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S1 Statistic for dating

A number of methods have been proposed to infer the demographic history and thus the population
divergence times of closely-related species using multi-locus genotype data (see [1] and references
therein). In this work, we seek to directly estimate the quantity of interest, i.e, the time of gene
flow, by devising a statistic that is robust to demographic history. Our statistic is based on the
pattern of LD decay due to admixture that we observe in a target population. The use of LD decay
to test for gene flow is not entirely new ( [2, 3]). [2] devised an LD-based statistic to test the
hypotheses of recent gene flow vs ancient shared variation. [3] devised a statistic that used the
decay of LD to obtain dates of recent gene flow events. The main challenge in our work is the
need to estimate extremely old gene flow dates (at least 10000 years BP) while dealing with the
uncertainty in recombination rates.

S1.1 Statistic

Consider three populations Y RI,CEU and Neandertal, which we denote (Y,E,N). We want to
estimate the date of last exchange of genes betweenN andE. In our demographic model, ancestors
of (Y,E) and N split tNH generations ago and Y and E split tY E generations ago. Assume that
the gene flow event happened tGF generations ago with a fraction f of individuals from N . We
have SNP data from several individuals in E and Y as well as low-coverage sequence data for N .

1. Pick SNPs according to an ascertainment scheme discussed below.

2. For all pairs of sites S(x) = {(i, j)} at genetic distance x, consider the statistic D(x) =P
(i,j)∈S(x) D(i,j)

|S(x)| . Here D(i, j) is the classic signed measure of LD that measures the excess
rate of occurrence of derived alleles at two SNPs compared to the expectation if they were
independent [4].

3. If there was admixture and if our ascertainment picks pairs of SNPs that arose in Neandertal
and introgressed (i.e., these SNPs were absent in E before gene flow), we expect D(x) to
have an exponential decay with rate given by the time of the admixture because D(x) is a
consistent estimator of the expected value of D at genetic distance x. We can show that,
under a model where gene flow occurs at a time tGF and the truly introgressed alleles evolve
according to Wright-Fisher diffusion, this expected value has an exponential decay with rate
given by tGF . Importantly, changes in population size do not affect the rate of decay although
imperfections of the ascertainment scheme will affect this rate (see Appendix A for details).

We pick SNPs that are derived in N (at least one of the reads that maps to the SNP carries
the derived allele), are polymorphic in E and have a derived allele frequency in E < 0.1. This
ascertainment enriches for SNPs that arose in the N lineage and introgressed into E (in addition to
SNPs that are polymorphic in the NH ancestor and are segregating in the present-day population).
We chose a cutoff of 0.10 based on an analysis that computes the excess of the number of sites
where Neandertal carries the derived allele compared to the number of sites where Denisova carries
the derived allele stratified by the derived allele frequency in European populations ( (n−d)

s
where s

is the total number of polymorphic SNPs in Europeans). Given that Denisova and Neandertal are
sister groups, we expect these numbers to be equal in the absence of gene flow. The magnitude of
this excess is an estimate of the fraction of Neandertal introgressed alleles. Below a derived allele
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Figure S 1: The fraction of SNPs s where there is an excess of Neandertal derived alleles n over
Denisova derived alleles d as a function of the derived allele frequency in Europeans.

frequency cutoff of 0.10 in Europeans, we see a significant enrichment of this statistic indicating
that it is this part of the spectrum that is most informative for this analysis (see Figure S1).

To further explore the properties of this ascertainment scheme, we performed coalescent simu-
lations under the RGF II model discussed in Section S2. We computed the fraction of ascertained
SNPs for which the lineages leading to the derived alleles in E coalesce with the lineage in N
before the split time of Neandertals and modern humans. This estimate provides us a lower bound
on the number of SNPs that arose as mutations on the N lineage. We estimate that 30% of the as-
certained SNPs arose as mutations in N leading to about 10-fold enrichment over the background
rate of introgressed SNPs which has been estimated at 1− 4% [8].

We also explored other ascertainment schemes in Section S5.
For the set of ascertained SNPs, we compute D(x) as a function of the genetic distance x and

fit an exponential curve using ordinary least squares for x in the range of 0.02 cM to 1 cM in incre-
ments of 10−3 cM. The standard definition of D requires haplotype frequencies. To compute Di,j

directly from genotype data, we estimated Di,j as the covariance between the genotypes observed
at SNPs i and j [5]. We tested the validity of using genotype data on our simulations in Section S
2.

S1.2 Preparation of 1000 genomes data

We used the individual genotypes that were called as part of the pilot 1 of the 1000 genomes
project [6] to estimate the LD decay. For each of the panels that were chosen as the target pop-
ulation in our analysis, we restricted ourselves to polymorphic SNPs. The SNPs were polarized
relative to the chimpanzee base(PanTro2).
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S2 Simulation Results

To test the robustness of our statistic, we performed coalescent-based simulations under demo-
graphic models that included recent gene flow, ancient structure and neither gene flow nor ancient
structure. The classes of demographic models are shown in Figure S2.5

S2.1 Recent gene flow

S2.1.1 RGF I

In our first set of simulations, we generated 100 independent 1 Mb regions under a simple demo-
graphic model of gene flow from Neandertals into non-Africans. We set tNH = 10000, tY E =
5000. All effective population sizes are 10000. The fraction of gene flow was set to 0.03. We
simulated 100 Y and E haplotypes respectively and 1 N haplotype. While we simulate a single
haploid Neandertal, the sequenced Neandertal genome consists of DNA from 3 individuals. Hence,
the reads obtained belong to one of 6 chromosomes. However, our statistic relies on the Neander-
tal genome sequence only to determine positions that carry a derived allele. We do not explicitly
leverage any pattern of LD from this data. In our simulations, two SNPs at which Neandertal car-
ries the derived allele necessarily lie on a single chromosome and ,hence, are more likely to be in
LD than two similar SNPs in the sequenced Neandertals. However, the genetic divergence across
the sequenced Vindija bones is quite low ( [7] estimates the average genetic divergence to be about
6000 years) and so, we do not expect that this makes a big difference in practice.

