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Supplementary Figure 1. Removal of trios due to potential false­parenthood 
 

 

Supplementary Figure 1. Removal of trios due to potential false-parenthood. Trios were 
removed based on identity-by-state (IBS) probabilities between a parent and the proband, using 
all available microsatellite loci. In the figure, the first row is the empirically sampled IBS 
between pairs of unrelated individuals. The second row shows IBS between the proband and 
his/her uncle or aunt, allowing us to set a threshold that removes such trios as well. The 3rd and 
4th rows are the IBS from the trios, assembled using the Icelandic genealogy. Based on the “null 
hypothesis” from the first two rows, the threshold for removal of trios was set at 0.9 (red line). A 
trio is removed if either the Father or the Mother falls below the threshold. Out of 25,067 trios, 
235 were removed with this filter. 
 
Definition of diploid IBS: Given individuals A and B, assume that n loci have been genotyped in 
both. At locus i, let the diploid genotype of A be Ai, and that of B be Bi. We call Ai = Bi if any of 
the alleles match. For example, if Ai = (4,6) and Bi = (4,8), they are considered equal. Let 
ॴሺܣ௜ ൌ  ௜ሻ be the indicator variable that is 1 if they are equal and 0 otherwise. Then, the IBSܤ
probability is defined as ܵܤܫ݌ሺܣ, ሻܤ ൌ ଵ

௡
∑ ॴሺܣ௜ ൌ ௜ሻ௡ܤ
௜ୀଵ .   
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Supplementary Figure 2. Estimated genotype error rate per locus 
 

 

 
 
 
Supplementary Figure 2. Estimated genotype error rate per locus. Distribution of genotype 
errors across loci is shown. The genotype error rate is defined as the probability that a single 
allele will be erroneous after genotyping. The horizontal axis shows the -log10 of the error rate. 
The median genotype error rate is 1.8x10-3, with 95% of the density from 1.7x10-4 to 1.4x10-2.  
 
Definition of genotype error rate at a given locus: Let ̂݌  be the estimated probability of a 
genotype error when a single allele is observed, let ݇  be the number of times an allele is 
repeatedly genotyped, let ݊௞  be the total number of individuals who were each genotyped k-
times, and let ݕ௞ be the number of individuals with inconsistent genotypes. For example, if an 
individual is genotyped 10 times, 9 times yielding the genotype (4,6) and once yielding (5,6), 
this would be regarded as an inconsistent genotype. Then, the estimated probability of error is  
 

̂݌ ൌ
∑ ௞௞ݕ
∑ 2݇݊௞௞

 

 
Supplementary Notes describe the derivation of this expression and its assumptions.  
 
 

   

Probability of genotyping error (-log10 transformation)
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Supplementary Figure 3. Similarity between trio and family data in mutational 
length distribution 

 

 

 

Supplementary Figure 3. Similarity between trio and family data in mutational length 
distribution. This figure separates the trio and family datasets from main text Fig 2B. 
Additionally, the bottom row compares the CDF between the datasets. The two-sample 
Kolmogorov-Smirnov test gives P-values of 0.807 and 1 for the di- and tetra- comparisons, 
respectively. Thus, in the mutational length distribution, there are no significant differences 
between the two datasets.   
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Supplementary Figure 4. Mutations by locus and by trio 
 

 

 

Supplementary Figure 4. Mutations by locus and by trio. The rows show histograms of 
mutations, transmissions, and the mutation rate per locus. Of the 2,477 loci, most loci do not 
contain any mutations. For the loci with at least 1 mutation, the histogram of log10 of the 
mutation rate resembles a truncated normal distribution, since our denominator is limited to at 
most about 10,000 per locus. The right column shows the corresponding plots by trio. Of the 
24,832 trios, most do not contain a mutation. Due to the sparseness of mutations by locus and by 
trio, we combine locus and trio data as appropriate to perform our analyses.   
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Supplementary Figure 5. False­positive mutations from the trio approach 
 

 

 

Supplementary Figure 5. False-positive mutations from re-genotyping in the trio approach. 
From the set of trio mutations identified, we randomly chose 103 mutations and re-genotyped 
them. 3 false-positives were identified, which are shown here. All genotypes are in units of base 
pairs. The 1st case is an apparent mutation that is unusually long, with a mutational length of 14 
bp. The 2nd case involves a homozygous parent transmitting to a homozygous child, which we 
believe is a more error-prone class as discussed in the text. The 3rd case is an apparent mutation 
of a single base pair, which is a non-integer multiple of the motif length (2 base pairs in this 
case).  
 
