to make a nonzero contribution to D we
must have polymorphism at both {Y, Z} and {W, X}. If the

tree assumption is correct, drift between Y, Z and betweenW,
X are independent so that E[Numi] = 0. Thus testing whether
D is consistent with zero constitutes a test for whether (W, X)
and (Y, Z) are clades in the population tree.

As mentioned earlier, D-statistics are very similar to the
four-population test statistics introduced in Reich et al.
(2009). The primary difference is in the computation of
the denominator of D. For statistical estimation, and testing
for “treeness,” the D-statistics are preferable, as the denom-
inator of D, the total number of ABBA and BABA events, is
uninformative for whether a tree phylogeny is supported by
the data, while D has a natural interpretation: the extent of
the deviation on a normalized scale from 21 to 1.

As an example, let us assume that two human Eurasian
populations A, B are a clade with respect to West Africans
(Yoruba). Assume the phylogeny shown in Figure 3D and
that we ascertain in an outgroup to A, B. Then

E½DðChimp;Yoruba;A;BÞ� ¼ 0:

F4-ratio estimation

F4-ratio estimation, previously referred to as f4-ancestry es-
timation in Reich et al. (2009), is a method for estimating
ancestry proportions in an admixed population, under the
assumption that we have a correct historical model.

Consider the phylogeny of Figure 4. The population X is an
admixture of populations B9 and C9 (possibly with subsequent
drift). We have genetic data from populations A, B, X, C, O.

Since F4(A, O; C9, C) = 0 it follows that

F4ðA;O;X;CÞ ¼ aF4ðA;O;B9;CÞ ¼ aF4ðA;O;B;CÞ: (4)

Thus an estimate of a is obtained as

â ¼ f4ðA;O;X;CÞ
f4ðA;O;B;CÞ; (5)

where the estimates in both numerator and denominator are
obtained by summing over many SNPs.

Figure 3 D-statistics provide formal tests for whether an
unrooted phylogenetic tree applies to the data, assuming
that the analyzed SNPs are ascertained as polymorphic in
a population that is an outgroup to both populations (Y, Z)
that make up one of the clades. (A) A simple unrooted
phylogeny, (B) phylogenies in which (Y, Z) and (W, X) are
clades that diverge from a common root, (C) phylogenies
in which (Y, Z) are a clade and W and X are increasingly
distant outgroups, and (D) a phylogeny to test if human
Eurasian populations (A, B) form a clade with respect to
sub-Saharan Africans (Yoruba).
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As we can obtain unbiased F4-statistics by sampling a sin-
gle allele from each population, we can apply this test to
sequence data, where we pick a single allele, from a high-
quality read, for all relevant populations at each polymor-
phic site. In practice this must be done with care as both
sequencing error that is correlated between samples and
systematic misalignment of reads to a reference sequence
can distort the statistics.

Examples of F4-ratio estimation

Reich et al. (2009) provide evidence that most human South
Asian populations can be modeled as a mixture of Ancestral
North Indians (ANI) and Ancestral South Indians (ASI) and
that if we set, using the labeling above,

Label Population
A Adygei
B CEU (HapMap European Americans)
X Indian (many populations)
C Onge (indigenous Andamanese)
O Papuan (Dai and HapMap YRI West Africans also work)

we get estimates of the mixing coefficients that are robust,
have quite small standard errors, and are in conformity with
other estimation methods. See Reich et al. (2009, Supple-
mentary S5) for further details.

As another example, in Reich et al. (2010) and Green et al.
(2010) evidence was given that there was gene flow (introgres-
sion) from Neandertals into non-Africans. Further, a sister
group to Neandertals, “Denisovans” represented by a fossil from
Denisova cave, Siberia, shows no evidence of having contrib-
uted genes to present-day humans in mainland Eurasia (Reich
et al. 2010, 2011). The phylogeny is that of Figure 4 if we set:

Label Population
A Denisova
B Neandertal
X French (or almost any population from Eurasia)
C Yoruba
O Chimpanzee

Here B9 is the population of Neandertals that admixed,
which forms a clade with the Neandertals from Vindija that

were sequenced by Green et al. (2010). So for this example,
we obtain an estimate of a, the proportion of Neandertal
gene flow into French as 0.022 6 0.007 (see Reich et al.
2010, SI8, for more detail).

Simulations to test the accuracy of f- and
D-statistic-based historical inferences

We carried out coalescent simulations of five populations
related according to Figure 4, using ms (Hudson 2002). De-
tailed information about the simulations is given in Appendix D.

Table 1 shows that using the three-population test, D-
statistics, and F4-ratio estimation, we reliably detect mixture
events and obtain accurate estimates of mixture proportions,
even for widely varied demographic histories and strategies
for discovering polymorphisms.

The simulations also document important features of our
methods. As mentioned earlier, the only case where the f3-
statistic for a population that is truly admixed fails to be
negative is when the population has experienced a high de-
gree of population-specific genetic drift after the admixture
occurred. Further, the D-statistics show a substantial devia-
tion from 0 only when an admixture event occurred in the
history of the four populations contributing to the statistic.
Finally, the estimates of admixture proportions using F4-
ratio estimation are accurate for all ascertainment strategies
and demographies.

Effect of ascertainment process on f- and D-statistics

So far, we have assumed that we have sequence data from
all populations and ascertainment is not an issue. However,
the ascertainment of polymorphisms (for example, enriching
the set of analyzed SNPs for ancestry informative markers)
can modulate the magnitudes of F3, F4, and D. Empirically,
we observe that in commercial SNP arrays developed for
genome-wide association studies (like Affymetrix 6.0 and
Illumina 610-Quad), ascertainment does indeed affect the
observed magnitudes of these statistics, but importantly,
does not cause them to be biased away from zero if this is
their expected value in the absence of complex ascertain-
ment (e.g., for complete genome sequencing data). This is
key to the robustness of our tests for admixture: since our
tests are largely based on evaluating whether particular f- or
D-statistics are consistent with zero, and SNP ascertainment
almost never causes a deviation from zero, the ascertain-
ment process does not appear to be contributing to spuri-
ously significant signals of admixture. We have verified this
through two lines of analysis. First, we carried out simula-
tions showing that tests of admixture (as well as F4-ratio
estimation) perfomed using these methods are robust to
very different SNP ascertainment strategies (Table 1). Sec-
ond, we report analyses of data from a new SNP array with
known ascertainment that we designed specifically for stud-
ies of population history. Even when we use radically differ-
ent ascertainment schemes, and even when we use widely
used commercial SNP arrays, inferences about history are
indistinguishable (Table 9).

Figure 4 A phylogeny explaining f4-ratio estimation.
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Admixture graph fitting: We next describe qpGraph,
our tool for building a model of population relationships
from f-statistics. We first remark that given n populations
P1, P2, . . ., Pn, then

1. the f-statistics (f2, f3 and f4) span a linear space VF of
dimension

� n
2

�
,

2. all f-statistics can be found as linear sums of statistics
f2ðPi; PjÞ1# i, j, and

3. fix a population (say P1). Then all f-statistics can be found
as linear sums of statistics f3ðP1; Pi; PjÞ; f2ðP1; PiÞ1, i, j.

These statements are true, both for the theoretical F-values,
and for our f-statistics, at least when we have no missing
data, so that for all populations our f-statistics are computed
on the same set of markers.

Requirements 2 and 3, above, describe bases for the
vector space VF. We usually find the basis of 3 to be the most
convenient computationally. More detail can be found in
Reich et al. (2009, Supplement paragraph 2.3).

Thus choose a basis. From genotype data we can
calculate as follows:

1. f-statistics on the basis. Call the resulting
� n
2

�
long vector f.

2. An estimated error covariance Q of f using the weighted
block jackknife (Busing et al. 1999).

Now, given a graph topology, as well as graph parameters
(edge values and admixture weights), we can calculate g,
the expected value of f.

A natural score function is

S1ðgÞ ¼ 2
1
2
ðg2fÞ9Q21ðg2 fÞ; (6)

an approximate log-likelihood. Note that nonindependence
of the SNPs is taken into account by the jackknife. A
technical problem is that for n large our estimate Q of the
error covariance is not stable. In particular, the smallest
eigenvalue of Q may be unreasonably small. This is a com-
mon issue in multivariate statistics. Our program qpGraph
allows a least-squares option with a score function

S2ðgÞ ¼ 2
1
2

X
i

ðgi2f iÞ2
ðQii þ lÞ; (7)

where l is a small constant introduced to avoid numerical
problems. The score S2 is not basis independent, but in prac-
tice seems robust.

Maximizing S1 or S2 is straightforward, at least if n is
moderate, which is the only case in which we recommend
using qpGraph. We note that given the admixture weights,
both score functions S1, S2 are quadratic in the edge
lengths, and thus can be maximized using linear algebra.
This reduces the maximization to the choice of admixture
weights. We use the commercial routine nag_opt_simplex
from the Numerical Algorithms Group (http://www.nag.
com/numeric/cl/manual/pdf/e04/e04ccc.pdf), which has
an efficient implementation of least squares. Users of
qpGraph will need to have access to nag, or substitute an
equivalent subroutine.

Table 1 Behavior of f- and D-statistics for a simulated scenarios of admixture

Scenario Fst(C, B) Fst(O, B) D(A, B; C, O) D(A, X; C, O) f3(B; A, C) f3(X; A, C) f4-ratio

Baseline 0.10 0.14 0.00 20.08 0.002 20.005 0.47

Vary sample size
n = 2 from each population 0.10 0.14 0.00 20.08 0.002 20.005 0.47

Vary SNP ascertainment
Use all sites (full sequencing data) 0.10 0.13 0.00 20.11 0.001 20.002 0.47
Polymorphic in a single B individual 0.10 0.16 20.01 20.06 0.003 20.006 0.47
Polymorphic in a single C individual 0.10 0.16 0.00 20.13 0.003 20.007 0.46
Polymorphic in a single X individual 0.11 0.16 0.00 20.11 0.003 20.007 0.49
Polymorphic in two individuals: B and O 0.10 0.16 20.01 20.08 0.002 20.005 0.46

Vary demography
NA = 2,000 (vs. 50,000) pop A bottleneck 0.10 0.14 0.00 20.08 0.002 20.005 0.48
NB = 2,000 (vs. 12,000) pop B bottleneck 0.14 0.17 0.00 20.08 0.011 20.004 0.48
NC = 1,000 (vs. 25,000) pop C bottleneck 0.16 0.14 0.00 20.08 0.002 20.005 0.46
NX = 500 (vs. 10,000) pop X bottleneck 0.10 0.14 0.00 20.08 0.002 0.004 0.47
NABB9 = 3,000 (vs. 7,000) ABB9 bottleneck 0.14 0.17 0.00 20.09 0.002 20.007 0.47

We carried out simulations for populations related according to Figure 4 using ms (Hudson 2002) with the command: ./ms 110 1000000 -t 1 -I 5 22 22 22 22 22 -n 1 8.0 -n 2
2.5 -n 3 5.0 -n 4 1.2 -n 5 1.0 -es 0.001 5 0.47 -en 0.001001 6 1.0 -ej 0.0060 5 4 -ej 0.007 6 2 -en 0.007001 2 0.33 -ej 0.01 4 3 -en 0.01001 3 0.7 -ej 0.03 3 2 -en 0.030001
2 0.25 -ej 0.06 2 1 -en 0.060001 1 1.0. We chose parameters to produce pairwise FST similar to that for A = Adygei, B = French, X = Uygur, C = Han and O = Yoruba. The
baseline simulations correspond to n = 20 samples from each population; SNPs ascertained as heterozygous in a single individual from the outgroup O; and a mixture
proportion of a = 0.47. Times are in generations with the subscript indicating the populations derived from the split: tadmix = 40, tBB9 = 240, tABB9 = 400, tCC9 = 280, tABB9 =
400, tABB9CC9 =1,200, tO = 2,400. The diploid population sizes are indicated by a subscript corresponding to the population to which they are ancestral in Figure 4 and are: NA

= 50,000, NB = 12,000, NB9 = 10,000, NBB9 = 12,000, NC9 = 25,000, NX = NC9= 10,000, NCC9 = 3,300, NO = 80,000, NABB9 = 7,000, NABB9CC9 = 2,500, NABB9CC9O = 10,000. All
simulations involved 106 replicates except for the run involving 2 samples (a single heterozygous individual) from each population, where we increased this to 107 replicates
to accommodate the noisier results.
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Interpretation and limitations of qpGraph

1. A major use of qpGraph is to show that a hypothesized
phylogeny must be incorrect. This generalizes our D-
statistic test, which is testing a simple tree on four
populations.

2. After fitting parameters, study of which f-statistics fit
poorly can lead to insights as to how the model must
be wrong.

3. Overfitting can be a problem, especially if we hypothesize
many admixing events, but only have data for a few
populations.

Simulations validate the performance of qpGraph

We show in Figure 5 an example in which we simulated
a demography with five observed populations Out, A, B, C,
and X and one admixture event. We simulated 50,000 un-
linked SNPs, ascertained as heterozygous in a single diploid
individual from the outgroup Out. Sample sizes were 50 in
all populations and the historical population sizes were all
taken to be 10,000. We show that we can accurately recover
the drift lengths and admixture proportions using qpGraph.

Rolloff: Our fifth technique, rolloff, studies the decay of
admixture linkage disequilibrium with distance to infer the
date of admixture. Importantly, we do not consider multi-
marker haplotypes, but instead study the joint allelic distri-
bution at pairs of markers, where the markers are stratified
into bins by genetic distance. This method was first intro-
duced in Moorjani et al. (2011) where it was used to infer
the date of sub-Saharan African gene flow into southern
Europeans, Levantines, and Jews.

Suppose we have an admixed population and for sim-
plicity assume that the population is homogeneous (which
usually implies that the admixture is not very recent).

Let us also assume that admixture occurred over a very
short time span (pulse admixture model), and since then our
admixed (target) population has not experienced further
large-scale immigration from the source populations. Call
the two admixing (ancestral) populations A, B. Consider two
alleles on a chromosome in an admixed individual at loci
that are a distance d apart. Then n generations after admix-
ture, with probability e2nd the two alleles belonged, at the
admixing time, to a single chromosome.

Suppose we have a weight function w at each SNP that is
positive when the variant allele has a higher frequency in
population A than in B and negative in the reverse situation.
For each SNP s, let w(s) be the weight for SNP s. For every
pair of SNPs s1, s2, we compute an LD-based score z(s1, s2)
which is positive if the two variant alleles are in linkage
disequilibrium; that is, they appear on the same chromo-
some more often than would be expected assuming inde-
pendence. For diploid unphased data, which is what we
have here, we simply let v1, v2 be the vectors of genotype
counts of the variant allele, dropping any samples with miss-
ing data. Let m be the number of samples in which neither

s1 or s2 has missing data. Let r be the Pearson correlation
between v1, v2. We apply a small refinement, insisting thatm$

4 and clipping r to the interval [20.9, 0.9]. Then we use
Fisher’s z-transformation,

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 3

p

2
log

�
1þ r

12 r

�
;

which is known to improve the tail behavior of z. In practice
this refinement makes little difference to our results.

Now we form a correlation between our z-scores and the
weight function. Explicitly, for a bin-width x, define the “bin”
S(d), d = x, 2x, 3x,. . . by the set of SNP pairs (s1, s2), where

SðdÞ ¼ fðs1; s2Þjd2 x, u2 2u1# dg;

where ui is the genetic position of SNP si.

Figure 5 Admixture graph fitting: We show an admixture graph fitted by
qpGraph for simulated data. We simulated 50,000 unlinked SNPs ascer-
tained as heterozygous in a single diploid individual from the outgroup
Out. Sample sizes were 50 in all populations and the historical population
sizes were all taken to be 10,000. The true values of parameters are
before the colon and the estimated values afterward. Mixture proportions
are given as percentages, and branch lengths are given in units of Fst
(before the colon) and f2 values (after). F2 and Fst are multiplied by 1000.
The fitted admixture weights are exact, up to the resolution shown, while
the match of branch lengths to the truth is rather approximate.
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Then we define A(d) to be the correlation coefficient

AðdÞ ¼
P

s1;s22SðdÞwðs1Þwðs2Þzðs1; s2ÞhP
s1;s22SðdÞðwðs1Þwðs2ÞÞ2

P
s1;s22SðdÞðzðs1; s2ÞÞ2

i1=2:

(8)

Here in both numerator and denominator we sum over pairs
of SNPs approximately d units apart (counting SNP pairs
into discrete bins). In this study, we set a bin size of 0.1
cM in all our examples. In practice, different choices of bin
sizes only qualitatively affect the results (Moorjani et al.
2011).

Having computed A(d) over a suitable distance range, we fit

AðdÞ � A0e2nd (9)

by least squares and interpret n as an admixture date in
generations. Equation 9 follows because a recombination
event on a chromosome since admixture decorrelates the
alleles at the two SNPs being considered, and e2nd is the
probability that no such event occurred. (Implicitly, we as-
sume here that the number of recombinations over a genetic
interval of d in n generations is Poisson distributed with
mean nd. Because of crossover interference, this is not exact,
but it is an excellent approximation for the d and n relevant
here.)

By fitting a single exponential distribution to the output,
we have assumed a single pulse model of admixture.
However, in the case of continuous migration we can expect
the recovered date to lie within the time period spanned by
the start and end of the admixture events. We further
discuss rolloff date estimates in the context of continuous
migration in applications to real data (below). We estimate
standard errors using a weighted block jackknife (Busing
et al. 1999) where we drop one chromosome in each run.

Choice of weight function

In many applications, we have access to two modern
populations A, B, which we can regard as surrogates for the
true admixing populations, and in this context we can simply
use the difference of empirical frequencies of the variant
allele as our weight. For example, to study the admixture
in African Americans, very good surrogates for the ancestral
populations are Yoruba and North Europeans. However,
a strength of rolloff is that it provides unbiased dates even
without access to accurate surrogates for the ancestral pop-
ulations. That is, rolloff is robust to use of highly divergent
populations as surrogates. In cases when the ancestrals are
no longer extant or data from the ancestrals are not available,
but we have access to multiple admixed populations with
differing admixture proportions (as for instance happens in
India (Reich et al. 2009), we can use the “SNP loadings”
generated from principal component analysis (PCA) as ap-
propriate weights. This also gives unbiased dates for the ad-
mixture events.

Simulations to test rolloff

We ran three sets of simulations. The goals of these
simulations were

1. to access the accuracy of the estimated dates, in cases for
which data from accurate ancestral populations are not
available,

2. to investigate the bias seen in Moorjani et al. (2011),
3. to test the effect of genetic drift that occurred after

admixture.

We describe the results of each of these investigations in turn.

1. First, we report simulation results that test the robustness of
inferences of dates of admixture when data from accurate
ancestral populations are not available. We simulated data
for 20 individuals using phased data from HapMap Euro-
pean Americans (CEU) and HapMap West Africans (YRI),
where the mixture date was set to 100 generations before
present and the proportion of European ancestry was 20%.
We ran rolloff using pairs of reference populations that
were increasingly divergent from the true ancestral popula-
tions used in the simulation. The results are shown in Table
2 and are better than those of the rather similar simulations
in Moorjani et al. (2011). Here we use more SNPs (378K
instead of 83K) and 20 admixed individuals rather than 10.
The improved results likely reflect the fact that we are an-
alyzing larger numbers of admixed individuals and SNPs in
these simulations, which improves the accuracy of rolloff
inferences by reducing sampling noise in the calculation
of the Z-score. In analyzing real data, we have found that
the accuracy of rolloff results improves rapidly with sample
size; this feature of rolloff contrasts markedly with allele
frequency correlation statistics like f-statistics where the ac-
curacy of estimation increases only marginally as sample
sizes increase above five individuals per population.

2. Second, we report simulation results investigating the bias
seen in Moorjani et al. (2011). Moorjani et al. (2011)
showed that low sample size and admixture proportion
can cause a bias in the estimated dates. In our new simu-
lations, we generated haplotypes for 100 individuals using
phased data from HapMap CEU and HapMap YRI, where
the mixture date was between 50 and 800 generations ago
(Figure 6) and the proportion of European ancestry was
20%.We ran rolloff with two sets of reference populations:

Table 2 Performance of rolloff

Reference populations Fst(1) Fst(2)
Estimated
date 6 SE

CEU, YRI 0.000 0.000 107 6 4
Basque, Mandenka 0.009 0.009 106 6 4
Druze, LWK(HapMap) 0.017 0.008 105 6 4
Gujarati(HapMap), Maasai 0.034 0.026 107 6 4

We simulated data for 20 admixed individuals with 20%/80% CEU and YRI
admixture that occurred 100 generations ago. We ran rolloff using “reference
populations” shown above that were increasing divergent from CEU (Fst(1)) and
YRI (Fst(2)). Estimated dates are shown in generations.
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(1) the true ancestral populations (CEU and YRI) and (2)
the divergent populations Gujarati (Fst(CEU, Gujarati) =
0.03 and Maasai (Fst(YRI, Maasai) = 0.03). We show the
results for one run and the mean date from each group of
10 runs in Figures 6, A and B. These results show no
important bias, and the date estimates, even in the more
difficult case where we used Gujarati and Maasai as as-
sumed ancestrals, are tightly clustered near the “truth” up
to 500 generations (around 15,000 years). This shows that
the bias is removed with larger sample sizes.

3. The simulations reported above sample haplotypes without
replacement, effectively removing the impact of genetic
drift after admixture. To study the effect of drift post-dating
admixture, we performed simulations using the MaCS co-
alescent simulator (Chen et al. 2009). We simulated data
for one chromosome (100 Mb) for three populations (say,
A, B, and C). We set the effective population size (Ne) for
all populations to 12,500, the mutation rate to 2 · 1028/
bp/generation, and the recombination rate to 1.0 · 1028/
bp/generation. Consider the phylogeny in Figure 1C. G is
an admixed population that has 80%/20% ancestry from E
and F, with an admixture time (t) set to be 30, 100, or 200
generations before the present. Populations A, B, C are
formed by drift from E, F, G, respectively. Fst(A, B) =
0.16 (similar to that of Fst(YRI, CEU)). We performed roll-
off analysis with C as the target (n = 30) and A and B as
the reference populations. We estimated the standard error
using a weighted block jackknife where the block size was
set to 10 cM. The estimated dates of admixture were 28 6
4, 97 6 10, and 212 6 19 corresponding the true admix-
ture dates of 30, 100, and 200 generations, respectively.
This shows that the estimated dates are not measurably
affected by genetic drift post-dating the admixture event.

A SNP array designed for population genetics

We conclude our presentation of our methods by describing
a new experimental resource and publicly available data set

that we have generated for facilitating studies of human
population history and that we use in many of the applica-
tions that follow.

For studies that aim to fit models of human history to
genetic data, it is highly desirable to have an exact record of
how polymorphisms were chosen. Unfortunately, conventional
SNP arrays developed for medical genetics have a complex
ascertainment process that is nearly impossible to reconstruct
and model (but see Wollstein et al. 2010). While the methods
reported in our study are robust in theory and also in simula-
tion to a range of strategies for how polymorphisms were
ascertained (Table 1), we nevertheless wished to empirically
validate our findings on a data set without such uncertainties.

