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Supplementary Figure 1. Removal of trios due to potential false-parenthood
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Supplementary Figure 1. Removal of trios due to potential false-parenthood. Trios were
removed based on identity-by-state (IBS) probabilities between a parent and the proband, using
all available microsatellite loci. In the figure, the first row is the empirically sampled IBS
between pairs of unrelated individuals. The second row shows IBS between the proband and
his/her uncle or aunt, allowing us to set a threshold that removes such trios as well. The 3™ and
4™ rows are the IBS from the trios, assembled using the Icelandic genealogy. Based on the “null
hypothesis” from the first two rows, the threshold for removal of trios was set at 0.9 (red line). A
trio is removed if either the Father or the Mother falls below the threshold. Out of 25,067 trios,
235 were removed with this filter.

Definition of diploid IBS: Given individuals 4 and B, assume that # loci have been genotyped in
both. At locus i, let the diploid genotype of 4 be 4;, and that of B be B;. We call 4; = B; if any of
the alleles match. For example, if 4, = (4,6) and B; = (4,8), they are considered equal. Let
I(A; = B;) be the indicator variable that is 1 if they are equal and 0 otherwise. Then, the IBS

probability is defined as p/BS(4, B) = ~ 1L, 1(4; = By).
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Supplementary Figure 2. Estimated genotype error rate per locus
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Supplementary Figure 2. Estimated genotype error rate per locus. Distribution of genotype
errors across loci is shown. The genotype error rate is defined as the probability that a single
allele will be erroneous after genotyping. The horizontal axis shows the -logo of the error rate.
The median genotype error rate is 1.8x10~, with 95% of the density from 1.7x10™ to 1.4x107%,

Definition of genotype error rate at a given locus: Let p be the estimated probability of a
genotype error when a single allele is observed, let k be the number of times an allele is
repeatedly genotyped, let n; be the total number of individuals who were each genotyped k-
times, and let y, be the number of individuals with inconsistent genotypes. For example, if an
individual is genotyped 10 times, 9 times yielding the genotype (4,6) and once yielding (5,6),
this would be regarded as an inconsistent genotype. Then, the estimated probability of error is

R Yk Yk

P= Zk ank

Supplementary Notes describe the derivation of this expression and its assumptions.

3|Page



Supplementary Figure 3. Similarity between trio and family data in mutational
length distribution
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Supplementary Figure 3. Similarity between trio and family data in mutational length
distribution. This figure separates the trio and family datasets from main text Fig 2B.
Additionally, the bottom row compares the CDF between the datasets. The two-sample
Kolmogorov-Smirnov test gives P-values of 0.807 and 1 for the di- and tetra- comparisons,
respectively. Thus, in the mutational length distribution, there are no significant differences
between the two datasets.
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Supplementary Figure 4. Mutations by locus and by trio
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Supplementary Figure 4. Mutations by locus and by trio. The rows show histograms of
mutations, transmissions, and the mutation rate per locus. Of the 2,477 loci, most loci do not
contain any mutations. For the loci with at least 1 mutation, the histogram of logjo of the
mutation rate resembles a truncated normal distribution, since our denominator is limited to at
most about 10,000 per locus. The right column shows the corresponding plots by trio. Of the
24,832 trios, most do not contain a mutation. Due to the sparseness of mutations by locus and by
trio, we combine locus and trio data as appropriate to perform our analyses.
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Supplementary Figure 5. False-positive mutations from the trio approach
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Supplementary Figure 5. False-positive mutations from re-genotyping in the trio approach.
From the set of trio mutations identified, we randomly chose 103 mutations and re-genotyped
them. 3 false-positives were identified, which are shown here. All genotypes are in units of base
pairs. The 1* case is an apparent mutation that is unusually long, with a mutational length of 14
bp. The 2™ case involves a homozygous parent transmitting to a homozygous child, which we
believe is a more error-prone class as discussed in the text. The 3™ case is an apparent mutation
of a single base pair, which is a non-integer multiple of the motif length (2 base pairs in this
case).

See Supplementary Notes and Supplementary Table 1 for a more elaborate analysis of false-
positive rates when a mutation is either (1) excessively long, (2) a transmission from a

homozygous parent to a homozygous child, or (3) a non-integer multiple of the motif length.

Note that allele lengths illustrated above are relative lengths, which is an offset (in units of base
pairs) based upon the absolute length of a reference individual’s allele.
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Supplementary Figure 6. Predictors of mutation rate and direction (logistic
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Supplementary Figure 6. Predictors of mutation rate and direction (logistic regression).
Same as main text Fig 2, but with logistic regression curve fits. Note that while the data points
shown here are from binning the data, as described in Fig 2, the logistic regressions are
performed over the raw data, in which a binomial model of generating mutations (response
variable) is assumed. Logistic regression over the raw data has more statistical power than linear
regression over the binned data and is constrained to have non-negative mutation rates. The P-
values in the main text are reported based on the logistic regression analysis.

Nature Genetics: doi:10.1038/ng.2398
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Supplementary Figure 7. Imperfect repeats have a lower mutation rate
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Supplementary Figure 7. Imperfect repeats have a lower mutation rate. The purity of a
motif is computed using the human reference sequence hg/9 from the UCSC genome browser,
and downloading data for “simple repeats”, in which the “perMatch” column gives the
percentage match of the human-genome reference microsatellite to the pure repeat. We define
“motif impurity” as one minus this statistic. In blue is the aggregate of 1,036 di-nucleotide loci in
which the repeats are perfect (e.g. CACACACACA), without any interrupting bases in the
pattern. In red are the imperfect repeats (e.g. CACACATCACA), binned according to the level
of repeat impurity. In gray is the window-averaged mutation rate of the imperfect repeats. There
are a total of 396 di-nucleotide loci with imperfect repeats. Logistic regression shows that the
level of repeat impurity regresses significantly (P = 3.1x107) with mutation rate. The evidence
here is compatible with the hypothesis that when a tandem repeat is interrupted, DNA
polymerase slippage is less likely to occur, and hence the mutation rate becomes lower.
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Supplementary Figure 8. Length constraints in microsatellites (raw)
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Supplementary Figure 8. Length constraints in microsatellites (raw). Relative length (x-axis)
is in units of Z-scores, the number of standard deviations from the mean length at a given locus.
The left panels plot relative length against the mutation length, in base pairs. The right panels
provide dithering using a uniform distribution from -0.5 to 0.5 bp to reduce quantization on each
mutation length. There is a significant negative correlation.

For di-nucleotides, panel A has: ?=0.0739, slope=-0.838, P=1 A48x107",
For tetra-nucleotides, panel C has: r2=O.106, slope=-1.202, P=3.33x10"".
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Supplementary Figure 9. Length constraints in microsatellites (binned)
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Supplementary Figure 9. Length constraints in microsatellites (binned version). This figure
shows the mutation length distributions as a function of the length of the parental allele, relative
to the mean length of a locus. When the parental allele is short (percentiles are displayed on the
left), mutation length is biased towards the positive direction. When the parental allele is long,
the mutation length is biased towards the negative direction. The fraction (f) of length
expansions and the P-value (p) using a two-sided binomial test (the null hypothesis is that
microsatellites have no directional bias), are shown in each histogram.

Nature Genetics: doi:10.1038/ng.2398
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Supplementary Figure 10. Sensitivity analysis of evolution model
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Supplementary Figure 10. Sensitivity analysis of the evolution model. Our model of evolution is
robust to changes in the prior distributions. Eight parameters that we use as priors are in the left column,
with the default distributions in black. We tested robustness by setting each prior to have different point
values (the mean, 5™ percentile, and 95™ percentile of the default distribution in black), and exploring
how this changes the posterior distributions (the coloring of the posteriors correspond to the respective
priors, all scaled by the mean of the black posterior). In the case of the “ancestral to present-day transition”
in the generation time ( in Supplementary Notes), the parameter distribution is a mixture of 3
exponentials (see Methods), and we test robustness by sampling from each separately. Our posterior
estimates are not much affected by the input parameters as long as they fall within the range of the priors.
The exception is the length constraint (top row) that governs the non-linear mapping between TMRCA
and ASD (Fig 3), where we observe substantial differences. Note, however, that we obtain essentially the
same posterior distribution when we use a point estimate corresponding to the mean of the prior
distribution and the full prior distribution, which demonstrates the robustness of our inference procedure.
Our evolutionary modeling updates its inference of the length constraint directly from comparing the
microsatellite ASD to flanking sequence diversity; it is not solely based on our direct measurements. Thus,
as long as we include the true value within the prior, we get robust results even for the length constraint
parameter (Supplementary Notes).
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Supplementary Figure 11. Sequence divergence versus microsatellite ASD for 23
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Supplementary Figure 11. Sequence divergence versus microsatellite ASD. These plots are
similar to that of Fig 3 but with the x-axis un-rescaled to TMRCA. The combined plot and
separate plots for the 23 HapMap individuals are shown. We empirically validate the non-linear
behavior predicted by our model by exploiting the fact that there exists considerable variability
in sequence heterozygosity (hence TMRCA) across the genome. The x-axis shows the pairwise
sequence heterozygosities from sequence data. The y-axis shows the ASD statistic from
microsatellite data. In blue are sequence data from Complete Genomics (20 individuals), and in
black are data generated using Illumina technology (9 individuals). Microsatellite ASD at each
di-nucleotide locus and heterozygosity were computed for each individual and then combined
and smoothed using a sliding-window average. We computed the local sequence heterozygosity
based on the sequence flanking each microsatellite over a genetic distance window of 0.001
centimorgans in either direction and excluding a 1kb region where the microsatellite itself lies.
The result shows a non-linear relationship between microsatellite ASD and sequence
heterozygosity which is assumed to increase linearly with time, empirically demonstrating that
our model of microsatellite evolution is more appropriate than the GSMM model.
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Supplementary Figure 12. Inferred sequence mutation rate of 23 individuals
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Supplementary Figure 12. Inferred sequence mutation rate of 23 individuals. This is a
graphical representation of Supplementary Table 8. The asterisk is the mean mutation rate, and
the bars are the 90% Bayesian credible intervals. Populations are coded by color. Note that while
the individual mutation rates are not significantly different from each other, the populations do
exhibit some clustering, where CEU Europeans have a lower mutation rate than either YRI
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Africans or CHB Han Chinese. We see two possible explanations for non-random clustering
within populations. (1) One possibility is random fluctuation: the differences are not statistically
significant, and the clustering within populations could thus simply reflect correlated histories
within populations. (2) A second possibility is ascertainment bias for microsatellites with high
heterozygosity in Europeans (to make them more useful for disease gene mapping). To
understand how this bias could cause underestimation of the mutation rate especially in
Europeans, we note that ascertaining for highly polymorphic microsatellites is expected to inflate
the measured ASD compared with the expectation based on the true mutation rate, thus
overestimating the TMRCA. This in turn results in an underestimate of the sequence
heterozygosity, since if we infer that more time elapsed in the process of generating the observed
mutations, we will estimate a lower mutation rate. Such an ascertainment bias would be expected
to be strongest in people of European ancestry as we observe (since they are most closely related
to Icelanders), while it would be more mild in more distant populations (CHB and YRI).
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Supplementary Figure 13. Demographic model for coalescent simulation
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Supplementary Figure 13. Demographic model for coalescent simulation. In panel A is a

model of 4 populations,

with A=West Africans (YRI), B=Western Europeans (CEU), C=Han

Chinese (CHB), D=Native Americans. This is a 2-bottleneck model suggested by Keinan et al.,

with  N¢=10,000,

NAZI.INe,

Npi1=0.02N,, Np»=0.05N., t,=0.0147*4N,, t,=0.016*4N,,

t3=0.018*4N,, t4=0.019%4N,, ts=0.107*4N,, t=0.109*4N.. Panel B shows the distribution of
within-population 2-sample coalescent times, scaled by N.. There are more coalescent events
within bottlenecks, as shown by the peaks in the distribution for CEU and CHB. We use this
model to verify that our inference of mutation rates is robust to differences in demographic

histories across populations.
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Supplementary Figure 14. Heterozygosity: CGI versus Illumina
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Supplementary Figure 14. Heterozygosity: CGI versus Illumina. Six individuals have
sequence data from both CGI and Illumina. Here we compare heterozygosities. The Illumina
heterozygosity is slightly higher than that of CGI.
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Supplementary Figure 15. Genetic windows for sequence heterozygosity
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Supplementary Figure 15. Varying genetic windows for sequence heterozygosity. To extract
sequence heterozygosity around each microsatellite, a suitable window length is required. If this
window size is too short, sequence heterozygosity becomes imprecise. If the window is too large,
crossing multiple recombination events, then the sequence heterozygosity approaches the
genome-wide average, rather than local. We tried 3-different window sizes with thresholds at
0.001, 0.002, and 0.004 cM. Shown in black is the empirical curve of microsatellite ASD versus
sequence-based 2-sample TMRCA, averaged across the 23 HapMap individuals. The TMRCA is
estimated from sequence heterozygosity using a sequence mutation rate of 1.82x10™, which is
the value we inferred (main manuscript Table 2). The red and blue curves are simulations: in red
is the standard random walk (GSMM) model, and in blue is our evolution model. As shown in
the figure, all 3 window sizes clearly show a saturation of the ASD curve, closely matching our
model. The threshold with 0.001cM is noisier due to less sequence data, however, the fit seems
slightly better. Thus, this is the threshold we use, and panel A is the one used for Figure 3 of the
main manuscript.
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Supplementary Figure 16. UCSC web query for obtaining microsatellite information
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Supplementary Figure 16. UCSC web query for obtaining microsatellite information. To

obtain information for repeat motif (column:

“sequence”), repeat length (column:

“copyNum”),

motif purity (column: “perMatch), we obtained the output of Tandem Repeat Finder from the
UCSC genome browser, with settings shown in panel A, and an excerpt of the output in panel B.
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Supplementary Figure 17. Distribution of parental age at child-birth
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Supplementary Figure 17. Distribution of parental age at child birth. These are the parental
age of trios used in our mutation rate analyses. The paternal age has a mean and standard
deviation of 30.1 and 6.5 years, while the maternal age has a mean and standard deviation of

27.4 and 5.9 years. Combining parents, the generation-time has a mean and standard deviation of
28.8 and 6.4 years.
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Supplementary Table 1. Experimental validation of mutations

Mutations from family data set Mutation
Counts
Class 1 mutations 326

Class 2 mutations

Homozygous parent and offspring 21
Non-integer multiple of motif length 10
Excessively long (>6bp) 18
More than 1 of the above 1
Total 376

Targeted re-genotyping

Electropherogram review

Intersection of sites

TP FP FP/(TP+FP)

74 2 0.026

10 0.167
1.000
0.222

N/A

O N NN

0.058

P

262

20

13

FP

o w w o

FP/(TP+FP)

0.030

0.000
0.333
0.188
0.000

0.043

P

57

o o o v

FP FP/(TP+FP)

o w NN

0.034

0.182
1.000
0.333

N/A

0.072

Experimental validation of mutations from the family data are shown here. See Supplementary

Figure 5 for validation of the trio data.

