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S1 Statistic for dating

A number of methods have been proposed to infer the demographic history and thus the population
divergence times of closely-related species using multi-locus genotype data (see [ 1] and references
therein). In this work, we seek to directly estimate the quantity of interest, i.e, the time of gene
flow, by devising a statistic that is robust to demographic history. Our statistic is based on the
pattern of LD decay due to admixture that we observe in a target population. The use of LD decay
to test for gene flow is not entirely new ( [2, 3]). [2] devised an LD-based statistic to test the
hypotheses of recent gene flow vs ancient shared variation. [3] devised a statistic that used the
decay of LD to obtain dates of recent gene flow events. The main challenge in our work is the
need to estimate extremely old gene flow dates (at least 10000 years BP) while dealing with the
uncertainty in recombination rates.

S1.1 Statistic

Consider three populations Y RI, C EU and Neandertal, which we denote (Y, F/, N). We want to
estimate the date of last exchange of genes between N and E. In our demographic model, ancestors
of (Y, FE) and N split ¢ty generations ago and Y and E split ¢ty generations ago. Assume that
the gene flow event happened {;r generations ago with a fraction f of individuals from N. We
have SNP data from several individuals in £/ and Y as well as low-coverage sequence data for V.

1. Pick SNPs according to an ascertainment scheme discussed below.

2. For all pairs of sites S(z) = {(i,j)} at genetic distance x, consider the statistic D(x) =

iy D(i,j S o
W Here D(i,j) is the classic signed measure of LD that measures the excess

rate of occurrence of derived alleles at two SNPs compared to the expectation if they were
independent [4].

3. If there was admixture and if our ascertainment picks pairs of SNPs that arose in Neandertal
and introgressed (i.e., these SNPs were absent in E before gene flow), we expect D(z) to
have an exponential decay with rate given by the time of the admixture because D(z) is a
consistent estimator of the expected value of D at genetic distance x. We can show that,
under a model where gene flow occurs at a time t;r and the truly introgressed alleles evolve
according to Wright-Fisher diffusion, this expected value has an exponential decay with rate
given by . Importantly, changes in population size do not affect the rate of decay although
imperfections of the ascertainment scheme will affect this rate (see Appendix A for details).

We pick SNPs that are derived in [V (at least one of the reads that maps to the SNP carries
the derived allele), are polymorphic in £ and have a derived allele frequency in £ < 0.1. This
ascertainment enriches for SNPs that arose in the /V lineage and introgressed into £ (in addition to
SNPs that are polymorphic in the N/ ancestor and are segregating in the present-day population).
We chose a cutoff of 0.10 based on an analysis that computes the excess of the number of sites
where Neandertal carries the derived allele compared to the number of sites where Denisova carries
the derived allele stratified by the derived allele frequency in European populations ((n—;d) where s
is the total number of polymorphic SNPs in Europeans). Given that Denisova and Neandertal are
sister groups, we expect these numbers to be equal in the absence of gene flow. The magnitude of

this excess is an estimate of the fraction of Neandertal introgressed alleles. Below a derived allele
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Figure S 1: The fraction of SNPs s where there is an excess of Neandertal derived alleles n over
Denisova derived alleles d as a function of the derived allele frequency in Europeans.

frequency cutoff of 0.10 in Europeans, we see a significant enrichment of this statistic indicating
that it is this part of the spectrum that is most informative for this analysis (see Figure S1).

To further explore the properties of this ascertainment scheme, we performed coalescent simu-
lations under the RGF II model discussed in Section S2. We computed the fraction of ascertained
SNPs for which the lineages leading to the derived alleles in £ coalesce with the lineage in NV
before the split time of Neandertals and modern humans. This estimate provides us a lower bound
on the number of SNPs that arose as mutations on the N lineage. We estimate that 30% of the as-
certained SNPs arose as mutations in NV leading to about 10-fold enrichment over the background
rate of introgressed SNPs which has been estimated at 1 — 4% [8].

We also explored other ascertainment schemes in Section S5.

For the set of ascertained SNPs, we compute D(x) as a function of the genetic distance = and
fit an exponential curve using ordinary least squares for x in the range of 0.02 cM to 1 ¢cM 1n incre-
ments of 1072 ¢cM. The standard definition of D requires haplotype frequencies. To compute D; ;
directly from genotype data, we estimated D; ; as the covariance between the genotypes observed
at SNPs 7 and 5 [5]. We tested the validity of using genotype data on our simulations in Section S
2.