See Supplementary Notes and Supplementary Table 1 for a more elaborate analysis of false-
positive rates when a mutation is either (1) excessively long, (2) a transmission from a 
homozygous parent to a homozygous child, or (3) a non-integer multiple of the motif length. 
 
Note that allele lengths illustrated above are relative lengths, which is an offset (in units of base 
pairs) based upon the absolute length of a reference individual’s allele. 
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Supplementary Figure 6. Predictors of mutation rate and direction (logistic 
regression) 

 

 

 

Supplementary Figure 6. Predictors of mutation rate and direction (logistic regression). 
Same as main text Fig 2, but with logistic regression curve fits. Note that while the data points 
shown here are from binning the data, as described in Fig 2, the logistic regressions are 
performed over the raw data, in which a binomial model of generating mutations (response 
variable) is assumed. Logistic regression over the raw data has more statistical power than linear 
regression over the binned data and is constrained to have non-negative mutation rates. The P-
values in the main text are reported based on the logistic regression analysis. 
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Supplementary Figure 8. Length constraints in microsatellites (raw) 
 

 

 

Supplementary Figure 8. Length constraints in microsatellites (raw). Relative length (x-axis) 
is in units of Z-scores, the number of standard deviations from the mean length at a given locus. 
The left panels plot relative length against the mutation length, in base pairs. The right panels 
provide dithering using a uniform distribution from -0.5 to 0.5 bp to reduce quantization on each 
mutation length. There is a significant negative correlation.  
 
For di-nucleotides, panel A has: r2=0.0739, slope=-0.838, P=1.48x10-15.  
For tetra-nucleotides, panel C has: r2=0.106, slope= -1.202, P=3.33x10-7. 
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Supplementary Figure 9. Length constraints in microsatellites (binned) 
 

 

 

Supplementary Figure 9. Length constraints in microsatellites (binned version). This figure 
shows the mutation length distributions as a function of the length of the parental allele, relative 
to the mean length of a locus. When the parental allele is short (percentiles are displayed on the 
left), mutation length is biased towards the positive direction. When the parental allele is long, 
the mutation length is biased towards the negative direction. The fraction (f) of length 
expansions and the P-value (p) using a two-sided binomial test (the null hypothesis is that 
microsatellites have no directional bias), are shown in each histogram. 
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Supplementary Figure 11. Sequence divergence versus microsatellite ASD. These plots are 
similar to that of Fig 3 but with the x-axis un-rescaled to TMRCA. The combined plot and 
separate plots for the 23 HapMap individuals are shown. We empirically validate the non-linear 
behavior predicted by our model by exploiting the fact that there exists considerable variability 
in sequence heterozygosity (hence TMRCA) across the genome. The x-axis shows the pairwise 
sequence heterozygosities from sequence data. The y-axis shows the ASD statistic from 
microsatellite data. In blue are sequence data from Complete Genomics (20 individuals), and in 
black are data generated using Illumina technology (9 individuals). Microsatellite ASD at each 
di-nucleotide locus and heterozygosity were computed for each individual and then combined 
and smoothed using a sliding-window average. We computed the local sequence heterozygosity 
based on the sequence flanking each microsatellite over a genetic distance window of 0.001 
centimorgans in either direction and excluding a 1kb region where the microsatellite itself lies. 
The result shows a non-linear relationship between microsatellite ASD and sequence 
heterozygosity which is assumed to increase linearly with time, empirically demonstrating that 
our model of microsatellite evolution is more appropriate than the GSMM model.  
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Africans or CHB Han Chinese. We see two possible explanations for non-random clustering 
within populations. (1) One possibility is random fluctuation: the differences are not statistically 
significant, and the clustering within populations could thus simply reflect correlated histories 
within populations. (2) A second possibility is ascertainment bias for microsatellites with high 
heterozygosity in Europeans (to make them more useful for disease gene mapping). To 
understand how this bias could cause underestimation of the mutation rate especially in 
Europeans, we note that ascertaining for highly polymorphic microsatellites is expected to inflate 
the measured ASD compared with the expectation based on the true mutation rate, thus 
overestimating the TMRCA. This in turn results in an underestimate of the sequence 
heterozygosity, since if we infer that more time elapsed in the process of generating the observed 
mutations, we will estimate a lower mutation rate. Such an ascertainment bias would be expected 
to be strongest in people of European ancestry as we observe (since they are most closely related 
to Icelanders), while it would be more mild in more distant populations (CHB and YRI). 
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Supplementary Figure 17. Distribution of parental age at child­birth 
 

 