TP = True Positives, i.e. candidate mutations that are verified to be true.
FP = False Positives, i.e. candidate mutations that are rejected by the verification.

Class 1 mutations are the ones that do not belong to Class 2, which are likely to have a higher
false identification rate. Class 2 mutations include: (1) both parent and offspring were
homozygous, (2) the mutation length was a non-integer multiple of the motif size, or (3) the

mutation length was longer than 6 nucleotides.

In our re-genotyping efforts, to maximize our discovery of false-positives, we targeted our re-
genotyping efforts toward Class 2. No such sampling bias was used in the electropherogram
review. In combining the results of re-genotyping and electropherogram review, we examined
only overlap data, calling a candidate mutation as a false-positive if either method rejects the

mutation.

In obtaining the total false identification rate, due to sampling bias towards the Class 2 mutations,
we calculated an overall rate that weights the number of Class 1 and Class 2 candidate mutations,

1.e. to obtain the final value of 0.072, we have:

Nature Genetics: doi:10.1038/ng.2398

7 326 2

376 22

376 59

= 0.072
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Supplementary Table 2. Validation of 14 microsatellite mutations with next generation sequence data

. . NGS genotype NGS genotype
M n Inform n PCR gen
utatio ormatio CR genotype (total length of motifs) (actual alleles observed)
e — o
8 2 g %
£ ) 2 - © ° g
= - G - 5 c - 5 c 5 @ s E
] ] o | § 2 2 = 38 2 £ 38 £ £ S| €
8 g 2|5 = 5 2 e 5 S 3 S 9 ° | §
S o - | a < w = a L = a w = a o
D1154191 | AC, | Trio | F | 1614 | 0/16 | 0/0 | 16/0 | 36/52 | 36/36 | 36/50 | 17xAC:3, 18xAC:8, 25%AC:1, 26xAC:3 HAC TOAC, o i3 1BAC20, 1IR3, LBACS, SACS, 23ACT, v
D12S51297 TCTA, Trio 0—4 -4/0 0/0 0/4 36/40 | 40/40 | 40/44 9XTCTA:16, 10xTCTA:15 9XTCTA:1, 10xTCTA:40 10xTCTA:9, 11xTCTA:16 v
CTAT, } ) ) 9XCTAT+3xXCTAC:1, 11xCTAT+2xCTAC:11, 10xCTAT+2xCTAC:1, 11xCTAT+2xCTAC:S,
D12S372 CTAC,, Trio F 4—8 -4/4 0/0 0/8 48/56 | 52/52 | 52/60 | 9xCTAT+3xCTAC:4, 12xCTAT+2xCTAC:7 TOXCTAT+3XCTAC:A 13xCTAT2XCTAC:14 v
GT, . 12xGT+6xGT:1, 13xGT+6xGT:1, 14xGT+6xGT:7, 15xGT+6xGT:1, 13xGT+6xGT:3, 14xGT+6xGT:17,
D175794 6T, | Mo | F| 092 0/0 0/6 0/2 | 40/40 | 40/46 | 40/42 14XGT+6XGT:16, 17XGT+7XGT:1 15XGT+7XGT:2, 16XGT+7XGT:7 15XGT+6xGT:9 v
D205852 GT, Trio | F | 02 o/8 | -10/4 | -2/4 | 30/38 ? 28/34 |  14xGT:2, 15xGT:8, 16xGT:1, 19xGT:5 No data 12x6T:2, 1136XGT14' 14xGT:8, 15xGT:1, v
XGT:1, 17xGT:7
D205902 CAn Trio | M | 25-2 -2/-2 2/4 -2/-2 | 50/54 | 54/56 | 50/54 1IXCA+14XCA'S, 1IXCA+16XCAE, 11XCA+16xXCA:2, 10xCA+18xCA:6 11XCA+14xCA:4, 11xCA+16xXCA:S NO
CAn 11xCA+17xCA:1
D2151908 CA, Trio F 20 2/2 2/6 0/6 32/32 | 32/36 | 30/36 15xCA:2, 16xCA:31, 18xCA:1 16xCA:10, 17xCA:2, 18xCA:8 15xCA:9, 18xCA:11 4
D252254 GT, Trio | F | 20>18 | 0/20 | -2/16 | -2/18 | 32/54 | 30/48 | 30/50 13XGT:1, 16xGT:10, 27xGT:4 14x6T:2, 15XGT2‘jx2'GngT:1' 23xGT:1, 14xGT:3, 15“2;3&?;6“1' 20xGT:1, v
D3S3620 TG, Trio F 2—0 -4/2 -4/-4 -4/0 36/42 | 36/36 | 36/40 18xTG:4, 20xTG:3, 21xTG:5 17xTG:3, 18xTG:12 18xTG:10, 19xTG:1, 20xTG:5 v
CTTTT, ) 48 or OXCTTTT+13xCTTT:5, OXCTTTT+9xCTTT:1, OXCTTTT+11xCTTT:5, : !
D5S1397 CTTT,, Trio M 1258 12/17 4/12 8/17 52/57 | 44/57 | 48/57 IXCTTTT+13xCTTT6 OXCTTTT413%CTTT11 OXCTTTT+12xCTTT:5, 1IxCTTTT+13xCTTT:8 v
D551503 TAGA, Trio F O;“f 0/8 4/8 4/4 48/56 | 52/56 | 52/52 12xTAGA:16, 13xTAGA:2, 14xTAGA:5 13xTAGA:8, 14xTAGA:11 13xTAGA:40 v
—>
D8S1763 TG, Trio F 4—6 2/4 0/0 0/6 30/32 | 28/28 | 28/34 14xGT:1, 15xGT:19, 16xGT:22 17xGT:2 13xGT:2, 14xGT:18, 15xGT:1 12xGT:1, 13xGT:1, 14xGT:13, 17xGT:10 v
CTAT, 10xCTAT+3xCTAC:1, 11XCTAT+2xCTAC:7, 13xCTAT+3xCTAC:2,
D125372 crac, | Fam | F | 2016 4/20 0/4 0/16 | 56/72 ? 52/68 | 11,CTAT+3(CTAC:S, 15¢CTAT+34CTAC:S No data 14xCTAT+3xCTAC:9
CTGT, 3XCTGT+15XCTAT:7, ) ; 2XCTGT+13XCTAT:1, 2xCTGT+14xCTAT:3,
D135796 CTAT,, Fam. | F | 1216 | 12/20 4/12 4/16 72/80 | 64/72 | 64/76 IXCTGT+L6XCTAT:1, 3CTGT+17%CTAT:3 2xCTGT+14xCTAT:7, 3xCTGT+15xCTAT:9 IXCTGT+15XCTAT-1, 3xCTGT+16xCTAT v

Note: We used next generation sequence (NGS) data from Illumina GAllx and HiSeq2000 instruments to validate a subset of the mutations that we
inferred based on PCR and electrophoresis with fluorescently labeled primers. These data were produced as a part of a large scale project in Iceland,
where individuals have been sequenced to a depth of ~10-30X. Sequencing reads were aligned to the hgl8 reference genome with BWA27 and
duplicates were marked with Picard [http://picard.sourceforge.net/]. An inspection of the overlap between trios and families with candidate mutations
and those with NGS data revealed 12 trios and 2 families that could be used for the purpose of verification, in the sense that there were at least 7
informative sequence reads for each relevant individual (minimally, the proband and the parent carrying the wild-type allele). In each case, sequence
reads spanning the variable part of the microsatellite (i.e. with flanking sequence on both sides) were identified and carefully aligned by hand. This
strategy was adopted because the available alignment algorithms did not seem to provide convincing results — particularly for the more complex
microsatellites, composed of multiple different repeat motifs. Genotypes were called on the basis of these alignments in the following manner. First the
modal allele was identified and called as allele 1 in the genotype. If this allele was present in >80% of the reads then the individual was deemed to be a
homozygote. If not, then 5% was subtracted from the frequency of alleles that differed by one mutational step from allele 1 (in order to account for the
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presence of apparent somatic mutational variation) and the second most frequent allele was identified. If this allele was found in >20% of the reads, then
the genotype was called as allele 1 / allele 2. If no other allele was found in >20% of the reads, then the genotype was defined as an allele 1 homozygote.
The table shows the results of this genotyping, which was performed blindly in relation to the electrophoretic genotypes. The allele lengths for the
electrophoretic and NGS genotypes are not reported in the same scale. The former are lengths relative to the shorter allele observed in a particular
reference individual (used for this purpose in all microsatellite genotyping at deCODE Genetics). The latter are absolute combined lengths of the
variable repeat motifs based on sequence data (in the next three columns we show the distribution of allele lengths that were the raw data used to call the
genotype). Results are consistent between both data sets in all cases but one (locus D20S902), where the electrophoretic genotype indicates that the
father is a homozygote, but the NGS data reveals that the father is a heterozygote carrying an allele with a length consistent with the candidate mutation.
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Supplementary Table 3. Di-nucleotide microsatellite mutations by motif type

Repeat-type, by motif mutations transmissions rate  stderror
AC/CA/GT/TG 1102 4063534 2.71 0.08
AG/GA/CT/TC 27 93352 2.89 0.56
AT/TA 12 8760 13.70 3.95
CG/GC 0 0 N/A N/A
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Supplementary Table 4. Differences in a

Mutation class Trio data Family data

Paternal  Maternal o [95% Cl] Paternal  Maternal a [95% Cl]
homozygous to homozygous 123 81 1.52 [1.152.04] 13 8 1.63 [0.624.25]
homozygous to heterozygous 146 43  3.40 [2.504.91] 57 21  2.71 [1.694.57]
heterozygous to homozygous 104 42 2.48 [1.753.56] 25 14 1.79 [0.953.88]
heterozygous to heterozygous 471 82 5.74 [4.597.38] 184 41 4.49 [3.256.50]
Total 844 248 3.40 [2.973.94] 279 84 3.32 [2.634.26]

« is the ratio of the paternal mutation rate to the maternal mutation rate. Since we are only
examining full trios and families (i.e. probands that have both parents genotyped), the paternal
and maternal transmissions are the same, hence « is just the ratio of the mutations.

We split our mutations by trio/family data and by mutation class. A “homozygous to
homozygous” mutation is when a parent with homozygous alleles transmits a mutation to a child
with homozygous alleles, e.g. parent = (6,6) and child = (8,8).

To construct the 95% confidence interval for @, we assume that the partition of paternal and
maternal events is generated via a binomial distribution. For example, in the total mutations for

trio data, assume that the paternal counts are generated with Binomial(n,p), where n = 844 +

248 = 1092 and p = % = (0.773. a is simulated enough times to suppress Monte Carlo noise,

and then the 95% CI is obtained. Note that although we have 1,695 mutations from the trio data,
only 1,092 are used here, because the parent transmitting the mutation is ambiguous for the rest
(Supplementary Notes).

Comparing the trio data to the family data, a is not significantly different, as the 95% CI
significantly overlap for each mutation class.
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Supplementary Table 5. Predictors of the mutation process

p-values for assessing significance in the tested variable

Tested variablet mutation rate  magnitude in step size* directionality*
motif length (di- vs. tetra-) <10™ 1.78x10° 0.58
absolute lengtht <10™ 0.19 0.16
variance in allele length distribution in Icelanders <10 0.70 0.11
repeat impurity 3.1x10” 0.12 0.26
distance from exons (measured by B-statistictt) 2.2x10° 0.71 0.74
DNA replication timing 0.005 0.07 0.69
recombination rate 0.02 0.49 0.59
sequence divergence, human-chimp (10Kb window) 0.24 0.61 0.67
recombination hotspot 0.42 0.83 0.79
physical distance from telomeres 0.86 0.24 0.40
Heterozygosity <10™ 0.28 0.46
parental gender <10 0.04 0.01
paternal age 9.3x10° 0.67 0.18
maternal age 0.47 0.33 0.66
relative length*** N/T** 1.41x 10~ <10

1 Because our data are mostly di-nucleotides, and di and tetra-nucleotides show major
differences in their characteristics, all tested variables excluding motif length, are tested only
using di-nucleotides.