S1.2 Preparation of 1000 genomes data

We used the individual genotypes that were called as part of the pilot 1 of the 1000 genomes
project [6] to estimate the LD decay. For each of the panels that were chosen as the target pop-
ulation in our analysis, we restricted ourselves to polymorphic SNPs. The SNPs were polarized
relative to the chimpanzee base(PanTro2).



S2 Simulation Results

To test the robustness of our statistic, we performed coalescent-based simulations under demo-
graphic models that included recent gene flow, ancient structure and neither gene flow nor ancient
structure. The classes of demographic models are shown in Figure S2.5

S2.1 Recent gene flow
S2.1.1 RGFI

In our first set of simulations, we generated 100 independent 1 Mb regions under a simple demo-
graphic model of gene flow from Neandertals into non-Africans. We set tyy = 10000, tygp =
5000. All effective population sizes are 10000. The fraction of gene flow was set to 0.03. We
simulated 100 Y and E haplotypes respectively and 1 /N haplotype. While we simulate a single
haploid Neandertal, the sequenced Neandertal genome consists of DNA from 3 individuals. Hence,
the reads obtained belong to one of 6 chromosomes. However, our statistic relies on the Neander-
tal genome sequence only to determine positions that carry a derived allele. We do not explicitly
leverage any pattern of LD from this data. In our simulations, two SNPs at which Neandertal car-
ries the derived allele necessarily lie on a single chromosome and ,hence, are more likely to be in
LD than two similar SNPs in the sequenced Neandertals. However, the genetic divergence across
the sequenced Vindija bones is quite low ( [7] estimates the average genetic divergence to be about
6000 years) and so, we do not expect that this makes a big difference in practice.

We simulated 100 random datasets varying ¢z from 0 to 4500. Figure S5 shows the estimated
tar tracks the true top across the range of values of tr. As tgp increases, the variance of our
estimates increases — a result of the increasing influence of the non-admixture LD on the signals
of ancient admixture LD. These results are encouraging given that our estimates were obtained
using only about %th of the data that is available in practice. Further, to test the validity of the
use of genotype data, we also computed Pearson’s correlation 7 of estimates of ¢, obtained from
genotype data to estimates obtained from haplotype data and we estimated these correlations to
range from 0.89 to 0.96 across different true tor (see Table S2).

S2.1.2 RGFII

We assessed the effect of demographic changes since the gene flow on the estimates of the time of
gene flow. We used tyy = 10000, tyr = 2500 and tgr = 2000. The fraction of gene flow was
set to 0.03. We simulated a bottleneck at 1020 generations of duration 20 generations in which
the effective population size decreased to 100. We also simulated a 120 generation bottleneck
in Neandertals from 3120 generations in which the effective population size decreased to 100.
These parameters were chosen so that F; between Y and F and the D-statistic D(Y, £/, N) match
the observed values [8] (the value of the D-statistic D(Y, E/, N) depends on the probability of a
European lineage entering the Neandertal population and coalescing with a Neandertal lineage
before ¢y and could have been fit to the data by also adjusting f or ty) . We see in Table S 1
that the estimated time remains unbiased.



S2.1.3 RGFIII

We used a version of the demography used in [9] modified to match the F; between Y and £ and
the D-statistics D(Y, £/, N). In this setup, tyg = 14400, tyr = 2400 ,tqr = 2000, f = 0.03.
Effective population sizes are 10000 in the E, Y E ancestor, N H ancestor, and 10° in modern
day Y. Modern day Y underwent exponential growth from a size of 10000 over the last 1000
generations. Y and F exchange genes after the split at a rate of 150 per generation. 2 underwent
a bottleneck starting at 1440 generations that lasted 40 generations and had an effective population
size of 320 during the bottleneck. We again generated 100 independent 1 Mb regions under this
demography.
Table S 1 shows that the estimates now have a small downward bias.

S2.1.4 RGFIV\V, VI

This is the same as RGF II but instead of a bottleneck we simulated a constant /N, in population £
since gene flow. N, was set to 5000 (RGF IV) and 50000 (RGF V). RGF VI places the bottleneck
before the gene flow ( the bottleneck begins at 2220 generations, has a duration of 20 generations
in which the effective population size decreased to 100). Table S 1 shows that the estimates remain
accurate in these settings.