Here, we report on a novel SNP array that we developed
that is now released as the Affymetrix Human Origins array.
This includes 13 panels of SNPs, each ascertained in a rigor-
ously documented way that is described in File S1, allowing
users to choose the one most useful for a particular analysis.
The first 12 are based on a strategy used in Keinan et al.
(2007), discovering SNPs as heterozygotes in a single individ-
ual of known ancestry for whom sequence data are available
(from Green et al. 2010; Reich et al. 2010) and then confirm-
ing the site as heterozygous with a different assay. After the
validation steps described in File S1 (which serves as technical
documentation for the new SNP array), we had the following
number of SNPs from each panel: San, 163,313; Yoruba,
124,115; French, 111,970; Han, 78,253; Papuan (two pan-
els), 48,531 and 12,117; Cambodian, 16,987; Bougainville,
14,988; Sardinian, 12,922; Mbuti, 12,162; Mongolian,
10,757; Karitiana, 2,634. The 13th ascertainment consisted
of 151,435 SNPs where a randomly chosen San allele was
derived (different from the reference Chimpanzee allele)
and a randomly chosen Denisova allele (Reich et al. 2010)
was ancestral (same as chimpanzee). The array was designed
so that all sites from panels 1–13 had data from chimpanzee
as well as from Vindija Neandertals and Denisova, but the
values of the Neandertal and Denisova alleles were not used
for ascertainment (except for the 13th ascertainment).

Figure 6 rolloff simulation results: We simu-
lated data for 100 individuals of 20% Euro-
pean and 80% African ancestry, where the
mixture occurred between 50 and 800 gener-
ations ago. Phased data from HapMap3 CEU
and YRI populations was used for the simula-
tions. We performed rolloff analysis using CEU
and YRI (A) and using Gujarati and Maasai (B)
as reference populations. We plot the true date
of mixture (dotted line) against the estimated
date computed by rolloff (points in blue A and
green B). Standard errors were calculated using
the weighted block jackknife. To test the bias
in the estimated dates, we repeated each sim-
ulation 10 times. The estimated date based on
the 10 simulations is shown in red.
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Throughout the design process, we avoided sources of bias
that could cause inferences to be affected by genetic data
from human samples other than the discovery individual. Our
identification of candidate SNPs was carried out entirely
using sequencing reads mapped to the chimpanzee genome
(PanTro2), so that we were not biased by the ancestry of the
human reference sequence. In addition, we designed assays
blinded to prior information on the positions of polymor-
phisms and did not take advantage of prior work that Affy-
metrix had done to optimize assays for SNPs already reported
in databases. After initial testing of 1,353,671 SNPs on two
screening arrays, we filtered to a final set of 542,399 SNPs
that passed all quality-control criteria. We also added a set of
84,044 “compatibility SNPs” that were chosen to have a high
overlap with SNPs previously included on standard Affyme-
trix and Illumina arrays, to facilitate coanalysis with data
collected on other SNP arrays. The final array contains
629,443 unique and validated SNPs, and its technical details
are described in File S1.

We successfully genotyped the array in 934 samples from
the HGDP and made the data publicly available on August 12,
2011, at ftp://ftp.cephb.fr/hgdp_supp10/. The present study
analyzes a curated version of this data set in which we have
used principal component analysis (Patterson et al. 2006) to
remove samples that are outliers relative to others from their
same populations; 828 samples remained after this proce-
dure. This curated data set is available for download from
the Reich laboratory website (http://genetics.med.harvard.
edu/reich/Reich_Lab/Datasets.html).

Results and Discussion

Initial application to data: South African Xhosa

The Xhosa are a South African population whose ancestors
are mostly Bantu speakers from the Nguni group, although
they also have some Bushman ancestors (Patterson et al.
2010). We first ran our three-population test with San
(HGDP) (Cann et al. 2002) and Yoruba (HapMap) (Interna-
tional Hapmap 3 Consortium 2010) as source populations
and 20 samples of Xhosa as the target population, a sample
set already described in Patterson et al. (2010). We obtain an
f3-statistic of 20.009 with a Z-score of 233.5, as computed
with the weighted block jackknife (Busing et al. 1999).

Note that the admixing Bantu-speaking population is
known to have been Nguni and certainly was not Nigerian
Yoruba. However, as explained earlier, this is not crucial, if
the actual admixing population is related genetically (Bantu
speakers have an ancient origin in West Africa). If a is the
admixing proportion of San here, we obtain using our
bounding technique with Han Chinese as an outgroup,

0:19#a# 0:55:

Although this interval is wide, it does show that the Bushmen
have made a major contribution to Xhosa genomes.

Xhosa: rolloff

We then applied our rolloff technique, using San and Yoruba
as the reference populations, obtaining a very clear expo-
nential admixture LD curve (Figure 7A). We estimate a date
of 25.36 1.1 generations, yielding a date of about 7406 30
years before present (YBP) assuming 29 years per genera-
tion (we also assume this generation time in the analyses
that follow) (Fenner 2005).

Archeological and linguistic evidence show that the Nguni
are a population that migrated south from the Great Lakes
area of East Africa. For the dating of the migration we quote:

From an archaeological perspective, the first appearance of
Nguni speakers can be recognized by a break in ceramic
style; the Nguni style is quite different from the Early Iron
Age sequence in the area. This break is dated to about AD
1200 (Huffman 2010).

More detail on Nguni migrations and archeology can be
found in Huffman (2004).

Our date is slightly more recent than the dates obtained from
the archeology, but very reasonable, since gene flow from the
Bushmen into the Nguni plausibly continued after initial contact.

Admixture of the Uygur

The Uygur are known to be historically admixed, but we
wanted to try our methods on them. We analyzed a small
sample (nine individuals from HGDP) (Cann et al. 2002). Our
three-population test using French and Japanese as sources
and Uygur as target gives a Z-score of 276.1, a remarkably
significant value. Exploring this a little further, we get the
results shown in Table 3.

Using Han instead of Japanese is historically more
plausible and statistically not significantly different. Our
bounding methods suggest that the West Eurasian admix-
ture a is in the range

0:452#a# 0:525:

We used French and Han for the source populations here.
Russian as a source is significantly weaker than French. We
believe that the likely reason is that our Russian samples
have more gene flow from East Asia than the French
samples, and this weakens the signal. We confirm this by
finding that D(Yoruba, Han; French, Russian) = 0.192, Z =
26.3. The fact that we obtain very similar statistics when we
substitute a very different sub-Saharan African population
(HGDP San) for Yoruba (D= 0.189, Z= 23.9) indicates that
the gene flow does not involve an African population, and
instead the findings reflect gene flow between relatives of
the Han and Russians.

Uygur: rolloff

Applying rolloff we again get a very clear decay curve
(Figure 7B). We estimate a date of 790 6 60 YBP.

Uygur genetics has been analyzed in two articles by Xu,
Jin, and colleagues (Xu et al. 2008; Xu and Jin 2008), using
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Figure 7 rolloff analysis of real data: We applied rolloff to compute admixture LD between all pairs of markers in each admixed population. We plot the
correlation as a function of genetic distance for (A) Xhosa, (B) Uygur, (C) Spain, (D) Greece, and (E) CEU and French. The title of each includes
information about the reference populations that were used for the analysis. We fit an exponential distribution to the output of rolloff to estimate the
date of the mixture (estimated dates 6SE shown in years). We do not show inter-SNP intervals of ,0.5 cM as we have found that at this distance
admixture LD begins to be confounded by background LD.
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several sets of samples, one of which is the same set of
HGDP samples we analyze here. Xu and Jin, primarily using
ancestry informative markers (AIMs), estimate West Eur-
asian admixture proportions of �50%, in agreement with
our analysis, but also an admixture date estimate using
STRUCTURE 2.0 (Falush et al. 2003) of more than 100
generations that is substantially older than ours.

Why are the admixture dates that we obtain so much more
recent than those suggested by Xu and Jin? We suspect that
STRUCTURE 2.0 systematically overestimates the admixture
date, when the reference populations (source populations for
the admixture) are not close to the true populations, so that
the assumed distribution of haplotypes is in error. It has been
suggested (Mackerras 1972) that the West Eurasian compo-
nent was Tocharian, an ancient Indo-European-speaking pop-
ulation, whose genetics are essentially unknown. Xu and Jin
used 60 European American (HapMap CEU) samples to model
the European component in the Uygur, and if the admixture is
indeed related to the Tocharians it is plausible that they were
substantially genetically drifted relative to the CEU, providing
a potential explanation for the discrepancy.

Our date of �800 years before present is not in confor-
mity with Mackerras(1972), who places the admixture in
the eighth century of the common era. Our date though is
rather precisely in accordance with the rise of the Mongols
under Genghis Khan (1206–1368), a turbulent time in the
region that the Uygur inhabit. Could there be multiple ad-
mixture events and we are primarily dating the most recent?

Northern European gene flow into Spain

While investigating the genetic history of Spain, we discovered
an interesting signal of admixture involving Sardinia and
northern Europe. We made a data set by merging genotypes
from samples from the population reference sample (POPRES)
(Nelson et al. 2008), HGDP (Li et al. 2008), and HapMap
Phase 3 (International Hapmap 3 Consortium 2010). We
ran our three-population test on triples of populations using
Spain as a target (admixed population). We had 137 Spanish
individuals in our sample. With Sardinian fixed as a source,
we find a clear signal using almost any population from north-
ern Europe. Table 4 gives the top f3-statistics with correspond-
ing Z-scores. The high score for the Russian and Adygei is
likely to be partially confounded with the effect discussed in
the section on flow from Asia into Europe (below).

A geographical structure is clear, with the largest magni-
tude f3-statistics seen for source populations that are north-
ern European or Slavic. The Z-score is unsurprisingly more
significant for populations with a larger sample size. (Note

that positive Z-scores are not meaningful here.) We were
concerned that the Slavic scores might be confounded by
a central Asian component and therefore decided to concen-
trate our attention on Ireland as a surrogate for the ancestral
population as they have a substantial sample size (n = 62).

Spain: rolloff

We applied rolloff to Spain using Ireland and Sardinians as
the reference populations. In Figure 7C we show a rolloff
curve. The rolloff of signed LD out to about 2 cM is clear and
gives an admixture age of 3600 6 400 YBP (the standard
error was computed using a block jackknife with a block size
of 5 cM).

We have detected here a signal of gene flow from
populations related to present-day northern Europeans into
Spain around 2000 B.C. We discuss a likely interpretation.
At this time there was a characteristic pottery termed “bell-
beakers” believed to correspond to a population spread across
Iberia and northern Europe. We hypothesize that we are seeing
here a genetic signal of the “Bell-Beaker culture” (Harrison

Table 3 f3(Uygur; A, B)

Source populations f3 Z

French, Japanese 20.0255 276.109
French, Han 20.0254 277.185
Russian, Japanese 20.0216 268.232
Russian, Han 20.0217 268.486

Table 4 Three-population test results showing northern European
gene flow into Spain

X (data set) Sample size f3(Sardinian, X; Spain) Z-score

Russian (H) 25 20.0025 222.90
Norway 3 20.0021 29.49
Ireland 62 20.0020 224.31
Poland 22 20.0019 218.88
Sweden 11 20.0018 213.21
Orcadian (H) 15 20.0018 214.59
Scotland 5 20.0017 210.01
Russia 6 20.0016 29.82
UK 388 20.0015 228.21
CEU (HapMap) 113 20.0015 221.79
Netherlands 17 20.0014 212.45
Germany 75 20.0013 219.36
Czech 11 20.0012 29.33
Hungary 19 20.0012 211.98
Belgium 43 20.0010 213.76
Adygei (H) 17 20.0010 27.44
Austria 14 20.0009 27.89
Bosnia 9 20.0008 25.68
Croatia 8 20.0007 25.33
Swiss-German 84 20.0007 211.67
French (H) 28 20.0005 26.33
Swiss-French 760 20.0005 211.77
Switzerland 168 20.0005 29.60
France 92 20.0004 28.07
Romania 14 20.0004 23.62
Serbia 3 20.0004 21.75
Basque (H) 24 20.0001 21.08
Portugal 134 0.0001 2.15
Macedonia 4 0.0003 1.60
Swiss-Italian 13 0.0004 3.11
Albania 3 0.0004 1.75
Greece 7 0.0006 4.27
Tuscan (H) 8 0.0009 5.88
Italian (H) 12 0.0009 7.86
Italy 225 0.0009 16.58
Cyprus 4 0.0014 6.56

Here the CEU are from HapMap3, and the HGDP populations are indicated by (H) in
parentheses.
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1980). Initial cultural flow of the Bell-Beakers appears to have
been from South to North, but the full story may be complex.
Indeed one hypothesis is that after an initial expansion from
Iberia there was a reverse flow back to Iberia (Czebreszuk
2003); this “reflux” model is broadly concordant with our ge-
netic results, and if this is the correct explanation it suggests
that this reverse flow may have been accompanied by substan-
tial population movement. (See Figures 8, 9, and 10.)

It is important to point out that we are not detecting gene
flow from Germanic peoples (Suevi, Vandals, Visigoths) into
Spain even though it is known that they migrated into Iberia
around 500 A.D. We believe such migration must have
occurred, based on the historical record (and perhaps is
biasing our admixture date to be too recent), but any
accompanying gene flow must have occurred at a lower
level than the much earlier flow we discuss.

An example of the outgroup case

Populations closely related geographically often mix genet-
ically, which leaves a clear signal in PCA plots. An example is
that isolation-by-distance effects dominate much of the ge-
netic patterning of Europe (Lao et al. 2008; Novembre et al.
2008). This can lead to significant f3-statistics and is related
to the outgroup case we have already discussed. Here is an
example. We find

f3ðGreece; Albania;YRIÞ ¼ 2 0:0047 Z ¼ 25:8:

[YRI are HapMap Yoruba Nigerians (International Hapmap
3 Consortium 2010).] Sub-Saharan populations (including
HGDP San) all give a Z , 24.0 when paired with Albania,
and even f3(Greece; Albania, Papuan) = 20.0033
(Z = 23.5). There may be a low level of sub-Saharan an-
cestry in our Greek samples, contributing to our signal, but
the consistent pattern of highly significant f3-statistics sug-
gests that we are primarily seeing an outgroup case.

We attempted to date Albanian-related gene flow into
Greece using rolloff [with HapMap Yoruba and Albanian as
the source populations (Figure 7D)]. However, the technique
evidently fails here. Formally we get a date of 62 6 77 gen-
erations, which is not significantly different from zero. It is

possible that the admixture is very old (.500 generations)
or the gene flow was continuous at a low level, and our basic
rolloff model does not work well here.

Admixture events detected in Human Genome Diversity
Panel populations

We ran our f3-statistic on all possible triples of populations
from the HGDP, genotyped on an Illumina 650Y array (Ta-
ble 5) (Rosenberg 2006; Li et al. 2008).

Here we show for each HGDP target population (column
3) the two-source populations with the most negative (most
significant) f3-statistic. We compute Z using the block jack-
knife as we did earlier and just show entries with Z , 24.
We bound a, the mixing coefficient involving the first source
population, as

aL ,a#aU;

where aL, aU are computed with HGDP San as outgroup
using the methodology of estimating mixing proportions
that we have already discussed.

In four cases indicated by an asterisk in the last column,
aL . aR, suggesting that our three-population phylogeny is
not feasible. We suspect (and in some cases the table itself
proves) that here the admixing (source) populations are
themselves admixed.

It is likely that there are other lines in our table where our
source populations are admixed, but that this has not been
detected by our rather coarse admixing bounds. In such
situations our bounds may be misleading.

Many entries are easily interpretable, for instance the
admixture of Uygur (Xu et al. 2008; Xu and Jin 2008) (which
we have already discussed), Hazara, Mozabite (Corander
and Marttinen 2006; Li et al. 2008), and Maya (Mao et al.
2007) are historically attested. The entry for Bantu-SouthAfrica
is likely detecting the same phenomenon that we already dis-
cussed in connection with the Xhosa.

However, there is much of additional interest here. Note,
for example, the entry for Tu, a people with a complex history
and clearly with both East Asian and West Eurasian ancestry.
It is important to realize that the finding here by no means

Figure 8 Bell-Beaker culture. On the left we show
some Beaker culture objects (from Bruchsal City Mu-
seum). On the right we show a map of Bell-Beaker
attested sites. We are grateful to Thomas Ihle for the
Bruchsal Museum photograph. It is licensed under
the Creative Commons Attribution-Share Alike 3.0
Unported license, and a GNU Free documentation
license. The map is public domain, licensed under a cre-
ative commons license, and adapted from a map in
Harrison (1980).
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implies that the target population is admixed from the two
given source populations. For example, in the second line, we
do not believe that Japanese, or modern Italians, have
contributed genes to the Hazara. Instead one should interpret
this line as meaning that an East Asian population related
genetically to a population ancestral to the Japanese has ad-
mixed with a West Eurasian population. As another example,
the most negative f3-statistic for the Maya arises when we use
as source populations Mozabite (north African) and Surui (an
indigenous population of South America in whom we have
detected no post-Colombian gene flow). The Mozabites are
themselves admixed, with sub-Saharan and West Eurasian
gene flow. We think that the Maya samples have three-way
admixture (European, West African, and Native American) and
the incorrect two-way admixture model is simply doing the
best it can (Table 5).

Insensitivity to the ascertainment of polymorphisms

In the Materials and Methods section we described a novel
SNP array with known ascertainment that we developed
specifically for population genetics (now available as the
Affymetrix Human Origins array). The array contains SNPs
ascertained in 13 different ways, 12 of which involved ascer-

taining a heterozygote in a single individual of known an-
cestry from the HGDP. We genotyped 934 unrelated
individuals from the HGDP (Cann et al. 2002) and here re-
port the value of f3-statistics on either SNPs ascertained as
a heterozygote in a single HGDP San individual, or at SNPs
ascertained in a single Han Chinese (Table 6). We show
Z-statistics for these two ascertainments in the last two col-
umns. The number of SNPs used is reduced relative to the
644,247 analyzed in Li et al. (2008); we had 124,440 SNPs
for the first ascertainment and 59,251 for the second ascer-
tainment, after removing SNPs at hypermutable CpG dinu-
cleotides. Thus, we expect standard errors on f3 to be larger
and the Z-scores to be smaller, as we observe. The correla-
tion coefficient between the Z-scores for the 2008 data
(Z2008) and our newly ascertained data are in each case
�0.99. We were concerned that this correlation coefficient
might be inflated by the very large Z-statistics for some pop-
ulations, such as the Hazara and Uygur, but the correlation
coefficients remain very large if we divide the table into two
halves and analyze separately the most significant and least
significant entries.

Ascertainment on a San heterozygote or a Han heterozy-
gote are very different phylogenetically, and the San are

Table 5 Three-population test in HGDP

Source1 Source2 Target f3 Z-score aL aU ZSan ZHan aL . aR

Japanese Italian Uygur 20.0259 274.79 0.484 0.573 246.08 242.31
Japanese Italian Hazara 20.0230 274.05 0.46 0.615 245.19 242.22
Yoruba Sardinian Mozabite 20.0211 256.95 0.288 0.304 240.65 231.16
Mozabite Surui Maya 20.0149 219.67 0.165 0.408 211.51 29.40
Yoruba San Bantu-SA 20.0107 231.39 0.677 0.839 224.67 216.70
Yoruba Sardinian Palestinian 20.0107 236.70 0.07 0.157 225.64 218.35
Yoruba Sardinian Bedouin 20.0104 233.73 0.07 0.185 223.37 214.24
Druze Yi Burusho 20.0090 227.62 0.558 0.731 215.94 213.59
Sardinian Karitiana Russian 20.0086 220.68 0.694 0.923 210.07 210.98
Druze Karitiana Pathan 20.0084 222.25 0.547 0.922 210.68 29.37
Han Orcadian Tu 20.0076 220.64 0.875 0.926 212.38 28.98
Mbuti Orcadian Makrani 20.0076 219.56 0.038 0.151 211.87 26.61
Han Orcadian Mongola 20.0075 219.21 0.879 0.916 212.63 28.16
Han French Xibo 20.0069 216.92 0.888 0.922 29.52 28.19
Druze Dai Sindhi 20.0067 221.99 0.467 0.877 212.25 28.40
Sardinian Karitiana French 20.0060 218.36 0.816 0.964 29.55 29.33
Dai Italian Cambodian 20.0060 213.16 0.846 0.928 26.78 26.43
Sardinian Karitiana Adygei 20.0057 213.03 0.635 0.956 25.60 25.59
Biaka Sardinian Bantu-Kenya 20.0054 213.42 0.405 0.834 29.65 27.15
Sardinian Karitiana Tuscan 20.0052 211.26 0.803 0.962 25.12 24.76
Sardinian Pima Italian 20.0045 212.48 0.84 0.97 27.48 25.66
Druze Karitiana Balochi 20.0044 211.58 0.483 0.96 26.96 26.30
Daur Dai Han 20.0026 213.20 0.664 0.26 27.89 26.31 *
Han Orcadian Han-NChina 20.0025 27.09 0.958 0.97 24.16 22.74
Han Yakut Daur 20.0025 29.05 0.6 0.588 26.91 25.78 *
Druze Karitiana Brahui 20.0025 26.43 0.47 0.964 22.23 22.41
Hezhen Dai Tujia 20.0021 26.97 0.452 0.39 24.36 23.94 *
Sardinian Karitiana Orcadian 20.0019 24.31 0.803 0.952 22.18 23.24
She Yakut Oroqen 20.0017 25.13 0.422 0.296 24.99 22.44 *

This table only lists the most significantly negative f3-statistics observed in HGDP samples. For each target population, we loop over all possible pairs of source populations,
and report the pair that produces the most negative f3-statistic. Here we only print results for target populations for which the most negative f3-statistic is significant after
correcting for multiple hypothesis testing; that is, the Z-score is more than 4 standard errors below zero. For the line with Bantu-SA as target, we used HGDP Han as an
outgroup. In four cases indicated by an asterisk in the last column, the lower bound on the admixture proportion aL is greater than the upper bound aR, suggesting that our
proposed three-population phylogeny is not feasible. We suspect that here the admixing (source) populations are themselves admixed. The 2 Z-score columns are with San
and Han het ascertainment respectively.
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unlikely to have been used in the construction of the 2008
SNP panel, so the consistency of findings for these distinct
ascertainment processes provides empirical evidence, con-
firming our expectations from theory and findings from sim-
ulation (Table 1) that the SNP ascertainment process does
not have a substantial effect on inferences of admixture from
the f3-statistics (Table 6).

Evidence for Northeast Asian-related genetic material
in Europe

We single out from Table 5 the score for French arising as an
admixture of Karitiana, an indigenous population from Brazil,
and Sardinians. The Z-score of 218.4 is unambiguously sta-
tistically significant. We do not of course think that there has
been substantial gene flow back into Europe from Amazonia.

The only plausible explanation we can see for our signal of
admixture into the French is that an ancient northern Eurasian
population contributed genetic material to both the ancestral
population of the Americas and the ancestral population of
northern Europe. This was quite surprising to us, and in the
remainder of the article this is the effect we discuss.

We are not dealing here with the outgroup case, where the
effect is simply caused by Sardinian-related gene flow into the
French. If that were the case, then we would expect to see that
(French, Sardinian) are approximately a clade with respect to
sub-Saharan Africa and Native Americans. There is some mod-
est level of sub-Saharan (probably West African related) gene
flow from Africa into Sardinia as is shown by analyses in
Moorjani et al. (2011), but no evidence for gene flow from
the San (Bushmen), which is indeed historically most unlikely.
But if we compute D(San, Karitiana, French, Sardinian) we
obtain a value of 20.0178 and a Z-score of 218.1. Thus we
have here gene flow “related” to South America into mainland
Europe to a greater extent than into Sardinia.

Further confirmation

We merged two SNP array data sets that included data from
Europeans and other relevant populations: POPRES (Nelson
et al. 2008) and HGDP (Li et al. 2008). We considered only
populations with a sample size of at least 10.

We considered European populations with Sardinian and
Karitiana as sources and computed the statistic f3(X; Karitian,
Sardinian), where X is various European populations. We also
added Druze, as a representative population of the Middle
East (Table 7). The effect is pervasive across Europe, with
nearly all populations showing a highly significant effect.
Orcadians and Cyprus are island populations with known
island-specific founder events that could plausibly mask ad-
mixture signals produced by the three-population test, so the
absence of the signal in these populations does not provide
compelling evidence that they are not admixed. Our Cypriot
samples are also likely to have some proportion of Levantine
ancestry (like the Druze) that does not seem to be affected by
whatever historical events are driving our negative f3-statistic.
We can use any Central American or South American popu-
lation to demonstrate this effect, in place of the Karitiana.