We simulated 100 random datasets varying tGF from 0 to 4500. Figure S5 shows the estimated
tGF tracks the true tGF across the range of values of tGF . As tGF increases, the variance of our
estimates increases – a result of the increasing influence of the non-admixture LD on the signals
of ancient admixture LD. These results are encouraging given that our estimates were obtained
using only about 1

30

th of the data that is available in practice. Further, to test the validity of the
use of genotype data, we also computed Pearson’s correlation r of estimates of tGF obtained from
genotype data to estimates obtained from haplotype data and we estimated these correlations to
range from 0.89 to 0.96 across different true tGF (see Table S2).

S2.1.2 RGF II

We assessed the effect of demographic changes since the gene flow on the estimates of the time of
gene flow. We used tNH = 10000, tY E = 2500 and tGF = 2000. The fraction of gene flow was
set to 0.03. We simulated a bottleneck at 1020 generations of duration 20 generations in which
the effective population size decreased to 100. We also simulated a 120 generation bottleneck
in Neandertals from 3120 generations in which the effective population size decreased to 100.
These parameters were chosen so that Fst between Y and E and the D-statistic D(Y,E,N) match
the observed values [8] (the value of the D-statistic D(Y,E,N) depends on the probability of a
European lineage entering the Neandertal population and coalescing with a Neandertal lineage
before tNH and could have been fit to the data by also adjusting f or tNH) . We see in Table S 1
that the estimated time remains unbiased.
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S2.1.3 RGF III

We used a version of the demography used in [9] modified to match the Fst between Y and E and
the D-statistics D(Y,E,N). In this setup, tNH = 14400, tY E = 2400 ,tGF = 2000, f = 0.03.
Effective population sizes are 10000 in the E, Y E ancestor, NH ancestor, and 106 in modern
day Y . Modern day Y underwent exponential growth from a size of 10000 over the last 1000
generations. Y and E exchange genes after the split at a rate of 150 per generation. E underwent
a bottleneck starting at 1440 generations that lasted 40 generations and had an effective population
size of 320 during the bottleneck. We again generated 100 independent 1 Mb regions under this
demography.

Table S1 shows that the estimates now have a small downward bias.

S2.1.4 RGF IV,V, VI

This is the same as RGF II but instead of a bottleneck we simulated a constant Ne in population E
since gene flow. Ne was set to 5000 (RGF IV) and 50000 (RGF V). RGF VI places the bottleneck
before the gene flow ( the bottleneck begins at 2220 generations, has a duration of 20 generations
in which the effective population size decreased to 100). Table S1 shows that the estimates remain
accurate in these settings.

S2.2 Ancient structure

We examined if ancient structure could produce the signals that we see. We considered a demogra-
phy (AS I) in which an ancestral panmictic population split to form the ancestors of modern-day Y
and another ancestral population 15000 generations ago. The two populations had low-level gene
flow (with population-scaled migration rate of 5 into Y and 2 leaving Y ). The latter population
split 9000 generations ago to form E and N . E and Y continued to exchange genes at a low-level
down to the present (at a rate of 10). These parameters were again chosen to match the observed
Fst between Y and E and D(Y,E,N). Given the longer time scales (here and in the no gene flow
model discussed next), we fit an exponential to our statistic over all distances up to 1 cM. We see
from Table S1 that we estimate average times of around 10000 generations.

We also modified the above demography so that E experienced a 20 generation bottleneck that
reduced theirNe to 100 that ended 1000 generations ago (AS II). Table S1 shows that our estimates
are biased downwards significantly to around 5000 generations. Nevertheless, we also observe
that the magnitude of the exponential, i.e., its intercept, is also decreased. We also considered
increasing the duration of the bottleneck but observed that the magnitude of the exponential decay
is further diminished and becomes exceedingly noisy.

S2.3 No gene flow

We also considered a simple model of population splits without any gene flow from N to E (NGF
I). We used tNH = 10000, tY E = 2500. To investigate if the observed decay of LD could be a
result of variation in the effective population size, we also considered a variation (NGF II) with a
bottleneck in E at 1020 generations of duration 20 generations in which the effective population
size decreased to 100. Table S1 shows that our statistic estimates a date of around 8800 generations
in NGF I which is reduced to around 5800 due to the bottleneck.
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Our simulation results show that the LD-based statistic can accurately detect the timing of recent
gene flow under a range of demographic models. On the other hand, population size changes in the
target population can result in relatively recent dates when there is no gene flow or in the context
of ancient structure. This motivated us to explore alternate ascertainment strategies in Section S5.

S2.4 Hybrid Models

These models consist of a recent gene flow from N to E but also simulate structure in the ancestral
population ofE i.e., inE before gene flow. We would like to explore how ancestral structure affects
estimates of the time of last gene exchange. In all these models, we set tGF = 2000, f = 0.03. We
consider several such models:

1. HM I: This is RGF II with no bottleneck in E. Instead, the ancestral population of E and Y
is structured with the ancestors of E and Y exchanging migrants at a population-scaled rate
of 5. This structure persists from tNH = 10000 to tY E = 2500 generations. The population
ancestral to modern humans and Neandertal is panmictic.

2. HM II: Similar to HM I. The ancestral population of E is a 0.8 : 0.2 admixture of two
populations, E1 and E2, just prior to tGF . E1 split from Y at time tY E while E2 split from Y
at time tNH (resulting in a trifurcation at tNH). .

3. HM III: Like in HM II, the ancestral population of E is admixed. E2, in this model, has
Ne = 100 throughout its history.

4. HM IV: This is similar to HM I. The structure in the ancestor of E and Y persists in the
Neandertal-modern human ancestor. The ancestor now consists of two subpopulations ex-
changing migrants at a population-scaled rate of 5 till 15000 generations when the population
becomes panmictic. N diverges from the subpopulation that is ancestral to E at time tNH .

Table S 1 shows that tGF is accurately estimated, albeit with a small upward bias, under these
hybrid demographic models.