Supplementary Figure 17. Distribution of parental age at child birth. These are the parental 
age of trios used in our mutation rate analyses. The paternal age has a mean and standard 
deviation of 30.1 and 6.5 years, while the maternal age has a mean and standard deviation of 
27.4 and 5.9 years. Combining parents, the generation-time has a mean and standard deviation of 
28.8 and 6.4 years. 
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Supplementary Table 1. Experimental validation of mutations 
 

 

Mutations from family data set  Mutation  Targeted re‐genotyping  Electropherogram review  Intersection of sites 

Counts  TP  FP  FP/(TP+FP)  TP  FP  FP/(TP+FP)  TP  FP  FP/(TP+FP) 

Class 1 mutations  326  74  2  0.026  262  8  0.030  57  2  0.034 

Class 2 mutations 

Homozygous parent and offspring  21  10  2  0.167  20  0  0.000  9  2  0.182 

Non‐integer multiple of motif length  10  0  2  1.000  6  3  0.333  0  2  1.000 

Excessively long (>6bp)  18  7  2  0.222  13  3  0.188  6  3  0.333 

More than 1 of the above  1  0  0  N/A  1  0  0.000  0  0  N/A 

Total  376  0.058  0.043  0.072 

 

Experimental validation of mutations from the family data are shown here. See Supplementary 
Figure 5 for validation of the trio data. 
 
TP = True Positives, i.e. candidate mutations that are verified to be true. 
FP = False Positives, i.e. candidate mutations that are rejected by the verification. 
 
Class 1 mutations are the ones that do not belong to Class 2, which are likely to have a higher 
false identification rate. Class 2 mutations include: (1) both parent and offspring were 
homozygous, (2) the mutation length was a non-integer multiple of the motif size, or (3) the 
mutation length was longer than 6 nucleotides.  
 
In our re-genotyping efforts, to maximize our discovery of false-positives, we targeted our re-
genotyping efforts toward Class 2. No such sampling bias was used in the electropherogram 
review. In combining the results of re-genotyping and electropherogram review, we examined 
only overlap data, calling a candidate mutation as a false-positive if either method rejects the 
mutation. 
 
In obtaining the total false identification rate, due to sampling bias towards the Class 2 mutations, 
we calculated an overall rate that weights the number of Class 1 and Class 2 candidate mutations, 
i.e. to obtain the final value of 0.072, we have: 
 

50
376 ·

7
22 ൅

326
376 ·

2
59 ൌ 0.072 
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Supplementary Table 2. Validation of 14 microsatellite mutations with next generation sequence data 
 

Mutation Information  PCR genotype 
NGS genotype 

(total length of motifs) 
NGS genotype 

(actual alleles observed)   
Lo
cu
s 

Re
pe

at
 m

ot
if 

Ty
pe

 

Pa
re
nt
 (F
/M

) 
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lle
le
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ha

ng
e 

Fa
th
er
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he

r 

Pr
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d 

Fa
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er
 

M
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he

r 

Pr
ob

an
d 

Fa
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M
ot
he

r 

Pr
ob

an
d 

Co
nf
ir
m
ed

? 

D11S4191  ACn  Trio  F  16→14  0/16  0/0  16/0  36/52  36/36  36/50  17xAC:3, 18xAC:8, 25xAC:1, 26xAC:3 
14xAC:1, 16xAC:1, 17xAC:3, 18xAC:20, 

19xAC:1 
17xAC:3, 18xAC:9, 24xAC:3, 25xAC:7, 

26xAC:1   

D12S1297  TCTAn  Trio  ?  0→4  ‐4/0  0/0  0/4  36/40  40/40  40/44  9xTCTA:16, 10xTCTA:15  9xTCTA:1, 10xTCTA:40  10xTCTA:9, 11xTCTA:16   

D12S372 
CTATn 
CTACm 

Trio  F  4→8  ‐4/4  0/0  0/8  48/56  52/52  52/60  9xCTAT+3xCTAC:4, 12xCTAT+2xCTAC:7 
9xCTAT+3xCTAC:1, 11xCTAT+2xCTAC:11, 

10xCTAT+3xCTAC:4 
10xCTAT+2xCTAC:1, 11xCTAT+2xCTAC:8, 

13xCTAT+2xCTAC:14   

D17S794 
GTn 
GTm 

Trio  F  0→2  0/0  0/6  0/2  40/40  40/46  40/42  12xGT+6xGT:1, 13xGT+6xGT:1, 
14xGT+6xGT:16, 17xGT+7xGT:1 