If we replace the Sardinian population by Basque as a
source, the effect is systematically smaller, but still enormously
statistically significant for most of the populations of Europe
(Table 7). We note that in our three populations from main-
land Italy [TSI (Hapmap Tuscans), Tuscan, and Italian] the
effect essentially disappears when using Basque as a source,
although it is quite clear and significant with Sardinian. This is
not explored further here, but suggests that further investiga-
tion of the genetic relationships of Basque, Sardinian, and
other populations of Europe might be fruitful.

Replication using a novel SNP array

The signal above is overwhelmingly statistically significant
but we found the effect quite surprising, especially as on
common-sense grounds one would expect substantial recent
gene flow from the general Spanish and French populations
into the Basque, and from mainland Italy into Sardinia,
which would weaken the observed effect. We wanted to
exclude the possibility that what we are seeing here is an
effect of how SNPs were chosen for the medical genetics
array used for genotyping. Could the ascertainment be pro-
ducing false-positive signals of admixture? If, for example,
SNPs were chosen specifically so that the population fre-
quencies were very different in Sardinia and northern
Europe, an artifactual signal would be expected to arise.
This seemed implausible but we had no way to exclude it.

We therefore returned to analysis of data from the
Affymetrix Human Origins SNP array with known ascertain-
ment. We show statistics for f3(French; Karitiana, Saridinian)
for all 13 ascertainments and compare them to the statistics
for the genotype data from the Illumina 650Y array devel-
oped for medical genetics (Li et al. 2008) (Table 8).

All our Z-scores are highly significant with a very wide
range of ascertainments, except for the ascertainment con-
sisting of finding a heterozygote in a Karitiana sample,
where the number of SNPs involved is small (thus reducing
power). We can safely conclude that the effect is real and
that the French have a complex history.

There is evidence that the effect here is substantially stron-
ger in northern than in southern Europe. We confirm this
using the statistic D(San, Karitiana; French, Italian),
which has a Z-score of 26.4 on the Illumina 650Y SNP array
panel and 23.5 on our population genetics panel ascertained
with a San heterozygote. These results show that the Karitiana
are significantly more closely related to the French than to the
Italians. The Italian samples here are from Bergamo, northern
Italy. A likely explanation for these findings is discussed below
where we apply rolloff to date this admixture event.

Table 6 Correlation of Z-scores with distinct ascertainments

Selected Z Correlation Z2008, ZSan Correlation Z2008, ZHan

Most negative Z 0.981 0.995
Least negative Z 0.875 0.944
Overall 0.987 0.991
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As an aside we have repeatedly assumed that back-
mutations (or recurrent mutations) are not importantly
affecting our results. As evidence that this assumption is
reasonable, in Table 9 we compute two of our most impor-
tant D-statistic-based tests for treeness using a variety of
increasingly distant outgroups ranging from modern hu-
man outgroups to chimpanzee, gorilla, orangutan, and ma-
caque. Results are entirely consistent across this enormous
range of genetic divergence. For example, for the crucial
statistic D(Outgroup, Karitiana; Sardinian, French), which
demonstrates the signal of Northeast Asian-related admix-
ture in northern Europeans, we find that Z-scores are
consistently positive with high significance whichever out-
group is used. As a second example, when we test if the San
are consistent with being an outgroup to two Eurasian pop-
ulations through the statistic D(Outgroup, San; Sardinian,
Han) we detect no significant deviation from zero whichever
outgroup is used.

Siberian populations

We obtained Illumina SNP array data from Hancock et al.
(2011) from the Naukan and Chukchi, Siberian peoples who
live in extreme northeastern Siberia. After merging with the
2008 Illumina 650Y SNP array data on HGDP samples (Li
et al. 2008) we obtain the f3-statistics in Table 10.

We can assume here that we have a common admixture
event to explain. Although the statistics for Chukchi are
(slightly) weaker than those in the Native Americans, we
obtain better bounds on the mixing coefficient a of between
5% and 18%. We caution that if the Sardinians are them-
selves admixed with Asian ancestry although less so than
other Europeans (a scenario we think is historically plausi-
ble), then we will have underestimated the Asian-related
mixture proportion in Europeans.

We wanted to test if (French, Sardinian) form a clade
relative to (Karitiana, Chukchi), which would, for example,
be the case if the admixing population to northern Europe
had a common ancestor with an ancestor of Karitiana and
Chukchi. In our data set,

DðKaritiana;Chukchi; French; SardinianÞ ¼ 0:0040; Z ¼ 4:9;

while this hypothesis predicted D = 0. Thus, we can rule out
this alternative hypothesis.

One possible explanation for these findings is that the
ancestral Karitiana were closer genetically to the northern
Eurasian population that contributed genes to northern
Europeans than are the Chukchi. The original migration
into the Americas occurred at least 15,000 YBP, so there is
ample time for some population inflow into the Chukchi
peninsula since then. However, the Chukchi and Naukan
samples show no evidence of recent west Eurasian admix-
ture, and we specifically tested for ethnic Russian admix-
ture, finding nothing.

Table 7 f3(X; Karitiana, Sardinian/Basque)

Sardinian Basque

X f3 Z f3 Z

Russian 20.0084 215.78 20.0074 215.04
Romania 20.0070 213.86 20.0036 27.05
Hungary 20.0069 214.65 20.0045 29.44
English 20.0068 29.20 20.0047 26.54
Croatia 20.0065 210.09 20.0036 25.32
Turkey 20.0064 27.81 20.0021 22.51
Russia 20.0063 28.56 20.0044 26.01
Macedonia 20.0062 26.70 20.0019 22.06
Scotland 20.0061 27.53 20.0045 25.52
Yugoslavia 20.0058 214.66 20.0020 24.68
Portugal 20.0058 216.84 20.0021 25.93
French 20.0057 213.81 20.0030 27.14
Austria 20.0057 211.32 20.0029 25.38
Sweden 20.0057 29.44 20.0042 27.49
Spain 20.0056 216.43 20.0024 27.24
France 20.0056 215.67 20.0028 27.66
Australia 20.0056 213.88 20.0034 28.89
Switzerland 20.0055 215.08 20.0025 26.98
Swiss-French 20.0055 215.48 20.0025 27.37
Czech 20.0054 29.39 20.0034 26.07
Belgium 20.0054 212.55 20.0029 26.98
Adygei 20.0053 29.27 20.0020 23.35
Bosnia 20.0051 28.35 20.0019 23.07
Swiss-German 20.0050 212.75 20.0022 25.99
Germany 20.0049 212.09 20.0027 27.03
UK 20.0048 212.40 20.0031 28.63
Swiss-Italian 20.0048 29.31 20.0009 21.76
TSI 20.0047 213.46 20.0001 20.39
CEU 20.0047 211.72 20.0029 27.79
Greece 20.0046 27.11 0.0002 . 0
Netherlands 20.0043 28.09 20.0023 24.51
Tuscan 20.0043 26.94 0.0001 . 0
Italian 20.0043 28.37 0.0002 . 0
Poland 20.0040 27.94 20.0023 24.69
Ireland 20.0038 28.10 20.0025 26.28
Cyprus 20.0024 22.53 0.0036 . 0
Orcadian 20.0018 23.11 20.0002 20.32
Druze 0.0040 . 0 0.009763 . 0

Table 8 Three-population test with 14 ascertainments shows the
robustness of the signal of Northeast Asian-related admixture in
northern Europeans

f3(French; Karitiana,
Sardinian) Z N Ascertainment

20.006 218.36 586414 Li et al. (2008)
20.007 211.49 107525 French
20.006 29.06 69626 Han
20.006 28.19 40725 Papuan
20.005 29.43 92566 San
20.006 29.92 82416 Yoruba
20.006 25.27 7193 MbutiPygmy
20.003 21.91 2396 Karitiana
20.004 24.33 12400 Sardinian
20.006 25.84 12963 Melanesian
20.006 25.91 15171 Cambodian
20.006 25.48 9655 Mongola
20.007 26.55 10166 Papuan
20.006 211.55 83385 Denisova/San

Two different Papuan samples were used for ascertainment. The last column
indicates the ascertainment used, while the column headed N is the number of SNPs
contributing to f3, so that SNPs monomorphic in all samples of (Karitiana, Sardinian,
French) are not counted.
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We carried out a rolloff analysis in which we attempted
to learn about the date of the admixture events in the
history of northern Europeans. We pooled samples from
CEU, a population of largely northern European origin (In-
ternational Hapmap 3 Consortium 2010) with HGDP French
to form our target admixed population, wishing to maximize
the sample size. The surrogate ancestral populations for this
analysis are Karitiana and Sardinian.

The admixture date we are analyzing here is old, and to
improve the performance of rolloff here and in the analysis
of northern European gene flow into Spain reported above,
we filtered out two regions of the genome that have
substantial structural variation that is not accurately mod-
eled by rolloff, which assumes Poisson-distributed recombi-
nation events between two alleles (Mills et al. 2011). The
two regions we filtered out were HLA on chromosome 6 and
the p-telomeric region on chromosome 8, which we found in
practice contributed to anomalous rolloff signals in some of
our analyses. Our signals should be robust to removal of
small genomic regions.

In Figure 7E we show the rolloff results. The signal is clear
enough, although noisy. We estimate an admixture date of
4150 6 850 YBP. Our standard errors computed using
a block jackknife (block size of 5 cM) are uncomfortably
large here.

However, this date must be treated with great caution. We
obtained a data set from the Illumina iControl database (http://
www.illumina.com/science/icontroldb.ilmn) of “Caucasians”
and after curation have 1232 samples of European ancestry
genotyped on an Illumina SNP array panel. We merged the
data with the HGDP Illumina 650Y genotype data obtaining
a data set with 561,268 SNPs. Applying rolloff to this sample
with HGDP Karitiana and Sardinians as sources, we get a much
more recent date of 22006 762 YBP. We think that this is not
a technical problem with rolloff, but rather, it is an issue of
interpretation that is a challenge for all methods for estimating
dates of admixture events.

Our admixture signal is stronger in northern Europe as
we showed above in the context of discussing the statistic D
(San, Karitiana; French, Italian). It seems plausible that the
initial admixture might have been exclusively in northern
Europe, but since this ancient event, there has been exten-
sive gene flow within Europe, as shown, for example, in Lao

et al. (2008) and Novembre et al. (2008). But if northern
and southern Europe have differing amounts of “Asian” ad-
mixture, this intra-European flow is confounding to our
analysis. The more recent gene flow between northern and
southern Europe will contribute to our inferring too recent
a date. Admixture into one section of a population, followed
by slow mixing within the population, may be quite common
in human history and will substantially complicate the dat-
ing for any genetic method.

Interpretation in light of ancient DNA

Ancient DNA studies have documented a clean break between
the genetic structure of the Mesolithic hunter–gatherers of
Europe and the Neolithic first farmers who followed them.
Mitochondrial analyses have shown that the first farmers in
central Europe, belonging to the linear pottery culture (LBK),
were genetically strongly differentiated from European
hunter–gatherers (Bramanti et al. 2009), with an affinity to
present-day Near Eastern and Anatolian populations (Haak
et al. 2010). More recently, new insight has come from anal-
ysis of ancient nuclear DNA from three hunter–gatherers and
one Neolithic farmer who lived roughly contemporaneously
at about 5000 YBP in what is now Sweden (Skoglund et al.
2012). The farmer’s DNA shows a signal of genetic related-
ness to Sardinians that is not present in the hunter–gatherers
who have much more relatedness to present-day northern
Europeans. These findings suggest that the arrival of agricul-
ture in Europe involved massive movements of genes (not
just culture) from the Near East to Europe and that people
descending from the Near Eastern migrants initially reached
as far north as Sweden with little mixing with the hunter–
gatherers they encountered. However, the fact that today,
northern Europeans have a strong signal of admixture of
these two groups, as proven by this study and consistent with
the findings of (Skoglund et al. 2012), indicates that these
two ancestral groups subsequently mixed.

Combining the ancient DNA evidence with our results,
we hypothesize that agriculturalists with genetic ancestry
close to modern Sardinians immigrated into all parts of
Europe along with the spread of agriculture. In Sardinia, the
Basque country, and perhaps other parts of southern Europe
they largely replaced the indigenous Mesolithic popula-
tions, explaining why we observe no signal of admixture in

Table 9 Z-scores produce consistent inferences whatever outgroup we use

Outgroup (O) Yoruba San Chimpanzee Gorilla Orangutan Macaque

D(O, Karitiana; Sardinian, French) 10.5 8.9 7.3 7.0 6.9 6.7
D(O, San; Sardinian, Han) N/A N/A 21.1 20.8 20.5 20.5

Table 10 The signal of admixture in the French is robust to the Northeast Asian-related population that is used as the
surrogate for the ancestral admixing population

Sources; Target f3 Z aL aU N

Karitiana, Sardinian; French 20.006 218.36 0.036 0.184 586406
Naukan, Sardinian; French 20.005 216.73 0.051 0.176 393216
Chukchi, Sardinian; French 20.005 215.92 0.056 0.174 393466
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Sardinians today to the limits of our resolution. In contrast,
the migrants did not replace the indigenous populations in
northern Europe and instead lived side-by-side with them,
admixing over time (perhaps over thousands of years). Such
a scenario would explain why northern European popula-
tions today are admixed and also have a rolloff admixture
date that is substantially more recent than the initial arrival
of agriculture in northern Europe.

An alternative history that could produce the signal of
Asian-related admixture in northern Europeans is admixture
from steppe herders speaking Indo-European languages, who
after domesticating the horse would have had a military and
technological advantage over agriculturalists (Anthony 2007).
However, this hypothesis cannot explain the ancient DNA re-
sult that northern Europeans today appear admixed between
populations related to Neolithic and Mesolithic Europeans
(Skoglund et al. 2012), and so even if the steppe hypothesis
has some truth, it can explain only part of the data.

We show an admixture graph that corresponds to our
hypothesis in Figure 9.

To test the predictions of our hypothesized historical
scenario, we downloaded the recently published DNA
sequence of the Tyrolean “Iceman” (Keller et al. 2012).
The Iceman lived (and died) in the Tyrolean Alps close to
the border of modern Austria and Italy. From isotopic anal-
ysis (Muller et al. 2003) he was probably born within 60
miles of the site at which he was found. To analyze the
Iceman data, we applied similar filtering steps as those ap-
plied in the analysis of the Neandertal genome (Green et al.
2010). After filtering on map quality and sequence quality of
a base as described in that study, we chose a random read
covering each base of the Affymetrix Human Origins array.
This produced nearly 590,000 sites for analysis.

Our D-statistic analysis suggests that the Iceman and the
HGDP Sardinians are consistent with being a clade, provid-
ing formal support for the findings of Keller et al. (2012)
who reported that the Iceman is close genetically to modern
Sardinians based on PCA. Concretely, our test for whether
they are a clade is

DðYoruba;Karitiana; Iceman;SardinianÞ ¼ 2 0:0045;Z ¼ 21:3:
(10)

This D-statistic shows no significant deviation from zero, in
contrast with the highly significant evidence that the Iceman
and French are not a clade:

DðYoruba;Karitiana; Iceman; FrenchÞ ¼ 0:0224;Z ¼ 6:3:

Our failure to detect a signal of admixture using the D-
statistic is not due to reduced power on account of having
only one sample, since when we recompute the statistic of
(10) using each of the 26 French individuals in turn in place
of Iceman, the Z-scores are all significant, ranging from 23.1
to 28.5. These results imply that Iceman has less northeast
Asian-related ancestry than a typical modern North European,
but the data are consistent with Iceman having the same
amount of northeast Asian-related ancestry as Sardinians. Fur-
ther confirmation for this interpretation comes from the very
similar magnitude f3-statistics that we observe when using
either Sardinians or Iceman as a source for the admixture:

f3ðFrench; Iceman;KaritianaÞ ¼ 2 0:007; Z ¼ 2 5:8

f3ðFrench; Sardinian;KaritianaÞ ¼ 2 0:006; Z ¼ 214:8:

The Z-score for Iceman is of smaller magnitude than that for
the Sardinian samples, because with a single individual we
have much more sampling noise. However, the important
quantity in this context is the magnitude of the f3-statistic.
Thus the Iceman harbors less northeast Asian-related genetic
material than modern French, and the northeast Asian-
related genetic material is not detectably different in Iceman
and the HGDP Sardinians, to the limits of our resolution.

A caveat to these analyses is that the relatively poor
quality and highly fragmented DNA sequence fragments
from Iceman may occasionally align incorrectly to the re-
ference human genome sequence (and in particular, may do
so at a rate higher than that of the comparison data from
present-day humans), which could in theory bias the D-
statistics. However, our point here is simply that to the limits
of the analyses we have been able to carry out, Iceman and
modern Sardinians are consistent with forming a clade, sup-
porting the hypothesis we sketched out above.

Although the Iceman lived near where he was found, it
cannot be logically excluded that his genetic ancestry was
unusual for the region. For instance, his parents might have
been migrants from ancient Sardinia. However, the Iceman
does not carry the signal of northeast Asian ancestry that we
have detected in northern Europeans, and lived at least 2000
years after the arrival of farming in Europe. If his genome was
typical of the region in which he lived, the northeast Asian-
related genetic material that is currently widespread in northern

Figure 9 Northeast Asian-related admixture in
northern Europe. A proposed model of population
relationships that can explain some features ob-
served in our genetic data.
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Italy and southern Austria must be due to admixture events
and/or migrations that occurred well after the advent of
agriculture in the region, supporting the hypothesis, pre-
sented above, that Neolithic farmers of near eastern origin
initially largely replaced the indigenous Mesolithic population
of southern Europe and that only well afterward did they
develop the signal of major admixture that they harbor today.

Summary of inferences about European history
from our methods

Our methods for analyzing genetic data have led to several
novel inferences about history, showing the power of the
approaches. In particular, we have presented evidence
suggesting that the genetic history of Europe from around
5000 B.C. includes:

1. the arrival of Neolithic farmers probably from the Middle
East,

2. nearly complete replacement of the indigenous Me-
solithic southern European populations by Neolithic
migrants and admixture between the Neolithic farmers
and the indigenous Europeans in the north,

3. substantial population movement into Spain occurring
around the same time as the archeologically attested
Bell-Beaker phenomenon (Harrison 1980),

4. subsequent mating between peoples of neighboring
regions, resulting in isolation-by-distance (Lao et al.
2008; Novembre et al. 2008). This tended to smooth
out population structure that existed 4000 years ago.

Further, the populations of Sardinia and the Basque country
today have been substantially less influenced by these events.

Software

We release a software package, ADMIXTOOLS, that imple-
ments five methods: the three-population test, D-statistics,
F4-ratio estimation, admixture graph fitting, and rolloff. In
addition, it computes lower and upper bounds on admixture
proportions based on f3-statistics. ADMIXTOOLS can be
downloaded from the following URL: http://genetics.med.
harvard.edu/reich/Reich_Lab/Software.html.

Data sets used

The following data sets are used:

HapMap Phase 3 (International Hapmap 3 Consortium 2010),
HGDP genotyped on the Illumina 650K array (Li et al.
2008), HGDP genotyped on the Affymetrix Human Origins
array, POPRES (Nelson et al. 2008), Siberian data (Hancock
et al. 2011), and Xhosa data (Patterson et al. 2010).
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Appendix A: Unbiased Estimates of f-Statistics

Fix a marker (SNP) for now. We have populations A, B, C, D in which the variant allele frequencies are a9, b9, c9, d9,
respectively. Sample counts of the variant and reference alleles are nA, n9A, etc. Set

nA þ n9  A ¼ sA; etc:;

so that sA is the total number of alleles observed in population A. Define a= nA/sA, the sample allele frequency in A, with b, c,
d defined similarly. Thus a9, b9, c9, d9 are population frequencies and a, b, c, d are allele frequencies in a finite sample. We first
define

hA ¼ a9ð12 a9Þ

so that 2hA is the heterozygosity of population A. Set

ĥA ¼ nAn9  A
sAðsA2 1Þ :

Then ĥA is an unbiased estimator of hA. We now can show that

F̂2ðA;BÞ ¼ ða2bÞ2 2 ĥA=sA2 ĥB=sB

F̂3ðC;A;BÞ ¼ ðc2 aÞðc2 bÞ2 ĥC=sC

F̂4ðA;B;C;DÞ ¼ ða2 bÞðc2 dÞ

are unbiased estimates of F2(A, B), F3(C; A, B), and F4(A, B; C, D), respectively. For completeness we give estimates in the
same spirit for Fst(A, B). We define

FstðA;BÞ ¼ ða92b9Þ2
a9ð12 b9Þ þ b9ð12 a9Þ;

which we note differs from the definition of Cavalli-Sforza in his magisterial book Cavalli-Sforza et al. (1994), and (at least in
the case of unequal sample sizes) the definition in Weir and Cockerham (1984).

Write N, D for the numerator and denominator of the above expression. Then N = F2(A, B), and we have already given an
unbiased estimator. We can write D = N + hA + hB and so an unbiased estimator for D is

D̂ ¼ F̂2ðA;BÞ þ ĥA þ ĥB:

This definition and these estimators were used in Reich et al. (2009) and are implemented in our widely used program
smartpca Patterson et al. (2006). An article in preparation explores Fst in much greater detail.

Appendix B: Visual Interpretation of f-Statistics

The expected value of f-statistics can be computed in a visually interpretable way by writing down all the possible genetic
drift paths through the admixture graph relating the populations involved in the f-statistic. For each of the statistics we
compute

F2(A, C): Overlap between the genetic drift paths A / C, A / C
F3(C; A, B): Overlap between the genetic drift paths C / A, C / B
F4(A, E; D, C): Overlap between the genetic drift paths A / E, D / C

If there is no admixture, then the expected value of an f-statistic can be computed from the overlap of the two drift paths in
the single phylogenetic tree relating the populations. If admixture occurred, the drift can take alternative paths, and we need
to write down trees corresponding to each of the possible paths and weight their contribution by the probability that the
drifts take that path.

There is a loose analogy here to the Feynman diagrams (Kotikov 1991a,b), used by particle physicists to perform
computations about the strength of the interaction among fundamental particles such as quarks and photons. The Feynman
diagrams correspond exactly to the terms of a mathematical equation (a path integral) and provide a way to compute its
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value. Each corresponds to a different path by which particles can interact. By writing down all possible Feynman diagrams
relating two particles (all possible ways that they can interact through intermediate particles), computing the contribution to
the integral from each Feynman diagram, and combining the results, one can compute the strength of the interaction.

Figure 2 shows how this strategy can be used to obtain expected values for f2-, f3-, and f4-statistics. The material below is
meant to be read in conjunction with that figure:

E½ f2ðC;AÞ� ¼ ðc2 aÞðc2 aÞ:

The expected value of f2(C, A) can be computed by the overlaps of the genetic drifts C / A, C / A over all four possible
paths in the tree with weights a2, ab, ba, and b2. The expected values can be counterintuitive. For example, Neandertal
gene flow into non-Africans has most probably reduced rather than increased allelic frequency differentiation between
Africans and non-Africans. If A is Yoruba, C is French, and B is Neandertal, and we set a = 0.026, c = 0.036, d = 0.068,
e + f + g = 0.33, a = 0.975 (reasonable parameter values based on previous work), then we compute the expected value of
f2(C, A) to be 0.127. Using the same equation but a = 1 (no Neandertal admixture), we get f2 = 0.130:

E½ f3ðC;A;BÞ� ¼ ðc2 aÞðc2 bÞ:

If population C is admixed, there is a negative term in the expected value of f3(C; A, B), which arises because the genetic drift
paths C / A and C / B can take opposite directions through the deepest part of the tree. The observation of a negative
value provides unambiguous evidence of population mixture in the history of population C:

E½ f4ðA; E;D;C� ¼ ða2 eÞðd2 cÞ:

The expected value of f4(A, E; D, C) can be computed from the overlap of drifts A / E and D / C. Here there are two
possible paths for D / C, with weights a and b, resulting in two graphs whose expected contribution to f4 are 0 and 2ag so
that E[f4] = 2ag. Thus, by taking the ratio of the f4-statistics for a population that is admixed and one where a is equal to 1,
we have an estimate of a.