S2.5 Effect of the mutation rate

Mutation rate has an indirect effect on our estimates – the mutation rate affects the proportion of
ascertained SNPs that are likely to be introgressed. We varied the mutation rate to 1 × 10−8 and
5×10−8 in the RGF II model with no European bottleneck and again obtained consistent estimates
(Table S1).
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Figure S2: Estimates of tGF as a function of true tGF for RGF I: We plot the mean and 2× standard
error of the estimates of tGF from 100 independent simulated datasets using ascertainment 0. The
estimates track the true tGF though the variance increases for more ancient gene flow events.

Demography Fst(Y,E) D(Y,E,N)
RGF II 0.15 0.041 1987±48
RGF III 0.14 0.043 1776±87
RGF IV 0.15 0.04 2023 ± 56
RGF V 0.07 0.04 2157±22
RGF VI 0.15 0.04 2102 ± 36
AS I 0.15 0.045 10128±127
AS II 0.19 0.046 5070±397
NGF I 0.15 -21×10−5 8847± 126
NGF II 0.15 9×10−5 5800± 164
HM I 0.18 0.03 2174±40
HM II 0.12 0.04 2226±39
HM III 0.13 0.04 2137±34
HM IV 0.18 0.06 2153±36
Mutation rate Fst(Y,E) D(Y,E,N)
1−8 0.11 0.04 2141±41
5× 10−8 0.11 0.04 2134±41

Table S1: Estimates of the time of gene flow for different demographies and mutation rates.
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(a) RM: Recent gene flow

Y E N
(b) AS: Ancient structure

Y E N
(c) NGF: No gene flow

Y E N
(d) HM: Hybrid model

Y E N
(e) HM: Hybrid model

Figure S 3: Classes of demographic models : a) Recent gene flow but no ancient structure. RGF
I has no bottleneck in E. RGF II has a bottleneck in E after gene flow while RGF VI has a
bottleneck in E before gene flow. RGF IV and V have constant population sizes of Ne = 5000
and Ne = 50000 respectively. b) Ancient structure but no recent gene flow. AS I has a constant
population size while AS II has a recent bottleneck in E. c) Neither ancient structure nor recent
gene flow. NGF I has a constant population size while NGF II has a recent bottleneck in E. d),e)
Ancient structure + Recent gene flow. HM IV consists of continuous migration in the Y − E
ancestor and the Y − E − N ancestor while HM I consists of continuous migration only in the
Y − E ancestor. HM II consist of a single admixture event in the ancestor of E while HM III also
models a small population size in one of the admixing populations.
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True tGF Pearson’s correlation
0 0.960918
500 0.9421455
1000 0.9335201
1500 0.9429699
2000 0.9339092
2500 0.9464859
3000 0.9378165
3500 0.8903148
4000 0.8884884
4500 0.9217262

Table S2: Correlation coefficient between times of gene flow estimated using haplotype and geno-
type data vs the true time of gene flow.
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S3 Correcting for uncertainties in the genetic map

In this section, we show how uncertainties in the genetic lead to a bias in the estimates of the time of
gene flow. We then show how we could correct our estimates assuming a model of map uncertainty.
Our model characterizes the precision of a map by a single scalar parameter α. We estimate α for
a given genetic map by comparing the distances between a pair of markers as estimated by the
map to the number of crossovers that span those markers as observed in a pedigree. We propose a
hierarchical model that relates α and the expected as well as observed number of crossovers and
we infer an approximate posterior distribution of α by Gibbs sampling. Finally, we show using
simulations that this procedure is effective in providing unbiased date estimates in the presence
of map uncertainties and we apply this procedure to estimate the uncertainties of the Decode map
and Oxford LD-based map by comparing these maps to crossover events observed in a Hutterite
pedigree.

S3.1 Correction

We have a genetic map G defined on m markers. Each of the m− 1 intervals is assigned a genetic
distance gi, i ∈ {1, . . . ,m − 1}. These genetic distances provide a prior on the true underlying
(unobserved) genetic distances Zi. A reasonable prior on each Zi is then given by

Zi ∼ Γ (αgi, α) (1)

where α is a parameter that is specific to the map. This implies that the true genetic distance Zi

has mean gi and variance gi

α
. So large values of α correspond to a more precise map. The above

prior over Zi has the important property that Z1 + Z2 ∼ Γ (α(g1 + g2), α) so that α is a property
of the map and not of the specific markers used.

Given this prior on the true genetic distances, fitting an exponential curve to pairs of markers at
a given observed genetic distance g, involves integrating over the exponential function evaluated
at the true genetic distances given g i.e.,

E [exp (−tGFZ) |g] = exp (−λg) (2)

where λ is the rate of decay of D(g) as a function of the observed genetic distance g and can be
estimated from the data in a straightforward manner and tGF denotes the true time of the gene flow.
It also easy to see that λ will be a downward biased estimate of tGF (applying Jensen’s inequality).

We can use Equation 1 to solve for tGF (see Appendix B for details) as

tGF = α

(
exp

(
λ

α

)
− 1

)
(3)

Thus, we need to estimate α for our genetic map to obtain an estimate of tGF . As a check, note
that for a highly precise map, α� λ, we have tGF ≈ λ.

S3.2 Estimating α

Given a genetic map G defined on m markers, each of the m − 1 intervals is assigned a genetic
distance gi, i ∈ [m − 1] = {1, . . . ,m − 1}. Each interval i may contain ni − 1,≥ 0 additional
markers not present in G that partition interval i into a finer grid of ni intervals – each finer interval
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is indexed by the set T = {(i, j), i ∈ [m−1], j ∈ [ni]} (e.g., these additional markers could include
markers that are found in the observed crossovers but not in the genetic map ). Each interval (i, j)
has a physical distance pi,j .

We propose the following model for taking into account the effect of map uncertainty.

Zi|α, gi ∼ Γ(αgi, α) (4)
(Zi,1, . . . , Zi,ni

)|Ui, Zi ∼ (Ui,1 . . . , Ui,ni
)Zi (5)

Ui = (Ui,1 . . . , Ui,ni
)|β ∼ Dir(βpi,1, . . . , βpi,ni

) (6)

The “true” genetic distance Zi is related to the observed genetic distance gi through the param-
eter α that is an estimate of map precision. The genetic distances of the finer intervals are obtained
by partitioning the coarse intervals – the variability of this partition is controlled by the parameter
β – β relates the physical distance to the genetic distance. When β →∞, the genetic distances of
the finer grid are obtained by simply interpolating the coarse grid based on the physical distance.