14xGT+6xGT:7, 15xGT+6xGT:1, 
15xGT+7xGT:2, 16xGT+7xGT:7 

13xGT+6xGT:3, 14xGT+6xGT:17, 
15xGT+6xGT:9   

D20S852  GTn  Trio  F  0→‐2  0/8  ‐10/4  ‐2/4  30/38  ?  28/34  14xGT:2, 15xGT:8, 16xGT:1, 19xGT:5  No data 
12xGT:2, 13xGT:4, 14xGT:8, 15xGT:1, 

16xGT:1, 17xGT:7   

D20S902 
CAn 

CAm 
Trio  M  2→‐2  ‐2/‐2  2/4  ‐2/‐2  50/54  54/56  50/54  11xCA+14xCA:9, 11xCA+16xCA:6, 

11xCA+17xCA:1 
11xCA+16xCA:2, 10xCA+18xCA:6  11xCA+14xCA:4, 11xCA+16xCA:5  NO 

D21S1908  CAn  Trio  F  2→0  2/2  2/6  0/6  32/32  32/36  30/36  15xCA:2, 16xCA:31, 18xCA:1  16xCA:10, 17xCA:2, 18xCA:8  15xCA:9, 18xCA:11   

D2S2254  GTn  Trio  F  20→18  0/20  ‐2/16  ‐2/18  32/54  30/48  30/50  13xGT:1, 16xGT:10, 27xGT:4 
14xGT:2, 15xGT:12, 16xGT:1, 23xGT:1, 

24xGT:6 
14xGT:3, 15xGT:18, 16xGT:1, 24xGT:1, 

25xGT:9   

D3S3620  TGn  Trio  F  2→0  ‐4/2  ‐4/‐4  ‐4/0  36/42  36/36  36/40  18xTG:4, 20xTG:3, 21xTG:5  17xTG:3, 18xTG:12  18xTG:10, 19xTG:1, 20xTG:5   

D5S1397 
CTTTTn 
CTTTm 

Trio  M 
4→8 or 
12→8 

12/17  4/12  8/17  52/57  44/57  48/57  0xCTTTT+13xCTTT:5, 
1xCTTTT+13xCTTT:6 

0xCTTTT+9xCTTT:1, 0xCTTTT+11xCTTT:5, 
0xCTTTT+13xCTTT:11 

0xCTTTT+12xCTTT:5, 1xCTTTT+13xCTTT:8   

D5S1503  TAGAn  Trio  F 
0→4 or 
8→4 

0/8  4/8  4/4  48/56  52/56  52/52  12xTAGA:16, 13xTAGA:2, 14xTAGA:5  13xTAGA:8, 14xTAGA:11  13xTAGA:40   

D8S1763  TGn  Trio  F  4→6  2/4  0/0  0/6  30/32  28/28  28/34  14xGT:1, 15xGT:19, 16xGT:22 17xGT:2  13xGT:2, 14xGT:18, 15xGT:1  12xGT:1, 13xGT:1, 14xGT:13, 17xGT:10   

D12S372 
CTATn 
CTACm 

Fam.  F  20→16  4/20  0/4  0/16  56/72  ?  52/68  10xCTAT+3xCTAC:1, 
11xCTAT+3xCTAC:5, 15xCTAT+3xCTAC:5 

No data 
11xCTAT+2xCTAC:7, 13xCTAT+3xCTAC:2, 

14xCTAT+3xCTAC:9   

D13S796 
CTGTn 
CTATm 

Fam.  F  12→16  12/20  4/12  4/16  72/80  64/72  64/76  3xCTGT+15xCTAT:7, 
3xCTGT+16xCTAT:1, 3xCTGT+17xCTAT:3 

2xCTGT+14xCTAT:7, 3xCTGT+15xCTAT:9 
2xCTGT+13xCTAT:1, 2xCTGT+14xCTAT:3, 
3xCTGT+15xCTAT:1, 3xCTGT+16xCTAT:6   

 

 