S2.2 Ancient structure

We examined if ancient structure could produce the signals that we see. We considered a demogra-
phy (AS ]) in which an ancestral panmictic population split to form the ancestors of modern-day Y’
and another ancestral population 15000 generations ago. The two populations had low-level gene
flow (with population-scaled migration rate of 5 into Y and 2 leaving Y). The latter population
split 9000 generations ago to form £ and N. E and Y continued to exchange genes at a low-level
down to the present (at a rate of 10). These parameters were again chosen to match the observed
Fy between Y and E and D(Y, E, N). Given the longer time scales (here and in the no gene flow
model discussed next), we fit an exponential to our statistic over all distances up to 1 cM. We see
from Table S1 that we estimate average times of around 10000 generations.

We also modified the above demography so that £ experienced a 20 generation bottleneck that
reduced their /V, to 100 that ended 1000 generations ago (AS II). Table S1 shows that our estimates
are biased downwards significantly to around 5000 generations. Nevertheless, we also observe
that the magnitude of the exponential, i.e., its intercept, is also decreased. We also considered
increasing the duration of the bottleneck but observed that the magnitude of the exponential decay
is further diminished and becomes exceedingly noisy.

S2.3 No gene flow

We also considered a simple model of population splits without any gene flow from N to £ (NGF
I). We used tyy = 10000, typ = 2500. To investigate if the observed decay of LD could be a
result of variation in the effective population size, we also considered a variation (NGF II) with a
bottleneck in £ at 1020 generations of duration 20 generations in which the effective population
size decreased to 100. Table S1 shows that our statistic estimates a date of around 8800 generations
in NGF I which is reduced to around 5800 due to the bottleneck.



Our simulation results show that the LD-based statistic can accurately detect the timing of recent
gene flow under a range of demographic models. On the other hand, population size changes in the
target population can result in relatively recent dates when there is no gene flow or in the context
of ancient structure. This motivated us to explore alternate ascertainment strategies in Section S5.

S2.4 Hybrid Models

These models consist of a recent gene flow from N to E but also simulate structure in the ancestral
population of E'i.e., in E before gene flow. We would like to explore how ancestral structure affects
estimates of the time of last gene exchange. In all these models, we set t¢r = 2000, f = 0.03. We
consider several such models:

1. HM I: This is RGF II with no bottleneck in £. Instead, the ancestral population of £ and Y
is structured with the ancestors of &/ and Y exchanging migrants at a population-scaled rate
of 5. This structure persists from ¢yy = 10000 to tyr = 2500 generations. The population
ancestral to modern humans and Neandertal is panmictic.

2. HM II: Similar to HM I. The ancestral population of £ is a 0.8 : 0.2 admixture of two
populations, E; and Es, just prior to tgp. E7 split from Y at time ¢y g while E5 split from Y
at time ¢y (resulting in a trifurcation at ¢ ). .

3. HM III: Like in HM II, the ancestral population of £ is admixed. FEj5, in this model, has
N, = 100 throughout its history.

4. HM 1V: This is similar to HM 1. The structure in the ancestor of 2 and Y persists in the
Neandertal-modern human ancestor. The ancestor now consists of two subpopulations ex-
changing migrants at a population-scaled rate of 5 till 15000 generations when the population
becomes panmictic. NV diverges from the subpopulation that is ancestral to £ at time ¢ .

Table S 1 shows that {5 is accurately estimated, albeit with a small upward bias, under these
hybrid demographic models.
S2.5 Effect of the mutation rate

Mutation rate has an indirect effect on our estimates — the mutation rate affects the proportion of
ascertained SNPs that are likely to be introgressed. We varied the mutation rate to 1 x 10~ and
5 x 107® in the RGF II model with no European bottleneck and again obtained consistent estimates
(Table S1).

10



2000 3000 4000
| | |

Estimated time of gene flow

1000
|

o 4

T T T T T
0 1000 2000 3000 4000

True time of gene flow (in generations)

Figure S2: Estimates of ¢ as a function of true ¢ for RGF I: We plot the mean and 2x standard
error of the estimates of ¢ from 100 independent simulated datasets using ascertainment 0. The
estimates track the true ¢ though the variance increases for more ancient gene flow events.