Given the true genetic distances, we can now describe the probability of observing crossovers.
Our observed data consists ofRmeioses that produce crossovers localized toLwindows {I1, . . . , IL}.
Each window l ∈ [L] consists of a set of contiguous intervals Il and is known to contain a crossover
event. Let Wi,j denote the set of windows that overlap interval (i, j).

A note on our notation: Ci,j;l is the number of crossovers in interval (i, j) that fall on window
l. We can index the C variables by sets and then we are referring to the total number of crossovers
in the index set e.g., CIl;l refers to all crossovers that fall on window l within the set of intervals
Il. Omitting an index from a random variable implies summing over that index. Thus, Ci,j =∑L

l=1Ci,j;l denotes the number of crossover events in interval (i, j), Ci =
∑ni

j=1Ci,j denotes the
number of crossovers in the union of (i, j), j ∈ [ni]. −→. indicates a vector of random variables e.g.,
−→
C S denotes the vector of counts indexed by the elements of set S.

If we assume that the probability of multiple crossovers in any of these intervals is small, we
can use a simple probability model.

Ci,j|Zi,j ∼ Pois(RZi,j) (7)

−→
C i,j;l|Ci,j ∝ δ

 ∑
{l∈Wi,j}

Ci,j;l ≤ Ci,j, Ci,j;l ∈ {0, 1},
∑

{l 6∈Wi,j}

Ci,j;l = 0

 (8)

Yl|Ci,j;l = δ

CIl
=
∑

(i,j)∈Il

Ci,j;l = 1

 (9)

Here Ci,j denotes the counts of crossover events within interval (i, j) over the R meioses and is a
Poisson distribution with rate parameter RZi,j . In our model, Ci,j;l is either zero or one and all the
crossovers in interval (i, j) must fall on one of the Wi,j windows that overlap (i, j). Finally, one of
the Ci,j;l within a window l must be one for a crossover to have been detected within this window
(Yl = 1).

We put an exponential prior on πα ∼ exp( 1
α0

) on α. We set α0 = 10 in our inference. While
we can estimate β jointly, we instead fix β to ∞.

To summarize, the observations in our model consist of the m − 1 observed genetic distances
Gi, i ∈ [m− 1] and L observed crossovers from pedigree data Yl, l ∈ [L] (which often extend over
multiple intervals in the underlying map) as well as the total number of meioses R in the pedigree.
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The parameter of interest is α, a measure of the precision of the map. We impose an exponential
prior on α. Gi and α parameterize the distribution over the true, but unobserved, genetic distance
Zi. Given the number of meioses and Zi, the number of crossovers that fall within interval i (and
is unobserved) is given by a Poisson distribution. These crossovers that fall within an interval i
are then distributed uniformly at random amongst all the observed windows that overlap interval i.
Finally, a crossover is observed only if one of the intervals spanned by it is assigned a crossover.
Our model can also account for the fact that the genetic map has been estimated using only a subset
of markers from a finer set of markers (so that the markers defining the map and those defining the
crossover boundaries may be different): the genetic distance of interval Zi is partitioned amongst
the finer intervals [ni] to obtain genetic distances Zi,j using a Dirichlet distribution parameterized
by β and the physical distances of the finer intervals; given these Zi,j , we can again compute the
probability of observing a crossover across these finer intervals.

Thus, we are interested in estimating the posterior probability π(α|
−→
Y ,
−→
G, β) where

−→
Y =

(Y1, . . . , YL),
−→
G = (G1, . . . , Gm−1). π(α|

−→
Y ,
−→
G, β) ∝ πα(α) Pr(

−→
Y |α, β,

−→
G) where the likelihood

is given by the probability model described above. To perform this inference, we set up a Gibbs
sampler to estimate the posterior probability over the hidden variables π(α,

−→
Z [m−1],

−→
U [m−1],

−→
C T |

−→
Y ,
−→
G, β).

S3.3 Inference

We perform Gibbs sampling to estimate the approximate posterior probability over the hidden vari-
ables (α,

−→
Z [m−1],

−→
U [m−1],

−→
C T ). While a standard Gibbs sampler can be applied to this problem,

mixing can be improved using the fact that we are interested in the estimates of α while the Zi are
nuisance parameters. We thus attempt to sample α given the Ci,j , integrating out the Zi. We still
need the Zi in the model as it decouples the Ci,j . After sampling α, we resample the Zi given the
α and then resample Ci,j given the resampled Zi.

Given the parameter estimates at iteration t− 1, their estimates at time t are given by

Pr(α(t)|
−→
C

(t−1)
i ) ∝

∏
i

(
Γ
(
α(t)gi + ci

)
Γ (α(t)gi)

α(t)α
(t)gi

(α+R)ci+α(t)gi

)
exp

(
− α

α0

)
Z

(t)
i |α(t), C

(t−1)
i ∼ Γ

(
α(t)gi + C

(t−1)
i , α(t) +R

)
U

(t)
i |β,

−→
C

(t−1)
i,[ni]

∼ Dir
(−→
C

(t−1)
i,[ni]

+ β−→p i,[ni]

)
Z

(t)
i,j |U

(t)
i , Z

(t)
i = U

(t)
i,j Z

(t)
i

In this sampler, Zi,j is a deterministic function of Zi and Ci, so we can collapse Zi,j .
The first equation samples α given the current estimates of the counts Ci. This is not a standard

distribution. We sample from this distribution using an ARMS sampler [10].
The genetic distances between the markers in the original map

−→
Z i is a gamma distribution with

parameters updated by C(t−1)
i . The genetic distances between the markers in the finer grid Zi,j can

now be obtained by sampling the Ui which is a Dirichlet distribution with parameters updated by
C

(t−1)
i .