Appendix C: Mathematical Analysis of F3

In the article we use a9 for population allele frequencies in a population A and a for sample frequencies. Here we switch
notation and write a, b, c, . . ., for population frequencies in A, B, C, . . ..

We consider three populations A, B, C with a root population R, and consider F3 = E[(c 2 a)(c 2 b)] under various
ascertainment schemes.

Theorem 1. Assuming that genetic drift is neutral, no backmutation, and no recurrent mutations and that A, B, C have
a simple phylogeny, with no mixing events, then under the following ascertainments,

F3ðC;A;BÞ ¼ E½ðc2 aÞðc2 bÞ�$0;

1. no ascertainment, such as in sequence data,
2. ascertainment in an outgroup, which split from R more remotely than A, B, C,
3. ascertainment by finding a heterozygote in a single individual of {A, B, C}, where we also assume the population of R is in

mutation-drift equilibrium so that the probability that a polymorphic derived allele with population frequency r } 1/r Ewens
(1963).

Proof. The first two cases are clear, since drift on edges of the tree rooted at R are orthogonal. This is the situation
discussed at length in the main article. The case where we ascertain that a heterozygote is more complicated and our
discussion involves some substantial algebra, which we carried out with Maple.

First consider the tree shown in Figure C1A. Here we show drift distances on the diffusion scale for R/ X, X/ A, X/ C.
So, for example, the probability that two random alleles of A have a most recent common ancestor (MRCA) more ancient
than X is e2t2 . We let allele frequencies in A, B, C, X, R be a, b, c, x, r, respectively. If we ascertain in C, then E[r 2 a] = E[r 2
b] = 0, and E[(r 2 a)(r 2 b)] = E[(r 2 x)2] $ 0. The case of ascertainment in A is more complex: Write E0 for the
expectation simply assuming R is polymorphic and in mutation-drift equilibrium. Then E[(c 2 a)(c 2 b)] under ascertain-
ment of a heterozygote in A is given by

E½ðc2 aÞðc2 bÞ� ¼ E0½ðc2 aÞðc2 bÞað12 aÞ�
E0½að12 aÞ� : (A1)

1090 N. Patterson et al.



Thus it is necessary and sufficient to show E0[(c 2 a)(c 2 b)a(1 2 a)] $ 0:

E½ðc2 aÞðc2 bÞ� ¼ E
h
ðr2cÞ2

i
þ E½ðr2 cÞðc2 bÞ�

   þ E½ðr2 cÞðc2 aÞ� þ E½ðr2 aÞðr2 bÞ�
¼ E

h
ðr2cÞ2

i
þ E½ðr2 aÞðr2 bÞ�:

So it is enough to prove E[(r 2 a)(r 2 b)] $ 0. But

E½ðr2 aÞðr2 bÞ� ¼ E
h
ðr2xÞ2

i
þ E½ðr2 xÞðx2 bÞ�

  þ E½ðr2 xÞðx2 aÞ� þ E½ðx2 aÞðx2 bÞ�
¼ E½ðr2 xÞðx2 aÞ�:

Let K(p, q; t) be the transition function of the Wright–Fisher diffusion so that for 0 , p, q , 1

Kðp; q; tÞ ¼ PðXð0Þ ¼ qjXð2tÞ ¼ pÞ;

where X(t) is the allele frequency at time t on the diffusion time scale.
We make extensive use of Kimura’s theorem giving an explicit representation of K.
Theorem 2 (Kimura 1955).

Kðx; y; tÞ ¼ xð12 xÞ
XN
i¼0

J1;1i ðxÞJ1;1i ðyÞ
Num1;1

i

e2lðiÞt; (A2)

where Ji are explicit polynomials (Jacobi or Gegenbauer polynomials) orthogonal on the unit interval with respect to the function
w(x) = x(1 2 x). Numi are normalization constants with

Z 1

0
xð12 xÞJiðxÞJjðxÞ ¼ dijNumi dx

and l(i) is given by

lðiÞ ¼ ðiþ 1Þðiþ 2Þ
2

: (A3)

We need to show that

T ¼ E0½ðr2 xÞðx2 aÞað12 aÞ�

¼ R 1
0

R 1
0

R 1
0 1=rKðr; x; t1ÞKðx; a; t2Þðr2 xÞðx2 aÞað12 aÞdr  dx   da$ 0:

We deal with polynomials in fe2ti i ¼ 1;   2;   3g. To simplify the notation set,

u ¼ e2t1

v ¼ e2t2

w ¼ e2t3 :

Using Kimura’s theorem and the orthogonality of Jacobi polynomials, this integral can be expressed in closed form.

Figure C1 (A) Appendix C, Theorem 1. (B) Appendix C,
Theorem 2.
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We consider ascertainment of a heterozygote in A. Now calculation shows that

T ¼ vuð12 uÞQ
120

;

where Q = 5 + 3v2 + u(5 + 3v2) 2 2v2(u2 + u3 + u4).
Noting that 0 # v, u # 1,

Q$ 5þ 3v2 þ u
�
52 3v2

�
$ 0:

Next consider the tree shown in Figure C1B. First suppose we ascertain a heterozygote in A,

E½ðc2 aÞðc2 bÞ� ¼ E
h
ðc2xÞ2

i
þ E½ðx2 aÞðx2 rÞ�

and so we want to show

T ¼ E0½ðx2 aÞðx2 rÞað12 aÞ�$ 0:

A similar calculation to that above shows that

120T ¼ vuð12uÞð12 vÞðvþ 1Þ�2u3 þ 4u2 þ 6uþ 3
�
$0;

as required. Next suppose we ascertain a heterozygote in C. We now want to show

T ¼ E0½ðc2 xÞðc2 rÞcð12 cÞ�$ 0:

We find

120T ¼ wvð12 vÞQ;

where

Q ¼ 3ð1þ vÞ þ 5u2ð1þ vÞ2 2u5v2
�
1þ vþ v2

�
:

We need to show Q$ 0. Expanding Q into monomials with coefficients61 there are six negative terms, each of which can be
paired with a positive term of lower degree.

This completes the proof.
Summarizing, our three-population test is rigorous if there is ascertainment in an outgroup only (or no ascertainment as

in sequence data). It also is rigorous with a variety of other simple ascertainments. Further in practice, on commercial SNP
arrays, highly significant false positives do not seem to arise as we show in Table 5.

Appendix D: Simulations to Test f-Statistic Methodology

To test the robustness of our f-statistic methodology, we carried out coalescent simulations of five populations related
according to Figure 4, using ms (Hudson 2002).

Our simulations involved specifying six dates:

1. tadmix: Date of admixture between populations B9 and C9.
2. tBB9: Date of divergence of populations B and B9.
3. tCC9: Date of divergence of populations C and C9.
4. tABB9: Date of divergence of population A from the B, B9 clade.
5. tABB9CC9: Date of divergence of the A, B, B9 and C, C9 clades.
6. tO: Date of divergence of the A, B, B9, C, C9 clade and the outgroup O.

We assumed that all populations were constant in size in the periods between when they split, with the following diploid
sizes:

1. Nx: Size in the ancestry of population X.
2. NB9: Size in the ancestry of population B9’.
3. NB: Size in the ancestry of population B.
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4. NC9: Size in the ancestry of population C9.
5. NC: Size in the ancestry of population C.
6. NO: Size in the recent ancestry of the outgroup O.
7. NBB9: Size in the common ancestry of B and B9.
8. NCC9: Size in the common ancestry of C and C9.
9. NABB9: Size in the common ancestry of A, B, and B9.

10. NABB9CC9: Size in the common ancestry of A, B, B9, C, and C9.
11. NABB9CC9O: Size in the common ancestry of all populations.

We picked population sizes, times, and Fst to approximately match empirical data for

A: Adygei, West Eurasian
B: French, West Eurasian
C: Han, East Asian
X: Uygur, Admixed
Y: Yoruba, Outgroup

Thus, our baseline simulations correspond to a roughly plausible scenario for some of the genetic history of Eurasia, with
Yoruba serving as an outgroup. We then varied parameters, as well as ascertainments of SNPs, and explored how this
affected the observed values from simulation.

In Table 1 we show baseline demographic parameters, as well as several alternatives that each involved varying a single
parameter compared with the baseline. Each alternate parameter set was separately assessed by simulation (including
different SNP ascertainments).

Table 1 shows the results. We find that:

• Fst-statistics change as expected depending on SNP ascertainment and demographic history.
• The consistency of D-statistics with 0 in the absence of admixture is robust to SNP ascertainment. Substantially nonzero

values are observed only when the test population is admixed (X) and not when it is unadmixed (B).
• f3-statistics are negative when the test population is admixed (X) except for high population-specific drift, which masks the

signal as expected. Statistics are always positive when the test population is unadmixed (B), regardless of ascertainment.

Thus, these simulations show that inferences about history based on the f-statistics are robust to ascertainment process as we
argued in the main text on theoretical grounds.
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File S1 
Technical details of a SNP array optimized for population genetics 

 
Yontao Lu, Nick Patterson, Yiping Zhan, Swapan Mallick and David Reich 

 
 
Overview  
One of the promises of studies of human genetic variation is to learn about human history and 
also to learn about natural selection. 
 
Array genotyping of hundreds of thousands of SNPs simultaneously—using a technology that 
produces high fidelity data with an error rate of ~0.1%—is in theory a powerful tool for these 
studies. However, a limitation of all SNP arrays that have been available to date is that the SNPs 
have been chosen in a complicated way for the purpose of medical genetics, biasing their 
frequencies so that it is challenging to make reliable population genetic inferences. In general, the 
way that SNPs have been chosen for arrays is so complicated that it has been effectively 
impossible to model the ascertainment strategy and thus to correct for the bias. 
 
This technical note describes the design, validation, and manufacture of an array consisting of 
SNPs all ascertained in a clearly documented way. We anticipate that this will provide a useful 
resource for the community interested in learning about history and natural selection. We hope 
that this array will be genotyped in many different cohorts, as has been done, for example, in the 
Marshfield panel where approximately 800 microsatellites have been genotyped in diverse 
populations1,2,3,4,5. By establishing a common set of simply ascertained SNPs that have been 
genotyped in diverse populations, it should be possible to learn about human history not only in 
individual studies, but also through meta-analysis. 
 
The array is designed as a union of 13 different SNP panels. In our experience, a few tens of 
thousands of SNPs is enough to produce powerful inferences about history with regard to 
summary statistics like measurements of FST. Thus, it is better for many analyses to have (for 
example) 13 sets of tens to hundreds of thousands of SNPs each with its own ascertainment 
strategy than a single set of 600,000 SNPs. We have included a particularly large number of SNPs 
from particularly interesting ascertainments—discovery in the two chromosomes of a single San 
Bushman, a single Yoruba West African, a single French, a single Han Chinese, and a single 
Papuan—as for some analyses like scans of selection it is valuable to have dense data sets of 
hundreds of thousands of SNPs. All SNPs chosen for the array were selected from sites in the 
genome that have read coverage from Neandertals, Denisovans, and chimpanzees, allowing users 
of the array to compare data from modern humans to archaic hominins and apes. 
 
This array is not ideal for gene mapping, since: (i) No attempt has been made to tag common 
variation genome-wide. (ii) There are gaps in the genome where no homologous sequence is 
available from chimpanzee. (iii) Unlike many existing arrays, we have not oversampled SNPs in 
the vicinity of genes, or adjusting SNP density in order to fully tag haplotypes. Instead we simply 
sampled SNPs in proportion to their genomic density as discovered by sequencing. 
 
The array is being made commercially available by Affymetrix. Importantly, the academic 
collaborators who have been involved in the design will not benefit from sales of the array (they 
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will not receive any financial compensation from Affymetrix).  The CEPH-Human Genome 
Diversity Project (CEPH-HGDP) samples that were genotyped during the course of the project 
will not be used for any commercial purposes. Affymetrix deposited the genotypes of unrelated 
CEPH-HGDP samples, collected as part of the array development, into the CEPH-HGDP 
database on August 12, 2011, more than six months before commercial release of the array (in 
Spring 2012), and this genotyping data is freely available to the public. 
 
Design strategy for the 13 panels 
 
(Panels 1-12) Discovery of heterozygous sites within 12 individuals of known ancestry 
The first 12 SNP ascertainment strategies are based on the idea of the Keinan, Mullikin et al. 
Nature Genetics 2007 paper6. That paper takes advantage of the fact that by discovering SNPs in 
a comparison of two chromosomes from the same individual of known ancestry, and then 
genotyping in a larger panel of samples from the same population, one can learn about history in a 
way that is not affected by the frequency of the SNP in human populations. In particular, even 
though we may miss a substantial proportion of real SNPs in the individual (false-negatives), and 
even if a substantial proportion of discovered SNP are false-positives, we expect that the 
inferences about history using SNPs discovered in this way will be as accurate as what would be 
obtained using SNPs identified from deep sequencing with perfect readout of alleles.  
 
To understand why false-negative SNPs should not bias inferences, we note that if a SNP is truly 
heterozygous in the individual in whom we are trying to discover it, there is exactly one copy of 
the ancestral allele and exactly one copy of the derived allele. Thus, conditional on the SNP being 
heterozygous in the discovery individual, its probability of being discovered is not further 
affected by whether it has a high or low minor allele frequency in the population. This contrasts 
with ascertainment strategies that discover SNPs in more than one individual, where there is 
always a real (and extremely difficult to quantify) bias toward missing rarer variants. By 
genotyping SNPs discovered in this way, and making a simple p(1-p) correction for discovery in 
two chromosomes (where p is the minor allele frequency), one can obtain an unbiased 
reconstruction of the allele frequency distribution in the population. 
 
An important feature of this SNP discovery strategy is that false-positive SNPs (for example, due 
to sequencing error, mapping error, segmental duplications or copy number variation) are not 
expected to substantially bias inferences. The reason is that we have validated all candidate SNPs 
by genotyping them using a different technology, and we have required the genotypes to match 
the individuals in whom they were discovered. Thus, we expect to have a negligible proportion of 
false-positive SNPs on the final array. 
 
This procedure has produced 12 panels of uniformly discovered SNPs, which can be used for 
allele frequency spectrum analysis. There is some overlap of SNPs across panels. Importantly, we 
have separately determined validation status for the SNPs in each panel, and have only used SNPs 
that validate in the same sample in which they were discovered. Thus, we have not biased toward 
SNPs with a high minor allele frequency, or that are polymorphic across multiple populations, 
which might be expected to have a higher chance of validation if we did not perform the 
validation in each discovery sample independently. 
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(Panel 13) SNPs where a randomly chosen San allele is derived relative to an archaic hominin 
A 13th ascertainment strategy used alignments of three genomes: chimpanzee, Denisova (an 
archaic hominin from southern Siberia for whom there is 1.9× genome sequence coverage7), and 
San. We examined sites where we had ≥1-fold coverage of Denisova, and ≥3-fold coverage of 
San. We made an allele call for each individual by majority rule, randomly selecting an allele 
when there was a tie (this means that we are effectively sampling one of two haplotypes in the 
individual, and the allele call is not expected to be being biased if the individual is heterozygous 
at that site). We placed on the array the subset of sites where San is derived relative to both 
Denisova and chimpanzee, in this case requiring agreement between the Denisova and 
chimpanzee allele. These are sites that likely arose due to mutations in the last million years.  
 
We chose to use San rather than another modern human for building this panel because there is 
evidence that the San are approximately symmetrically related to all other present-day humans8. 
Panel 13 is also the only one with SNPs from chromosome X (all the other panels are based on 
SNPs discovered in males), and thus this panel permits X-autosome comparisons. 
  
Description of the sequencing data and filtering used in SNP ascertainment 
The sequencing data that we use for identifying candidate SNPs has been described in two recent 
papers: Green et al. 20109 and Reich et al. 20107. The data were all generated in the Max Planck 
Institute in Leipzig using Illumina Genome Analyzer IIx (GAIIx) sequencing instruments via 
protocols that are described in refs. 9 and 7 (Table 1). Population genetic analyses for ref. 7 were 
carried out on the very data file that was used to select SNPs for the array.  
 
Table 1: Characteristics of the sequencing data we are using for SNP ascertainment 
 

Name Identifier Sequenced by Genomic 
coverage* 

Cutoff† 
A (Pr) 

Cutoff† 
C (Pr) 

Cutoff† 
G (Pr) 

Cutoff† 
T (Pr) 

Han HGDP00778 Green 2010 3.8 16 (0.489) 14 (0.239) 17 (0.003) 15 (0.11) 

Papuan1 HGDP00542 Green 2010 3.6 13 (0.051) 10 (0.119) 15 (0.434) 13 (0.880) 

Yoruba HGDP00927 Green 2010 4.3 17 (0.692) 14 (0.440) 18 (0.562) 16 (0.985) 

San HGDP01029 Green 2010 5.9 17 (0.830) 15 (0.914) 18 (0.649) 16 (0.877) 

French HGDP00521 Green 2010 4.4 17 (0.317) 16 (0.985) 18 (0.024) 17 (0.515) 

Mbuti HGDP00456 Reich 2010 1.2 17 (0.041) 14 (0.504) 17 (0.704) 16 (0.379) 

Karitiana HGDP00998 Reich 2010 1.1 18 (0.210) 14 (0.126) 17 (0.147) 17 (0.589) 

Sardinian HGDP00665 Reich 2010 1.3 19 (0.789) 15 (0.302) 18 (0.474) 17 (0.200) 

Bougainville HGDP00491 Reich 2010 1.5 18 (0.810) 14 (0.288) 17 (0.445) 16 (0.291) 

Cambodian HGDP00711 Reich 2010 1.7 18 (0.717) 14 (0.303) 17 (0.331) 16 (0.398) 

Mongolian HGDP01224 Reich 2010 1.4 18 (0.371) 15 (0.789) 17 (0.051) 16 (0.090) 

Papuan2 HGDP00551 Reich 2010 1.4 17 (0.188) 14 (0.661) 17 (0.932) 16 (0.885) 

Neandertal Vindija.3.bones Green 2010 1.3 27 (0.428) 26 (0.049) 27 (0.308) 27 (0.579) 

Denisova Phalanx Reich 2010 1.9 40 (1.000) 40 (1.000) 40 (1.000) 40 (1.000) 
 

* Genomic coverage is calculated for the modern humans as (# of reads mapping to chimpanzee) × (read length which is 76bp for 
Green et al. 2010 and 101bp for Reich et al. 2010) × (0.95 as we filtered out the 5% of the lowest quality data) / (2.8 Gb). For the 
archaic hominins we report the coverage from the abstracts of Green et al. 2010 and Reich et al. 2010.   
 

† For each base used in SNP discovery, we give the quality score cutoff and probability of acceptance at that cutoff (parentheses). 
The cutoffs are chosen to filter out the data of the lowest 5% quality for each nucleotide class (SI 6; Reich et al. 2010). 
 



5 SI Y. Lu  et al. 
 

The 12 modern human samples are all from the CEPH-HGDP panel. A valuable feature of this 
panel is that DNA for all samples is available on request on a cost-recovery basis for researchers 
who wish to carry out further sequencing and genotyping analysis on these samples for the 
purpose of research into human population history8,10.  Five of the samples (San, Yoruba, Han, 
French and a Papuan) were sequenced by Green et al. 2010 using Illumina paired-end 76bp 
reads9, while the remaining 7 (Mbuti, Sardinian, Karitiana, Mongolian, Cambodian, Bougainville, 
and a second Papuan) were sequenced by Reich et al. 2010 using Illumina paired-end 101bp 
reads7. All reads from all 12 samples were mapped to chimpanzee (PanTro2).  To filter the 
sequence data for analysis, we used a similar procedure as described in Reich et al. 20107, 
removing the lowest quality of 5% of nucleotides on a sample and nucleotide-specific basis to 
maximize the amount of sequencing data available for analysis. After this procedure, we had 3.6-
5.9× coverage for the 5 samples and 1.1-1.7× for the 7 samples (Table 1).  
 
We also used data from 4 ancient DNA samples to aid our choice of SNPs. To represent 
Neandertals, we used a pool of sequences from 3 bones from Vindija Cave in Croatia (Vi33.16, 
Vi33.25 and Vi33.26) for which we had 1.3× genome coverage altogether9. To represent 
Denisovans, we used data from a finger bone (fifth distal manual phalanx) from the Altai 
mountains of southern Siberia, with 1.9× coverage7. 
 
All reads are mapped to chimpanzee and a chimpanzee allele is available 
We mapped sequencing reads from modern and ancient genomes to the chimpanzee reference 
sequence (PanTro2) to avoid biases toward one present-day human group more than another. 
 
We filtered out reads with a substantial probability of poor mapping 
Each read that we analyzed had a mapping quality score (MAPQ) that reflects the confidence of 
its mapping to PanTro2. Based on empirical exploration of the usefulness of the scores, which 
were generated by either the ANFO or BWA software, we only used reads that had MAPQ of at 
least 90 for Neandertal (ANFO mapping), 37 for Denisova (BWA), and 60 for present-day 
humans (BWA). We also rejected reads if the alignment to the chimpanzee resulted in any 
insertion/deletion difference. This filter was applied in addition to the filtering of Table 1. 
 
Filtering of sites with ≥2 alleles not matching chimp across the humans used for SNP discovery. 
At a small proportion of sites, we observe more than one non-ancestral allele in the individual 
sequencing data used for SNP discovery. Such sites cannot be due to a single historical mutation. 
Instead, the data must reflect at least two mutations or sequencing errors. We filter out such sites. 
 
For a very small fraction of sites, we found that the derived allele is different depending on which 
human is used in SNP discovery (these are potentially triallelic SNPs in the population, although 
they are not triallelic in the discovery individual). We keep such sites in our list of SNPs for 
designing, and use multiple probe sets to assay such SNPs. 

 
The raw data file that emerges from this process is available on the “orchestra” Harvard Medical 
School filesystem at: /groups/reich/CLEAN_SNP_ARRAY/rawsnps and is freely available from 
David Reich on request (a README file is in the same directory at rawsnps_readme) (Table 2). 
For brevity, this file only lists the 2,173,116 SNPs where 2 copies of the derived and 1 copy of the 
ancestral allele are observed a hominin; these are the only SNPs that are candidates for inclusion. 
Thus, it is an abbreviated version of a larger file used in analyses for ref. 7. 
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Filtering the nucleotide calls of the lowest reliability 
(a) We do not use nucleotides for which there is no valid nucleotide call for chimpanzee. 
(b) For Neandertals, we do not use nucleotides within 5 nucleotides of either end of the reads, 

because of the elevated rate of ancient DNA degradation errors that we empirically observe. 
(c) For Denisova, we do not use nucleotides within 1 nucleotide of either end of the read. 
(d) For both Neandertals and Denisova, we do not use nucleotides with sequence quality <40. 
(e) For present-day humans, we do not use nucleotides with sequence quality <Tij, where Tij is a 

threshold chosen such that half of nucleotides generated from individual i and of allele class j 
{j = A, C, G, T} are less than this value. For nucleotides that have exactly a quality score of 
Tij, we randomly choose ones to eliminate such that exactly 5% are dropped (note that this 
differs from the 50% used in Reich et al. 2010). The cutoffs used are presented in Table 1. 