Note: We used next generation sequence (NGS) data from Illumina GAllx and HiSeq2000 instruments to validate a subset of the mutations that we 
inferred based on PCR and electrophoresis with fluorescently labeled primers. These data were produced as a part of a large scale project in Iceland, 
where individuals have been sequenced to a depth of ~10-30X. Sequencing reads were aligned to the hg18 reference genome with BWA27 and 
duplicates were marked with Picard [http://picard.sourceforge.net/]. An inspection of the overlap between trios and families with candidate mutations 
and those with NGS data revealed 12 trios and 2 families that could be used for the purpose of verification, in the sense that there were at least 7 
informative sequence reads for each relevant individual (minimally, the proband and the parent carrying the wild-type allele). In each case, sequence 
reads spanning the variable part of the microsatellite (i.e. with flanking sequence on both sides) were identified and carefully aligned by hand. This 
strategy was adopted because the available alignment algorithms did not seem to provide convincing results – particularly for the more complex 
microsatellites, composed of multiple different repeat motifs. Genotypes were called on the basis of these alignments in the following manner. First the 
modal allele was identified and called as allele 1 in the genotype. If this allele was present in ≥80% of the reads then the individual was deemed to be a 
homozygote. If not, then 5% was subtracted from the frequency of alleles that differed by one mutational step from allele 1 (in order to account for the 
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presence of apparent somatic mutational variation) and the second most frequent allele was identified. If this allele was found in ≥20% of the reads, then 
the genotype was called as allele 1 / allele 2. If no other allele was found in ≥20% of the reads, then the genotype was defined as an allele 1 homozygote. 
The table shows the results of this genotyping, which was performed blindly in relation to the electrophoretic genotypes. The allele lengths for the 
electrophoretic and NGS genotypes are not reported in the same scale. The former are lengths relative to the shorter allele observed in a particular 
reference individual (used for this purpose in all microsatellite genotyping at deCODE Genetics). The latter are absolute combined lengths of the 
variable repeat motifs based on sequence data (in the next three columns we show the distribution of allele lengths that were the raw data used to call the 
genotype). Results are consistent between both data sets in all cases but one (locus D20S902), where the electrophoretic genotype indicates that the 
father is a homozygote, but the NGS data reveals that the father is a heterozygote carrying an allele with a length consistent with the candidate mutation.  
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Supplementary Table 3. Di­nucleotide microsatellite mutations by motif type  
 

Repeat-type, by motif mutations transmissions rate std error
 AC/CA/GT/TG 1102 4063534 2.71 0.08
 AG/GA/CT/TC 27 93352 2.89 0.56
 AT/TA 12 8760 13.70 3.95
 CG/GC 0 0 N/A N/A
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Supplementary Table 4. Differences in ࢻ 
 

Mutation class  Trio data  Family data 
Paternal  Maternal  α  [95% CI]  Paternal  Maternal  α  [95% CI] 

homozygous to homozygous   123  81  1.52  [1.15 2.04]  13  8  1.63  [0.62 4.25]  
homozygous to heterozygous   146  43  3.40  [2.50 4.91]  57  21  2.71  [1.69 4.57] 
heterozygous to homozygous   104  42  2.48  [1.75 3.56]  25  14  1.79  [0.95 3.88] 
heterozygous to heterozygous   471  82  5.74  [4.59 7.38]  184  41  4.49  [3.25 6.50] 
Total  844  248  3.40  [2.97 3.94]  279  84  3.32  [2.63 4.26] 

 

 

 is the ratio of the paternal mutation rate to the maternal mutation rate. Since we are only ߙ
examining full trios and families (i.e. probands that have both parents genotyped), the paternal 
and maternal transmissions are the same, hence ߙ is just the ratio of the mutations. 
 
We split our mutations by trio/family data and by mutation class. A “homozygous to 
homozygous” mutation is when a parent with homozygous alleles transmits a mutation to a child 
with homozygous alleles, e.g. parent = (6,6) and child = (8,8). 
 
To construct the 95% confidence interval for ߙ, we assume that the partition of paternal and 
maternal events is generated via a binomial distribution. For example, in the total mutations for 
trio data, assume that the paternal counts are generated with ݈ܽ݅݉݋݊݅ܤሺ݊, ݊ ሻ, where݌ ൌ 844 ൅
248 ൌ 1092 and ݌ ൌ ଼ସସ

ଵ଴ଽଶ
ൌ  ,is simulated enough times to suppress Monte Carlo noise ߙ .0.773

and then the 95% CI is obtained. Note that although we have 1,695 mutations from the trio data, 
only 1,092 are used here, because the parent transmitting the mutation is ambiguous for the rest 
(Supplementary Notes). 
 