We finally need to resample the counts Ci,j . For each window l, we can sample the total counts
that fall within the window given the genetic distance spanned by the window (which in our simpli-
fied model is always 1 for each window). We then assign each of these counts to one of the intervals

16



within this window according to a multinomial distribution with probabilities proportional to their
genetic distances. Finally Ci,j is obtained by summing over the counts across all windows Wi,j

that overlap interval (i, j).

Pr(C
(t)
Il;l
|Yl = 1, Z

(t)
Il

) = δ(CIl;l = 1)

C
(t)
i,j;l|C

(t)
Il;l
, Z

(t)
Il

∼ Mult
(
1, Z

(t)
Il

)
C

(t)
i,j |C

(t)
i,j;l =

∑
l∈Wi,j

C
(t)
i,j;l

C
(t)
i |C

(t)
i,j =

ni∑
j=1

C
(t)
i,j

S3.4 Simulations

To investigate the adequacy of our model of map errors, we performed coalescent simulations
using a hotspot model of recombination. We estimated the time of gene flow using an erroneous
map. We then estimated the uncertainty of the parameter α by comparing the erroneous map to the
true genetic map. We used the estimated α to obtain a corrected date. This procedure allows us to
evaluate if our model can capture the uncertainties in the genetic map.

We simulated 100 independent 1 Mb regions using MSHOT [11]. We chose parameters for
the recombination model similar to the parameters described in [12]. We considered a model
with tNH = 10000, tY E = 5000, tGF = 2000, constant effective population sizes of 10000 and
a bottleneck in the Neandertal lineage of duration 200 generations and effective population size
100. Given the true genetic map for each locus, the observed map is a noisy version generated
as follows: given the genetic map length l of each locus, the observed map has a genetic length
G distributed according to a Gamma distribution Γ(al, a) where a parameterizes the variance of
the map 1. Given G, the distances of the markers are obtained by interpolating from the physical
positions.

We obtained an uncorrected estimate of the date λ using the observed genetic map. We then
compared the true genetic map and the observed map to estimate α (restricting to markers at
distances of at least 0.02 cM ) and then obtained the corrected date tGF according to Equation 3.
Table S3 reports the results averaged over 10 random datasets. We see that the corrected date tGF

is quite accurate when the map is accurate at a scale of 1 Mb (a ≥ 1000) and becomes less accurate
when a ≤ 100. The results are similar when we repeated the simulations with a demography in
which there is a 20 generation bottleneck of Ne = 100 after the gene flow.

S3.5 Results

The previous results provide us confidence that the statistical correction for map uncertainty gives
accurate estimates of the date provided the genetic map is reasonably accurate at a scale of 1 Mb.
In our analyses, we therefore chose to use the Decode map [13] as well as the Oxford LD-based
maps [14] which are known to be accurate at this scale. Another map that we considered using was

1Note that a is not the same as the parameter α that characterizes the variance of the true map given the observed map. a parameterizes the
variance in an observed map given the true map while α parameterizes the variance in the true map given an observed map
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a No bottleneck since gene flow Bottleneck
λ tGF λ tGF

∞ 1597±180 1926±252 1660 ±130 2005±194
1000 1653±198 2050±288 1715±127 2128±156
100 788±352 993±543 681±200 802±256

Table S 3: Estimates of time of gene flow as a function of the quality of the genetic map: Data
was simulated under a hotspot model of recombination. The observed genetic map was obtained
by perturbing the true genetic map at a 1 Mb scale and then interpolating based on the physical
positions of the markers. Smaller values of a indicate larger perturbation. λ denotes the estimates
obtained on the perturbed map. tGF denotes the estimates obtained after correcting for the errors
in the observed map. Results are reported for two demographic models.

a map obtained by using the physical positions to interpolate genetic distances estimated across
entire chromosomes or sub-regions (e.g. the long arm, the centromere and the short arm). We
chose not to use such a “physical” map because of its large variance at smaller size scales – e.g.,
comparing this physical map to the Decode map suggests that the uncertainty in the genetic map
is characterized by a ≈ 150.

We estimated the uncertainty α of two maps – the Decode map and the CEU Oxford LD map.
In each case, we assigned genetic distances to the SNPs in the 1000 genomes CEU data. Our
observed crossovers consisted of the crossovers observed in a family of Hutterites [15]. We ran
our Gibbs sampler for 500 iterations preceded by 250 iterations of burn-in (even though the mixing
happens much faster). We initialized α from the prior. Different random initializations do not
affect our results (even though this is not a diagnostic for problems with the chain or bugs). Our
estimates show that the precision of the CEU LD map and the Decode map are quite similar with
the Decode map being a little more accurate (see Table S4).

Map α
Decode 1399.3±99.733
CEU 1221.89±78.79

Table S4: Estimates of the precision of two genetic maps
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Figure S 4: A graphical model for map error estimation. Each circle denotes a random variable.
Shaded circles indicate random variables that are observed. Plates indicate replicas of the random
variables with the number of replicas denoted in the the top-left (e.g., there are m − 1 copies
of Zi).α is the parameter that measures the precision of the map. Gi, i ∈ [m − 1] refers to the
observed genetic distances across the ith interval in the genetic map. We impose an exponential
prior on α. Gi and α parameterize the distribution over the true, but unobserved, genetic distance
Zi. Zi is gamma distributed with shape parameter αgi and rate parameter α. The genetic distance
of interval Zi is partitioned amongst [ni] finer intervals to obtain genetic distances Zi,j using a
Dirichlet distribution parameterized by β and the physical distances of the finer intervals. Given
Zi,j , the number of crossovers Ci,j within interval (i, j) is given by a Poisson distribution with
mean parameter RZi,j where R is the total number of meioses observed. These crossovers are then
uniformly distributed amongst all the windows that overlap interval (i, j). A crossover is observed
within a window l, Yl = 1, only if one of the intervals spanned by this window is assigned a
crossover.
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S4 Uncertainty in the date estimates

We obtain estimates of the time of gene flow taking into account all sources of uncertainty. Denote
the uncorrected date, the corrected date in generations and the corrected date in years by λ, tGF

and yGF respectively.
Our model can be described as follows:

tGF = yGFG

λ = α

(
log

(
tGF

α

)
+ 1

)
D(x) = a exp (−λx) + ε

ε ∼ N(0, σ2)

π(σ2) ∝ 1

σ2

where G ∼ Unif(25, 33) denotes the number of years per generation, α is the uncertainty in the
genetic map with prior given by the posterior estimated in Section S3 and a ∼ Unif(0, 1). Given
this model, we can obtain the posterior probability distribution π(λ|D), π(tGF |D), π(yGF |D) as-
suming a flat prior on each of the random variables λ, tGF , yGF respectively.