(f) For the “Papuan1” individual from ref. 9 (HGDP00542), the sequencer had a high error rate at 
position 34 (41 on the reverse strand). We excluded data from position 34 for this individual. 

 
Table 2: Datafiles summarizing the SNP ascertainment for the population genetics array 
 

File name Readme Description Entries 

rawsnps rawsnps_readme 

This file contains all sites where there are at least 2 copies of a 
derived allele and 1 copy of the ancestral allele in 12 present-
day humans, 3 Neandertals, and Denisova, and further filtered 

to be candidates for inclusion in the SNP array. 

2, 173,116 

ascertained ascertained_readme 
This file contains all SNPs chosen in any ascertainment panel 
(there are a few hundred that are triallelic and we list them on 
different lines, so the number of unique SNPs is 1,812,990). 

1,813,579 

screening screening_readme 

This file contains all probesets we considered for screening 
array design, as well as the metrics for prioritization and 

indicator variables indicating whether they were chosen. If 
chosen, a column indicates the genotyping outcome, and 

whether the SNP was taken forward to the production array.  

3,882,158 

 

 Note: These files can be found in the Harvard Medical School orchestra filesystem at /groups/reich/CLEAN_SNP_ARRAY/. 
 
1,353,671 SNPs for testing on an Affymetrix Axiom™ screening array 
 
1,812,990 candidate SNPs discovered in 13 different ascertainment panels 
We used the following algorithm to choose candidate SNPs for validating on the array. 
 
(a) We mapped all reads used for SNP discovery to the chimpanzee reference sequence, PanTro2, 

without using data from the human reference sequence at all for read mapping. This was 
important to avoid biases due to the ancestry of the human reference sequence. 

 
(b) We rediscovered all SNPs de novo, blinding ourselves to any prior information about whether 

the sites were polymorphic in present-day humans. 
 

(c) At all SNPs, we required coverage from at least 1 Neandertal read and at least 1 Denisova 
read. This is expected to result in bias toward locations of the genome where the ancient DNA 
tends to be better preserved or the sequencing technology tends to work better. However, 
there is no reason why it would be expected to result in a bias in allele frequencies toward one 
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modern human population more than another (as all Neandertal and Denisova reads are 
mapped to chimpanzee, and no modern human data influences the mapping). The availability 
of data from archaic hominins from each of the SNPs on our array should be of value for 
some types of population genetic analysis. (For a handful of sites, the Denisova and 
Neandertal alleles may not be the same as those seen in present-day humans, but we 
nevertheless considered these sites to be covered by Denisova and Neandertal as we were 
concerned that not doing so could introduce bias. Users can treat such sites how they wish.) 

 
(d) All A/T and C/G polymorphisms were excluded, since genotyping these SNPs requires twice 

the number of probes using the Axiom™ technology. Thus, removing them increases the 
number of SNPs we can include on a single array. Removing these SNPs has the additional 
benefit that it eliminates any strand ambiguity. (Illumina arrays do not genotype A/T or C/G 
SNPs, either.) However, it also had the disadvantage that A/T and C/G SNPS constitute the 
one class of SNPs that is believed to be immune to biased gene conversion.  Thus, in 
population genetic analyses of the data generated from the array, it will be important to assess 
whether inferences are potentially explained by biased gene conversion. 

 
(e) For the SNPs for panels 1-12 (candidate heterozygotes in an individual of known ancestry), 

we required the observation of at least 2 copies of the derived (non-chimpanzee) and at least 1 
copy of the ancestral allele in the studied person (Reich et al. 2010; SI 6). We did not include 
chromosome X SNPs from these panels as the 12 individuals were all male. 

 
(f) For the SNPs in panel 13 (derived in San relative to Denisova), we restricted to sites where we 

had ≥3-fold read coverage of San and ≥1-fold read coverage of Denisova. 
A complication in choosing SNPs discovered in two individuals is that both the San and 

Denisova individuals are diploid. What we want is to have a panel of SNPs ascertained by 
comparing a single haploid Denisovan and a single haploid San chromosome, but if we are 
not careful, we are going to be biased toward the SNPs that are fixed differences.  For 
example, if we accepted only SNPs where all Denisova reads matched chimpanzee and all San 
reads were derived, then we would bias against SNPs that were truly heterozygous.  

To obtain data of the type that would be expected from sampling a single haploid 
Denisovan and a single haploid San chromosome, we picked the allele that was seen more 
often in each sample to represent that sample (if there was a tie in terms of the number of 
reads supporting each allele, we chose one allele at random). In this way, we are picking one 
of the two chromosomes from each individual (at random), and hence we are effectively 
sampling a haploid chromosome despite having diploid data. An additional benefit of using 
the majority rule is that we are also increasing the quality and reliability of the allele call, such 
that we expect a larger proportion of these SNPs to be real than in panels 1-12. 

From the SNPs discovered in this way, we restrict our analysis to sites where Denisova 
matches the chimpanzee allele and where San is derived (we throw away sites where San is 
ancestral and Denisova is derived). The reason for this is that this is the only subset of SNPs 
that we can experimentally validate. To validate these SNPs, we can genotype the San 
individual and require the observation of an allele that differs from chimpanzee. In contrast, 
we cannot validate sites where San is ancestral and Denisova is derived, since the Denisova 
sample is extremely limited and does not provide enough for genotyping assays.  

 
Some of the SNPs from panels 1-13 overlap. Thus, while the sum of the number of SNPs in each 
panel is 2,581,282, the number of unique SNPs is only 1,812,990. However, the fact that a SNP is 
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present in more than one panel does not mean that it has a higher likelihood of being validated for 
the array for a given ascertainment strategy. For SNP identified in more than one panel, we 
designed a single probe to test the SNP, but we assessed its validation status separately for each 
panel to avoid bias toward more easily validating more polymorphic SNPs (see below). 
 
The perl script used for choosing SNPs is on the “orchestra” Harvard Medical School filesystem 
at: /groups/reich/CLEAN_SNP_ARRAY/newformat_affypick.pl (available on request from 
David Reich). The output file is at /groups/reich/CLEAN_SNP_ARRAY/ascertained (available 
on request from David Reich). This list contains a single entry for each unique SNP, with the 
exception of triallelic sites that have multiple designs (thus, there are 1,813,579 entries rather than 
1,812,990). A readme file is at /groups/reich/CLEAN_SNP_ARRAY/ascertained_readme 
(available on request from David Reich) (Table 2). The number of SNPs that we selected using 
each strategy is summarized in Table 3. 
 
Table 3: Ascertainment of SNPs for panels 1-13 

Panel 
no. 

Ascertain-
ment Sample ID Genomic 

coverage 
# SNPs 
found 

# SNPs 
placed on 
screening 

array 

# SNPs that 
validate on 
screening 

array 

# SNPs 
that 

validate on 
final array 

1 French HGDP00521 4.4 333,492 241,707 123,574 111,970 
2 Han HGDP00778 3.8 281,819 204,841 87,515 78,253 
3 Papuan1 HGDP00542 3.6 312,941 232,408 56,518 48,531 
4 San HGDP01029 5.9 548,189 401,052 185,066 163,313 
5 Yoruba HGDP00927 4.3 412,685 302,413 136,759 124,115 
6 Mbuti HGDP00456 1.2 39,178 28,532 14,435 12,162 
7 Karitiana HGDP00998 1.1 12,449 8,535 3,619 2,635 
8 Sardinian HGDP00665 1.3 40,826 29,358 15,260 12,922 
9 Melanesian HGDP00491 1.5 51,237 36,392 17,723 14,988 
10 Cambodian HGDP00711 1.7 53,542 38,399 20,129 16,987 
11 Mongolian HGDP01224 1.4 35,087 24,858 12,872 10,757 
12 Papuan2 HGDP00551 1.4 40,996 29,305 14,739 12,117 
13 Denisova-San Den-HGDP01029 - 418,841 308,210 166,422 151,435 

  Unique SNPs 1,812,990 1,354,003 599,175 542,399 

  Unique probe designs 1,941,079 1,385,672 605,069 546,581 
 
1,941,079 unique flanking sequences corresponding to the 1,812,990 unique SNPs 
To ensure clean SNP ascertainment, we followed a rigorous procedure whereby the flanking 
sequence assay for each SNP were chosen only based on sequencing data from chimpanzee and 
the modern human sample used in SNP ascertainment. Thus, while some SNPs were discovered 
in multiple panels, we did not use this information in probe design. We used the simple rules 
below to pick a probe, and if the optimal design was different depending on the sample in which 
the SNP was ascertained, we used more than one probe for the SNP. 
 
For each SNP in each of the 13 ascertainment panels, we specified 71 base pair (bp) flanking 
sequences that would be used for probe designing as follows: 
 
(a) Ancestral and derived allele are specified based on the individuals used in SNP ascertainment. 

For each SNP in each panel, we specified the ancestral and derived alleles based on the two 
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alleles observed in SNP ascertainment, defining as “ancestral” the allele that matched 
chimpanzee. SNPs within any ascertainment panel almost always had two observed alleles, 
since we filtered out sites with three or more. However, for SNPs that were discovered in 
multiple panels, we performed the specification of the ancestral and derived allele 
independently, and thus for a small fraction of sites, there was a different derived allele 
depending on the ascertainment panel (even if flanking sequence were sometimes identical). 

 
 (b) Flanking sequence is specified entirely based on the modern sample used for SNP discovery. 

For initial probe design, we provided 35 bp of flanking sequence on either side of the SNP. 
We started with 71 bp of sequence from the chimpanzee genome, PanTro2, centered on the 
SNP. To decrease the number of mismatches between the flanking sequence and any human 
that might be analyzed using the array, we “humanized” the flanking sequence based on the 
modern sample used for SNP discovery (importantly, only the discovery sample is used for 
the humanization of the sequence, and so the ancestry of other samples cannot bias results). 

Specifically, for each of panels 1-13, we took all reads from the modern human used in 
SNP ascertainment that mapped to the flanking nucleotide. Where 100% of reads disagreed 
with PanTro2, we edited the flanking sequence to reflect that in the ascertainment sample. 
Otherwise, we kept the chimpanzee allele. An example is: 
“acctggctccagGgccagcagctccgtcaAggtcc[G/A]ctgcatgaaactgatgaaggggagggcaccaggcg”. Here, 
capital [G/A] indicates the [chimp/alternate allele] at the SNP and other capital letters indicate 
bases edited from the chimpanzee reference to match the ascertainment sample. For 
ascertainment panel 13 (Denisova ancestral and a randomly chosen San allele derived), we did 
not use the Denisova genome in primer editing. Instead, we edited the sequence to match San 
whenever San consistently had a non-chimpanzee allele at all reads overlapping the site. 

 

Because the steps above sometimes result in different flanking sequences for the same nucleotide 
(depending on the particular sequencing reads from the sample used in SNP ascertainment), we 
were left with more unique flanking sequences (n=1,941,079) than unique SNPs (n=1,812,991).  

 
Procedure used to choose 1,385,671 oligonucleotide probes for the screening array 
With the list of 1,951,079 flanking sequences, we needed to design oligonucleotide probes, or 
“probesets”, for a screening array. We blinded ourselves to prior knowledge about which probes 
worked in previous assays using the Axiom™ technology, since doing so would expected to lead 
to a higher validation success rate for probes that have been previously tried on SNP arrays 
(introducing complex biases). For the same reason, we did not modify probe design based on 
using information in databases about polymorphism in flanking sequence. The only two types of 
information that were used in probe design were the physical chemistry considerations of which 
probes are expected to work well, and mapping information to the PanTro2 chimp genome.   All 
the metrics used are in a file on the “orchestra” Harvard Medical School filesystem 
/groups/reich/CLEAN_SNP_ARRAY/probesets, available on request from David Reich (Table 
2). Details of the filtering procedure that we applied are as follows: 

 
(a) We first identified 3,882,158 candidate probesets (two 30mers for each flanking sequence) 

For each of the 1,941,079 flanking sequences, it is possible to design two probesets 
corresponding to the 30 bp 5’ or 3’ direction of the SNP. We use the shorthand “red” to 
designate the 5’ probe and “green” to designate the 3’ probe, always referenced relative to the 
positive strand of the chimpanzee genome sequence PanTro2 (Figure 1). 
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(b) We next restricted analysis to 2,294,760 probesets predicted to have greater success 
Of the 3,882,158 candidate probesets (2 for each of 1,941,079 flanking sequences), we 
computed metrics that based on past experience were useful for predicting the success of 
genotyping. The values of the metrics are in /groups/reich/CLEAN_SNP_ARRAY/probesets 
(see probesets_readme), available on request from David Reich. We applied the following 
filters to winnow the list to 2,294,760: 

 
(i) Removing probesets that map to multiple positions in chimpanzee.  
(ii) Best BLAT hit to PanTro2 is much better than the second-best hit. We used BLAT to map 

each 35 bp flanking sequence to PanTro2. We required a minimum of 33 bp of 
alignment, and required the difference between the first and second hits to be >5. 

(iii) 16mers within the probeset are relatively unique. For each candidate 30 bp probeset, we 
examined each unique 16mer in a sliding window along the sequence (15 in all), and 
counted the number of exact matches in PanTro2. We defined “16mer-max” as the 
maximum number of exact matches seen for any of these 16-mers. In the experience of 
Affymetrix scientists who have worked on the Axiom™ technology, non-specific binding 
is unlikely when 16mer-max is small. We required “16mer-max” <110. 

(iv) No runs of 4 G’s. When more than 4 consecutive Gs stack up into quartets, hybridization 
tends to be compromised. We filtered out probes that had runs of 4 G’s (or 4 C’s),  

(v) Terminal 5mer is not complemented elsewhere in the probeset. We required the 5’ 
terminal 5mer to not have a reverse complement elsewhere in the probeset sequence, to 
minimize the tendency toward inter/intra probe annealing during hybridization, which in 
previous experience with the Axiom™ technology could cause a lower success rate.  

(vi) Number of G and C nucleotides is >5. We required that >5 of the nucleotides were either 
G or C. Previous experience suggests that probesets with extremely low G or C usually 
do not work well for hybridization assays.   
 

(c) A list of 1,477,155 probesets after eliminating redundancy 
For flanking sequences where both candidate probesets passed the filters above, we chose the 
probeset that was deemed more likely to succeed based on having a lower value of “16mer-
max” metric. When both probesets had the same value of “16mer-max”, we used a random 
number generator to choose. This resulted in 1,525,604 candidate probesets. 

Even after representing each flanking sequence by no more than one probeset, the 
resulting list contained 48,449 duplicative entries. This occurred when the same SNP (and 
probeset) had been independently selected in more than one of the 13 ascertainment panels. In 
such cases, the 71bp flanking sequence obtained as described above could be distinct for 
multiple SNP ascertainments, but sub-strings could be identical, so that it could happen that 
the 30mer that was selected to represent the SNP was identical. We therefore merged these 
probes to eliminate redundancy, leaving us with 1,477,155 unique probesets. 
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Our naming scheme for probesets contains a binary string of 13 characters providing 
the ascertainment information for that probe. Because we merged some probesets, we created 
a new ascertainment code called “asc.new”. This was generated by applying a bitwise-or 
operation to the binary strings of 13 characters corresponding to the ascertainment 
information for the redundant probes. 

 
(d) A final list of 1,385,672 probes that were placed on the screening array 

The 1,477,155 probes that passed our filters were more than could fit into the screening array. 
Thus, we ranked all the probes based on their “16mer-max” score, breaking ties using a 
random number generator (lower values have a higher rank). After this ranking, all probes had 
“16mer-max” of no more than 110, and we were left with 1,385,672 probes. 

 
Design, genotyping, and analysis of screening array 
 
Design of the screening array 
We designed two arrays to screen these 1.39 million probesets (0.69 million probesets fit onto a 
single screening array). To minimize bias, we randomized the probes with respect to which one of 
the 2 screening arrays was used to test them. We also used standard chip design strategies that are 
applied at Affymetrix for determining probe location in each screen design. The number of SNPs 
from each panel placed on the screening arrays is presented in Table 3. 
 
The probesets used in the screening array are named like [chr]_[pos]_[alleles]_[asc.new]_[strand], 
with the 5 data fields indicating PanTro2 chromosome / PanTro2 physical position / ancestral-
derived alleles, and the 13 bit binary string indicating the ascertainment panels in which the SNP 
was discovered, and the strand (f=forward or r=reverse compared to PanTro2).  
 
Genotyping the screening array 
Three 96-well plates of samples were genotyped on the 2 screening arrays in early 2011, with the 
goals of (a) deciding if each SNP passes quality control criteria and can be taken forward to the 
production array, and (b) generating useful data for preliminary population genetic analysis. 
 
Validation plate #1: The goal of validation plate #1 was to genotype the same 12 modern human 
samples that were used in SNP discovery and in which the derived allele was observed, and to 
validate that we observe an allele at these samples that is distinct from the ancestral allele seen in 
primates. There was a high level of redundancy on the plate: 

• Each of the 12 modern human samples was genotyped 6 times (six different wells) 
• The chimpanzee and bonobo were each genotyped 6 times 
• The gorilla and orangutan were each genotyped 4 times 

The position of each sample on the plate (except for the upper right 4 wells which were left empty 
for control samples) was assigned using a random number generator. 

 

Validation plates #2 and #3: We also took advantage of the screening array to genotype 2 plates 
of samples from CEPH-HGDP populations. We genotyped 184 samples from the same 
populations that were used in SNP discovery, consisting of French (n=28), Han (n=27), Papuan 
(n=17), San (n=6), Yoruba (n=21), Mbuti (n=13), Karitiana (n=13), Sardinian (n=28), Melanesian 
(n=11), Cambodian (n=10) and Mongola (n=10). Analysis of the data allowed us to perform 
further validation of the SNPs on the array, and also to assess whether useful population genetic 
analyses can be generated from these genotyping data. 
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Determining which SNPs “validated” 
All samples were genotyped using the Axiom™ Assay 2.0 and genotype calls were made using 
the apt-probeset-genotype program in the Affymetrix Power Tools (APT) package11 (the apt-
probeset-genotype program is integrated in the Genotyping Console (GTC) version 4.1 
software12, which also provides visualization tools). Both programs use the Axiom™ GT1 
algorithm to call genotypes. The algorithm adapts pre-positioned clusters to the data using a 
probability-based method. Clustering is carried out in two dimensions, log ratio (log2(A) - 
log2(B)) and size (log2(A + B)/2). The algorithm derives from BRLMM-P13,14, which clusters in a 
single signal-contrast dimension, and is tuned to the signal characteristics of the Axiom™ assay. 

 

To avoid ascertainment bias, only the sample used for SNP discovery, chimpanzees and bonobos, 
were used to assign a validation status to each candidate SNP for each of the 13 ascertainment 
panels. After an initial inspection of the data from Validation Plate #1, we chose not to use the 
data from the gorilla and orangutan as part of validation. This is because for a substantial fraction 
of SNPs, the signal intensities were different for one or both alleles in the apes than in humans, 
which we hypothesized was due to differences in the flanking DNA sequence under the primers. 
This occurred most often in gorilla and orangutan, and is expected to confound the genotyping 
algorithm, and thus we restricted to chimpanzees and bonobos. 

 

We used a separate procedure for deciding whether a SNP was validated for ascertainment panels 
1-12 (SNPs discovered as a heterozygote in a single modern human) or in ascertainment panel 13 
(SNPs where San was derived and Denisova was ancestral). Table 4 summarizes the number of 
SNPs that validate in one, two, or all three genotyping runs.   
 
Table 4: Results of genotyping on the screening array 

Panel Ascertainment Sample ID Screened SNPs Validated 
in 3 runs 

Validated 
in 2 runs 

Validated 
in 1 run 

1 French HGDP00521 241,707 94,139 12,283 17,700 
2 Han HGDP00778 204,841 66,885 8,341 12,780 
3 Papuan1 HGDP00542 232,408 43,622 5,308 8,000 
4 San HGDP01029 401,052 139,689 18,266 27,648 
5 Yoruba HGDP00927 302,413 103,670 13,542 20,017 
6 Mbuti HGDP00456 28,532 11,123 1,499 1,950 
7 Karitiana HGDP00998 8,535 2,839 326 511 
8 Sardinian HGDP00665 29,358 11,555 1,630 2,232 
9 Melanesian HGDP00491 36,392 13,626 1,769 2,527 
10 Cambodian HGDP00711 38,399 15,606 1,954 2,772 
11 Mongolian HGDP01224 24,858 9,890 1,312 1,824 
12 Papuan2 HGDP00551 29,305 11,256 1,464 2,181 
13 Denisova-San Den-HGDP01029 308,210 107,708 26,280  32,845 

  Unique probesets 1,385,391 455,942 82,978  110,248  
 
Panels 1-12 (SNPs ascertained as a heterozygote in a single modern human) 
We performed the ascertainment three times by carrying out three genotyping runs: once using 
only the 6 chimpanzee replicates to represent the apes, once using only the 6 bonobo replicate, 
and once using both chimpanzee and bonobo, a total of 12 Pan samples. 
 
a) We required that all 6 human replicates are called heterozygous and all apes homozygous.  
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b) We required that the homozygous cluster and heterozygous cluster were well resolved in the 
clustering space, referred to as “A vs. M space”. M and A are defined as 
 

𝑀 = �𝑙𝑜𝑔2 �𝐴𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦� − 𝑙𝑜𝑔2 �𝐵𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦�� 

𝐴 = �𝑙𝑜𝑔2 �𝐴𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦� + 𝑙𝑜𝑔2 �𝐵𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦�� /2 
  

Based on the experience of Affymetrix scientists with the Axiom™ 2.0 Assay, five conditions 
were required to be satisfied to ensure that the clusters were well resolved in clustering space. 
Using the definitions “hetero”=samples called heterozygous, “homo”=samples called 
homozygous, “std”=standard error, and “abs”=absolute value, the 5 conditions that we 
required to be met to consider a SNP as validated were:  

 

(i)  𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜) ∈ (−1,1) and 𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜) ∈ (−∞,−1] 𝑜𝑟 [1, +∞)  
(ii)  𝑚𝑒𝑎𝑛(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) − 2 × 𝑠𝑡𝑑(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) >  𝑚𝑒𝑎𝑛(𝐴ℎ𝑜𝑚𝑜) − 2 × 𝑠𝑡𝑑(𝐴ℎ𝑜𝑚𝑜) 
(iii) 𝑚𝑒𝑎𝑛(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) ≥ 8.5 
(iv)  Δ sep≥5, where  Δsep  is computed using the following formula 

∆𝑠𝑒𝑝= 𝑎𝑏𝑠 �
𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜) −𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)
[𝑠𝑡𝑑(𝑀ℎ𝑜𝑚𝑜) + 𝑠𝑡𝑑(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)]/2

� 

(v)  𝑎𝑏𝑠�𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)−  𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜)� >  1 
 

c) We required that the chimpanzee and bonobo agree at least partially in their genotype calls, 
for SNPs where a call was made in at least one of the three genotyping runs. The goal was to 
exclude SNPs that completely disagreed between chimpanzees and bonobos, which would 
imply that the ancestral allele determination was unreliable at these sites. 