Comparing the trio data to the family data, ߙ  is not significantly different, as the 95% CI 
significantly overlap for each mutation class. 
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Supplementary Table 5. Predictors of the mutation process 
 

 
  p‐values for assessing significance in the tested variable 
Tested variable†  mutation rate  magnitude in step size*  directionality* 
motif length (di‐ vs. tetra‐)  <10‐12  1.78 x 10‐9  0.58 
absolute length‡  <10‐12  0.19  0.16 
variance in allele length distribution in Icelanders  <10‐12  0.70  0.11 
repeat impurity  3.1 x 10‐7  0.12  0.26 
distance from exons (measured by B‐statistic††)  2.2 x 10‐6  0.71  0.74 
DNA replication timing   0.005  0.07  0.69 
recombination rate  0.02  0.49  0.59 
sequence divergence, human‐chimp (10Kb window)  0.24  0.61  0.67 
recombination hotspot  0.42  0.83  0.79 
physical distance from telomeres  0.86  0.24  0.40 
Heterozygosity  <10‐12  0.28  0.46 
  
parental gender  <10‐12  0.04  0.01 
paternal age  9.3 x 10‐5  0.67  0.18 
maternal age  0.47  0.33  0.66 
  
relative length***  N/T**  1.41 x 10‐7  <10‐12 

 
 
 

†  Because our data are mostly di-nucleotides, and di and tetra-nucleotides show major 
differences in their characteristics, all tested variables excluding motif length, are tested only 
using di-nucleotides. 

 
†† The B-statistic predicts the intensity of background selection, according to McVicker et al.2 
 
‡  When regressing to mutation rate, absolute length is the mean absolute length of each locus. 

When regressing to step-size variance and directionality, absolute length is defined as that of 
the parental allele. 

 
*  For each mutation, if the mutational length is X, then the magnitude in step size is defined as 

the absolute value of X, and the directionality is defined as the sign of X. 
 
** Not testable. 
 

*** Relative length is the Z-score of the allele length, relative to the allelic distribution at the 
microsatellite locus. See the Methods of the main manuscript for a formal definition. 
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Supplementary Table 6. Interactions between covariates 
 

Covariate x1  Covariate x2  r2  P‐value x1  P‐value x2  P‐value x1ڄx2 
Genotype error rate  absolute length  0.004  2.37E‐01  2.01E‐04  9.20E‐03 

human‐chimp divergence  absolute length  0.000  8.51E‐01  6.04E‐01  9.75E‐01 

human‐chimp divergence  Genotype error rate  0.002  2.12E‐01  5.50E‐02  1.67E‐01 

recombination rate  absolute length  0.001  3.30E‐01  1.48E‐13  5.62E‐01 

recombination rate  Genotype error rate  0.002  2.97E‐01  5.02E‐10  4.88E‐01 

recombination rate  human‐chimp divergence  0.053  2.17E‐03  2.56E‐01  1.03E‐03 

DNA replication time  absolute length  0.000  1.56E‐03  7.05E‐14  7.47E‐03 

DNA replication time  Genotype error rate  0.004  1.98E‐01  3.34E‐12  1.10E‐01 

DNA replication time  human‐chimp divergence  0.006  5.48E‐02  4.31E‐01  3.73E‐02 

DNA replication time  recombination rate  0.005  4.11E‐01  3.77E‐03  7.69E‐03 

ASD  absolute length  0.045  1.07E‐04  1.41E‐04  1.75E‐01 

ASD  Genotype error rate  0.019  5.80E‐01  7.83E‐06  4.45E‐02 

ASD  human‐chimp divergence  0.000  4.80E‐01  9.04E‐01  8.55E‐01 

ASD  recombination rate  0.000  3.35E‐33  5.94E‐04  3.15E‐03 

ASD  DNA replication time  0.001  5.90E‐33  3.91E‐01  9.21E‐01 

B‐stat  absolute length  0.000  1.60E‐01  2.14E‐05  6.46E‐01 

B‐stat  Genotype error rate  0.000  4.71E‐02  8.96E‐03  1.49E‐02 

B‐stat  human‐chimp divergence  0.188  1.03E‐01  4.20E‐01  4.98E‐02 

B‐stat  recombination rate  0.155  1.33E‐01  5.69E‐02  7.69E‐02 

B‐stat  DNA replication time  0.103  1.65E‐03  2.14E‐03  3.83E‐03 

B‐stat  ASD  0.000  8.35E‐01  2.98E‐15  2.64E‐01 

recombination hotspot  absolute length  0.002  1.08E‐02  3.36E‐14  9.32E‐03 

recombination hotspot  Genotype error rate  0.000  8.70E‐01  1.31E‐13  9.93E‐01 

recombination hotspot  human‐chimp divergence  0.005  2.20E‐01  3.14E‐01  1.87E‐01 