We obtain these posterior distributions by Gibbs sampling. We ran the Gibbs sampler for 200
burn-in iterations followed by 1000 iterations where we sampled every 10 iterations. We computed
the posterior means and 95% credible intervals on λ, tGF and yGF .
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S5 Effect of ascertainment

To test the robustness of our statistic, we performed coalescent-based simulations under the demo-
graphic models described in Section S2. We explored two SNP ascertainments in addition to the
ascertainment that we described in Section S1 (which we refer to here as Ascertainment 0):

1. Ascertainment 1: SNPs for which Neandertal carries a derived allele, E is polymorphic and
Y does not carry a derived allele.

2. Ascertainment 2: SNPs for which Neandertal carries a derived allele, E is polymorphic and
Y does not carry a derived allele and SNPs for which Neandertal carries a derived allele, E
does not carry a derived allele and Y is polymorphic.

S5.1 Recent gene flow

Under the simple demography I, Figures S 5 and S 6 show that, similar to ascertainment 0, the
estimated tGF tracks the true tGF across the range of values of tGF for ascertainments 1 and 2.

We assessed the effect of demographic changes since the gene flow on the estimates of the time
of gene flow (demography RGF II of Section S2). We see in Table S5 that the bottleneck causes
a downward bias in the estimated time using ascertainment 1 while ascertainment 2 is unbiased.
For demography RGF III, Table S5 shows that ascertainment 1 again has a downward bias on the
estimated date while ascertainment 2 has a smaller upward bias.

S5.2 Ancient structure

In the AS I model, ascertainments 1 and 2 both produce estimate close to the time of last gene
exchange (9000 generations) as does ascertainment 0. In AS II, however, both ascertainments are
less affected by the recent bottleneck in population E and estimate older times that are closer to
the true time of last gene exchange.

S5.3 No gene flow

Both ascertainments 1 and 2 produce dates that are quite old for both models NGF I and NGF II –
the dates for NGF II are older than the estimates obtained using ascertainment 0. Ascertainment 2
produces estimates that are quite close to the time of last gene flow (tNH).

Our simulation results show that in the case of recent gene flow, ascertainment 1 experiences a
significant downward bias whereas ascertainment 2 is quite accurate. In the absence of gene flow
or in the case of ancient structure, both ascertainments produce estimates that are quite old and
they are more robust to population size changes in the target population relative to ascertainment
0.

S5.4 Hybrid Models

For all the hybrid models, we see that all the ascertainments are quite accurate with ascertainment
1 being most accurate while ascertainments 0 and 2 have a small upward bias.
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S5.5 Effect of the mutation rate

Mutation rate has an indirect effect on our estimates – the mutation rate affects the proportion of
ascertained SNPs that are likely to be introgressed. We varied the mutation rate to 1 × 10−8 and
5×10−8 in the RGF II model with no European bottleneck and again obtained consistent estimates
(Table S5).

S5.6 Application to 1000 genomes data

Due to the process of SNP calling that calls SNPs separately in each population, SNPs called in
one of the populations may not have calls in another. This is particularly problematic for SNPs that
are polymorphic in one population and monomorphic in the other – precisely the SNPs that we
would like to ascertain in the ascertainment schemes that we described above. To overcome this
limitation, we used the following procedure to select our SNPs. For each of the SNPs that are poly-
morphic in the target population, we estimated the allele frequencies in the ancestral population
directly from the reads that mapped to the SNP. We chose all SNPs whose derived allele frequency
in the ancestral population is estimated to be less than 1% (since we have 118 YRI chromosomes,
we can resolve frequencies of the order 1

118
≈ 0.01).

The ancestral allele, which was inferred using the Ensembl EPO alignment, was acquired from
the 1000 Genomes Project FTP site. To derive the allele frequencies, we downloaded the pilot-
phase alignments from the same FTP. We first adjusted each read alignment to avoid potential
artifacts caused by short sequence insertions and deletions (INDELs), and then estimated the allele
frequency by maximizing the likelihood using an estimation-maximization (EM) algorithm. More
exactly, given we know the frequency φ(t) at the t-th iteration, the estimate for the next round is:

φ(t+1) =
1

2n

n∑
i=1

∑2
g=0 gLi(g)f(g; 2, φ(t))∑2
g=0 Li(g)f(g; 2, φ(t))

where n is the total number of samples, f(g; 2, ψ) =
(
2
g

)
ψg(1−ψ)2−g is the frequency of genotype

g under the Hardy-Weinberg equilibrium, and Li(g) is the likelihood of g for the i-th sample. The
genotype likelihood Li(g) was computed using the MAQ error model [16].

The estimates of these different ascertainments are shown in Table S 5. We observe that, as
in the simulations, the estimates obtained using ascertainment 1 are lower than the dates obtained
using ascertainment 0 while those using ascertainment 2 are closer.

Finally, we also considered the effect of the frequency threshold of 0.10 used in Ascertainment
0. Using thresholds of 0.05 and 0.20, we obtain estimates of λ = 1201(1172, 1233), 1188(1164, 1211)
respectively using the Decode map. Thus, our estimates are not sensitive to the specific threshold
chosen.
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Figure S5: Estimates of tGF as a function of true tGF for Demography RGF I: We plot the mean
and 2× standard error of the estimates of tGF from 100 independent simulated datasets using
ascertainment 1. The estimates track the true tGF though the variance increases for more ancient
gene flow events.
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Figure S6: Impact of the ascertainment scheme on the estimates of tGF as a function of true tGF

for Demography RGF I: We plot the mean and 2× standard error of the estimates of tGF from 100
independent simulated datasets using ascertainment 2.