 
Panel 13 (SNPs where San was derived and Denisova was ancestral) 
SNPs were considered as “validated” for panel 13 if they passed the following validation criteria: 
 
a) All six San replicates were called heterozygote or derived homozygotes, and all ape replicates 

were called ancestral homozygotes.  
b) SNPs in chromosome X were not in pseudoautosomal regions (PARs) and were called as 

homozygous derived in the San individual. 
(i) PARs were determined by converting coordinates of the human PARs (Build36) to 

PanTro2 using the liftOver program from the UCSC genome browser. 
(ii) The San sample is a male, so SNPs in this chromosome are expected to be homozygotes. 

c) The following three criteria were required to be met to make sure that the clusters were 
located around expected locations and well separated (that is, they were well resolved) 
(i)   𝑚𝑒𝑎𝑛�𝑀𝑎𝑝𝑒ℎ𝑜𝑚𝑜� ∈ (−∞,−1] 𝑜𝑟 [1, +∞) 
(ii)  𝑚𝑒𝑎𝑛�𝐴𝑎𝑝𝑒_ℎ𝑜𝑚𝑜� ≥ 9.5 
(iii)  𝑠𝑡𝑑�𝑀𝑎𝑝𝑒_ℎ𝑜𝑚𝑜� < 0.45  

d) For a SNP passing the above criteria in any one of three genotyping runs, we required that the 
chimpanzee and bonobo genotypes, compared across runs, did not completely disagree.  

 
For autosomal SNPs in Panel 13, the true genotype for San replicates could be either heterozygote 
or derived homozygote. To avoid potential bias that might cause either heterozygous or derived 
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homozygous genotypes to be validated at a higher rate, we did not apply any metrics involving 
measuring the coherence of the heterozygous or derived homozygous clusters. Thus, the criteria 
used for Panel 13 are looser than the other 12 panels, which we expect will minimize the potential 
for ascertainment bias at the cost of lowering the validation rate of SNPs. 
 
Filtering of SNPs based on the genotyping of 184 samples on Validation Plates #2 and #3  
Up to this point, all decisions about which SNPs were considered to be validated were based 
entirely on the results of genotyping Validation Plate #1 on the screening array. As these 
decisions were only based on data from apes and the human sample used in SNP discovery, this is 
a perfectly clean strategy from the point of view of SNP ascertainment.  
 
In practice on inspection of the genotyping results for Validation Plates #2 and #3, we found that 
a small fraction of SNPs that passed the validation filters described above were completely 
heterozygous in modern humans, or nearly so. This is unexpected based on population genetic 
considerations, and suggests that these SNPs overlap segmental duplications (which we did not 
screen out from our array in the interests of having a completely unbiased ascertainment 
procedure). An observation of more than half of individuals being heterozygous is unexpected at a 
true SNP. In an unstructured population for a SNP of frequency p, the expected proportion of 
heterozygous genotypes is 2p(1-p), which is at most 0.5, and the expected rate of heterozygous 
genotypes is less than this for a structured population.  
 
We therefore implemented a further filter where for each SNP, we computed its frequency across 
all of the N modern humans on Validation Plates #2 and #3 that successfully genotyped (N≥184). 
We then counted the observed number of heterozygous genotypes hetobs versus the conservative 
expectation of  hetexp = Nphet, where phet = 2p(1-p) (here, p is the empirical frequency of the 
derived allele, (hetobs+2(number of homozygous genotypes)/2N)). By dividing the difference 
between the observed and the expected number of heterozygous genotypes by the binomially 
distributed standard error, we can compute an approximately normally distributed Z-score: 
 

𝑍 =
ℎ𝑒𝑡𝑜𝑏𝑠 − ℎ𝑒𝑡𝑒𝑥𝑝
�𝑁𝑝ℎ𝑒𝑡(1 − 𝑝ℎ𝑒𝑡)

 

 
We filtered out SNPs for which Z > 5, which is expected to remove at most a fraction 3.0×10-7 of 
true SNPs by chance. This removed 1,932 additional SNPs. 
 
Summary of results of the validation genotyping 
A total of 605,069 unique probesets (599,175 unique SNPs) were validated by the screen. The 
numbers of validated SNPs in each panel is listed in Table 3. 
  
Taking forward SNPs to a final production array 
All of the 605,069 probesets that passed the validation criteria after genotyping on the screening 
array were tiled on the final production array.  In addition to those 605,069 “Human Origins” 
SNPs, a set of 87,044 “Compatibility” SNPs were also tiled on the final production array, 
choosing from a set of 8.8 million SNPs that had previously been validated using the Axiom 
2.0TM genotyping assay. Among those SNPs, there are 2,091 non-PAR chromosome Y SNPs, 259 
mitochondrial SNPs, and 84,694 SNPs that overlap between the Affymetrix SNP Array 6.0 and 
Illumina 650Y array. No A/T or C/G SNPs were selected for the Compatibility SNPs, as they take 
up more space on the array (two probes for each SNP), so that excluding them thus allowed us to 
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maximize information from the array. For the 84,694 nuclear SNPs, we increased the value of the 
SNPs by maximizing the fraction that were also genotyped on the Affymetrix SNP Array 5.0 
(78.5%), that were covered by sequencing from Neandertal (53.9%) and Denisova (64.7%), and 
for which a chimpanzee allele was available (nearly 100%).  

 
Validation of the final SNP array through genotyping of 952 CEPH-HGDP samples  
We attempted to genotype 952 CEPH-HGDP samples that were previously determined to be 
unrelated up to second degree relatives15. This genotyping had three goals: 

 

 (a) Round 2 validation: Evaluating the performance of every SNP in the final product array 
Although all of the SNPs that were tiled on the final product array had previously been 
validated in screening arrays, there is variability in how an assay performs on a real product. 
Hence after manufacturing the final SNP array, we genotyped 952 unrelated CEPH-HGDP 
samples (including the 12 modern human samples used in SNP ascertainment) using the final 
product array. We used these data to create a list of SNPs that had gone through two rounds of 
validation and would be robust for genotyping. 

 (b) Building up prior distributions for SNP calling  
The Axiom™ GT1 algorithm makes more accurate genotype calling for a SNP if it has prior 
distributions for the 3 genotype clusters (AA, AB, and BB) based on data (by default, the 
Axiom™ GT1 algorithm uses the generic prior distributions of the 3 clusters, which is just a 
best guess). Because the CEPH-HGDP panel has such a large number of samples from diverse 
ancestries, we expect to observe clusters from all 3 genotypes for most SNPs. This allows us 
to construct prior distributions that could be used for SNP calling in other projects. 

(c)  Creating a dataset that will be useful for population genetics 
The genotyping of the unrelated CEPH-HGDP samples has the benefit that it creates a dataset 
that will be widely available to the population genetics community. Users who wish to 
genotype samples that they are interested in on this array, will be able to merge the data that 
they collect with data collected on the CEPH-HGDP samples, to enable a richer comparison 
of genetic variation in one region to worldwide variation. 

 

Table 5. Eighteen HGDP samples that did not pass quality control 
Identifier Population Reason removed 
HGDP00009 Brahui  Failed DQC 
HGDP00708  Colombian <97% genotype call rate  
HGDP01266 Mozabite <97% genotype call rate 
HGDP01267 Mozabite  <97% genotype call rate  
HGDP01403 Adygei  <97% genotype call rate 
HGDP00885 Russian <97% genotype call rate  
HGDP00886 Russian <97% genotype call rate 
HGDP00795 Orcadian  <97% genotype call rate  
HGDP00804 Orcadian  <97% genotype call rate 
HGDP00746 Palestinian <99% concordance with Illumina 650Y data 
HGDP00326 Kalash <99% concordance with Illumina 650Y data 
HGDP00274 Kalash <99% concordance with Illumina 650Y data 
HGDP00304 Kalash <99% concordance with Illumina 650Y data 
HGDP00309 Kalash <99% concordance with Illumina 650Y data 
HGDP01361 Basque <99% concordance with Illumina 650Y data 
HGDP00710 Colombian <99% concordance with Illumina 650Y data 
HGDP01376 Basque <99% concordance with Illumina 650Y data 
HGDP01009 Karitiana anomalous ancestry relative to others in group 
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Filtering out 18 samples that did not genotype reliably 
After assaying all 952 samples, we filtered to 934 samples as follows (Table 5): 
(a) We filtered out 9 samples that did not pass standard Axiom™ 2.0 Array QC metrics: a “DQC” 

score (chip-level quality metric) and a call rate score.  This suggests problems such as low 
input DNA amount, contamination of DNA samples, or technical issues with hybridization. 
These 9 samples were excluded from the genotyping calling.   

(b) We excluded an additional 9 samples based on their genotype patterns. Of these, 8 were 
excluded because there was a greater than 1% genotype discrepancy between our current data 
and earlier data from the Illumina 650Y array genotyped on the same samplesError! 
Bookmark not defined.. We also excluded HGDP01009, an individual that our data (as well 
as analyses of previous datasets) suggests is a sample whose ancestry is an outlier relative to 
others from the Karitiana group, suggesting a history of recent gene flow with other Native 
American populations.  

 
Special filters applied to chromosome X and Y data 
Chromosome X occurs in only a single copy in men but in two copies in women. Chromosome Y 
occurs only in men. This means that SNPs on these chromosomes need to be treated differently 
from autosomal SNPs; for chromosome X we genotyped males and females separately, and for 
chromosome Y we only genotyped males.  For males, we required that genotypes on both 
chromosome X and Y were always homozygous.   
 
Filtering out additional probesets based on the genotyping of the final array 
Not all probesets tiled onto the final array performed well enough to produce reliable results. We 
filtered out a total of 58,488 additional probesets by sequentially applying the seven criteria listed 
in Table 6. Three of the criteria used in Table 6 require more detailed explanation. 
 
Table 6. Phase 2 validation (determining probesets for which we report genotypes) 
Order Filter Removed Definition 
1 SNP call rate ≥ 95% 23,476 (no. of called samples) / (no. of genotyped samples = 943) 

2 Concordance 31,415 For panels 1-12, the SNP must be heterozygous in the sample used in 
ascertainment (for panel 13, heterozygous or derived homozygous).  

3 het_rate > 5 79 This is the same metric used in SNP validation 
4 het_offset > -0.5 892 See below for explanation 
5 resolution score ≥ 3.6 2,450 See below for explanation 
6 chrX annotation 94 Panel 13 SNPs that are PanTro2 chrX but not hg18 chrX are removed.    

7 chrX SNPs separate 
males and females 82 See below for explanation 

Total removed by all filters 58,488   
het_offset:   Using the definition of “A vs. M space” described in the discussion of the screening 
array filters, we defined a quantity called het_offset that measures whether the heterozygous 
genotype is appropriately intermediate between the homozygous clusters. For a probeset with 
three observed genotype clusters (AA, AB, and BB), it is defined as 
 

           ℎ𝑒𝑡_𝑜𝑓𝑓𝑠𝑒𝑡: 𝑚𝑒𝑎𝑛(𝑀𝐴𝐵)  − 𝑚𝑒𝑎𝑛(𝑀𝐴𝐴)+𝑚𝑒𝑎𝑛(𝑀𝐵𝐵)
2
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For a probeset with one observed homozygous and one heterozygous cluster, it is defined as:  
 

ℎ𝑒𝑡_𝑜𝑓𝑓𝑠𝑒𝑡: 𝑚𝑒𝑎𝑛(𝑀𝐴𝐵)  −𝑚𝑒𝑎𝑛�𝑀𝐴𝐴|𝐵𝐵� 
 

For other situations, het_offset is not used as a filter. 
 
resolution score:  This is again defined in the M space of the “A vs M space”, and it measures 
how well the heterozygous cluster separates from the homozygous cluster(s). We define: 
 
 resolution = 𝑎𝑏𝑠(𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜)− 𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜))

𝑠𝑑(𝑀ℎ𝑜𝑚𝑜)+𝑠𝑑(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)
 ×  2 

 
For a probeset with three observed genotype clusters (AA, AB, and BB), the resolution score is 
defined as: min(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐴𝐴−𝐴𝐵, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝐵−𝐴𝐵). For a probeset with one observed 
homozygous cluster and one observed heterozygous cluster, the resolution score is the resolution  
between two clusters. For other situations, the resolution score is NA. 
 
chromosome X SNPs separate males and females: It was found that for some chromosome X 
SNPs, female samples and male samples formed distinct genotype clusters. Such cases most 
likely are not real chromosome X SNPs. One possible explanation for this pattern is SNPs derived 
from fixed differences between homologous chromosome X and chromosome Y sequences15,16. 
We removed chromosome X SNPs that meet all of the following criteria 

1. All called male samples have the same genotype call 
2. Greater than 85% of called female samples have the same genotype call and there are at 

most 2 different called genotypes for females 
3. The distance between the male genotype cluster center and the major female genotype 

cluster center is at least 0.8 units in the M genotype clustering space. 
 

The number of final validated SNPs is given in the final column of Table 7, and this is the set of 
SNPs for which we publically released data for 934 unrelated CEPH-HGDP samples on August 
12, 2011. Table 7 summarizes the SNPs on the final product array. 
 
Table 7. Summary of SNPs in the final array 
Category number of probesets number of SNPs 
Human Origins 546,581 542,399 
Chromosome Y 2,091 2,091 
Mitochondrial DNA 259 259 
Compatibility 84,694 84,694 
Total 633,625 629,443 
 
Upon commercial release of the array, Affymetrix is planning to release user-friendly software 
that will facilitate SNP calling using each of the ascertainment panels. Users who are interested in 
any particular ascertainment will open up one of 14 available folders of files (the first 13 
corresponding to the SNPs in each ascertainment, and the 14th corresponding to all SNPs 
together). Users will then be able to use that folder (which will include ascertainment-panel 
specific priors) to call genotypes relevant to any given ascertainment panel.  
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The genotyping data on the 934 unrelated CEPH-HGDP samples that we collected as part of this 
project has been made freely available without restriction to the community by depositing the data 
into the CEPH-HGDP database on August 12, 2011 (ftp://ftp.cephb.fr/hgdp_supp10/). There are 
no restrictions on using these data and publishing papers based on these data.  
 
In addition to the dataset of 934 CEPH-HGDP samples that we released on August 12, 2011, we 
have also carried out further filtering to create a dataset of 828 samples that might be more useful 
for some population genetic analyses. This dataset, which is the one that we used for the analyses 
of population history reported in the present paper, is available for downloading from the Reich 
laboratory website (http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome.html). To generate 
this dataset, we started with the dataset that was released to the CEPH-HGDP website on August 
12, 2011, and then carried out population-specific Principal Component Analysis to identify 
individual samples that are outliers with respect to their own populations (consistent with 
admixture with other populations without the last few generation). These individuals were then 
filtered out of the dataset, allowing us to analyze data from a homogeneous population sample. 
Table 8 lists the number of samples from each population before and after the filtering. 
 
Table 8. Number of CEPH-HGDP samples in each of the two datasets reported here 

Population Region 
Aug. 12 

2011 
Further 
filtering   Population Region 

Aug. 
12 2011 

Further 
filtering 

BantuKenya Africa 11 10   Adygei West Eurasia 17 15 
BantuSouthAfrica Africa 8 6   Basque West Eurasia 22 20 
BiakaPygmy Africa 23 20   Bedouin West Eurasia 46 38 
Mandenka Africa 22 20   Druze West Eurasia 42 32 
Mbuti* Africa 13 12   French* West Eurasia 28 27 
Mozabite Africa 27 25   Italian West Eurasia 13 11 
San* Africa 6 5   Orcadian West Eurasia 13 13 
Yoruba* Africa 22 22   Palestinian West Eurasia 45 34 
Cambodian* East Asia 10 10   Russian West Eurasia 23 22 
Dai East Asia 10 10   Sardinian* West Eurasia 28 27 
Daur East Asia 9 7   Tuscan West Eurasia 8 7 
Han* East Asia 34 33   Balochi South Asia 24 21 
Han-NChina East Asia 10 10   Brahui South Asia 24 22 
Hezhen East Asia 9 9   Burusho South Asia 25 24 
Japanese East Asia 29 28   Hazara South Asia 22 17 
Lahu East Asia 8 7   Kalash South Asia 19 18 
Miao East Asia 10 10   Makrani South Asia 25 22 
Mongola* East Asia 10 8   Pathan South Asia 24 22 
Naxi East Asia 9 7   Sindhi South Asia 24 22 
Oroqen East Asia 9 8   Colombian America 5 4 
She East Asia 10 10   Karitiana* America 13 8 
Tu East Asia 10 9   Maya America 21 18 
Tujia East Asia 10 9   Pima America 14 11 
Uygur East Asia 10 9   Surui America 8 6 
Xibo East Asia 9 7   Melanesian* Oceania 11 9 
Yakut East Asia 25 23   Papuan* Oceania 17 14 
Yi East Asia 10 10     

  
  

* Indicates a population used in SNP ascertainment. Analysis of data from these populations should remove the individual used in 
SNP discovery, as they have highly biased SNP genotypes (all heterozygotes) relative to others in the same group. 

ftp://ftp.cephb.fr/hgdp_supp10/
http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome.html
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File S1 
Technical details of a SNP array optimized for population genetics 

 
Yontao Lu, Nick Patterson, Yiping Zhan, Swapan Mallick and David Reich 

 
 
Overview  
One of the promises of studies of human genetic variation is to learn about human history and 
also to learn about natural selection. 
 
Array genotyping of hundreds of thousands of SNPs simultaneously—using a technology that 
produces high fidelity data with an error rate of ~0.1%—is in theory a powerful tool for these 
studies. However, a limitation of all SNP arrays that have been available to date is that the SNPs 
have been chosen in a complicated way for the purpose of medical genetics, biasing their 
frequencies so that it is challenging to make reliable population genetic inferences. In general, the 
way that SNPs have been chosen for arrays is so complicated that it has been effectively 
impossible to model the ascertainment strategy and thus to correct for the bias. 
 
This technical note describes the design, validation, and manufacture of an array consisting of 
SNPs all ascertained in a clearly documented way. We anticipate that this will provide a useful 
resource for the community interested in learning about history and natural selection. We hope 
that this array will be genotyped in many different cohorts, as has been done, for example, in the 
Marshfield panel where approximately 800 microsatellites have been genotyped in diverse 
populations1,2,3,4,5. By establishing a common set of simply ascertained SNPs that have been 
genotyped in diverse populations, it should be possible to learn about human history not only in 
individual studies, but also through meta-analysis. 
 
The array is designed as a union of 13 different SNP panels. In our experience, a few tens of 
thousands of SNPs is enough to produce powerful inferences about history with regard to 
summary statistics like measurements of FST. Thus, it is better for many analyses to have (for 
example) 13 sets of tens to hundreds of thousands of SNPs each with its own ascertainment 
strategy than a single set of 600,000 SNPs. We have included a particularly large number of SNPs 
from particularly interesting ascertainments—discovery in the two chromosomes of a single San 
Bushman, a single Yoruba West African, a single French, a single Han Chinese, and a single 
Papuan—as for some analyses like scans of selection it is valuable to have dense data sets of 
hundreds of thousands of SNPs. All SNPs chosen for the array were selected from sites in the 
genome that have read coverage from Neandertals, Denisovans, and chimpanzees, allowing users 
of the array to compare data from modern humans to archaic hominins and apes. 
 
This array is not ideal for gene mapping, since: (i) No attempt has been made to tag common 
variation genome-wide. (ii) There are gaps in the genome where no homologous sequence is 
available from chimpanzee. (iii) Unlike many existing arrays, we have not oversampled SNPs in 
the vicinity of genes, or adjusting SNP density in order to fully tag haplotypes. Instead we simply 
sampled SNPs in proportion to their genomic density as discovered by sequencing. 
 
The array is being made commercially available by Affymetrix. Importantly, the academic 
collaborators who have been involved in the design will not benefit from sales of the array (they 
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will not receive any financial compensation from Affymetrix).  The CEPH-Human Genome 
Diversity Project (CEPH-HGDP) samples that were genotyped during the course of the project 
will not be used for any commercial purposes. Affymetrix deposited the genotypes of unrelated 
CEPH-HGDP samples, collected as part of the array development, into the CEPH-HGDP 
database on August 12, 2011, more than six months before commercial release of the array (in 
Spring 2012), and this genotyping data is freely available to the public. 
 
Design strategy for the 13 panels 
 
(Panels 1-12) Discovery of heterozygous sites within 12 individuals of known ancestry 
The first 12 SNP ascertainment strategies are based on the idea of the Keinan, Mullikin et al. 
Nature Genetics 2007 paper6. That paper takes advantage of the fact that by discovering SNPs in 
a comparison of two chromosomes from the same individual of known ancestry, and then 
genotyping in a larger panel of samples from the same population, one can learn about history in a 
way that is not affected by the frequency of the SNP in human populations. In particular, even 
though we may miss a substantial proportion of real SNPs in the individual (false-negatives), and 
even if a substantial proportion of discovered SNP are false-positives, we expect that the 
inferences about history using SNPs discovered in this way will be as accurate as what would be 
obtained using SNPs identified from deep sequencing with perfect readout of alleles.  
 
To understand why false-negative SNPs should not bias inferences, we note that if a SNP is truly 
heterozygous in the individual in whom we are trying to discover it, there is exactly one copy of 
the ancestral allele and exactly one copy of the derived allele. Thus, conditional on the SNP being 
heterozygous in the discovery individual, its probability of being discovered is not further 
affected by whether it has a high or low minor allele frequency in the population. This contrasts 
with ascertainment strategies that discover SNPs in more than one individual, where there is 
always a real (and extremely difficult to quantify) bias toward missing rarer variants. By 
genotyping SNPs discovered in this way, and making a simple p(1-p) correction for discovery in 
two chromosomes (where p is the minor allele frequency), one can obtain an unbiased 
reconstruction of the allele frequency distribution in the population. 
 
An important feature of this SNP discovery strategy is that false-positive SNPs (for example, due 
to sequencing error, mapping error, segmental duplications or copy number variation) are not 
expected to substantially bias inferences. The reason is that we have validated all candidate SNPs 
by genotyping them using a different technology, and we have required the genotypes to match 
the individuals in whom they were discovered. Thus, we expect to have a negligible proportion of 
false-positive SNPs on the final array. 
 
This procedure has produced 12 panels of uniformly discovered SNPs, which can be used for 
allele frequency spectrum analysis. There is some overlap of SNPs across panels. Importantly, we 
have separately determined validation status for the SNPs in each panel, and have only used SNPs 
that validate in the same sample in which they were discovered. Thus, we have not biased toward 
SNPs with a high minor allele frequency, or that are polymorphic across multiple populations, 
which might be expected to have a higher chance of validation if we did not perform the 
validation in each discovery sample independently. 
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(Panel 13) SNPs where a randomly chosen San allele is derived relative to an archaic hominin 
A 13th ascertainment strategy used alignments of three genomes: chimpanzee, Denisova (an 
archaic hominin from southern Siberia for whom there is 1.9× genome sequence coverage7), and 
San. We examined sites where we had ≥1-fold coverage of Denisova, and ≥3-fold coverage of 
San. We made an allele call for each individual by majority rule, randomly selecting an allele 
when there was a tie (this means that we are effectively sampling one of two haplotypes in the 
individual, and the allele call is not expected to be being biased if the individual is heterozygous 
at that site). We placed on the array the subset of sites where San is derived relative to both 
Denisova and chimpanzee, in this case requiring agreement between the Denisova and 
chimpanzee allele. These are sites that likely arose due to mutations in the last million years.  
 
We chose to use San rather than another modern human for building this panel because there is 
evidence that the San are approximately symmetrically related to all other present-day humans8. 
Panel 13 is also the only one with SNPs from chromosome X (all the other panels are based on 
SNPs discovered in males), and thus this panel permits X-autosome comparisons. 
  
Description of the sequencing data and filtering used in SNP ascertainment 
The sequencing data that we use for identifying candidate SNPs has been described in two recent 
papers: Green et al. 20109 and Reich et al. 20107. The data were all generated in the Max Planck 
Institute in Leipzig using Illumina Genome Analyzer IIx (GAIIx) sequencing instruments via 
protocols that are described in refs. 9 and 7 (Table 1). Population genetic analyses for ref. 7 were 
carried out on the very data file that was used to select SNPs for the array.  
 