Demography Fyu(Y,E) D(Y,E,N)

RGF I 0.15 0.041 1987448
RGF III 0.14 0.043 1776187
RGF IV 0.15 0.04 2023 £+ 56
RGF V 0.07 0.04 2157+£22
RGF VI 0.15 0.04 2102 £+ 36
AS1 0.15 0.045 10128+127
ASTI 0.19 0.046 5070+397
NGF I 0.15 21x107° 8847+ 126
NGF II 0.15 9x 1075 5800+ 164
HM I 0.18 0.03 2174+40
HM II 0.12 0.04 2226+39
HM III 0.13 0.04 2137434
HM IV 0.18 0.06 2153+36
Mutation rate  Fy (Y, E) D(Y,E,N)

1-8 0.11 0.04 2141+41
5% 1078 0.11 0.04 2134141

Table S 1: Estimates of the time of gene flow for different demographies and mutation rates.
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(c) NGF: No gene flow (d) HM: Hybrid model (e) HM: Hybrid model

Figure S 3: Classes of demographic models : a) Recent gene flow but no ancient structure. RGF
I has no bottleneck in £. RGF II has a bottleneck in £ after gene flow while RGF VI has a
bottleneck in £ before gene flow. RGF IV and V have constant population sizes of N, = 5000
and N, = 50000 respectively. b) Ancient structure but no recent gene flow. AS I has a constant
population size while AS II has a recent bottleneck in E. c) Neither ancient structure nor recent
gene flow. NGF I has a constant population size while NGF II has a recent bottleneck in £. d),e)
Ancient structure + Recent gene flow. HM IV consists of continuous migration in the ¥ — £
ancestor and the Y — E — N ancestor while HM I consists of continuous migration only in the
Y — I ancestor. HM 1I consist of a single admixture event in the ancestor of £ while HM III also
models a small population size in one of the admixing populations.
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True tgr Pearson’s correlation
0 0.960918
500 0.9421455
1000 0.9335201
1500 0.9429699
2000 0.9339092
2500 0.9464859
3000 0.9378165
3500 0.8903148
4000 0.8884884
4500 0.9217262

Table S2: Correlation coefficient between times of gene flow estimated using haplotype and geno-
type data vs the true time of gene flow.
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S3 Correcting for uncertainties in the genetic map

In this section, we show how uncertainties in the genetic lead to a bias in the estimates of the time of
gene flow. We then show how we could correct our estimates assuming a model of map uncertainty.
Our model characterizes the precision of a map by a single scalar parameter o. We estimate « for
a given genetic map by comparing the distances between a pair of markers as estimated by the
map to the number of crossovers that span those markers as observed in a pedigree. We propose a
hierarchical model that relates o and the expected as well as observed number of crossovers and
we infer an approximate posterior distribution of o by Gibbs sampling. Finally, we show using
simulations that this procedure is effective in providing unbiased date estimates in the presence
of map uncertainties and we apply this procedure to estimate the uncertainties of the Decode map
and Oxford LD-based map by comparing these maps to crossover events observed in a Hutterite
pedigree.

S3.1 Correction

We have a genetic map G defined on m markers. Each of the m — 1 intervals is assigned a genetic
distance g;,7 € {1,...,m — 1}. These genetic distances provide a prior on the true underlying
(unobserved) genetic distances Z;. A reasonable prior on each Z; is then given by

Z; ~ T'(ag;, a) (1)

where « is a parameter that is specific to the map. This implies that the true genetic distance Z;
has mean g; and variance %. So large values of o correspond to a more precise map. The above
prior over Z; has the important property that Z; + Zs ~ I' (a(g1 + ¢2), @) so that « is a property
of the map and not of the specific markers used.

Given this prior on the true genetic distances, fitting an exponential curve to pairs of markers at
a given observed genetic distance g, involves integrating over the exponential function evaluated
at the true genetic distances given g i.e.,

Elexp (—tgrZ) |g] = exp (—Ag) (2)

where ) is the rate of decay of D(g) as a function of the observed genetic distance ¢ and can be

estimated from the data in a straightforward manner and ¢, denotes the true time of the gene flow.

It also easy to see that A will be a downward biased estimate of ¢tz (applying Jensen’s inequality).
We can use Equation 1 to solve for ¢4 (see Appendix B for details) as

tor = « (exp (g) — 1) (3)

Thus, we need to estimate « for our genetic map to obtain an estimate of ¢;r. As a check, note
that for a highly precise map, o > A\, we have tgp ~ A.
S3.2 Estimating o

Given a genetic map G defined on m markers, each of the m — 1 intervals is assigned a genetic
distance ¢;,7 € [m — 1] = {1,...,m — 1}. Each interval ¢ may contain n, — 1, > 0 additional
markers not present in G that partition interval 7 into a finer grid of n; intervals — each finer interval

14



isindexed by the set 7" = {(i,j),i € [m—1], 5 € [n;]} (e.g., these additional markers could include
markers that are found in the observed crossovers but not in the genetic map ). Each interval (7, j)
has a physical distance p; ;.

We propose the following model for taking into account the effect of map uncertainty.