1+ The B-statistic predicts the intensity of background selection, according to McVicker et al.”

I When regressing to mutation rate, absolute length is the mean absolute length of each locus.
When regressing to step-size variance and directionality, absolute length is defined as that of

the parental allele.

* For each mutation, if the mutational length is X, then the magnitude in step size is defined as
the absolute value of X, and the directionality is defined as the sign of X.

** Not testable.

*#* Relative length is the Z-score of the allele length, relative to the allelic distribution at the
microsatellite locus. See the Methods of the main manuscript for a formal definition.
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Supplementary Table 6. Interactions between covariates

2

Covariate x; Covariate x, r" P-valuex; P-valuex, P-valuex;x,
Genotype error rate absolute length 0.004 2.37E-01 2.01E-04 9.20E-03
human-chimp divergence absolute length 0.000 8.51E-01 6.04E-01 9.75E-01
human-chimp divergence  Genotype error rate 0.002 2.12E-01 5.50E-02 1.67E-01
recombination rate absolute length 0.001 3.30E-01 1.48E-13 5.62E-01
recombination rate Genotype error rate 0.002 2.97E-01 5.02E-10 4.88E-01
recombination rate human-chimp divergence 0.053 2.17E-03 2.56E-01 1.03E-03
DNA replication time absolute length 0.000 1.56E-03 7.05E-14 7.47E-03
DNA replication time Genotype error rate 0.004 1.98E-01 3.34E-12 1.10E-01
DNA replication time human-chimp divergence 0.006 5.48E-02 4.31E-01 3.73E-02
DNA replication time recombination rate 0.005 4.11E-01 3.77E-03 7.69E-03
ASD absolute length 0.045 1.07E-04 1.41E-04 1.75E-01
ASD Genotype error rate 0.019 5.80E-01 7.83E-06 4.45E-02
ASD human-chimp divergence  0.000 4.80E-01 9.04E-01 8.55E-01
ASD recombination rate 0.000 3.35E-33 5.94E-04 3.15E-03
ASD DNA replication time 0.001 5.90E-33 3.91E-01 9.21E-01
B-stat absolute length 0.000 1.60E-01 2.14E-05 6.46E-01
B-stat Genotype error rate 0.000 4.71E-02 8.96E-03 1.49E-02
B-stat human-chimp divergence 0.188 1.03E-01 4.20E-01 4.98E-02
B-stat recombination rate 0.155 1.33E-01 5.69E-02 7.69E-02
B-stat DNA replication time 0.103 1.65E-03 2.14E-03 3.83E-03
B-stat ASD 0.000  8.35E-01 2.98E-15 2.64E-01
recombination hotspot absolute length 0.002 1.08E-02 3.36E-14 9.32E-03
recombination hotspot Genotype error rate 0.000 8.70E-01 1.31E-13 9.93E-01
recombination hotspot human-chimp divergence 0.005 2.20E-01 3.14E-01 1.87E-01
recombination hotspot recombination rate 0.220 2.94E-01 1.84E-02 2.25E-01
recombination hotspot DNA replication time 0.002 1.66E-01 1.45E-02 6.33E-01
recombination hotspot ASD 0.001 1.16E-01 8.76E-31 1.75E-01
recombination hotspot B-stat 0.015 1.65E-01 2.98E-04 2.17E-01
physical position absolute length 0.000 1.28E-01 9.51E-11 1.24E-01
physical position Genotype error rate 0.000 7.45E-01 1.38E-06 8.24E-01
physical position human-chimp divergence 0.007 4.98E-01 2.95E-01 4.69E-01
physical position recombination rate 0.001 8.39E-01 1.88E-02 2.88E-01
physical position DNA replication time 0.005 6.33E-01 9.53E-02 7.88E-01
physical position ASD 0.001 4.46E-03 3.38E-07 3.49E-03
physical position B-stat 0.004 3.40E-01 7.38E-03 5.01E-01
physical position recombination hotspot 0.002 3.15E-01 8.80E-02 2.23E-01
repeat impurity absolute length 0.180 5.82E-01 5.68E-31 9.37E-03
repeat impurity Genotype error rate 0.001 8.29E-04 1.53E-06 4.12E-04
repeat impurity human-chimp divergence  0.000 4.14E-01 2.37E-01 3.40E-01
repeat impurity recombination rate 0.000 1.12E-01 1.43E-02 6.32E-01
repeat impurity DNA replication time 0.002 1.20E-02 9.11E-03 1.31E-01
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repeat impurity
repeat impurity
repeat impurity
repeat impurity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
Heterozygosity
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ASD

B-stat

recombination hotspot
physical position
absolute length
Genotype error rate
human-chimp divergence
recombination rate
DNA replication time
ASD

B-stat

recombination hotspot
physical position

repeat impurity

0.014
0.003
0.001
0.000
0.099
0.014
0.001
0.000
0.005
0.416
0.002
0.000
0.000
0.019

9.70E-01
3.60E-06
5.09E-02
3.31E-01
3.89E-03
6.49E-01
3.75E-01
8.50E-48
1.48E-53
2.31E-02
3.13E-19
1.44E-52
3.14E-16
1.79E-48

1.27E-28
1.19E-06
3.25E-01
7.44E-01
2.11E-01
6.87E-06
7.18E-01
5.55E-02
2.47E-02
3.95E-04
2.20E-01
1.13E-01
2.95E-02
5.31E-01

6.92E-01
7.12E-06
2.63E-01
7.45E-01
8.00E-01
1.68E-02
7.71E-01
3.00E-01
6.83E-02
9.65E-13
7.60E-01
2.89E-01
3.22E-02
4.03E-01
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Supplementary Table 7. Bayesian parameters for evolution modeling

Sampling
Class Description distribution Mean (SD) Units
Generation interval Janc Generation time in the human-chimp ancestor Normal 22.5 (4.24) years
Jnow Present-day human generation time Normal 29.0 (2.04) years
to Inflection point of the logistic curve Mixture of 3 50 thousand years
exponentials of 200
equal probability 2000
Parental age difference Agne  Age difference in the human-chimp ancestor Normal 0.50 (3.33) years
(paternal minus maternal) A,ow Present-day human parental age difference Normal 6.00 (2.04) years
Mutation rate as a Bopa: Paternal mutation rate, baseline (at age 0) multivariate t see Fig 2A u
function of Bomat Maternal mutation rate, baseline (at age 0) (sampled from u
generation interval Bipac Slope of paternal mutation rate with age Fig 2A) U per year
Bimar Slope of maternal mutation rate with age U per year

Mutation rate with length m, Slope of mutation rate vs. absolute allele length Normal 1.66 (0.30) x10” U per repeat unit
Length constraint Slope of mutational direction vs. relative allele length Normal -0.419 (0.060) repeat units per SD
For human-chimp Tyc/mg Ratio of human-chimp to Western European Normal 15.4 (0.356) dimensionless
divergence time sequence divergence

For human-chimp Tyc/tuc Ratio of human-chimp speciation time Normal 0.663 (0.041) dimensionless
speciation time to genetic divergence time

For human-orangutan Tyo/Tue Ratio of human-orangutan to human-chimp Normal 2.65 (0.075) dimensionless

divergence time

sequence divergence

Note: This table gives the prior distributions used in our Bayesian modeling analysis, obtained
from surveys of the literature and discussions with experts in relevant fields (our approach to
obtain these priors is also discussed in the Methods section). The experts we consulted were John
Hawks and David Pilbeam regarding the ape fossil record; Kevin Langergraber and Linda
Vigilant regarding primate generation intervals and plausible generation intervals in the ancestral
population; and Jack Fenner regarding the recent human generation interval. We thank all these
colleagues for useful discussions and advice.

The parameters above the thick black line are ‘“global parameters” used for microsatellite
evolution modeling, in which the same set of parameter values apply to all loci, per simulation.
The parameters below the line are used after the posterior TMRCA of Western Europeans has

been obtained.
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Supplementary Table 8. Mutation rate estimates and sequence heterozygosities in 23
individuals

lllumina dataset
Population
CEU

CEU

CEU

YRI

YRI

YRI

YRI

YRI

YRI

ID
NA12891
NA12892
NA12878
NA19239
NA19238
NA18508
NA19240
NA18507
NA18506

Complete Genomics dataset

Population
CEU
CEU
CEU
CEU
CEU
CEU
CEU
CEU

YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
CHB
CHB
CHB
CHB

ID
NA12891
NA12892
NA12878
NA06985
NA06994
NAO07357
NA10851
NA12004
NA19239
NA19238
NA18508
NA18501
NA18502
NA18504
NA18505
NA18517
NA18526
NA18537
NA18555
NA18558

Sequence heterozygosity

mean
0.000860
0.000838
0.000838
0.001112
0.001048
0.001174
0.001168
0.001077
0.001141

std error
0.000026
0.000026
0.000026
0.000027
0.000027
0.000028
0.000028
0.000031
0.000030

Sequence heterozygosity

mean
0.000804
0.000804
0.000780
0.000800
0.000850
0.000794
0.000848
0.000841
0.001035
0.000980
0.001089
0.001062
0.001062
0.001059
0.001076
0.001083
0.000798
0.000766
0.000779
0.000770

std error
0.000025
0.000025
0.000026
0.000027
0.000029
0.000027
0.000029
0.000028
0.000026
0.000026
0.000027
0.000026
0.000027
0.000026
0.000027
0.000027
0.000027
0.000026
0.000026
0.000027

mean
1.65
1.92
1.42
1.80
2.46
1.18
2.57
2.12
2.13

mean
1.36
1.58
1.15
1.06
0.91
1.12
1.00
1.13
1.50
2.09
1.06
1.52
2.86
1.31
1.27
1.32
1.89
1.51
1.38
1.25

Mutation rate estimates (x 10%)

std error
0.44
0.37
0.34
0.44
0.53
0.35
0.56
0.53
0.54

5th percentile
1.00
1.33
0.91
1.12
1.65
0.64
1.68
1.33
1.33

95th percentile
2.43
2.56
2.01
2.55
3.38
1.79
3.53
3.04
3.09

Mutation rate estimates (x 10%)

std error
0.31
0.30
0.25
0.28
0.20
0.31
0.23
0.29
0.35
0.42
0.29
0.37
0.53
0.31
0.29
0.41
0.36
0.32
0.28
0.36

5th percentile
0.90
1.11
0.77
0.65
0.61
0.66
0.66
0.69
0.96
1.44
0.62
0.95
1.98
0.84
0.82
0.72
1.32
1.02
0.94
0.72

95th percentile
1.90
2.10
1.58
1.54
1.25
1.67
1.40
1.63
2.08
2.81
1.57
2.14
3.72
1.84
1.77
2.08
2.50
2.06
1.88
1.90

Mutation rates (in units of X*1e-8 /bp/generation) and Bayesian posterior intervals for each individual

are shown here. In bold are individuals that overlap between the two datasets. See Supplementary

Figure 12 for a graphical representation.
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Supplementary Table 9. Ascertainment bias around microsatellite loci

msat random
Population HapMap ID region region ratio
CEU NA12891 0.088 0.085 1.037
CEU NA12892 0.087 0.082 1.067
CEU NA12878 0.090 0.085 1.057
YRI NA19239 0.118 0.113 1.041
YRI NA19238 0.110 0.105 1.046
YRI NA18508 0.119 0.116 1.025
YRI NA19240 0.121 0.114 1.059
YRI NA18507 0.112 0.107 1.043
YRI NA18506 0.118 0.114 1.036
human-chimp 2.347 2.248 1.044
human-macaque 7.978 7.884 1.012

We compared sequence heterozygosity (in units of X*10?) of regions surrounding our set of
microsatellites to that of a random region. On average, the sequence heterozygosity was about 4%
higher, suggesting that we have a slight bias towards the deeper trees in the human genome. Our
modeling of evolutionary parameters explicitly corrects for such biases in two ways. First, we correct for
unusual mutation rates around microsatellites by normalizing inferences by the ratio of local human-
macaque sequence divergence to genome-wide average human-macaque sequence divergence. Second,
we correct for unusual gene tree depths around microsatellites by making all inferences based on the
comparison of local microsatellite ASD to heterozygosity in the flanking sequence data.
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Supplementary Notes

Chapter 1: Estimating the Genotyping Rate

Based on the discordance rate of multiple-genotyped alleles, we estimated the per-allele
genotype error rate for each locus. Formally, at a particular microsatellite locus, a single allele is
observed after genotyping. There is a non-zero probability that the genotyping yielded an
erroneous allele length. What is this probability of error?

Let p= Ourgoal0<p<1.
k = Number of times an allele is repeatedly genotyped.
n, = Total number of individuals who were each genotyped k-times.
Vi = Number of individuals that resulted in inconsistent genotypes.

For a given individual at a given locus, suppose the true bi-allelic genotype is a, and after
genotyping, b; is observed.

a— ( ap ) —>b7;: ( ag + €0 )
a a1 + €1

To further simplify, suppose that after repeatedly genotyping k times (k is a known quantity),
with ¢; IID (independent and identically distributed) with probability p of being nonzero, we
only observe the indicator random variable X:

X:1—H(b1:b2::bk)
Assuming that the probability of making k identical errors is negligibly small, then

X ~ Bernoulli[f] = Bernoulli[l — (1 — p)?¥]

Suppose for n individuals genotyped k times at this particular locus, p is unknown but constant.
Our goal is to find the optimal estimate for parameter p.