Table 1: Characteristics of the sequencing data we are using for SNP ascertainment 
 

Name Identifier Sequenced by Genomic 
coverage* 

Cutoff† 
A (Pr) 

Cutoff† 
C (Pr) 

Cutoff† 
G (Pr) 

Cutoff† 
T (Pr) 

Han HGDP00778 Green 2010 3.8 16 (0.489) 14 (0.239) 17 (0.003) 15 (0.11) 

Papuan1 HGDP00542 Green 2010 3.6 13 (0.051) 10 (0.119) 15 (0.434) 13 (0.880) 

Yoruba HGDP00927 Green 2010 4.3 17 (0.692) 14 (0.440) 18 (0.562) 16 (0.985) 

San HGDP01029 Green 2010 5.9 17 (0.830) 15 (0.914) 18 (0.649) 16 (0.877) 

French HGDP00521 Green 2010 4.4 17 (0.317) 16 (0.985) 18 (0.024) 17 (0.515) 

Mbuti HGDP00456 Reich 2010 1.2 17 (0.041) 14 (0.504) 17 (0.704) 16 (0.379) 

Karitiana HGDP00998 Reich 2010 1.1 18 (0.210) 14 (0.126) 17 (0.147) 17 (0.589) 

Sardinian HGDP00665 Reich 2010 1.3 19 (0.789) 15 (0.302) 18 (0.474) 17 (0.200) 

Bougainville HGDP00491 Reich 2010 1.5 18 (0.810) 14 (0.288) 17 (0.445) 16 (0.291) 

Cambodian HGDP00711 Reich 2010 1.7 18 (0.717) 14 (0.303) 17 (0.331) 16 (0.398) 

Mongolian HGDP01224 Reich 2010 1.4 18 (0.371) 15 (0.789) 17 (0.051) 16 (0.090) 

Papuan2 HGDP00551 Reich 2010 1.4 17 (0.188) 14 (0.661) 17 (0.932) 16 (0.885) 

Neandertal Vindija.3.bones Green 2010 1.3 27 (0.428) 26 (0.049) 27 (0.308) 27 (0.579) 

Denisova Phalanx Reich 2010 1.9 40 (1.000) 40 (1.000) 40 (1.000) 40 (1.000) 
 

* Genomic coverage is calculated for the modern humans as (# of reads mapping to chimpanzee) × (read length which is 76bp for 
Green et al. 2010 and 101bp for Reich et al. 2010) × (0.95 as we filtered out the 5% of the lowest quality data) / (2.8 Gb). For the 
archaic hominins we report the coverage from the abstracts of Green et al. 2010 and Reich et al. 2010.   
 

† For each base used in SNP discovery, we give the quality score cutoff and probability of acceptance at that cutoff (parentheses). 
The cutoffs are chosen to filter out the data of the lowest 5% quality for each nucleotide class (SI 6; Reich et al. 2010). 
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The 12 modern human samples are all from the CEPH-HGDP panel. A valuable feature of this 
panel is that DNA for all samples is available on request on a cost-recovery basis for researchers 
who wish to carry out further sequencing and genotyping analysis on these samples for the 
purpose of research into human population history8,10.  Five of the samples (San, Yoruba, Han, 
French and a Papuan) were sequenced by Green et al. 2010 using Illumina paired-end 76bp 
reads9, while the remaining 7 (Mbuti, Sardinian, Karitiana, Mongolian, Cambodian, Bougainville, 
and a second Papuan) were sequenced by Reich et al. 2010 using Illumina paired-end 101bp 
reads7. All reads from all 12 samples were mapped to chimpanzee (PanTro2).  To filter the 
sequence data for analysis, we used a similar procedure as described in Reich et al. 20107, 
removing the lowest quality of 5% of nucleotides on a sample and nucleotide-specific basis to 
maximize the amount of sequencing data available for analysis. After this procedure, we had 3.6-
5.9× coverage for the 5 samples and 1.1-1.7× for the 7 samples (Table 1).  
 
We also used data from 4 ancient DNA samples to aid our choice of SNPs. To represent 
Neandertals, we used a pool of sequences from 3 bones from Vindija Cave in Croatia (Vi33.16, 
Vi33.25 and Vi33.26) for which we had 1.3× genome coverage altogether9. To represent 
Denisovans, we used data from a finger bone (fifth distal manual phalanx) from the Altai 
mountains of southern Siberia, with 1.9× coverage7. 
 
All reads are mapped to chimpanzee and a chimpanzee allele is available 
We mapped sequencing reads from modern and ancient genomes to the chimpanzee reference 
sequence (PanTro2) to avoid biases toward one present-day human group more than another. 
 
We filtered out reads with a substantial probability of poor mapping 
Each read that we analyzed had a mapping quality score (MAPQ) that reflects the confidence of 
its mapping to PanTro2. Based on empirical exploration of the usefulness of the scores, which 
were generated by either the ANFO or BWA software, we only used reads that had MAPQ of at 
least 90 for Neandertal (ANFO mapping), 37 for Denisova (BWA), and 60 for present-day 
humans (BWA). We also rejected reads if the alignment to the chimpanzee resulted in any 
insertion/deletion difference. This filter was applied in addition to the filtering of Table 1. 
 
Filtering of sites with ≥2 alleles not matching chimp across the humans used for SNP discovery. 
At a small proportion of sites, we observe more than one non-ancestral allele in the individual 
sequencing data used for SNP discovery. Such sites cannot be due to a single historical mutation. 
Instead, the data must reflect at least two mutations or sequencing errors. We filter out such sites. 
 
For a very small fraction of sites, we found that the derived allele is different depending on which 
human is used in SNP discovery (these are potentially triallelic SNPs in the population, although 
they are not triallelic in the discovery individual). We keep such sites in our list of SNPs for 
designing, and use multiple probe sets to assay such SNPs. 

 
The raw data file that emerges from this process is available on the “orchestra” Harvard Medical 
School filesystem at: /groups/reich/CLEAN_SNP_ARRAY/rawsnps and is freely available from 
David Reich on request (a README file is in the same directory at rawsnps_readme) (Table 2). 
For brevity, this file only lists the 2,173,116 SNPs where 2 copies of the derived and 1 copy of the 
ancestral allele are observed a hominin; these are the only SNPs that are candidates for inclusion. 
Thus, it is an abbreviated version of a larger file used in analyses for ref. 7. 
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Filtering the nucleotide calls of the lowest reliability 
(a) We do not use nucleotides for which there is no valid nucleotide call for chimpanzee. 
(b) For Neandertals, we do not use nucleotides within 5 nucleotides of either end of the reads, 

because of the elevated rate of ancient DNA degradation errors that we empirically observe. 
(c) For Denisova, we do not use nucleotides within 1 nucleotide of either end of the read. 
(d) For both Neandertals and Denisova, we do not use nucleotides with sequence quality <40. 
(e) For present-day humans, we do not use nucleotides with sequence quality <Tij, where Tij is a 

threshold chosen such that half of nucleotides generated from individual i and of allele class j 
{j = A, C, G, T} are less than this value. For nucleotides that have exactly a quality score of 
Tij, we randomly choose ones to eliminate such that exactly 5% are dropped (note that this 
differs from the 50% used in Reich et al. 2010). The cutoffs used are presented in Table 1. 

(f) For the “Papuan1” individual from ref. 9 (HGDP00542), the sequencer had a high error rate at 
position 34 (41 on the reverse strand). We excluded data from position 34 for this individual. 

 
Table 2: Datafiles summarizing the SNP ascertainment for the population genetics array 
 

File name Readme Description Entries 

rawsnps rawsnps_readme 

This file contains all sites where there are at least 2 copies of a 
derived allele and 1 copy of the ancestral allele in 12 present-
day humans, 3 Neandertals, and Denisova, and further filtered 

to be candidates for inclusion in the SNP array. 

2, 173,116 

ascertained ascertained_readme 
This file contains all SNPs chosen in any ascertainment panel 
(there are a few hundred that are triallelic and we list them on 
different lines, so the number of unique SNPs is 1,812,990). 

1,813,579 

screening screening_readme 

This file contains all probesets we considered for screening 
array design, as well as the metrics for prioritization and 

indicator variables indicating whether they were chosen. If 
chosen, a column indicates the genotyping outcome, and 

whether the SNP was taken forward to the production array.  

3,882,158 

 

 Note: These files can be found in the Harvard Medical School orchestra filesystem at /groups/reich/CLEAN_SNP_ARRAY/. 
 
1,353,671 SNPs for testing on an Affymetrix Axiom™ screening array 
 
1,812,990 candidate SNPs discovered in 13 different ascertainment panels 
We used the following algorithm to choose candidate SNPs for validating on the array. 
 
(a) We mapped all reads used for SNP discovery to the chimpanzee reference sequence, PanTro2, 

without using data from the human reference sequence at all for read mapping. This was 
important to avoid biases due to the ancestry of the human reference sequence. 

 
(b) We rediscovered all SNPs de novo, blinding ourselves to any prior information about whether 

the sites were polymorphic in present-day humans. 
 

(c) At all SNPs, we required coverage from at least 1 Neandertal read and at least 1 Denisova 
read. This is expected to result in bias toward locations of the genome where the ancient DNA 
tends to be better preserved or the sequencing technology tends to work better. However, 
there is no reason why it would be expected to result in a bias in allele frequencies toward one 
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modern human population more than another (as all Neandertal and Denisova reads are 
mapped to chimpanzee, and no modern human data influences the mapping). The availability 
of data from archaic hominins from each of the SNPs on our array should be of value for 
some types of population genetic analysis. (For a handful of sites, the Denisova and 
Neandertal alleles may not be the same as those seen in present-day humans, but we 
nevertheless considered these sites to be covered by Denisova and Neandertal as we were 
concerned that not doing so could introduce bias. Users can treat such sites how they wish.) 

 
(d) All A/T and C/G polymorphisms were excluded, since genotyping these SNPs requires twice 

the number of probes using the Axiom™ technology. Thus, removing them increases the 
number of SNPs we can include on a single array. Removing these SNPs has the additional 
benefit that it eliminates any strand ambiguity. (Illumina arrays do not genotype A/T or C/G 
SNPs, either.) However, it also had the disadvantage that A/T and C/G SNPS constitute the 
one class of SNPs that is believed to be immune to biased gene conversion.  Thus, in 
population genetic analyses of the data generated from the array, it will be important to assess 
whether inferences are potentially explained by biased gene conversion. 

 
(e) For the SNPs for panels 1-12 (candidate heterozygotes in an individual of known ancestry), 

we required the observation of at least 2 copies of the derived (non-chimpanzee) and at least 1 
copy of the ancestral allele in the studied person (Reich et al. 2010; SI 6). We did not include 
chromosome X SNPs from these panels as the 12 individuals were all male. 

 
(f) For the SNPs in panel 13 (derived in San relative to Denisova), we restricted to sites where we 

had ≥3-fold read coverage of San and ≥1-fold read coverage of Denisova. 
A complication in choosing SNPs discovered in two individuals is that both the San and 

Denisova individuals are diploid. What we want is to have a panel of SNPs ascertained by 
comparing a single haploid Denisovan and a single haploid San chromosome, but if we are 
not careful, we are going to be biased toward the SNPs that are fixed differences.  For 
example, if we accepted only SNPs where all Denisova reads matched chimpanzee and all San 
reads were derived, then we would bias against SNPs that were truly heterozygous.  

To obtain data of the type that would be expected from sampling a single haploid 
Denisovan and a single haploid San chromosome, we picked the allele that was seen more 
often in each sample to represent that sample (if there was a tie in terms of the number of 
reads supporting each allele, we chose one allele at random). In this way, we are picking one 
of the two chromosomes from each individual (at random), and hence we are effectively 
sampling a haploid chromosome despite having diploid data. An additional benefit of using 
the majority rule is that we are also increasing the quality and reliability of the allele call, such 
that we expect a larger proportion of these SNPs to be real than in panels 1-12. 

From the SNPs discovered in this way, we restrict our analysis to sites where Denisova 
matches the chimpanzee allele and where San is derived (we throw away sites where San is 
ancestral and Denisova is derived). The reason for this is that this is the only subset of SNPs 
that we can experimentally validate. To validate these SNPs, we can genotype the San 
individual and require the observation of an allele that differs from chimpanzee. In contrast, 
we cannot validate sites where San is ancestral and Denisova is derived, since the Denisova 
sample is extremely limited and does not provide enough for genotyping assays.  

 
Some of the SNPs from panels 1-13 overlap. Thus, while the sum of the number of SNPs in each 
panel is 2,581,282, the number of unique SNPs is only 1,812,990. However, the fact that a SNP is 
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present in more than one panel does not mean that it has a higher likelihood of being validated for 
the array for a given ascertainment strategy. For SNP identified in more than one panel, we 
designed a single probe to test the SNP, but we assessed its validation status separately for each 
panel to avoid bias toward more easily validating more polymorphic SNPs (see below). 
 
The perl script used for choosing SNPs is on the “orchestra” Harvard Medical School filesystem 
at: /groups/reich/CLEAN_SNP_ARRAY/newformat_affypick.pl (available on request from 
David Reich). The output file is at /groups/reich/CLEAN_SNP_ARRAY/ascertained (available 
on request from David Reich). This list contains a single entry for each unique SNP, with the 
exception of triallelic sites that have multiple designs (thus, there are 1,813,579 entries rather than 
1,812,990). A readme file is at /groups/reich/CLEAN_SNP_ARRAY/ascertained_readme 
(available on request from David Reich) (Table 2). The number of SNPs that we selected using 
each strategy is summarized in Table 3. 
 
Table 3: Ascertainment of SNPs for panels 1-13 

Panel 
no. 

Ascertain-
ment Sample ID Genomic 

coverage 
# SNPs 
found 

# SNPs 
placed on 
screening 

array 

# SNPs that 
validate on 
screening 

array 

# SNPs 
that 

validate on 
final array 

1 French HGDP00521 4.4 333,492 241,707 123,574 111,970 
2 Han HGDP00778 3.8 281,819 204,841 87,515 78,253 
3 Papuan1 HGDP00542 3.6 312,941 232,408 56,518 48,531 
4 San HGDP01029 5.9 548,189 401,052 185,066 163,313 
5 Yoruba HGDP00927 4.3 412,685 302,413 136,759 124,115 
6 Mbuti HGDP00456 1.2 39,178 28,532 14,435 12,162 
7 Karitiana HGDP00998 1.1 12,449 8,535 3,619 2,635 
8 Sardinian HGDP00665 1.3 40,826 29,358 15,260 12,922 
9 Melanesian HGDP00491 1.5 51,237 36,392 17,723 14,988 
10 Cambodian HGDP00711 1.7 53,542 38,399 20,129 16,987 
11 Mongolian HGDP01224 1.4 35,087 24,858 12,872 10,757 
12 Papuan2 HGDP00551 1.4 40,996 29,305 14,739 12,117 
13 Denisova-San Den-HGDP01029 - 418,841 308,210 166,422 151,435 

  Unique SNPs 1,812,990 1,354,003 599,175 542,399 

  Unique probe designs 1,941,079 1,385,672 605,069 546,581 
 
1,941,079 unique flanking sequences corresponding to the 1,812,990 unique SNPs 
To ensure clean SNP ascertainment, we followed a rigorous procedure whereby the flanking 
sequence assay for each SNP were chosen only based on sequencing data from chimpanzee and 
the modern human sample used in SNP ascertainment. Thus, while some SNPs were discovered 
in multiple panels, we did not use this information in probe design. We used the simple rules 
below to pick a probe, and if the optimal design was different depending on the sample in which 
the SNP was ascertained, we used more than one probe for the SNP. 
 
For each SNP in each of the 13 ascertainment panels, we specified 71 base pair (bp) flanking 
sequences that would be used for probe designing as follows: 
 
(a) Ancestral and derived allele are specified based on the individuals used in SNP ascertainment. 

For each SNP in each panel, we specified the ancestral and derived alleles based on the two 
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alleles observed in SNP ascertainment, defining as “ancestral” the allele that matched 
chimpanzee. SNPs within any ascertainment panel almost always had two observed alleles, 
since we filtered out sites with three or more. However, for SNPs that were discovered in 
multiple panels, we performed the specification of the ancestral and derived allele 
independently, and thus for a small fraction of sites, there was a different derived allele 
depending on the ascertainment panel (even if flanking sequence were sometimes identical). 

 
 (b) Flanking sequence is specified entirely based on the modern sample used for SNP discovery. 

For initial probe design, we provided 35 bp of flanking sequence on either side of the SNP. 
We started with 71 bp of sequence from the chimpanzee genome, PanTro2, centered on the 
SNP. To decrease the number of mismatches between the flanking sequence and any human 
that might be analyzed using the array, we “humanized” the flanking sequence based on the 
modern sample used for SNP discovery (importantly, only the discovery sample is used for 
the humanization of the sequence, and so the ancestry of other samples cannot bias results). 

Specifically, for each of panels 1-13, we took all reads from the modern human used in 
SNP ascertainment that mapped to the flanking nucleotide. Where 100% of reads disagreed 
with PanTro2, we edited the flanking sequence to reflect that in the ascertainment sample. 
Otherwise, we kept the chimpanzee allele. An example is: 
“acctggctccagGgccagcagctccgtcaAggtcc[G/A]ctgcatgaaactgatgaaggggagggcaccaggcg”. Here, 
capital [G/A] indicates the [chimp/alternate allele] at the SNP and other capital letters indicate 
bases edited from the chimpanzee reference to match the ascertainment sample. For 
ascertainment panel 13 (Denisova ancestral and a randomly chosen San allele derived), we did 
not use the Denisova genome in primer editing. Instead, we edited the sequence to match San 
whenever San consistently had a non-chimpanzee allele at all reads overlapping the site. 

 

Because the steps above sometimes result in different flanking sequences for the same nucleotide 
(depending on the particular sequencing reads from the sample used in SNP ascertainment), we 
were left with more unique flanking sequences (n=1,941,079) than unique SNPs (n=1,812,991).  

 
Procedure used to choose 1,385,671 oligonucleotide probes for the screening array 
With the list of 1,951,079 flanking sequences, we needed to design oligonucleotide probes, or 
“probesets”, for a screening array. We blinded ourselves to prior knowledge about which probes 
worked in previous assays using the Axiom™ technology, since doing so would expected to lead 
to a higher validation success rate for probes that have been previously tried on SNP arrays 
(introducing complex biases). For the same reason, we did not modify probe design based on 
using information in databases about polymorphism in flanking sequence. The only two types of 
information that were used in probe design were the physical chemistry considerations of which 
probes are expected to work well, and mapping information to the PanTro2 chimp genome.   All 
the metrics used are in a file on the “orchestra” Harvard Medical School filesystem 
/groups/reich/CLEAN_SNP_ARRAY/probesets, available on request from David Reich (Table 
2). Details of the filtering procedure that we applied are as follows: 

 
(a) We first identified 3,882,158 candidate probesets (two 30mers for each flanking sequence) 

For each of the 1,941,079 flanking sequences, it is possible to design two probesets 
corresponding to the 30 bp 5’ or 3’ direction of the SNP. We use the shorthand “red” to 
designate the 5’ probe and “green” to designate the 3’ probe, always referenced relative to the 
positive strand of the chimpanzee genome sequence PanTro2 (Figure 1). 
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(b) We next restricted analysis to 2,294,760 probesets predicted to have greater success 
Of the 3,882,158 candidate probesets (2 for each of 1,941,079 flanking sequences), we 
computed metrics that based on past experience were useful for predicting the success of 
genotyping. The values of the metrics are in /groups/reich/CLEAN_SNP_ARRAY/probesets 
(see probesets_readme), available on request from David Reich. We applied the following 
filters to winnow the list to 2,294,760: 

 
(i) Removing probesets that map to multiple positions in chimpanzee.  
(ii) Best BLAT hit to PanTro2 is much better than the second-best hit. We used BLAT to map 

each 35 bp flanking sequence to PanTro2. We required a minimum of 33 bp of 
alignment, and required the difference between the first and second hits to be >5. 

(iii) 16mers within the probeset are relatively unique. For each candidate 30 bp probeset, we 
examined each unique 16mer in a sliding window along the sequence (15 in all), and 
counted the number of exact matches in PanTro2. We defined “16mer-max” as the 
maximum number of exact matches seen for any of these 16-mers. In the experience of 
Affymetrix scientists who have worked on the Axiom™ technology, non-specific binding 
is unlikely when 16mer-max is small. We required “16mer-max” <110. 

(iv) No runs of 4 G’s. When more than 4 consecutive Gs stack up into quartets, hybridization 
tends to be compromised. We filtered out probes that had runs of 4 G’s (or 4 C’s),  

(v) Terminal 5mer is not complemented elsewhere in the probeset. We required the 5’ 
terminal 5mer to not have a reverse complement elsewhere in the probeset sequence, to 
minimize the tendency toward inter/intra probe annealing during hybridization, which in 
previous experience with the Axiom™ technology could cause a lower success rate.  

(vi) Number of G and C nucleotides is >5. We required that >5 of the nucleotides were either 
G or C. Previous experience suggests that probesets with extremely low G or C usually 
do not work well for hybridization assays.   
 

(c) A list of 1,477,155 probesets after eliminating redundancy 
For flanking sequences where both candidate probesets passed the filters above, we chose the 
probeset that was deemed more likely to succeed based on having a lower value of “16mer-
max” metric. When both probesets had the same value of “16mer-max”, we used a random 
number generator to choose. This resulted in 1,525,604 candidate probesets. 

Even after representing each flanking sequence by no more than one probeset, the 
resulting list contained 48,449 duplicative entries. This occurred when the same SNP (and 
probeset) had been independently selected in more than one of the 13 ascertainment panels. In 
such cases, the 71bp flanking sequence obtained as described above could be distinct for 
multiple SNP ascertainments, but sub-strings could be identical, so that it could happen that 
the 30mer that was selected to represent the SNP was identical. We therefore merged these 
probes to eliminate redundancy, leaving us with 1,477,155 unique probesets. 
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Our naming scheme for probesets contains a binary string of 13 characters providing 
the ascertainment information for that probe. Because we merged some probesets, we created 
a new ascertainment code called “asc.new”. This was generated by applying a bitwise-or 
operation to the binary strings of 13 characters corresponding to the ascertainment 
information for the redundant probes. 

 
(d) A final list of 1,385,672 probes that were placed on the screening array 

The 1,477,155 probes that passed our filters were more than could fit into the screening array. 
Thus, we ranked all the probes based on their “16mer-max” score, breaking ties using a 
random number generator (lower values have a higher rank). After this ranking, all probes had 
“16mer-max” of no more than 110, and we were left with 1,385,672 probes. 

 
Design, genotyping, and analysis of screening array 
 
Design of the screening array 
We designed two arrays to screen these 1.39 million probesets (0.69 million probesets fit onto a 
single screening array). To minimize bias, we randomized the probes with respect to which one of 
the 2 screening arrays was used to test them. We also used standard chip design strategies that are 
applied at Affymetrix for determining probe location in each screen design. The number of SNPs 
from each panel placed on the screening arrays is presented in Table 3. 
 
The probesets used in the screening array are named like [chr]_[pos]_[alleles]_[asc.new]_[strand], 
with the 5 data fields indicating PanTro2 chromosome / PanTro2 physical position / ancestral-
derived alleles, and the 13 bit binary string indicating the ascertainment panels in which the SNP 
was discovered, and the strand (f=forward or r=reverse compared to PanTro2).  
 
Genotyping the screening array 
Three 96-well plates of samples were genotyped on the 2 screening arrays in early 2011, with the 
goals of (a) deciding if each SNP passes quality control criteria and can be taken forward to the 
production array, and (b) generating useful data for preliminary population genetic analysis. 
 