Demography Ascertainment 0 Ascertainment 1 Ascertainment 2
RGF II 1987±48 1693± 39 1960± 43
RGF III 1776±87 1642±98 2272±102
RGF IV 2023 ± 56 1751±36 1995 ± 38
RGF V 2157±22 2094 ± 22 2105 ± 22
RGF VI 2102±36 1814 ± 35 2029 ± 38
AS I 10128±127 8162±107 8861±110
AS II 5070±397 6349±327 7570±433
NGF I 8847±126 7940±257 10206±280
NGF II 5800± 164 7204± 356 11702± 451
HM I 2174±40 2057±36 2228±38
HM II 2226±39 2049±30 2100±30
HM III 2137±34 2040±29 2124±30
HM IV 2153±36 2038±34 2187±35
Mutation rate Ascertainment 0 Ascertainment 1 Ascertainment 2
1−8 2141±41 1847±35 1969±36
5× 10−8 2134±41 1833±29 1951±29

Table S 5: Estimates of time of gene flow for different demographies. For the demographies that
involve recent gene flow (RGF II, RGF III, RGF IV and RGF V), the true time of gene flow is 2000
generations.
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Figure S 7: Estimates of tGF as a function of true tGF for RGF I when the SNPs were filtered to
mimic the 1000 genomes SNP calling process: We plot the mean and 2× standard error of the
estimates of tGF from 100 independent simulated datasets using ascertainment 0. The estimates
track the true tGF and are indistinguishable from estimates obtained on the unfiltered dataset as
seen in Figure S2.

S6 Effect of the 1000 genomes SNP calling

One of the concerns with the estimates obtained from SNPs called in 1000 genomes arises from the
low power to detect low-frequency alleles. To assess the effect of missing low-frequency variants
on our inference, we redid the simulations in the RGF I model where SNPs were filtered to mimic
the 1000 genomes SNP calling. Each SNP was retained in the dataset as a function of the number of
copies of the minor allele – the acceptance probabilities are 0.25, 0.5, 0.75, 0.80, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99
for minor allele counts of 1, 2, 3, 4, 5, 6, 7, 8,≥ 9 respectively. Figure S7 shows that the estimates
on this filtered dataset are indistinguishable from the unfiltered dataset showing that the low power
to call rare alleles does not affect our inference.

S7 Effect of the 1000 genomes imputation

A potential concern with interpreting our LD-based estimates applied to the SNPs called in 1000
genomes arises from the fact that genotype calling in the 1000 genomes project involves an impu-
tation step which used LD in a reference panel to call genotypes [6]. It is unclear how this step
affects our estimates. To understand the effect of imputation, we estimated the haplotype frequen-
cies at pairs of SNPs directly from the 1000 genome reads aligned to the human reference hg18.
We then used these haplotype frequencies to estimate LD (as opposed to the genotypic LD that we
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use in the rest of the paper) [4].
Similar to the estimate of allele frequencies from the sequencing data, the two-locus haplotype

frequencies are also estimated using an EM algorithm. Given k loci, let ~h = (h1, . . . , hk) be a
haplotype where hj equals 1 if the allele at the j-th locus is derived, and equals 0 otherwise. Let
η~h be the frequency of haplotype ~h satisfying

∑
~h η~h = 1, where

∑
~h

=
1∑

h1=0

1∑
h2=0

· · ·
1∑

hk=0

Knowing the genotype likelihood at the j-th locus for the i-th individual L(j)
i (g), we can compute

the haplotype frequencies iteratively with:

η
(t+1)
~h

=
η

(t)
~h

n

n∑
i=1

∑
~h′ η

(t)
~h′

∏k
j=1 L

(j)
i (hj + h′j)∑

~h′,~h′′ η
(t)
~h′
η

(t)
~h′′

∏
j L

(j)
i (h′j + h′′j )

(10)

We restricted our analysis to SNPs chosen using ascertainment 0 and used the Decode map to
determine our genetic distances. We fitted an exponential with an affine term to the decay curve
to obtain an uncorrected date λ = 1210, consistent with λ = (1179, 1233) obtained using the
genotypes called in 1000 genomes. Thus, the genotype imputation does not appear to be a major
source of bias in our estimates.
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S8 Results

Map CEU CHB+JPT
λ tGF yGF λ tGF yGF

Decode 1201 1900 54540 – – –
(1179,1233) (1805,1993) (47334,63146) – – –

LD 1170 1961 56266 1269 – –
(1159,1183) (1881,2043) (49021,64926) (1253,1287) – –

Table S6: Estimated time of the gene flow from Neandertals into Europeans (CEU) and East Asians
(CHB+JPT): λ refers to the uncorrected time in generations obtained as described in Section S1.
tGF refers to the time in generations obtained from λ by integrating out the uncertainty in the
genetic map as described in Section S 3. yGF refers to the time in years obtained from λ by
integrating out the uncertainty in the genetic map and the uncertainty in the number of years per
generation (we are reporting the posterior mean and 95% Bayesian credible intervals for each of
these parameters). Estimates of the time of gene flow were obtained for CEU using the Decode
map and the CEU LD map. Estimates for CHB+JPT were obtained using the CHB+JPT LD map
(we do not have a precise estimate of the uncertainty in this genetic map – hence, we report only
λ).

Map CEU
λ tGF yGF

Ascertainment 1 Decode 962 1385 39760
(937,989) (1328,1438) (34593,45923)

LD 1060 1694 48652
(1045,1074) (1633,1755) (42386,56065)

Ascertainment 2 Decode 1105 1683 48311
(1080,1136) (1590,1779) (41796,56092)

LD 1128 1858 53332
(1089,1170) (1764,1952) (46134,61982)