Thus, our data is modeled as IID X1... Xy, ~ Bernoulli[#)]

By using the maximum likelihood estimate (MLE) for the Bernoulli family, and applying the
invariance property of MLE, the MLE for p is

p=1-(1-X)=

Q

2]

The approximation is a 1¥-order Taylor expansion around X = 0, and hence is good only for
sufficiently small genotype error probabilities, which we expect in this case. With this
approximation, 0 ~ 2kp. We use this approximation for all subsequent analyses.
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Above we gave the derivation of a single k. For multiple &k, what is the best estimate of p,

assuming p is constant for all k? To derive the correct MLE, let Y = 74 Xk, where the subscript
k emphasizes the dependence on k. It can be shown that Y} is a sufficient statistic for p, and

Yy ~ Binomial[ng, )] =~ Binomial[n, 2kp]

Importantly, Y} are independent for different £, but clearly not identically distributed.
g .  — Yk

l(plY)=1n 2kp)¥t (1 — 2kp)"eT Yk

(p[Y) |k|< E'Jk)( )Y ( P)

_ ; n ( " ) oy In(2kp) + (g — yo) In(1 — 2kp)

Differentiating and setting equal to 0 yields:

1 _ N 2k — yk)
E‘;y’“ -2 1—2kp

Kk

Unfortunately, p cannot be expressed explicitly. A numerical algorithm such as Newton’s
Method is needed to find p. However, if we use the Poisson approximation to the binomial, i.e.
ny 1s large and 2kp is small, then an analytical solution can be found:

Y} ~ Poisson[\g| = Poisson[n2kp]

HplY) = In ] ] e (ng2kp)** /ys!
k

= Z yr In(ng2kp) — np2kp — Iny;,!
k

Differentiating and setting equal to 0 yields:

Zk Yk
Zk ank

We use this formula to estimate the per allele genotype error rate at each microsatellite locus.
Supplementary Figure 2 shows the distribution of error rates across the 2,477 loci. The median
rate is 1.8x107, with a 95% central range of 1.7x10™ to 1.4x107 Since this number is
comparable to the expected microsatellite mutation rate, a simple search for mutations using trios
genotyped at 1x coverage will lead to many erroneous mutations. Thus, we developed the “trio
approach” and “family approach” to obtain mutations that are highly likely to be genuine.

p=
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Chapter 2: Details of the trio approach in mutation detection

Mutations with ambiguous parental origin

In the trio approach, since we do not phase the alleles using neighboring microsatellites, there are
cases in which the parental origin is ambiguous. Below we describe how this scenario occurs.

Let a and b be distinct alleles. Let be any allele that is not b. If there are multiple
instances of , they are not required to be equal. Then, the following mutant case has ambiguous
parental origin:

a,b

In this pattern, allele a is the allele that is also present in the parents, and allele b is the mutant.
However, since we cannot identify the parental origin of a, that of b is also ambiguous. Note that
we do not attempt to assign b to the parent who has a smaller delta in the mutational length, if
such a parent exists.

Excessive mutations from homozygous-parent to homozygous-child

After identifying mutations, we discovered that certain loci exhibited many more de novo
mutations from homozygous parents to homozygous children than would be expected based on
Hardy-Weinberg equilibrium. We suspected that these loci might be generating false mutations
due to polymorphisms under PCR primer sites, leading to allele-specific PCR mis-amplification.
An example is shown below (left panel), in which there is an apparent mutation from
father’s allele 4 to child’s allele 6. Alternatively, this can be explained by a null allele (right
panel). This could be due to (1) a polymorphism in the PCR primer site, resulting in mis-
amplification, or (2) a deleted allele, both of which would mean that there is no real mutation.

Apparent mutation Null allele explanation
44 6,8 null.4 6,8

6,6 null,6
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We removed loci that have an excess rate of homozygous-to-homozygous mutations, compared
with the expectation from Hardy-Weinberg equilibrium. To do this, for each locus we compare
the observed homozygosity of all alleles to the observed homozygosity of the mutations. We
perform a one-sided binomial test and remove any locus with a p-value < 0.05 (plus a Bonferroni
correction by a factor of 2477, the number of loci examined). Formally, for each locus let

p = Observed homozygosity of all alleles genotyped. 0 < p < 1.

n =  Number of mutations observed.
k = Number of mutations that are from a homozygous-parent to a homozygous-child
n
- - N\ 2icq _ 2yn—i
P-value = Z (i)p (1-p9)
i=k

Note that we have p’ instead of p because we are observing two homozygous genotypes
simultaneously. In this manner, 49 loci were removed from the trio approach.
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Chapter 3: Details of the family approach in mutation detection

Assigning alleles to haplotypes: a constraint satisfaction problem

Since Allegro cannot determine haplotypes in the presence of a mutation (a Mendelian
inheritance error), we initially mask out any locus that generates inheritance errors. Based on
neighboring loci, Allegro imputes haplotypes into the masked loci. To optimally assign
haplotypes to alleles, this problem can now be posed as a constraint satisfaction problem (CSP)
and solved.

Goal: Given the family structure below, a set of haplotypes, and a set of alleles at a particular
locus, assign haplotypes to alleles in a way that is consistent with the family structure.

b1 D_—O bo
T

Solution:

We formulate this problem in terms of a constraint satisfaction problem (CSP). Suppose
we have individuals I, I, ..., I, and haplotypes Hy, H,, ..., H,, where n is even. Then, we can
write the alleles in a sparse matrix format, as shown below. Each row is an individual, each
column is a haplotype, and each matrix entry is the pair of alleles of the corresponding individual.
Since each individual has 2 haplotypes, we have 2 matrix entries per row. The CSP problem is
then to find the suitable unique number for each matrix entry.

Formally, the set of variables is the non-empty entries of the matrix, denoted as X;;. In
the example below, there are 6 variables. Each variable has a domain of values. Since loci are
diploid, we have 2 values per domain. There are two constraints for this CSP: (1) The non-empty
entries of each column must be equal. (2) The non-empty entries of each row must be different,
unless the domain is a homozygote, such as “7, 7”. The desired outcome of the CSP is shown
below.

CSP in the presence of mutation. Without mutations, we simply run the algorithm over
the entire family in one batch. However, suppose that there is a candidate mutant in the proband,
then a single batch CSP would yield an empty solution. To resolve this, we instead use the
following steps: (1) Run CSP over b,, by, and b°. This group should carry the ancestral allele. (2)
Run CSP over a, as, and a’. This group should carry the mutant allele. At this point, we should
have the 6 six haplotypes assigned to the alleles, with 1 haplotype assigned inconsistently
between the two groups. Thus, in combining the results, we have successfully identified the
haplotype carrying the mutant, the mutant allele, and the ancestral allele.

Example. In this family, we have 2 members of @’ and 2 members of b°. We first run CSP over
the ancestral group, yielding:
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by 4,8 4,8 by 8 4
by 2,8 2,8 — b 2 8
yoo2,8 2,8 B8 2
v 4,8 4,8 b 4 8

This yields a haplotype assignment of

{H, =8 Hy=4,Hy =2, Hy =8}

Next, we run CSP of the mutant group, yielding:

H, H, H; H;g H, H, H; Hg
a 6,8 6,8 a 6 8
as 4,6 4,6 — Qs 4 6
! 4,8 4,8 ! 8 4
a 6,6 6,6 a 6 6

This yields a haplotype assignment of
{Hy=6,H, =8,H; =4, Hs = 6}

We see that haplotype 2 is inconsistent between the two sets of assignments. Therefore,
haplotype 2 is the one of interest, carrying ancestral allele 4 and mutant allele 6. Below is the full
haplotype of the entire region and the 4™ microsatellite locus as the mutating one:

; b,

RRRCERRRCE 0
123456738 —> a
meepuRRRG [ Oumma

/

ERRCERRN

Note that in this example, if we instead used the trio approach, i.e. we are limited to the data of
b; = (4,8), b, = (2,8), a = (6,8). The mutant allele of 6 would be detected, but we would not
be able to find the parental origin of the mutation. Thus, by using additional family members and
neighboring loci, the family approach allows parental assignment of the mutation.

(L
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Chapter 4: Testing the Heterozygote Instability Hypothesis

Amos et al.’ suggested that if the parental allele is heterozygous, the mutation rate will be
elevated compared to homozygous parental alleles. This would have significant implications as
population size (N) is related to heterozygosity, and thus u = f(N) would significantly
undermine the population genetics assumption that N and u are independent.

We tested the Heterozygote Instability hypothesis as follows:

The Heterozygote Hypothesis: If the parent is more heterozygous (i.e. length differences
of alleles are large), then the mutation rate is higher.

Prediction of the hypothesis: For each microsatellite mutation, the magnitude of length
difference in the parent who transmitted the mutation is expected to be larger than that of
an individual randomly sampled at the same microsatellite locus.

Definitions:
Q The entire sample space of individuals genotyped.
s’ The subspace of parents who transmitted mutations.
S The subspace of individuals who do not belong to S’ (complement of S”).
Aj B; A random sample of a pair of alleles from § at locus j.

A: B; Likewise, but sampled from S’.

L; The length difference of the alleles, i.e. L; = |Aj - le
L; Likewise, but sampled from S’.

Formalized hypothesis: Given the definitions, and assuming the hypothesis is true, then
L' — L > 0 is true over the set of loci /.

Testing the hypothesis:

Dataset: 363 mutations from the family approach. We do not use trio mutations for this
analysis, because in trio mutations we have directly filtered based on the excessive
homozygosity of certain mutant loci. Since the filter directly influences the parameter we
are trying to estimate, we cannot use the larger trio dataset.

Sampling L': We use the parents who transmitted the mutations. Thus, [; = parental allele
difference for case j.
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Sampling L: For each mutation case, we take that locus’ allelic distribution, and
independently sample n length differences and take the average. More precisely, at case J,

1
we sample and compute [; = - il

Results: Below is the histogram for the 363 data points of [; — I;, with n = 1000. To test

whether the mean is significantly different from 0, we perform a one-sample two-sided t-
test, as was done by Amos et al., and obtain t35, = 1.48, p = 0.14. Therefore, our data
provide no significant support for the Heterozygote Instability hypothesis.
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Chapter 5: Microsatellite evolution modeling to infer TMRCA

l. Overview

Using the mutational characteristics that we observed, we can build a model of microsatellite
evolution through time. Given additional parameters summarizing evolutionary history, such as
the coalescent time (tyrca) of modern-day Western Europeans, we can simulate allelic
distributions of microsatellites at any genotyped locus. By optimally matching statistics (such as
ASD) of the simulated allelic distribution to that of the empirically observed data, we can infer
parameters of interest such as tyrca.

Given any local region of the genome, tyrca between individuals in that region
(assuming no recombinations occurred in the region) must be constant, regardless of whether the
genomic features examined are microsatellites or nucleotide substitutions. Therefore, once we
have determined tvrca at each microsatellite locus, we can use that value in conjunction with
neighboring sequence divergence to infer parameters such as the sequence mutation rate.
Furthermore, given a ratio of human-chimpanzee tyrca to Western-European divergence, we can
use our Western-European tyrca to estimate the genetic divergence of present-day humans to
chimpanzees. A key point is that all inferences here are performed without a calibration to the
fossil record.

I1. Model design

At a particular microsatellite locus, a single run consists of simulating a coalescent tree, adding
mutations onto the branches of the tree, and finally collecting simulated data at the leaf nodes.
By default, the coalescent tree has time in units of generations. When conducting inferences that
require time in years, we rescale the branch lengths into years following a generation-time
function, as described below.

1. Demography: Generating the coalescent tree
We use the 2-bottleneck model from Keinan et al.' (Fig S13). Coalescent trees are
sampled using this demography.

2. Variation of generation-time in history
In modern-day human populations, the average time per generation is about 29 years”.

However, this number is likely to have been different in the past. To simulate variation in
generation-time, we use the logistic curve

Inow — Yanc

t—t
1+exp<t0/4°>

g(t) = Yanc T
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Where we define

Janc Generation time of the common ancestor of humans and chimpanzees
Inow Generation time of present-day humans
to Inflection point of an assumed rapid change between g,,,. and gpnow

These 3 parameters are stochastic. The shapes of the distribution, means, and variances
are given in Supplementary Table 7. To determine g(t), we first sample these 3
parameters from their distributions.

Scale coalescent tree into units of years

The g(t) logistic function is the transformation factor from generations to years. When it
is necessary to make inferences in years, we use g(t) to rescale branch lengths as follows:
The mean generation-time between a node and its parent is analytically calculated as

— b2 Inow — Yanc 1+ eXp(rl - 4)
g(ty, ty) = — jt g@®)dt = gnow + — logT— exp(r, —4)
Where we define
t; Time of current node, in units of generations
ty Time of parental node, in units of generations
&1 4t /to
T, 4t, /t,

Once g(tq,t,) is calculated, that particular branch length is trivially scaled into time in
units of years.

Mutation generation

Mutations are added onto the coalescent tree, sequentially from the root to the leaves. We
first generate the baseline mutation rate, which is governed by the mean number of
repeats of the microsatellite locus (Fig 2C). Furthermore, using our empirical
observations, we build into our model that the mutation rate changes dynamically as
generation-time and allele length change (Fig 2A,C) as we propagate from the root to the
leaves of the tree. Finally, as mutations are generated, there is a constraint on allele length
(Fig 2D). The details are given below.

(a) The locus-specific baseline mutation rate: For a given locus, we first establish the

mutation rate y,, which is constant throughout the coalescent tree. This baseline
mutation rate is determined using the mean absolute length.
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(b) Generation-time effect: In Fig 2A we observed that parental age affects mutation rate.
Since generation-time g(t) is modeled as varying as we travel down the coalescent
tree, g(t) causes a dynamic change in the mutation rate. In Fig 2A we demonstrated a
difference in the paternal and maternal behavior, and we therefore first split
generation-time into paternal time g4 (t) and maternal time g, q¢ (t):

gpat(t) = g(t) + 0.5 A(t)
Imar(®) = g() —0.5-A(?)