Validation plate #1: The goal of validation plate #1 was to genotype the same 12 modern human 
samples that were used in SNP discovery and in which the derived allele was observed, and to 
validate that we observe an allele at these samples that is distinct from the ancestral allele seen in 
primates. There was a high level of redundancy on the plate: 

• Each of the 12 modern human samples was genotyped 6 times (six different wells) 
• The chimpanzee and bonobo were each genotyped 6 times 
• The gorilla and orangutan were each genotyped 4 times 

The position of each sample on the plate (except for the upper right 4 wells which were left empty 
for control samples) was assigned using a random number generator. 

 

Validation plates #2 and #3: We also took advantage of the screening array to genotype 2 plates 
of samples from CEPH-HGDP populations. We genotyped 184 samples from the same 
populations that were used in SNP discovery, consisting of French (n=28), Han (n=27), Papuan 
(n=17), San (n=6), Yoruba (n=21), Mbuti (n=13), Karitiana (n=13), Sardinian (n=28), Melanesian 
(n=11), Cambodian (n=10) and Mongola (n=10). Analysis of the data allowed us to perform 
further validation of the SNPs on the array, and also to assess whether useful population genetic 
analyses can be generated from these genotyping data. 
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Determining which SNPs “validated” 
All samples were genotyped using the Axiom™ Assay 2.0 and genotype calls were made using 
the apt-probeset-genotype program in the Affymetrix Power Tools (APT) package11 (the apt-
probeset-genotype program is integrated in the Genotyping Console (GTC) version 4.1 
software12, which also provides visualization tools). Both programs use the Axiom™ GT1 
algorithm to call genotypes. The algorithm adapts pre-positioned clusters to the data using a 
probability-based method. Clustering is carried out in two dimensions, log ratio (log2(A) - 
log2(B)) and size (log2(A + B)/2). The algorithm derives from BRLMM-P13,14, which clusters in a 
single signal-contrast dimension, and is tuned to the signal characteristics of the Axiom™ assay. 

 

To avoid ascertainment bias, only the sample used for SNP discovery, chimpanzees and bonobos, 
were used to assign a validation status to each candidate SNP for each of the 13 ascertainment 
panels. After an initial inspection of the data from Validation Plate #1, we chose not to use the 
data from the gorilla and orangutan as part of validation. This is because for a substantial fraction 
of SNPs, the signal intensities were different for one or both alleles in the apes than in humans, 
which we hypothesized was due to differences in the flanking DNA sequence under the primers. 
This occurred most often in gorilla and orangutan, and is expected to confound the genotyping 
algorithm, and thus we restricted to chimpanzees and bonobos. 

 

We used a separate procedure for deciding whether a SNP was validated for ascertainment panels 
1-12 (SNPs discovered as a heterozygote in a single modern human) or in ascertainment panel 13 
(SNPs where San was derived and Denisova was ancestral). Table 4 summarizes the number of 
SNPs that validate in one, two, or all three genotyping runs.   
 
Table 4: Results of genotyping on the screening array 

Panel Ascertainment Sample ID Screened SNPs Validated 
in 3 runs 

Validated 
in 2 runs 

Validated 
in 1 run 

1 French HGDP00521 241,707 94,139 12,283 17,700 
2 Han HGDP00778 204,841 66,885 8,341 12,780 
3 Papuan1 HGDP00542 232,408 43,622 5,308 8,000 
4 San HGDP01029 401,052 139,689 18,266 27,648 
5 Yoruba HGDP00927 302,413 103,670 13,542 20,017 
6 Mbuti HGDP00456 28,532 11,123 1,499 1,950 
7 Karitiana HGDP00998 8,535 2,839 326 511 
8 Sardinian HGDP00665 29,358 11,555 1,630 2,232 
9 Melanesian HGDP00491 36,392 13,626 1,769 2,527 
10 Cambodian HGDP00711 38,399 15,606 1,954 2,772 
11 Mongolian HGDP01224 24,858 9,890 1,312 1,824 
12 Papuan2 HGDP00551 29,305 11,256 1,464 2,181 
13 Denisova-San Den-HGDP01029 308,210 107,708 26,280  32,845 

  Unique probesets 1,385,391 455,942 82,978  110,248  
 
Panels 1-12 (SNPs ascertained as a heterozygote in a single modern human) 
We performed the ascertainment three times by carrying out three genotyping runs: once using 
only the 6 chimpanzee replicates to represent the apes, once using only the 6 bonobo replicate, 
and once using both chimpanzee and bonobo, a total of 12 Pan samples. 
 
a) We required that all 6 human replicates are called heterozygous and all apes homozygous.  
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b) We required that the homozygous cluster and heterozygous cluster were well resolved in the 
clustering space, referred to as “A vs. M space”. M and A are defined as 
 

𝑀 = �𝑙𝑜𝑔2 �𝐴𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦� − 𝑙𝑜𝑔2 �𝐵𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦�� 

𝐴 = �𝑙𝑜𝑔2 �𝐴𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦� + 𝑙𝑜𝑔2 �𝐵𝑎𝑙𝑙𝑒𝑙𝑒𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦�� /2 
  

Based on the experience of Affymetrix scientists with the Axiom™ 2.0 Assay, five conditions 
were required to be satisfied to ensure that the clusters were well resolved in clustering space. 
Using the definitions “hetero”=samples called heterozygous, “homo”=samples called 
homozygous, “std”=standard error, and “abs”=absolute value, the 5 conditions that we 
required to be met to consider a SNP as validated were:  

 

(i)  𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜) ∈ (−1,1) and 𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜) ∈ (−∞,−1] 𝑜𝑟 [1, +∞)  
(ii)  𝑚𝑒𝑎𝑛(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) − 2 × 𝑠𝑡𝑑(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) >  𝑚𝑒𝑎𝑛(𝐴ℎ𝑜𝑚𝑜) − 2 × 𝑠𝑡𝑑(𝐴ℎ𝑜𝑚𝑜) 
(iii) 𝑚𝑒𝑎𝑛(𝐴ℎ𝑒𝑡𝑒𝑟𝑜) ≥ 8.5 
(iv)  Δ sep≥5, where  Δsep  is computed using the following formula 

∆𝑠𝑒𝑝= 𝑎𝑏𝑠 �
𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜) −𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)
[𝑠𝑡𝑑(𝑀ℎ𝑜𝑚𝑜) + 𝑠𝑡𝑑(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)]/2

� 

(v)  𝑎𝑏𝑠�𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)−  𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜)� >  1 
 

c) We required that the chimpanzee and bonobo agree at least partially in their genotype calls, 
for SNPs where a call was made in at least one of the three genotyping runs. The goal was to 
exclude SNPs that completely disagreed between chimpanzees and bonobos, which would 
imply that the ancestral allele determination was unreliable at these sites. 

 
Panel 13 (SNPs where San was derived and Denisova was ancestral) 
SNPs were considered as “validated” for panel 13 if they passed the following validation criteria: 
 
a) All six San replicates were called heterozygote or derived homozygotes, and all ape replicates 

were called ancestral homozygotes.  
b) SNPs in chromosome X were not in pseudoautosomal regions (PARs) and were called as 

homozygous derived in the San individual. 
(i) PARs were determined by converting coordinates of the human PARs (Build36) to 

PanTro2 using the liftOver program from the UCSC genome browser. 
(ii) The San sample is a male, so SNPs in this chromosome are expected to be homozygotes. 

c) The following three criteria were required to be met to make sure that the clusters were 
located around expected locations and well separated (that is, they were well resolved) 
(i)   𝑚𝑒𝑎𝑛�𝑀𝑎𝑝𝑒ℎ𝑜𝑚𝑜� ∈ (−∞,−1] 𝑜𝑟 [1, +∞) 
(ii)  𝑚𝑒𝑎𝑛�𝐴𝑎𝑝𝑒_ℎ𝑜𝑚𝑜� ≥ 9.5 
(iii)  𝑠𝑡𝑑�𝑀𝑎𝑝𝑒_ℎ𝑜𝑚𝑜� < 0.45  

d) For a SNP passing the above criteria in any one of three genotyping runs, we required that the 
chimpanzee and bonobo genotypes, compared across runs, did not completely disagree.  

 
For autosomal SNPs in Panel 13, the true genotype for San replicates could be either heterozygote 
or derived homozygote. To avoid potential bias that might cause either heterozygous or derived 
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homozygous genotypes to be validated at a higher rate, we did not apply any metrics involving 
measuring the coherence of the heterozygous or derived homozygous clusters. Thus, the criteria 
used for Panel 13 are looser than the other 12 panels, which we expect will minimize the potential 
for ascertainment bias at the cost of lowering the validation rate of SNPs. 
 
Filtering of SNPs based on the genotyping of 184 samples on Validation Plates #2 and #3  
Up to this point, all decisions about which SNPs were considered to be validated were based 
entirely on the results of genotyping Validation Plate #1 on the screening array. As these 
decisions were only based on data from apes and the human sample used in SNP discovery, this is 
a perfectly clean strategy from the point of view of SNP ascertainment.  
 
In practice on inspection of the genotyping results for Validation Plates #2 and #3, we found that 
a small fraction of SNPs that passed the validation filters described above were completely 
heterozygous in modern humans, or nearly so. This is unexpected based on population genetic 
considerations, and suggests that these SNPs overlap segmental duplications (which we did not 
screen out from our array in the interests of having a completely unbiased ascertainment 
procedure). An observation of more than half of individuals being heterozygous is unexpected at a 
true SNP. In an unstructured population for a SNP of frequency p, the expected proportion of 
heterozygous genotypes is 2p(1-p), which is at most 0.5, and the expected rate of heterozygous 
genotypes is less than this for a structured population.  
 
We therefore implemented a further filter where for each SNP, we computed its frequency across 
all of the N modern humans on Validation Plates #2 and #3 that successfully genotyped (N≥184). 
We then counted the observed number of heterozygous genotypes hetobs versus the conservative 
expectation of  hetexp = Nphet, where phet = 2p(1-p) (here, p is the empirical frequency of the 
derived allele, (hetobs+2(number of homozygous genotypes)/2N)). By dividing the difference 
between the observed and the expected number of heterozygous genotypes by the binomially 
distributed standard error, we can compute an approximately normally distributed Z-score: 
 

𝑍 =
ℎ𝑒𝑡𝑜𝑏𝑠 − ℎ𝑒𝑡𝑒𝑥𝑝
�𝑁𝑝ℎ𝑒𝑡(1 − 𝑝ℎ𝑒𝑡)

 

 
We filtered out SNPs for which Z > 5, which is expected to remove at most a fraction 3.0×10-7 of 
true SNPs by chance. This removed 1,932 additional SNPs. 
 
Summary of results of the validation genotyping 
A total of 605,069 unique probesets (599,175 unique SNPs) were validated by the screen. The 
numbers of validated SNPs in each panel is listed in Table 3. 
  
Taking forward SNPs to a final production array 
All of the 605,069 probesets that passed the validation criteria after genotyping on the screening 
array were tiled on the final production array.  In addition to those 605,069 “Human Origins” 
SNPs, a set of 87,044 “Compatibility” SNPs were also tiled on the final production array, 
choosing from a set of 8.8 million SNPs that had previously been validated using the Axiom 
2.0TM genotyping assay. Among those SNPs, there are 2,091 non-PAR chromosome Y SNPs, 259 
mitochondrial SNPs, and 84,694 SNPs that overlap between the Affymetrix SNP Array 6.0 and 
Illumina 650Y array. No A/T or C/G SNPs were selected for the Compatibility SNPs, as they take 
up more space on the array (two probes for each SNP), so that excluding them thus allowed us to 
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maximize information from the array. For the 84,694 nuclear SNPs, we increased the value of the 
SNPs by maximizing the fraction that were also genotyped on the Affymetrix SNP Array 5.0 
(78.5%), that were covered by sequencing from Neandertal (53.9%) and Denisova (64.7%), and 
for which a chimpanzee allele was available (nearly 100%).  

 
Validation of the final SNP array through genotyping of 952 CEPH-HGDP samples  
We attempted to genotype 952 CEPH-HGDP samples that were previously determined to be 
unrelated up to second degree relatives15. This genotyping had three goals: 

 

 (a) Round 2 validation: Evaluating the performance of every SNP in the final product array 
Although all of the SNPs that were tiled on the final product array had previously been 
validated in screening arrays, there is variability in how an assay performs on a real product. 
Hence after manufacturing the final SNP array, we genotyped 952 unrelated CEPH-HGDP 
samples (including the 12 modern human samples used in SNP ascertainment) using the final 
product array. We used these data to create a list of SNPs that had gone through two rounds of 
validation and would be robust for genotyping. 

 (b) Building up prior distributions for SNP calling  
The Axiom™ GT1 algorithm makes more accurate genotype calling for a SNP if it has prior 
distributions for the 3 genotype clusters (AA, AB, and BB) based on data (by default, the 
Axiom™ GT1 algorithm uses the generic prior distributions of the 3 clusters, which is just a 
best guess). Because the CEPH-HGDP panel has such a large number of samples from diverse 
ancestries, we expect to observe clusters from all 3 genotypes for most SNPs. This allows us 
to construct prior distributions that could be used for SNP calling in other projects. 

(c)  Creating a dataset that will be useful for population genetics 
The genotyping of the unrelated CEPH-HGDP samples has the benefit that it creates a dataset 
that will be widely available to the population genetics community. Users who wish to 
genotype samples that they are interested in on this array, will be able to merge the data that 
they collect with data collected on the CEPH-HGDP samples, to enable a richer comparison 
of genetic variation in one region to worldwide variation. 

 

Table 5. Eighteen HGDP samples that did not pass quality control 
Identifier Population Reason removed 
HGDP00009 Brahui  Failed DQC 
HGDP00708  Colombian <97% genotype call rate  
HGDP01266 Mozabite <97% genotype call rate 
HGDP01267 Mozabite  <97% genotype call rate  
HGDP01403 Adygei  <97% genotype call rate 
HGDP00885 Russian <97% genotype call rate  
HGDP00886 Russian <97% genotype call rate 
HGDP00795 Orcadian  <97% genotype call rate  
HGDP00804 Orcadian  <97% genotype call rate 
HGDP00746 Palestinian <99% concordance with Illumina 650Y data 
HGDP00326 Kalash <99% concordance with Illumina 650Y data 
HGDP00274 Kalash <99% concordance with Illumina 650Y data 
HGDP00304 Kalash <99% concordance with Illumina 650Y data 
HGDP00309 Kalash <99% concordance with Illumina 650Y data 
HGDP01361 Basque <99% concordance with Illumina 650Y data 
HGDP00710 Colombian <99% concordance with Illumina 650Y data 
HGDP01376 Basque <99% concordance with Illumina 650Y data 
HGDP01009 Karitiana anomalous ancestry relative to others in group 
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Filtering out 18 samples that did not genotype reliably 
After assaying all 952 samples, we filtered to 934 samples as follows (Table 5): 
(a) We filtered out 9 samples that did not pass standard Axiom™ 2.0 Array QC metrics: a “DQC” 

score (chip-level quality metric) and a call rate score.  This suggests problems such as low 
input DNA amount, contamination of DNA samples, or technical issues with hybridization. 
These 9 samples were excluded from the genotyping calling.   

(b) We excluded an additional 9 samples based on their genotype patterns. Of these, 8 were 
excluded because there was a greater than 1% genotype discrepancy between our current data 
and earlier data from the Illumina 650Y array genotyped on the same samplesError! 
Bookmark not defined.. We also excluded HGDP01009, an individual that our data (as well 
as analyses of previous datasets) suggests is a sample whose ancestry is an outlier relative to 
others from the Karitiana group, suggesting a history of recent gene flow with other Native 
American populations.  

 
Special filters applied to chromosome X and Y data 
Chromosome X occurs in only a single copy in men but in two copies in women. Chromosome Y 
occurs only in men. This means that SNPs on these chromosomes need to be treated differently 
from autosomal SNPs; for chromosome X we genotyped males and females separately, and for 
chromosome Y we only genotyped males.  For males, we required that genotypes on both 
chromosome X and Y were always homozygous.   
 
Filtering out additional probesets based on the genotyping of the final array 
Not all probesets tiled onto the final array performed well enough to produce reliable results. We 
filtered out a total of 58,488 additional probesets by sequentially applying the seven criteria listed 
in Table 6. Three of the criteria used in Table 6 require more detailed explanation. 
 
Table 6. Phase 2 validation (determining probesets for which we report genotypes) 
Order Filter Removed Definition 
1 SNP call rate ≥ 95% 23,476 (no. of called samples) / (no. of genotyped samples = 943) 

2 Concordance 31,415 For panels 1-12, the SNP must be heterozygous in the sample used in 
ascertainment (for panel 13, heterozygous or derived homozygous).  

3 het_rate > 5 79 This is the same metric used in SNP validation 
4 het_offset > -0.5 892 See below for explanation 
5 resolution score ≥ 3.6 2,450 See below for explanation 
6 chrX annotation 94 Panel 13 SNPs that are PanTro2 chrX but not hg18 chrX are removed.    

7 chrX SNPs separate 
males and females 82 See below for explanation 

Total removed by all filters 58,488   
het_offset:   Using the definition of “A vs. M space” described in the discussion of the screening 
array filters, we defined a quantity called het_offset that measures whether the heterozygous 
genotype is appropriately intermediate between the homozygous clusters. For a probeset with 
three observed genotype clusters (AA, AB, and BB), it is defined as 
 

           ℎ𝑒𝑡_𝑜𝑓𝑓𝑠𝑒𝑡: 𝑚𝑒𝑎𝑛(𝑀𝐴𝐵)  − 𝑚𝑒𝑎𝑛(𝑀𝐴𝐴)+𝑚𝑒𝑎𝑛(𝑀𝐵𝐵)
2
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For a probeset with one observed homozygous and one heterozygous cluster, it is defined as:  
 

ℎ𝑒𝑡_𝑜𝑓𝑓𝑠𝑒𝑡: 𝑚𝑒𝑎𝑛(𝑀𝐴𝐵)  −𝑚𝑒𝑎𝑛�𝑀𝐴𝐴|𝐵𝐵� 
 

For other situations, het_offset is not used as a filter. 
 
resolution score:  This is again defined in the M space of the “A vs M space”, and it measures 
how well the heterozygous cluster separates from the homozygous cluster(s). We define: 
 
 resolution = 𝑎𝑏𝑠(𝑚𝑒𝑎𝑛(𝑀ℎ𝑜𝑚𝑜)− 𝑚𝑒𝑎𝑛(𝑀ℎ𝑒𝑡𝑒𝑟𝑜))

𝑠𝑑(𝑀ℎ𝑜𝑚𝑜)+𝑠𝑑(𝑀ℎ𝑒𝑡𝑒𝑟𝑜)
 ×  2 

 
For a probeset with three observed genotype clusters (AA, AB, and BB), the resolution score is 
defined as: min(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐴𝐴−𝐴𝐵, 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝐵−𝐴𝐵). For a probeset with one observed 
homozygous cluster and one observed heterozygous cluster, the resolution score is the resolution  
between two clusters. For other situations, the resolution score is NA. 
 
chromosome X SNPs separate males and females: It was found that for some chromosome X 
SNPs, female samples and male samples formed distinct genotype clusters. Such cases most 
likely are not real chromosome X SNPs. One possible explanation for this pattern is SNPs derived 
from fixed differences between homologous chromosome X and chromosome Y sequences15,16. 
We removed chromosome X SNPs that meet all of the following criteria 

1. All called male samples have the same genotype call 
2. Greater than 85% of called female samples have the same genotype call and there are at 

most 2 different called genotypes for females 
3. The distance between the male genotype cluster center and the major female genotype 

cluster center is at least 0.8 units in the M genotype clustering space. 
 

The number of final validated SNPs is given in the final column of Table 7, and this is the set of 
SNPs for which we publically released data for 934 unrelated CEPH-HGDP samples on August 
12, 2011. Table 7 summarizes the SNPs on the final product array. 
 
Table 7. Summary of SNPs in the final array 
Category number of probesets number of SNPs 
Human Origins 546,581 542,399 
Chromosome Y 2,091 2,091 
Mitochondrial DNA 259 259 
Compatibility 84,694 84,694 
Total 633,625 629,443 
 
Upon commercial release of the array, Affymetrix is planning to release user-friendly software 
that will facilitate SNP calling using each of the ascertainment panels. Users who are interested in 
any particular ascertainment will open up one of 14 available folders of files (the first 13 
corresponding to the SNPs in each ascertainment, and the 14th corresponding to all SNPs 
together). Users will then be able to use that folder (which will include ascertainment-panel 
specific priors) to call genotypes relevant to any given ascertainment panel.  
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The genotyping data on the 934 unrelated CEPH-HGDP samples that we collected as part of this 
project has been made freely available without restriction to the community by depositing the data 
into the CEPH-HGDP database on August 12, 2011 (ftp://ftp.cephb.fr/hgdp_supp10/). There are 
no restrictions on using these data and publishing papers based on these data.  
 
In addition to the dataset of 934 CEPH-HGDP samples that we released on August 12, 2011, we 
have also carried out further filtering to create a dataset of 828 samples that might be more useful 
for some population genetic analyses. This dataset, which is the one that we used for the analyses 
of population history reported in the present paper, is available for downloading from the Reich 
laboratory website (http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome.html). To generate 
this dataset, we started with the dataset that was released to the CEPH-HGDP website on August 
12, 2011, and then carried out population-specific Principal Component Analysis to identify 
individual samples that are outliers with respect to their own populations (consistent with 
admixture with other populations without the last few generation). These individuals were then 
filtered out of the dataset, allowing us to analyze data from a homogeneous population sample. 
Table 8 lists the number of samples from each population before and after the filtering. 
 
Table 8. Number of CEPH-HGDP samples in each of the two datasets reported here 

Population Region 
Aug. 12 

2011 
Further 
filtering   Population Region 

Aug. 
12 2011 

Further 
filtering 

BantuKenya Africa 11 10   Adygei West Eurasia 17 15 
BantuSouthAfrica Africa 8 6   Basque West Eurasia 22 20 
BiakaPygmy Africa 23 20   Bedouin West Eurasia 46 38 
Mandenka Africa 22 20   Druze West Eurasia 42 32 
Mbuti* Africa 13 12   French* West Eurasia 28 27 
Mozabite Africa 27 25   Italian West Eurasia 13 11 
San* Africa 6 5   Orcadian West Eurasia 13 13 
Yoruba* Africa 22 22   Palestinian West Eurasia 45 34 
Cambodian* East Asia 10 10   Russian West Eurasia 23 22 
Dai East Asia 10 10   Sardinian* West Eurasia 28 27 
Daur East Asia 9 7   Tuscan West Eurasia 8 7 
Han* East Asia 34 33   Balochi South Asia 24 21 
Han-NChina East Asia 10 10   Brahui South Asia 24 22 
Hezhen East Asia 9 9   Burusho South Asia 25 24 
Japanese East Asia 29 28   Hazara South Asia 22 17 
Lahu East Asia 8 7   Kalash South Asia 19 18 
Miao East Asia 10 10   Makrani South Asia 25 22 
Mongola* East Asia 10 8   Pathan South Asia 24 22 
Naxi East Asia 9 7   Sindhi South Asia 24 22 
Oroqen East Asia 9 8   Colombian America 5 4 
She East Asia 10 10   Karitiana* America 13 8 
Tu East Asia 10 9   Maya America 21 18 
Tujia East Asia 10 9   Pima America 14 11 
Uygur East Asia 10 9   Surui America 8 6 
Xibo East Asia 9 7   Melanesian* Oceania 11 9 
Yakut East Asia 25 23   Papuan* Oceania 17 14 
Yi East Asia 10 10     

  
  

* Indicates a population used in SNP ascertainment. Analysis of data from these populations should remove the individual used in 
SNP discovery, as they have highly biased SNP genotypes (all heterozygotes) relative to others in the same group. 

ftp://ftp.cephb.fr/hgdp_supp10/
http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome.html
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