Table S7: Estimated time of the gene flow from Neandertals into Europeans (CEU) under different
ascertainment schemes: λ refers to the uncorrected time in generations obtained as described in
Section S 1. Ascertainment 1 is shown to have a downward bias in the presence of bottlenecks
since the gene flow – this may reflect the lower estimates obtained here. The estimates using
Ascertainment 2 closely match the estimates shown in Table S6.
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Figure S8: Comparison of the LD decay conditioned on Neandertal derived alleles and Neandertal
ancestral alleles stratified by the derived allele frequency in CEU (left) and YRI (right): In each
panel, we compared the decay of LD for pairs of SNPs ascertained in two ways. One set of SNPs
were chosen so that Neandertal carried the derived allele and where the number of derived alleles
observed in the 1000 genomes CEU individuals is a parameter x. The second set of SNPs were
chosen so that Neandertal carried only ancestral alleles and where the number of derived alleles
observed in 1000 genomes CEU is x. We varied x from 1 to 12 (corresponding to a derived allele
frequency of at most 10%). For each value of x, we estimated the extent of the LD i.e., the scale
parameter of the fitted exponential curve. Standard errors were estimated using a weighted block
jackknife. Errorbars denote 1.96× the standard errors. The extent of LD decay shows a different
pattern in CEU vs YRI. In YRI, the extent of LD is similar across the two ascertainments to the
limits of resolution although the point estimates indicate that the LD tends to be greater at sites
where Neandertal carries the ancestral allele (8 out of 12). In CEU, on the other hand, the extent
of LD is significantly larger at sites where Neandertal carries the derived allele (the only exception
consists of singleton sites). Thus, the scale of LD at these sites must be conveying information
about the date of gene flow.
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Distance to exon λ tGF yGF

0-2475 1301 2149 61683
(1256,1363) (1991,2347) (52737,72737)

2475-11028 1223 1967 56432
(1176,1261) (1874,2075) (48708,65799)

11028-33707 1179 1847 53019
(1131,1220) (1717,1970) (45679,61846)

33707-105107 1145 1773 50891
(1098,1200) (1640,1922) (43330,59962)

105107- 1301 2151 61747
(1253,1358) (1982,2345) (52442,73518)

Table S8: Estimate of the time of gene flow stratified by distance to nearest exon (each bin contain
20% of the 1000 genome SNPs): These estimates were obtained on CEU using the Decode map.
The results indicate that our estimates are not particularly sensitive to the strength of directional
selection, which has recently been shown to be a widespread force in the genome [17, 18].
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A Exponential decay of the statistic

We are interested in how the linkage disequilibrium varies as a function of genetic distance x. We
consider two SNPs that are polymorphic at time 0 in the past. The evolution of the alleles at the
two SNPs can be described by the two-locus Wright-Fisher diffusion in a space parameterized by
Xt = (p, q,D)t i.e., the allele frequencies at each SNP at time t and measure of LD D at the two
SNPs [19]. At time t, the average LD is denoted EDt(x) (we assume that the population is not at
equilibrium so that ED 6= 0).

We are interested in the average linkage-disequilibrium at a time t given the state of the system
at time 0 : u(t, x) = E [Dt|X0 = x].

We also denote the effective population size at time t by N(t) = ν(t)N0 and the probability of
recombination between the two loci by r.

The evolution of u(t, x) is given by
∂u

∂t
= Lu (11)

where L is the generator for this diffusion with initial condition

u(0, x) = D0

and boundary conditions

u(t, (0, q, d)) = u(t, (p, 0, d) = 0

∂u

∂d
(p, q, dmax(p, q)) =

∂y

∂d
(p, q, dmin(p, q)) = 0

∂u

∂t
= Lu = −

[
r +

1

2ν(t)N0

]
u (12)

The solution to Equation 12 is given by

u(t, x) = D0 exp

(
− 1

2N0

∫ t

0

dτ

ν(τ)

)
exp (−rt)

So we have

EDt = ED0 exp

(
− 1

2N0

∫ t

0

dτ

ν(τ)

)
exp (−rt) (13)

If we choose SNPs that that arose in the N lineage and introgressed into E tGF generations ago
(i.e., these are SNPs that were monomorphic in E before the gene flow), Equation 13 says that
the average D observed between all such pairs of SNPs at a given genetic distance r depends on
three factors – the average LD at time 0 (ED0), the factor exp

(
− 1

2N0

∫ t

0
dτ

ν(τ)

)
that accounts for

changes in population sizes since gene flow and the factor exp (−rt) that accounts for the decay
in LD. Terms 1 and 3 depend on r while term 2 does not. Further, since we ascertain SNPs that
arose in the N lineage and introgressed into E, ED0 will depend on the average value of D in
the introgressing Neandertals scaled by their admixing proportion. While ED0 still depends on
the genetic distance r, for highly-bottlenecked populations such as the Neandertals ,in which the
probability of coalescence has been estimated to be at least 0.65 [7], this term could be assumed
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to be a constant in r. We can then approximate the relation between the average D and the genetic
distance r by the exponential term exp (−rtGF ) where the intercept of the exponential (its value at
r = 0) depends on the population history. Thus, rate of decay of the expectation of D as a function
of r would correspond in this case to tGF and could provide a robust method to date gene flow.

Equation 13 implies that changes in the effective population size since the gene flow will not
change the relation between EDt and r. Since we have chosen SNPs that are monomorphic in E
before the time of gene flow, demographic history in E before gene flow also does not affect EDt.
However, this result has limitations when applied to polymorphism data. First, this result requires
precisely ascertaining SNPs that arose in N and introgressed. Imperfections in the ascertainment
can make the procedure sensitive to demography. Further, the expectation needs to be computed
over all pairs of SNPs that were polymorphic at time 0 even if these SNPs may have fixed or gone
extinct since. Such SNPs would be hard to ascertain using present-day genomes. Second, if the
drift since gene flow is high or the level of gene flow is low, the intercept of the exponential curve
decreases making it harder to estimate its rate of decay from data
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B Proof of Equation 3 in Section S3

Equation 2 is given by
E [exp (−tGFZ) |g] = exp (−λg) (14)

where
Z ∼ Γ (αg, α) (15)

We can explicitly compute the LHS of 2

E [exp (−tGFZ) |g] =
ααg

Γ(αg)

∫
dzzαg−1 exp (−αz) exp (−tGF z)

=
ααg

Γ(αg)

Γ(αg)

(tGF + α)αg

= exp

(
−α log

((
tGF

α

)
+ 1

)
g

)
(16)

Equating the coefficients of g in the RHS of Equation 2 and 16 gives us Equation 3.
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