A(t) is the mean difference between paternal and maternal age, at time 7. Note that
this is a time-varying quantity too, as A of present-day humans could be different
from that of the human-chimp common ancestor. In particular, we model A(t) as
entirely analogous to the logistic function of g(t).

A —A
A(t) anc 2 an;
1+ exp ( to/4 )

A, ow and Ay, . are sampled values. (See Supplementary Table 7 for the distributions,
means, and variances used.) t, uses the same value sampled from g(t) and hence is
not a new sample. Once gpq(t) and gpq:(t) are determined, we can obtain the
gender-specific mutation rates and the gender-averaged mutation rate:

/Jpat(t) = .Bo,pat + Bl,pat : gpat(t)
.umat(t) = Bo,mat + lgl,mat : gmat(t)

g (8) = (par(6) + pmac(6)) /2

Where we define
Bopats Bo,mat The intercepts of regressions in Fig 2A
Bipat> Bimat The slopes of regressions in Fig 2A

To take into account the stochasticity of the slopes and intercepts, these quantities are
sampled from the data, using a Bayesian analysis of simple linear regression (or
equivalently, a draw from the multivariate student-¢ distribution).
We can summarize u, (t) using the matrix notation below:
1 :81 ,pat 0 1 1/2 ganc gnow 1- f(t) ,80 pat
0=30 1075 4l -3l [ 1+ lare)

,Ug( ) 2 ] Bl,mat 1 _1/2 [Aanc now] f(t) ﬁo,mat

1

Where f(t) = m

We highlight two special cases:
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i. If mutations are entirely generation-like, i.e. ; for both parents are 0, then the
expression simplifies to ug(t) = (Bopar + Bomat)/2- Thus, as expected in
this case, the mutation rate does not vary as a function of generation interval.

ii. If mutations are entirely year-like, i.e. By for both parents are 0 and B pq; =
B1mat » then the expression simplifies to uy(t) = ;- g(t) . Hence the
mutation rate per generation perfectly correlates with generation-time.
However, the mutation rate per year, u,(t)/g(t), becomes a constant.

(c) Generating the instantaneous mutation rate: At any point along the coalescent tree,
the instantaneous mutation rate is a function of the baseline rate, generation-time, and
allele length. We combine these three factors to generate the mutation rate p(t):

He(t)
H(O) = On-y(© + o) 45
Where we define
y(t) The allelic length of the branch at time ¢
m The slope in Fig 2C that relates allelic length to mutation rate
o The baseline mutation rate described in part (a)
Ug(t) The mutation rate as a function of generation time, as described in (b)

ug(0) The present-day mutation rate, as determined by the ug (t)

Note that this mutation rate model simplifies to that of the generalized stepwise
mutation model (GSMM) if m = 0 and 4 (t) = ug(0).

(d) Generating mutation events: Suppose we are on a branch (shown below) where the
(k-1)-th mutation occurred at t,_;, which is marked by the “X”. The allele length
immediately following that event is y(t,_1) and the generation-time is g(tyx_1).
Mutation events are simulated forward in time, from the root of the tree, using an
exponential distribution with mean u(t;_1), which is determined from the equation in
part (c). After a random sample T~Exp(u(ty_,)) is drawn, if T < T, generate a
mutation with length Y (t;) and update t to be T — T. Otherwise, there are no more
mutations in the branch and move on to the next branch. Details for generating y(t;)
are described in the next section.

y(tk-1)
N <

The process for generating mutation events for a coalescent tree re-scaled into units
of years is very similar, except that the mutation rate at any point in time is divided by
the generation-time, e.g. we set the mutation rate per year to be u(tx_1)/g(tix—1).
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(e) Generating microsatellite lengths for each mutation event: In the GSMM, the
microsatellite length y (¢, ) is the parental length plus the mutational length, which is
an independent random sample from the mutation length distribution, defined as x for
the k-th mutation event. However, using our empirical observations (Fig 2D, Fig S7,
Fig S8), we model the fact that longer microsatellites tend to mutate to a shorter
length, and vice versa, as a linear function:

y(ti) = ¥(te-1) + x(ty) + _y(tz—l) m
- (1 + %) Y(te-1) + x(t)

Where we define

x(t) The mutation length, drawn randomly from the mutation length
distribution in Fig 2B

¥(tx—1) The microsatellite allele length, just prior to the mutation

y(t) The microsatellite allele length, just after the mutation

m The slope in Fig S8A. This quantity is negative, generating the length
constraint.

o The standard deviation of the allelic distribution of the locus, based on

empirical data

Observations:

e Note that while o is locus specific, m was obtained from the combined
mutational data of all loci.

e Ifm = 0, this equation reduces to the GSMM.

e At the root of the coalescent tree, we begin with allele length of x,, which is
determined from the empirical allele length distribution. However, we set
Y(t,00r) = 0 when propagating mutations. When collecting allele lengths at
the leaf nodes, x, is added back in.

e y(ty_1)/o produces a Z-score (horizontal axis of Fig S8A) showing the
degree of deviation from the mean length, and through multiplication with
slope m, gives the strength of the return-to-mean length constraint.

I11. Model simulation

For an individual whose genome sequence is available, diploid microsatellites genotypes are
simulated as follows:

1. Generate 1 set of genome-wide parameters (Supplementary Table 7), which are common
across loci, sampling from the prior distributions obtained from the literature and our direct
measurements in this study. This includes the genome-wide sequence mutation rate and
microsatellite mutation rate.
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2. At locus i =1, generate locus-specific mutation rate p,sq¢;. The local microsatellite
mutation rate is the genome-wide rate multiplied by [;/ljenome, Where ljenome 1s the
genome-wide mean microsatellite length, and [; is the locus-specific length (averaged across
individuals). The local variation in microsatellite mutation rate is modeled to be purely due to
allele length variation, which strongly influences mutation rate (Figure 2C).

3. At the locus, generate locus-specific mutation rate p.q;. Analogous to step 2, the local
sequence mutation rate is the genome-wide rate multiplied by D;/Dgenome, Where D; is the
local human-macaque divergence, and Dgenome is the genome-wide human-macaque

divergence. The local variation in sequence mutation rate is modeled to be purely due to
human-macaque divergence variation, which is known to strongly influence mutation rate.

4. At the locus, generate coalescent time t;, using local sequence heterozygosity if available.
The key is that the coalescent tree is shared between microsatellites and sequence, and if the

local sequence heterozygosity is highly precise, it puts a strong constraint on the local
N;+1

Ai"‘l/fgenome,i’
where A; = 2Ugeq,D;, N;/D; is the local heterozygosity, and Tgenome,i = Ogenome/ 2lseq,i 1S
the genome-wide average TMRCA. Note that if D; is small, we revert to the genome-wide
TMRCA, but if D; is large, the locus-specific heterozygosity overwhelms the genome-wide
estimate. The gamma distribution is demography-free: If D; is small, the distribution
converges to an exponential with mean Tgepome;. TO test our inference’s robustness to
demographic differences across populations, we use a 2-bottleneck demographic model
(Supplementary Figure 13) and sample the coalescent time using rejection sampling with the
following steps: (1) Sample Tgenome,; With demography (distributions for each population

TMRCA. The coalescent time is drawn from a gamma distribution with mean:

shown in Supplementary Figure 13B); (2) calculate the importance ratio of r = exp [(Ni -
At) - In( ;) = XN Ini + 32 n i]; (3) accept t with probability 7; (4) If rejected, go to
step (1).

5. Simulate mutations. Mutations are sequentially generated from the root of the coalescent
tree, using our model of microsatellite evolution which has length constraints and time-
varying mutation rate as follows: At time t on the coalescent tree, the mutation rate is
determined using parental length y(t), mutation rate y;, and the mutation rate relative to the

present, taking into account variation in generation-time: y g(t) /u g (0). We model this as:

ui(t) = (mu cy(t) + ) - tg(t)/ug(0). The slope parameter m,, is empirically determined
from Figure 2C. The waiting time until a mutation is sampled from an exponential
distribution with mean of 1/u(t) generations. Once a mutation event occurs, its length is
lenita = (1 + m/0) Lygrens + X, where m is the negative slope reflecting the length constraint
in Supplementary Figure 8, o is the standard deviation of the allelic distribution at a locus,
Lparent 1s the parent allele length, and X is the mutational length, sampled from the histogram
in Figure 2B. At the root of the tree, without-loss-of-generality the absolute length is set to be
0. Using this scheme of generating mutation events and mutation lengths, we begin at the
root of the tree and iterate until the leaves are reached. The leaves are the sets of sampled
microsatellite alleles, which are used to compute ASD. To obtain time in units of years, we
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6.

rescale branch lengths of the coalescent tree and mutation rates by g(t), which is the
generation-interval logistic function described above.

Record ASD between the two microsatellites, and go to Step 2, with i incremented by 1.

We use a Markov Chain Montel Carlo (MCMC) approach to obtain the posterior distribution for
present-day sequence mutation rate in a single diploid individual. This algorithm is a variation of
“algorithm F” of Marjoram et al’, and is as follows:

1.
2.

Sample a set of global parameters A from their prior distribution (Supplementary Table 7).
Propose a move of the sequence mutation rate from piseq t0 tgeq. We USE ligeq as a random

walk, sampled from a normal distribution with mean p,,, and standard deviation 0.5 X 1078,

. Atlocus i:
a. Generate 1000 pairs of microsatellite alleles using our evolution model with
parameters @', q and A.
b. Calculate ASD. Thus, we now have 1000 samples of simulated ASD.
c. Compute the error distance d; = (mean(ASDs;y,) — ASD,eq)? between the
simulated ASD and the real ASD of the individual.
Sum the error distance across all loci: deorq; = +/ X di- If diorar < €, accept and set pgeq to

be pseq and go to step 2. Otherwise, reject fig.,. We choose € such that the overall
acceptance rate of the MCMC is between 10% and 50%. (Note that since the proposal
function is symmetric, and we choose a flat prior on .4, we do not need to calculate the
ratio as described in Step F4 of Marjoram et al., because the ratio is always 1.)

The result of MCMC is a correlated pgeq|d chain. To collect independent samples, the
autocorrelation function of the chain is calculated and the correlogram is plotted. The first lag in
which the correlation coefficient drops below 0.1 is recorded. Call this nyq,4. Then, we thin the

chain and collect at every n;q4-th sample. Finally, we run 1000 independently sampled pigpq |4
and combine the thinned samples to produce the overall posterior distribution for s, .
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Chapter 6: Testing the microsatellite evolution model

Overview

To test our procedure for using the microsatellite mutation model to estimate evolutionary
parameters, we use two approaches. First, we show that our inferences based on the model
produce unbiased sequence mutation rate estimates. To do this, we simulate microsatellite alleles
and sequence heterozygosity using a 2-bottleneck demographic model (Fig S13), with a known
sequence mutation rate and effective population size. Then, with the simulated sequence and
microsatellite data, we infer the sequence mutation rate and compare it to the truth.

Second, we show that the model is robust to each parameter’s prior probability distribution: we
use different parameter values for our prior and show that our inferences of the sequence
mutation rate and human-chimpanzee speciation time are not greatly affected (Fig S10).

I. Simulated data shows that the model is unbiased
Procedure:

1. Choose a sequence mutation rate to use in simulation: [1.0, 1.5, 2.0, 2.5, 3.0] x10® per bp
per generation. Use N, of 12,500 for the 2-bottleneck demography model (Fig S13).
Generate a set of global parameters (Supplementary Table 7).

2. Based on the demographic model and mutation rate chosen for the simulation, generate
the local TMRCA for each individual at each locus, followed by the local sequence
heterozygosity and microsatellite ASD. Generate the local sequence heterozygosity using
a Poisson process, and the local microsatellite ASD using our model of evolution.

3. Run the Markov Chain Monte Carlo inference to obtain a posterior sequence mutation
rate estimate for each individual, without any knowledge of the values from Step 1 used
in generating the data (we also do not use knowledge about the values of the global
parameters used in the simulations).

4. Obtain inferences for 9 individuals, for each of 5 mutation rates, resulting in 45 posterior
distributions for sequence mutation rate. With these results, we can report the fraction of
simulations in which the true TMRCA falls in the 90% Bayesian credible interval.

Results:
The CDFs (cumulative distribution function) of posterior sequence mutation rate are

shown below, one panel per individual. There are 5 curves for each individual, each
corresponding to a different true mutation rate: [Blue=1.0, Cyan=1.5, Green=2.0,
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Yellow=2.5, Red=3.0] x10™*. The table summarizes the results by the percentile (of the
posterior distribution) in which the true mutation rate lies. Only in 3 of 45 cases (6.7%)

does the true mutation rates fall outside the 90% Bayesian credible interval.

True sequence mutation rate

1.0E-08 1.5E-08 2.0E-08 2.5E-08 3.0E-08

Person 1 0.018 0.317 0.297 0.349 0.462

Person 2 0.137 0.412 0.302 0.123 0.607

Person 3 0.011 0.247 0.553 0.485 0.846

Person 4 0.427 0.055 0.514 0.826 0.815

Person 5 0.399 0.214 0.253 0.398 0.670

Person 6 0.107 0.944 0.485 0.983 0.675

Person 7 0.208 0.166 0.759 0.470 0.802

Person 8 0.211 0.502 0.101 0.461 0.838

Person 9 0.347 0.102 0.312 0.199 0.727
1 ~ 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
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I1. The model is robust to changes in the parameter prior distributions

-8
x 10

-8
x 10

Each parameter in our evolution model has a prior distribution governing its uncertainty. We
therefore explored how changing the value of the parameter—within the plausible range given
by the prior—influences our inferences about the sequence mutation rate and human-chimpanzee

speciation time.