recombination hotspot  recombination rate  0.220  2.94E‐01  1.84E‐02  2.25E‐01 

recombination hotspot  DNA replication time  0.002  1.66E‐01  1.45E‐02  6.33E‐01 

recombination hotspot  ASD  0.001  1.16E‐01  8.76E‐31  1.75E‐01 

recombination hotspot  B‐stat  0.015  1.65E‐01  2.98E‐04  2.17E‐01 

physical position  absolute length  0.000  1.28E‐01  9.51E‐11  1.24E‐01 

physical position  Genotype error rate  0.000  7.45E‐01  1.38E‐06  8.24E‐01 

physical position  human‐chimp divergence  0.007  4.98E‐01  2.95E‐01  4.69E‐01 

physical position  recombination rate  0.001  8.39E‐01  1.88E‐02  2.88E‐01 

physical position  DNA replication time  0.005  6.33E‐01  9.53E‐02  7.88E‐01 

physical position  ASD  0.001  4.46E‐03  3.38E‐07  3.49E‐03 

physical position  B‐stat  0.004  3.40E‐01  7.38E‐03  5.01E‐01 

physical position  recombination hotspot  0.002  3.15E‐01  8.80E‐02  2.23E‐01 

repeat impurity  absolute length  0.180  5.82E‐01  5.68E‐31  9.37E‐03 

repeat impurity  Genotype error rate  0.001  8.29E‐04  1.53E‐06  4.12E‐04 

repeat impurity  human‐chimp divergence  0.000  4.14E‐01  2.37E‐01  3.40E‐01 

repeat impurity  recombination rate  0.000  1.12E‐01  1.43E‐02  6.32E‐01 

repeat impurity  DNA replication time  0.002  1.20E‐02  9.11E‐03  1.31E‐01 
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repeat impurity  ASD  0.014  9.70E‐01  1.27E‐28  6.92E‐01 

repeat impurity  B‐stat  0.003  3.60E‐06  1.19E‐06  7.12E‐06 

repeat impurity  recombination hotspot  0.001  5.09E‐02  3.25E‐01  2.63E‐01 

repeat impurity  physical position  0.000  3.31E‐01  7.44E‐01  7.45E‐01 

Heterozygosity  absolute length  0.099  3.89E‐03  2.11E‐01  8.00E‐01 

Heterozygosity  Genotype error rate  0.014  6.49E‐01  6.87E‐06  1.68E‐02 

Heterozygosity  human‐chimp divergence  0.001  3.75E‐01  7.18E‐01  7.71E‐01 

Heterozygosity  recombination rate  0.000  8.50E‐48  5.55E‐02  3.00E‐01 

Heterozygosity  DNA replication time  0.005  1.48E‐53  2.47E‐02  6.83E‐02 

Heterozygosity  ASD  0.416  2.31E‐02  3.95E‐04  9.65E‐13 

Heterozygosity  B‐stat  0.002  3.13E‐19  2.20E‐01  7.60E‐01 

Heterozygosity  recombination hotspot  0.000  1.44E‐52  1.13E‐01  2.89E‐01 

Heterozygosity  physical position  0.000  3.14E‐16  2.95E‐02  3.22E‐02 

Heterozygosity  repeat impurity  0.019  1.79E‐48  5.31E‐01  4.03E‐01 
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Supplementary Table 7. Bayesian parameters for evolution modeling 
 

 
 

Note: This table gives the prior distributions used in our Bayesian modeling analysis, obtained 
from surveys of the literature and discussions with experts in relevant fields (our approach to 
obtain these priors is also discussed in the Methods section). The experts we consulted were John 
Hawks and David Pilbeam regarding the ape fossil record; Kevin Langergraber and Linda 
Vigilant regarding primate generation intervals and plausible generation intervals in the ancestral 
population; and Jack Fenner regarding the recent human generation interval. We thank all these 
colleagues for useful discussions and advice.  
 
The parameters above the thick black line are “global parameters” used for microsatellite 
evolution modeling, in which the same set of parameter values apply to all loci, per simulation. 
The parameters below the line are used after the posterior TMRCA of Western Europeans has 
been obtained. 

   

Class  Description 
Sampling 
distribution  Mean (SD)  Units 

Generation interval  ݃௔௡௖   Generation time in the human‐chimp ancestor  Normal  22.5 (4.24)  years 
݃௡௢௪  Present‐day human generation time  Normal  29.0 (2.04)  years 

         
 ଴       Inflection point of the logistic curveݐ Mixture of 3 

exponentials of 
equal probability 

50  thousand years 
200 
2000 

Parental age difference  Δ௔௡௖    Age difference in the human‐chimp ancestor  Normal  0.50 (3.33)  years 
(paternal minus maternal)  Δ௡௢௪   Present‐day human parental age difference  Normal  6.00 (2.04)  years 