Zi‘aa gi ~ F<agi7 Cl) (4)
(Zi,la ceey Zz,nl) Uia Z’L ~ (Ui,l sy U’L,?’LZ)ZZ (5)
Ui = (Um cee Uzn) B~ Dif(ﬁpz',b e >6pi,ni> (6)

The “true” genetic distance Z; is related to the observed genetic distance g; through the param-
eter « that is an estimate of map precision. The genetic distances of the finer intervals are obtained
by partitioning the coarse intervals — the variability of this partition is controlled by the parameter
[ — (3 relates the physical distance to the genetic distance. When § — oo, the genetic distances of
the finer grid are obtained by simply interpolating the coarse grid based on the physical distance.

Given the true genetic distances, we can now describe the probability of observing crossovers.
Our observed data consists of R meioses that produce crossovers localized to L windows { Iy, ..., I }.
Each window [ € [L] consists of a set of contiguous intervals /; and is known to contain a crossover
event. Let IV ; denote the set of windows that overlap interval (z, 7).

A note on our notation: C; ;,; is the number of crossovers in interval (i, j) that fall on window
[. We can index the C' variables by sets and then we are referring to the total number of crossovers
in the index set e.g., C7p,,; refers to all crossovers that fall on window [ within the set of intervals
I;. Omitting an index from a random variable implies summing over that index. Thus, C;; =
S°F . C;;u denotes the number of crossover events in interval (i, j), C; = >_i~; Cij denotes the
number of crossovers in the union of (4, j), j € [n;]. = indicates a vector of random variables e.g.,

H
(' s denotes the vector of counts indexed by the elements of set .S.

If we assume that the probability of multiple crossovers in any of these intervals is small, we
can use a simple probability model.

Ci,j|Zi,j ~ POiS(RZiJ) (7)
_)
CijulCij o< 6| Y Ciju<CijCijue{0,1}, > Ciju=0 (8)
{leW; 5} {lgw; ;}
YilCijy = 6(Cr= )Y Ciu=1 ©)
(,5)€l;

Here C; ; denotes the counts of crossover events within interval (7, j) over the R meioses and is a
Poisson distribution with rate parameter 2Z; ;. In our model, C; ;, is either zero or one and all the
crossovers in interval (¢, j) must fall on one of the W, ; windows that overlap (i, 7). Finally, one of
the C; j,;, within a window [ must be one for a crossover to have been detected within this window
Y =1).

We put an exponential prior on 7, ~ exp(aio) on o. We set arg = 10 in our inference. While
we can estimate [ jointly, we instead fix [ to oo.

To summarize, the observations in our model consist of the m — 1 observed genetic distances
G;,1 € [m — 1] and L observed crossovers from pedigree data Y}, [ € [L] (which often extend over
multiple intervals in the underlying map) as well as the total number of meioses I? in the pedigree.
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The parameter of interest is «, a measure of the precision of the map. We impose an exponential
prior on . GG; and « parameterize the distribution over the true, but unobserved, genetic distance
Z;. Given the number of meioses and Z;, the number of crossovers that fall within interval ¢ (and
is unobserved) is given by a Poisson distribution. These crossovers that fall within an interval ¢
are then distributed uniformly at random amongst all the observed windows that overlap interval <.
Finally, a crossover is observed only if one of the intervals spanned by it is assigned a crossover.
Our model can also account for the fact that the genetic map has been estimated using only a subset
of markers from a finer set of markers (so that the markers defining the map and those defining the
crossover boundaries may be different): the genetic distance of interval Z; is partitioned amongst
the finer intervals [n;] to obtain genetic distances Z; ; using a Dirichlet distribution parameterized
by /3 and the physical distances of the finer intervals given these Z; ;, we can again compute the
probability of observing a crossover across these finer intervals.

Thus, we are interested in estimating the posterior probability 7r(a|l_/), 5), () where Y =
(Yi,..., Y1), G = (Gr,...,Gren). w(a] Y, G, B) o ma(a) Pr(Y |a, B, G ) where the likelihood
is given by the probability model described above. To perform this inference, we set up a Gibbs
sampler to estimate the posterior probability over the hidden variables 7 (c, 7[m_1] , U)[m_l] , 5)T | 1_/, 6, B).

S3.3 Inference

We perform Gibbs sampling to estimate the approximate posterior probability over the hidden vari-
ables («, 7[m,1], ﬁ)[m,l], 5)T) While a standard Gibbs sampler can be applied to this problem,
mixing can be improved using the fact that we are interested in the estimates of o while the Z; are
nuisance parameters. We thus attempt to sample « given the C; ;, integrati