Nature Genetics: doi:10.1038/ng.2398

49 |Page



To test for robustness of our priors, for each of 8 parameters (Fig S10), instead of using the
default prior distribution, we set them to point values at three different points: the lower 95% CI,
the mean, and the upper 95% CI. Then, this altered set of parameters was fed through our
inference process. The primary purpose of this exercise was to see whether an extreme value of
the prior, if used, would cause our inferences to change greatly. Reasonable extreme values are at
the boundary of our prior distribution specifications. The second purpose is to see whether
shrinkage in the variance (to zero) of any prior would cause a significant shrinkage in the
variance of the posterior estimates. Note that we only perturb one parameter at a time.

As shown in Fig S10, using our model of evolution, our inference of sequence mutation rate and
human-chimpanzee speciation date is reasonably robust to changes in the prior, both in the mean
and in the standard error of the inferred distributions. We observe the following:

e Aside from the length constraint parameter, when we use extreme values, the inference
on the sequence mutation rate does not change significantly. This suggests that (1) our
priors are reasonably tight such that no significant changes are observed, or (2) the model
is not heavily dependent on that parameter. For example, case (1) holds for the
microsatellite mutation rate parameter: although the microsatellite mutation rate can in
principle affect our inferences greatly since it has a linear effect on ASD, it is determined
with high precision by our direct observations of mutations, with a 95% CI of 2.56-2.91
x10'4; thus, the extreme values of this prior do not affect our inferences substantially.

e The length constraint governs the non-linear mapping between TMRCA and ASD (Fig 3),
and changes to it (Fig S11) can cause large changes to our inferences on the sequence
mutation rate. Our prior distribution for this parameter was determined entirely based on
the direct observation of mutations (Fig S8, Supplementary Table 7), and not on
comparisons between microsatellite ASD and sequence heterozygosity (Fig 3, Fig S11).
As a result, the length constraint prior was not determined to a high level of precision.
This is in fact desirable, because in the inference machinery, we use the empirical data of
Fig S11 (comparison to flanking sequence data) to further infer the length constraint
parameter, rather than being extremely precise about the prior. The result from Fig S10
shows the power of using this information: If we give the length constraint parameter the
default prior, the resulting sequence mutation rate distribution is not different from the
green spike prior, and this is because the data of Fig S11 strongly constrains the true
value of this parameter, which falls within the prior distribution. On the other hand, if we
actually forced an unreasonable prior, such as the red or blue spikes, the data of Fig S11
could not influence the length constraint in any way, and since this is such an important
parameter in our model, the resulting inferences are inaccurate.
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Chapter 7: Constraints on sequence mutation rate from calibration
to the fossil record

(i) Overview

We were interested in obtaining constraints on the sequence substitution rate based on calibration
to the fossil record, to which we could compare our absolute estimate based on direct
measurement of the mutation rate at microsatellites.

(if) Assumptions
For the analyses in this note, we make a number of simplifying assumptions:

* dyc, the divergence per base pair between human and chimpanzee, is 0.0130. This number is
derived from the Enredo-Pecan-Ortheus (EPO) 6-way primate whole genome alignments®.

* dpol/dpc the divergence per base pair between human and orangutan divided by that between
human and chimpanzee at aligned bases is 2.65, as argued in the main text.

* 710, human-chimpanzee speciation time, is >4.2 Mya, based on the date of the Australopithecus
amanensis fossil which is believed to be on the hominin lineage since the split from chimpanzee’.

* Tuc/tuc, the ratio of human-chimpanzee time of last gene flow to human-chimpanzee average
autosomal divergence time, is <0.73. This bound (also discussed in the text) is based on human-
chimpanzee genetic divergence near genes on chromosome X, close to sites where humans and
chimpanzees share an allele not seen in gorilla, orangutan and macaque. Here, the ratio zuc/tuc is
0.73. Thus, the time of most recent gene flow between humans and chimpanzees is <0.73.

* tyo, human-orangutan genetic divergence time is <23 Mya. This is based on a view that the
Proconsul fossil places an upper bound on human-orangutan speciation time of 7, < 18 Mya®’.
We assume that tyo — tyo < 5 Mya, that is, the human-orangutan average autosomal genetic
divergence time is at most 5 Mya older than human-orangutan speciation time.

» The mutation rate per year has been constant since human-orangutan genetic divergence. (For
the upper bound on the mutation rate, we only require the assumption that it has been constant
since human-chimpanzee genetic divergence).

* The present-day human generation time has a lower bound 25.6 years per generation and an
upper bound of 32.4 years per generation. This range is derived from our prior distribution of
present-day generation time of 29 + 2.04 from Supplementary Table 7, and using the 90%
confidence interval.

(i) Upper bound on mutation rate: <3.7x10°® /bp/gen. from Australopithecus anamensis
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c>4.2 Mya (since Australopithecus anamensis is a hominin)

= tuyc> 5.8 Mya (since yc/tyc <0.73)
= el <11x107° (since y;iqr = dyc/2tyc = 0.0130/(2x5.8x10%
seq —
= K generation <3.7x10 ® (Slnce /j eneratlon < 32. 3”;?% )

(iv) Lower bound on mutation rate: >1.9x10® /bp/generation from Proconsul

10<18 Mya (from Proconsul)
= tyo <23 Mya (since we assume that t5c < yc + 5 Mya)
u;‘;‘flr > 7.5%x 1071  (since ,u;ee‘flr = dHC(dHO)/ZtHO 0.0130(2. 65)/(2X23><106))
= ’usfzcrlleration >1.9x10” e (Slnce /j eneratlon > 25. 6’”;2?11" )

The most likely way that this lower bound could be in error would be if the mutation rate were
not constant over time since human-orangutan genetic divergence. For example, if the mutation
rate slowed down on the African great ape lineage (and perhaps also on the orangutan lineage)
since the two diverged—perhaps associated with the increase in their body size as documented in
the fossil record—the lower bound would be substantially less.

(v) Upper bound on human-chimpanzee speciation date from fossil record <6.3 Mya
For comparison to the upper bound on human-speciation obtained by direct calibration to the

microsatellite-based molecular clock, we also use the fossil record of human-orangutan
divergence to produce a complementary bound based on the fossil record. As in (iv), we write:

10<18 Mya (from Proconsul)
= tyo <23 Mya (since we assume that 70 < 7o+ 5 Mya)
= tyc< 8.7 Mya (since tye = tyo /(dHO) (23 Mya)/2.65)
Tye <6.3 Mya (since 7yc = tuc(Tuc/tuc), and

Tc/tuc << 0.73, see Supplementary Note Chapter 8)

As in (iv), the most plausible way that this lower bound could be in error would be if the
mutation rate were not constant over time since human-orangutan genetic divergence.
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Chapter 8: Constraints on human-chimpanzee speciation date

(i) Motivation for estimating the ratio of human-chimpanzee speciation to divergence

Our calibration of the molecular clock allows us to estimate the genetic divergence time of
humans and chimpanzees ty-, averaged across the autosomes. However, the speciation date
tyc—defined in this study as the date of last gene flow between the ancestors of humans and
chimpanzees—is also of biological interest. To infer tyc, we require a Bayesian prior distribution
on the ratio of these two quantities: Ty /tyc. This is the most difficult of our prior distributions
to formulate, and the following note describes how we construct our distribution based on
obtaining a number of point estimates of the ratio, as well as conservative upper bounds.

(ii) A point estimate of Ty¢/tyc = 0.61 from modeling of a simple demographic history

Burgess and Yang 2008

For a best estimate of the ratio Ty./tyc, we use the results from Burgess and Yang 2008, who
analyzed a data set of 7.4 Mb of aligned sequence from human, chimpanzee, gorilla, orangutan
and macaque across “neutral” autosomal loci using the MCMCcoal software'’. This software
analyzes the 5-species alignment data under the simplifying assumptions that:

(1) The phylogeny is ((((human, chimpanzee),gorilla),orangutan),macaque)

(11) The speciation events were instantaneous.

(iii)  The populations in the intervening periods were constant in size and panmictic.
(iv)  All the analyzed loci are unlinked, neutral and free of recombination

Under these assumptions, MCMCcoal estimates the ancestral population sizes and speciation
times, conditional on the observed divergent site pattern. On page 7 of Burgess and Yang 2008,
the authors estimate that 1 — Tyc/tyc = 0.39 (thus, Tyc/tyc = 0.61) under a model of no gene
flow after initial speciation.

Dutheil et al. 2009

Dutheil et al. 2009 made inferences under the same demographic assumptions, but using a
different approach based on a coalescent Hidden Markov Model (CoalHMM) that also exploits
information from recombination between adjacent loci''. We inferred Ty /tyc for the four
autosomal loci (“targets”) that Dutheil et al. analyzed, using their “bias-corrected” estimates of
demographic parameters in their Table 2. After translating the quantities to estimates of Ty¢/tyc
we obtained results in the range of Burgess and Yang 2008: 0.67 (Target 1), 0.57 (Target 106),
0.60 (Target 121) and 0.66 (Target 122). We use the Burgess and Yang 2008 estimate of
Tyc/tuc = 0.61 for our primary calculations because it is based on more data and because it falls
within the range of the Dutheil et al. estimates.

(iii) Conservative upper bound on the ratio: Tyc/tyc < 0.73

Analyzing subsets of the genome to obtain a conservative upper bound on 7y, /ty.

The published studies infer demographic parameters for human-chimpanzee speciation under a
simplified model that assumes constant population size, sudden speciation, and no impact of
natural selection on the genome. However, the truth likely differs from this model, as Yang
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found in 2010 when he carried out a formal test of the fit of the data from Burgess and Yang
2008 to the model assumed in that study'. Thus, while the simplified models provide a useful
initial estimate, deviations from the assumptions might mean that the time of last gene flow
between humans and chimpanzee was more ancient or more recent.

To obtain a conservative upper bound on the ratio Ty./tyc, we take advantage of an idea of
Patterson et al. 2006°. The idea is to compute human-chimpanzee genetic divergence (dividing
by human-macaque divergence to correct for variation in the local mutation rate across the
genome) in subsets of the genome where the genetic divergence is expected to be less than the
genome-wide average for population genetic reasons. Human-chimpanzee genetic divergence at
all loci in the genome must be older than the speciation time (by definition, if we define
speciation as the time of last gene flow). Thus, the ratio of the local divergence at any subset of
the genome to the genome-wide average provides an upper bound on the speciation date zxc.

A new 5-way alignment of human-chimpanzee-gorilla-orangutan-macaque (HCGOM)

Overview of a 100x larger dataset generated for studying human-chimpanzee-gorilla speciation
Patterson et al. 2006 analyzed datasets consisting of about 9 Mb of aligned DNA rom human,
chimpanzee, gorilla, orangutan and macaque®. Here we describe how we generated a similar
dataset with about 100x more data. In brief, we restricted to data generated using traditional
Sanger long-read sequencing data from five genomes, and used an alignment and filtering
procedure described in Mallick et al. 2009 (the detailed filters we applied are given below). In
comparison to other multi-species alignments methodologies (e.g. EPO®), which have as a goal
the maximization of the number of covered nucleotides, our alignment procedure filters out a
larger fraction of the data, since for the purpose of making inferences about population history,
we do not mind losing data as long as what is left is of high reliability. These filters resulted in
849.6 Mb of 5-species genomic alignment on the autosomes (48.58 million bi-allelic divergent
sites passing filters), and 32.6 Mb on chromosome X (1.62 million bi-allelic divergent sites
passing filters). These datasets are available on request from the authors.

Genome assemblies used as input

The raw data consisted of 5 whole genome assemblies based on Sanger long-read sequencing
data. These consisted of the human genome reference sequence (4gl8), and four assisted
assemblies that we built ourselves so as to have full control over the data: chimpanzee (7.3%
coverage), orangutan (6.2% coverage), macaque (6.3x coverage) and gorilla (1.8% coverage).
Since we assembled the genomes ourselves, we had a sequence quality score at each nucleotide
that did not automatically assign low quality to bases overlapping at within-species single
nucleotide polymorphisms (SNPs), which is a feature of some genome assemblies that makes it
difficult to carry out population genetic analyses.

Generating local alignments
We applied a stringent local alignment procedure that took advantage of the long range synteny
information available from the genome assemblies'”, and then applied the following filters:

e Restrict to loci that have alignments of all 5 species over at least 100 bp

e Restrict to loci for which a unique consensus sequence is available from all 5 species

Identifying divergent sites for analysis
We identified sites that were divergent across the species after applying the following filters:
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Filter out sites with 3 or more alleles across species

Filter out sites where any species has a Phred sequence quality score of <30

Filter out sites where any species has a Phred score of <15 within 5 bp on either side.
Filter out sites within 1 bp of an insertion/deletion in any of the species.

Filter out sites within 5 bp of the end of an alignment

Filter out sites within 1 bp of any other divergent site, as these sites have consistently
different properties indicating that they are determined less reliably

o Filter out divergent sites that could potentially reflect a C—T mutation in the first base of
a hyper-mutable CpG dinucleotide on either DNA strand (these are subject to high rates
of recurrent mutation, which could complicate tests of relative divergence time).

Post-processing to remove potential misalignments

We filtered out entire alignments where the pattern of divergent sites showed evidence of an
extreme excess on a single lineage compared with genome-wide pattern, which could reflect
erroneous alignment due to low copy number repeats (paralogs). For 7 species pairs—Human-
chimpanzee, Human-gorilla, Chimp-gorilla, Human-orang, Chimp-orang, Orang-macaque—we
counted the number of divergent sites reflecting changes on one lineage or the other, using the
other species to polarize. We compared the ratio of sites on the tested lineage to the average
genome-wide (performing the analysis separately for chromosome X and the autosomes), and
removed alignments with P <0.001 by a chi-square test for any of the seven comparisons

Figure S8.1: Bounds on human-chimp speciation based on proximity to sites clustering humans and chimps.
(Blue curve) We stratify the autosomal data based on the distance to the closest site clustering humans and chimps
to the exclusion of gorilla. Within 4bp, the divergence is 0.826 of the autosomal average. (Red curve) Repeating the
same computation on chromosome X, the average divergence as a fraction of the autosomes is 0.851, and within 32
bp of a human-chimp clustering site is 0.771. (Green curve) We again present data for the X chromosome, but now
restrict to the quarter of the data with B-statistic <0.4 reflecting an expectation of further reduced divergence due to
directional selection in the ancestral population. The average X chromosome divergence in this subset of the data is
0.774, and within 32 bp of human-chimp clustering sites, it is 0.726.
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Bound B: Genetic divergence on chromosome X divided by the autosomes (ty¢/tyc < 0.851)
The second upper bound on ratio of human-chimpanzee speciation time also exploits a strategy
first described in Patterson et al. 2006, and is based on dividing the human-chimpanzee genetic
divergence as a fraction of human-macaque on chromosome X by that on the autosomes. The
motivation is that there is an a priori reason to expect that genetic divergence on chromosome X
will be lower than on the autosomes. In a constant-sized, freely mixing population, there are 3
copies of chromosome X for every 4 copies of the autosomes, leading to a lower predicted
coalescence time at X chromosome loci in the common ancestral population of humans and
chimpanzees. In addition, selection operates differently on chromosome X and the autosomes
(because of the exposure of recessive alleles in males), further motivating a search to explore
whether the genetic divergence is unusually low.

In our new dataset, we computed the ratio of human-chimpanzee to human-macaque divergence
on chromosome X divided by that on the autosomes, filtering out the pseudo-autosomal regions
of chromosome X (<2.710 Mb and >154.585 Mb). After applying the correction for recurrent
mutation (nearly identical results are obtained without the correction), we obtained an upper
bound of tuc/tuc < 0.851. This is one standard error from the estimate of tac/tuc < 0.835 £0.016
from Patterson et al. 2006, and so the two inferences are statistically consistent.

Bound C: Chromosome X loci close to sites clustering humans and chimps (T /tyc <0.771)
We combined the two ideas from Patterson et al. 2006 (bounds A and B) to obtain an even more
stringent upper bound. Using our 32.6 Mb of X chromosome alignment, we computed the ratio
of human-chimpanzee to human-macaque divergence close to sites that cluster humans and
chimpanzees to the exclusion of gorilla. Figure S8.1 (blue curve) shows that just as on the
autosomes, the closer one is to a human-chimpanzee clustering site, the lower the normalized
human-chimpanzee divergence. We compute the human-chimpanzee divergence divided by
human-macaque divergence in the vicinity of these sites, and divide by the autosomal average
after correction for recurrent mutation, resulting in a bound of tuc/tyc < 0.771 based on data
from <32 bp away from informative sites. (We focus on the <32 bp distance because of noisy
estimates in lower bin sizes, although the estimates are qualitatively consistent for smaller bin
sizes as well: 0.773 (<16 bp), 0.752 (<8 bp) and 0.725 (<4 bp).)

Bound D: Chromosome X loci subject to directional selection close to HC sites (Tyc/tyc < 0.726)
We next studied genetic divergence between humans and chimpanzees at a subset of the genome
that was not exploited in Patterson et al. 2006: loci that are at increased likelihood of having been
subject to directional selection in the ancestral population of humans and chimpanzees (due to
hitchhiking and selection at linked sites), thus reducing the average genetic divergence between
the two species. McVicker et al. 2009 showed that loci that are close to exons or conserved non-
coding sequences have a reduced genetic divergence between humans and chimpanzees
compared with the average in the genome, which is likely to reflect directional selection in the
ancestral population (either positive selective sweeps or negative background selection)’. For
each nucleotide, they also computed a quantity, B, which predicts the genetic divergence without
using any information from genetic variation and comparative genomics at all, and only using its
proximity to functional elements. We confirmed that the B statistic is strongly predictive of
divergence in our data by stratifying human-chimpanzee genetic divergence along chromosome
X by the B-statistic (Figure S8.2). Figure S8.2 shows long regions of low divergence on
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chromosome X where B is low (and which further bound the human-chimpanzee speciation
time), interspersed with regions of high divergence where B is high. The pattern in this plot can
only be explained by strong directional natural selection in the ancestral population of humans
and chimpanzees prior to human-chimpanzee speciation. The cause remains a mystery.
Possibilities include an increased rate of background selection in the ancestral population of
humans and chimpanzee, an increased rate of positive selection, or selection to remove
Dobzhansky-Muller incompatibilities following hybridization®. Determining which factors are
responsible is outside the scope of this note.

—&— Human-chimpanzee genetic divergence divided by autosomal average B-statistic Figure S8.2: B-statistic
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To take advantage of the correlation of divergence with selection to set a new constraint on the
date of human-chimpanzee speciation, we stratified human-chimpanzee genetic divergence along
chromosome X into ten approximately equal-sized bins based on the B-statistic, performing the
analysis separately for chromosome X and the autosomes. Figure S8.3 shows that the bin with
the smallest B-statistic on the X chromosome gives a new upper bound on Tyc/tyc<0.82, even
without using the additional information from proximity to human-chimpanzee clustering sites.

Table S8.2: Summary of the bounds on human-chimpanzee genetic divergence

Bound Description The/tuce
A Genetic divergence near sites clustering humans and chimpanzees <0.826
B Genetic divergence on chromosome X divided by the autosomes < 0.851
C Chromosome X loci close to HC sites (A+B) <0.771
D X loci close to HC sites and B<0.4 <0.726

Motivated by the power of the B-statistics to predict human-chimpanzee genetic divergence, we
combined all three ideas for finding segments of the genome with reduced divergence to produce
an even more stringent (but still conservative) upper bound on human chimpanzee speciation
compared with any of the approaches by themselves: (i) Restriction to chromosome X, (ii)
Restriction to loci strongly affected by directional selection (B<0.4, where the genetic divergence
in Figure S8.3B appears to asymptote), and (ii1) Restriction to sites that are within 32 bp of a
divergent site that clusters human and chimpanzee to the exclusion of gorilla. From this subset of
the data, we obtain a new upper bound of Tyc/tyc < 0.726 (green curve in Figure S8.1). For
completeness the numbers for the even lower bin sizes are: 0.742 (<16 bp), 0.730 (<8 bp) and
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0.671 (<4 bp).) Table S8.2 lists the various bounds. In what follows and the main text, we use the
strongest (D), conservatively rounding it off to Ty /tyc < 0.73.

The upper bound of THC /tuc < 0.73 is conservative and robust

We conclude this section by noting that the true value of the ratio is likely to be less than 0.73.

(a) Upper bounds using X chromosome data are conservative: Our upper bound on human-
chimpanzee speciation based on data from the X chromosome is conservative. The reason is that
we are dividing by human-macaque divergence to normalize for differences in the mutation rate
across loci in the genome, assuming that the average time since the most recent common
ancestor (TMRCA) between humans and macaques is identical across the genome. In fact, the
TMRCA varies, and is expected to be less on chromosome X than on the autosomes, since in the
ancestral population of humans and macaques, the ancestral effective population size is expected
to have been less on chromosome X than the autosomes (3/4). As discussed in Patterson et al.
2006, the true TMRCA could plausibly be 0-5% lower on average on chromosome X due to this
effect, which will result in an overestimate of our upper bound by the same amount®.

(b) Upper bounds using X data are not strongly affected by changes in male-to-female mutation
rate. In 2009, Presgraves and Yi suggested that the finding of Patterson et al. 2006 of a greatly
reduced genetic divergence time on chromosome X relative to the autosomes might be an artifact
of changing male-to-female mutation rates among great apes, for example, due to an acceleration
of the male mutation rate on the chimpanzee lineage due to more male competition for mates
leading to larger numbers of sperm cell divisions and a higher male mutation rate'*. To evaluate
whether there is evidence that this might affect our inferences, we computed the human-
chimpanzee genetic divergence as a fraction of human-macaque divergence across the X
chromosome, after separating the data by mutations on the human lineage and chimpanzee
lineage since divergence. The inference on the human-specific lineage is Tyc/tyuc < 0.850, and
on the chimpanzee-specific lineage is Tyc/tyc < 0.852, suggesting that this is not a major effect.

(c) Although Tyc [ty < 0.73 is a hard bound we conservatively treat it as a soft bound. While
The/tuc < 0.73 is in principle a hard upper bound—in the sense that we have found loci where
the genetic divergence is 72.6% of the autosomal average making this a maximum on human-
chimpanzee speciation time—in fact we conservatively treat it as a soft bound in the main text,
where we use it as the upper 5% bound of a 90% Bayesian prior probability distribution on the
ratio Tyc/tyc. Thus, with 5% probability, we allow for the possibility that the true ratio is larger,
which means that our quoted upper bound on human-chimpanzee speciation reported in the main
text is actually somewhat less stringent than it should be.

(iv) Point estimates of Ty /tyc = 0.61-0.68 from modeling of background selection

In this section, we obtain new point estimates of the ratio T /tyc that take advantage of the
modeling analyses in McVicker et al. 2009°, which account for the impact of directional
selection on human-chimpanzee genetic divergence to obtain not just an upper bound, but also a
best estimate of the ratio. This kind of modeling analysis is important, since as shown in Figure
S8.2-S8.3, directional selection is clearly having an important impact on our data.
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We first used the modeling of autosomal data directly reported in the McVicker et al. 2009
paper”. In Table 1 of their paper (page 7), they give parameter estimates under their model taking
into account a fitted model of background selection on the autosomes, which translate to an
estimate of Ty /tyc = 0.61, matching the estimate from Burgess and Yang.

As an additional estimate using >100 times more data than was analyzed by McVicker et al.
2009, we examined the correlation of B-statistic with genetic divergence in our own data. If the
model underlying the B-statistic is correct, then the value of B (on its scale of 0-1) predicts the
reduction in genetic diversity in the human-chimpanzee ancestral population at a locus,
compared with the expectation if there were no selection at all. Assuming that the B-statistics are
measured with perfect accuracy and the model is correct, if we measure human-chimpanzee
genetic divergence as a fraction of the autosomal average in ten bins of B-statistic, and fit a line,
then the y-intercept gives the expected human-chimpanzee genetic divergence at loci in the
genome where the time to the common ancestor in the ancestral population was zero; that is, they
give the date of human-chimpanzee speciation.

Figure S8.3: Human-chimpanzee divergence divided by the autosome average, stratified by B. We divided (A)
the autosomal and (B) chromosome X data into 10 equally sized bins, based on McVicker B-statistics. Blue lines
show least squares fits to all ten data points, and red lines leave out three points that contribute to non-linearity and
may reflect model failure (the two points with the lowest B and the one point with the highest B). The y-intercepts
provide an estimate of human-chimp speciation as a fraction of the autosomal divergence; that is, the expected
genetic divergence assuming no genetic variation in the ancestors.
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Figure S8.3 shows the empirical relationship of genetic divergence between human and
chimpanzee to B-statistics on the autosomes and chromosome X separately. There is evident
non-linearity, mostly in the two bins with the lowest B-statistics. A potential explanation (even if
the model is correct) is “regression to the mean”. The assignment of B-statistics to individual
nucleotides is noisy and thus the bin of nucleotides with the lowest B-statistics is likely to
contain a substantial fraction of nucleotides that are not in fact so constrained by selection as
indicated by their assigned B-statistic. Thus, the observed human-chimpanzee divergence in
these bins is not as reduced as predicted. We therefore fit lines not just to all ten bins, but also to
a subset of seven bins that exclude the two with the lowest B-statistics, and the highest bin
(which appears to be an outlier perhaps due to structural variation). In the middle seven bins, the
points appear linear. The extrapolated y-intercept from the fitted (red) regression line is Tyc/tyc
= 0.68 on the autosomes, giving a new point estimate. (On chromosome X, it is Tyc/tyc = 0.75
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(Figure S8.3), but we focus here on the autosomes since McVicker et al. 2009 had much better
autosomal data to use in their modeling analysis and obtained a much better fit of their B-statistic
model to the data on the autosomes. Moreover, the best estimate of the ration on chromosome X
is clearly too high, as it exceeds the upper bound of section (iii).)

(v) Prior distribution on Tyc/tyc

Above, we described several inferences about the ratio of human-chimpanzee speciation to

average human-chimpanzee genetic divergence:

(a) We described a point estimate of Ty./tyc (0.61) based on the modeling analyses under
neutral evolution from Burgess and Yang, which is consistent with Dutheil and colleagues.

(b) We described a conservative upper bound of <0.73.

(c) We described point estimates of ¢ /tyc (0.61-0.68) from modeling analyses that take into
account background selection using insights from McVicker et al. 2009.

Taking these various inferences into account, we propose a prior distribution on Ty /ty that is
normally distributed, and that allows 5% of its density above 0.73 and 10% of its density below
0.61. Thus, its mean is 0.663, and its standard deviation is 0.041 (Figure S8.4). This distribution
captures the observation that none of the point estimates are substantially below 0.61, and that
we have a strong upper bound at 0.73 (which conservatively, we treat as a soft upper bound,
although in fact it would be very surprising if the true value was higher).

Point estlmate. of0.6§,obta|ned Figure S8.4: Prior
from extrapolation of divergence of

B-statistic bins on autosomes
Point estimate of 0.61, \l/

obtained independently

distribution on the
ratio of human-

Upper bound chimp speciation to

from Burgess and Yang . of0.73, genetic divgrgence,
2008 and McVickeret al. $ obtained in T(ic/_tHc_- This
2009 analyses of section (iii) distribution has a

mean of 0.663 and a
standard deviation of
0.041, set so that 10%
of the density is
below 0.61 and 5%
of the density is
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inferences that we
use to inform this
prior are indicated by
dashed lines.

autosomal data
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We conclude by discussing what the effect on our inferences would be if the true value of the
ratio was below 0.61, which is especially relevant since two of the point estimates were at this
value. Lower values would reduce the posterior estimate of the human-chimpanzee speciation
date, which is already lower in our paper than would be consistent with some interpretations of
the fossil record. Figure 4 of the paper allows readers to ignore our prior, and instead infer the
speciation date that would be obtained for any choice of Tyc/tyc. This analysis shows that

60| Page

Nature Genetics: doi:10.1038/ng.2398



speciation dates above 6.8 Mya (the current minimum date of the Sahelanthropus fossil) require
a ratio of Ty /tyc >0.70.
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Chapter 9: Hierarchical Bayes Model

Because of inter-locus variation in mutation rate, quantities such as the standard error of the mutation rate,
pooled across loci, become non-trivial to estimate. To infer this quantity, we model the data using a
Hierarchical Bayes Model (HBM).

The framework of the HBM is as follows: (1) Describe the data generating process using a set of
equations, that is, the method to generate data (mutation events) given the parameters. (2) Derive the
posterior distribution, which is conditioned upon the data. (3) Using the set of posterior equations with the
empirical data as input, sample the posterior distribution using direct-sampling or MCMC techniques. (4)
Perform extensive model-checking to ensure that the HBM performs appropriately.

Hierarchical model of the mutation process

1. Data generative process

For loci , the numbers of mutations  are modeled as independent binomial samples:
, where is the number of observations and assumed to be known. 1is the
mutation rate. We use a conjugate distribution with hyperparameters

that are the same for all

Hyperparameters a,

AN

O3 - Baa77 6ila, B~Beta(a, B)

R

Y1 Y2 Y3 Y2a77  ¥jlny, B5~Binomial(n;, 6;)
2. The joint posterior density is as follows:
H’ ? 95 b
pl6.0, ) = PR 0.0) (1)
o pla, B)p(0]a, B)p(y|6) (2)
= p(ev, B) [ [ (0;lev, B)p(y;10;) (3)
J
:p(aaﬁ)HBeta(aaB)Bin(njagj) (4)
J
1 a—l+y; o g \B—14n,;—y;
x p(a, 3) H B, ) ‘93' (1-106;) iy (5)

Line 1 is by Bayes rule.
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Line 2 is the product of the hyper-prior distribution, the parameter distribution, and the likelihood.
Line 3 follows by conditional independence of the parameter and data.
Lines 4 and 5 follow from our data generative model. B(a, f8) is the beta function.

3. In order to sample from the posterior, we first find p(a, B|y) by integrating over each 6; from 0
to 1, obtaining:
Bla+yj, 8+ n; —yj)
B(a, )

pla, Bly) o« ple, B) [ |

g

4. A suitable hyper-prior distribution p(a, 8): We would like to choose a diffuse prior. However, an
improper prior such as p(a, ) = 1 doesn’t work because p(a, §|y) cannot integrate to 1. This is
because

lim Bla +y;. f+n5 —yj)

=1
=00 B(a, B)

1
Instead, we choose a diffuse (uniform) density on (ﬁ, (a + B)2), which are the mean and

approximately proportional to the standard deviation of 8;|a, f~Beta(a, f). From equation 5.9

5
of Gelman et al'’, this leads to p(a, 8) < (a + ) z. Hence,

Bla+y;, B+n; —y;)
B(a, 3)

pla, Bly) o< (a + 8) 2]

J

Drawing simulations from the posterior distributions

1. The first step is to crudely estimate the parameters 0, a, 8. From the data, we find mean (%) =
J

)

5x 10~* and var (&) =5 X 107°, obtaining estimates of (8, a, ) = (5 x 107%,0.05,99).

2. Next, we look for the posterior mode of p(a, f|y). When calculating values of the posterior, to
avoid numerical issues, we compute the log posterior, then exponentiate at the end. We can use
the EM algorithm to find the mode, using our crude estimates as a starting point. Alternatively,
for this 2 dimensional problem, we can simply use a grid of (a, §) to look for max, g p(a, B|y)
in the vicinity of the crude estimates. We find that the posterior mode is located at (a, ) =
(0.68,1480). At the mode, this would correspond to E[8|a, ] = 4.6 X 10™* and var[8|a, B] =
3 X 1077, Our variance here is about 10 times smaller than that of our crude estimates. This is

Vi

n.> = 5 x 107° was estimating var(8), taking into account variability in (a, 3).
]

because var (

Below is a contour plot of p(a, B|y), re-parameterized in terms of (log%, loga + ) , with
contours at 0.0001, 0.001, and at 0.05, 0.15, 0.25, ..., 0.95 of the modal value.

3. Given our sense of how p(a, B|y) behaves, we now sample from the posterior. We directly
sample via grids. This method is feasible because we are sampling only in 2 dimensions. Using
the contour plot above, we compute the grid of points where most of the density lies. Then, we
numerically sum one dimension to obtain the marginal distribution, say p(«|y). « is then
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sampled using the inverse-CDF method. Then we sample £ using the inverse-CDF method again,
this time on p(fB|a, y). 1000 samples of («, ) are shown below.

sampling from the posterior: grid method

1
-79 -7.8 7.7 76 1.5 74
log(ec/ B)

4. After sampling from p(a, f|y), we sample 6 using p(8|a, 5,y). Note that the posterior for 8 is
beta distributed, and has parameters that combine the data and the hyper-parameters:

p(0;le, B,y;) = Beta(a +y;, 5+ n; — y;)

With the hierarchical framework, for each sample of (a, £), we sample the entire set of 2,477 6;.
This is one experiment. Since we have 1,000 samples of (a, 8), we run 1,000 experiments and
obtain a confidence bound for each 8;. The plot below shows our posterior for 6;. The horizontal
axis gives the 2,477 mutation rates, taken as the raw ratio of mutant to observed events. The
vertical axis gives the posterior. Crosses “x” are the median. Gray vertical bars show the 95%
posterior confidence interval. The y=x line is in red. The red vertical line on the left shows the
median and confidence interval of a locus that has n; = 0, an uninformative locus. Note that the
slope of a regression line through the crosses would be substantially less than 1. This is the effect

of “smoothing” the raw mutation rates, using the combined information from all loci.
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Chapter 10: Inferences based on direct estimates of the sequence
mutation rate (this section is added as a note in proof)

Introduction

After this manuscript was accepted, a paper by Kong et al. reported a direct estimate of the sequence
substitution rate based on whole-genome sequencing of 79 trios'.

The two studies are concordant in inferring that the male mutation rate is 3-4 times higher than the female
mutation rate, and that male mutation rate increases rapidly with age while female mutation rate does not.
However, there are a couple of differences that affect inferences of dates in evolutionary history.

The first difference is that the dependence of mutation rate on paternal age in Kong et al. 2012 is stronger
than we estimate for microsatellites. Mutation rate is estimated to double every 16.5 years for sequence
data, compared with every 38 years for microsatellites. We hypothesize that this reflects the different
mutation processes for sequence substitutions and microsatellites.

The second difference is that the direct estimate of the sequence substitution rate of 1.20x10°
¥/bp/generation in Kong et al. 2012 is outside the 90% credible interval of 1.40-2.28x10™/bp/generation
inferred here based on modeling of the microsatellite mutation process and extrapolation of the sequence
mutation rate. Part of the discrepancy is due to different assumptions about present-day generation
intervals: recalibrating the mutation rate estimates from Figure 2 of Kong et al. 2012 to the male and
female generation intervals assumed for this study, we obtain a slightly higher estimate of 1.26x10
¥/bp/generation. However, even with this correction the Kong et al. 2012 estimates are less than ours.

Comparison of dates inferred from the two independent estimates of mutation rate

To explore the effect of the direct estimates of the sequence mutation process on our inferences of
evolutionary parameters, we used the fitted dependence on age in Kong et al.'® (blue dashed curve in their
Fig. 2). Using the notation of Supplementary Note Chapter 5, the per-generation mutation rate is:

Umaternai(t) = 14.2/2.63 x 10°
Hpaternai(t) = exp(2.61 + 0.042 - t)/2.63 X 10°

We assume here that there is no error in these fitted parameters.

To understand the implication for dates in human evolution, we used a Bayesian procedure similar to that
of Supplementary Note, Chapter 5 to integrate these sequence mutation rate estimates with ten prior
distributions on evolutionary parameters that we developed for the microsatellite modeling and which are
summarized in Supplementary Table 7. These correspond to: (1) ancestral generation time; (2) present-
day generation time; (3) ancestral male-female parental age difference; (4) present-day male-female
parental age difference; (5) ancestral-to-present-day transition time; (6) Western European heterozygosity
per base pair; (7) West African heterozygosity per base pair; (8) Ratio of human-chimpanzee to Western
European sequence divergence; (9) Ratio of human-chimpanzee speciation time to genetic divergence
time; and (10) Ratio of human-orangutan to human-chimpanzee sequence divergence

Results

Table S10.1 shows that based on the mutation rates inferred from Kong et al. 2012, the average time since
the most recent common ancestor of two Western Europeans is 880-1,100 thousand years ago, the
inferred time since human-chimpanzee divergence is13.0-17.2 million years ago (Mya), the inferred time
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since human-orangutan divergence is 34.0-46.2 Mya, and the inferred date of human-chimpanzee
speciation is 8.32-11.8 Mya. The dates implied by Kong et al. 2012 are in some cases more than twice
those inferred from the microsatellite data, even though the present-day generation mutation rate is only
~1.5-fold higher. This is due to the stronger dependence of mutation rate on generation interval for the
sequence- than for the microsatellite-based rate estimates.

We discuss two implications of these results.

Implication for the human-chimpanzee speciation date: A first implication is that the inferred human-
chimpanzee speciation date of 8.32-11.8 Mya is greater than the 6.8-7.2 Mya estimate for Sahelanthropus
tschadensis, a fossil that has been interpreted as being on the hominin lineage since the split from
chimpanzees, and is excluded by the dates that emerge from the microsatellite analysis. If we accept the
sequence-based estimates of mutation rate, S. tschadensis is no longer in tension with the genetic data.

Implication for human-orangutan genetic divergence: While using the sequence-based estimates of
mutation rates makes it possible to reconcile S. tschadensis with being on the hominin lineage, the new
dates are in tension with the fossils relevant to human-orangutan genetic divergence. The inferred human-
orangutan genetic divergence date of 34.0-46.2 Mya is so much older than the upper bound from the
fossil record of <18 Mya on human-orangutan speciation that the date is implausible (we discuss these
constraints further in Supplementary Note, Chapter 7). A possible reconciliation to this conundrum was
suggested by Scally et al. 2012"7 who hypothesized that there might have been a slowdown of the
mutation rate on the African great ape lineage and on the orangutan lineage simultaneously since their
ancestors separated, perhaps associated with the known increase in body size on both lineages. This
slowdown would result in an overestimate of the date of human-orangutan genetic divergence using
models like those in this paper that assume a molecular clock whose rate has been constant over time.
However, this scenario also requires us to hypothesize a combination of unlikely events: (a) the slowdown
would need to have been coincidental in both lineages to explain the observations, and (b) the slowdown
would also have to have been extraordinarily dramatic: about 3-fold in both lineages in the period
ancestral to human-chimpanzee divergence to produce as extreme an effect as is observed.

Discussion

The differences in the dates implied by the microsatellite- and sequence-based mutation rate estimates are
striking. If the rate from the microsatellite data is too high, this might be due to a higher rate of false-
positives than we measured empirically or inaccuracies in the model we fit to the data. If the direct
measurement of the sequence-based mutation rates is too low, this might be due to the stringent filtering
that Kong et al. 2012 applied to remove false-positive sites, which could have resulted in a substantial
false-negative rate. Accurate estimates of the human mutation rate are important for evolutionary studies,
and an important area for future research is to determine which rates are most appropriate.

Table S10.1 Comparison of inferred evolutionary parameters from sequence & microsatellite data

Duplicated from Table 2 Using Kong et al.’s mutation rates™®
Mean 5t _gg™ percentile mean 5™_ g5t percentile

Genetic divergence times (millions of years)

tcey: Western Europeans 0.546 0.426 -0.709 1.01 0.88-1.10
tyr;: Yoruba (African) 0.720 0.562-0.933 1.33 1.17-1.44
tyc: human-chimpanzee 7.49 5.80-9.77 15.3 13.0-17.2
tyo: human-orangutan 19.8 15.2-25.9 40.5 34.0-46.2
Tyc: human-chimpanzee speciation time 4.97 3.75-6.57 10.1 8.32-11.8

Note: 90% Bayesian credible intervals are obtained from the Bayesian posterior distribution.
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