         
Mutation rate as a  ଴,௣௔௧   Paternal mutation rate, baseline (at age 0)ߚ multivariate t  see Fig 2A  ߤ
function of    ଴,௠௔௧  Maternal mutation rate, baseline (at age 0)ߚ (sampled from  ߤ
generation interval   ଵ,௣௔௧   Slope of paternal mutation rate with ageߚ Fig 2A)   per year ߤ

 ଵ,௠௔௧   Slope of maternal mutation rate with ageߚ  per year ߤ

         
Mutation rate with length  ݉ఓ  Slope of mutation rate vs. absolute allele length Normal  1.66 (0.30) x10‐5   per repeat unit ߤ

Length constraint  Slope of mutational direction vs. relative allele length  Normal  ‐0.419 (0.060)  repeat units per SD 

For human‐chimp   ா   Ratio of human‐chimp to Western Europeanߨ/ு஼ߨ Normal  15.4 (0.356)  dimensionless 
divergence time                   sequence divergence 

For human‐chimp  ߬ு஼/ݐு஼    Ratio of human‐chimp speciation time   Normal  0.663 (0.041)  dimensionless 
speciation time                    to genetic divergence time 

For human‐orangutan  ு஼ߨ/ுைߨ   Ratio of human‐orangutan to human‐chimp  Normal  2.65 (0.075)  dimensionless 
divergence time                     sequence divergence 
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Supplementary Table 8. Mutation rate estimates and sequence heterozygosities in 23 
individuals 

 

Illumina dataset  Sequence heterozygosity  Mutation rate estimates (x 10‐8) 
Population  ID  mean  std error  mean  std error  5th percentile  95th percentile 

CEU  NA12891  0.000860  0.000026  1.65  0.44  1.00  2.43 
CEU  NA12892  0.000838  0.000026  1.92  0.37  1.33  2.56 
CEU  NA12878  0.000838  0.000026  1.42  0.34  0.91  2.01 
YRI  NA19239  0.001112  0.000027  1.80  0.44  1.12  2.55 
YRI  NA19238  0.001048  0.000027  2.46  0.53  1.65  3.38 
YRI  NA18508  0.001174  0.000028  1.18  0.35  0.64  1.79 
YRI  NA19240  0.001168  0.000028  2.57  0.56  1.68  3.53 
YRI  NA18507  0.001077  0.000031  2.12  0.53  1.33  3.04 
YRI  NA18506  0.001141  0.000030  2.13  0.54  1.33  3.09 

                   
         
         
Complete Genomics dataset  Sequence heterozygosity  Mutation rate estimates (x 10‐8) 

Population  ID  mean  std error  mean  std error  5th percentile  95th percentile 
CEU  NA12891  0.000804  0.000025  1.36  0.31  0.90  1.90 
CEU  NA12892  0.000804  0.000025  1.58  0.30  1.11  2.10 
CEU  NA12878  0.000780  0.000026  1.15  0.25  0.77  1.58 
CEU  NA06985  0.000800  0.000027  1.06  0.28  0.65  1.54 
CEU  NA06994  0.000850  0.000029  0.91  0.20  0.61  1.25 
CEU  NA07357  0.000794  0.000027  1.12  0.31  0.66  1.67 
CEU  NA10851  0.000848  0.000029  1.00  0.23  0.66  1.40 
CEU  NA12004  0.000841  0.000028  1.13  0.29  0.69  1.63 
YRI  NA19239  0.001035  0.000026  1.50  0.35  0.96  2.08 
YRI  NA19238  0.000980  0.000026  2.09  0.42  1.44  2.81 
YRI  NA18508  0.001089  0.000027  1.06  0.29  0.62  1.57 
YRI  NA18501  0.001062  0.000026  1.52  0.37  0.95  2.14 
YRI  NA18502  0.001062  0.000027  2.86  0.53  1.98  3.72 
YRI  NA18504  0.001059  0.000026  1.31  0.31  0.84  1.84 
YRI  NA18505  0.001076  0.000027  1.27  0.29  0.82  1.77 
YRI  NA18517  0.001083  0.000027  1.32  0.41  0.72  2.08 
CHB  NA18526  0.000798  0.000027  1.89  0.36  1.32  2.50 
CHB  NA18537  0.000766  0.000026  1.51  0.32  1.02  2.06 
CHB  NA18555  0.000779  0.000026  1.38  0.28  0.94  1.88 
CHB  NA18558  0.000770  0.000027  1.25  0.36  0.72  1.90 

                   

 

Mutation rates (in units of X*1e‐8 /bp/generation) and Bayesian posterior  intervals for each  individual 
are  shown  here.  In  bold  are  individuals  that  overlap  between  the  two  datasets.  See  Supplementary 
Figure 12 for a graphical representation. 
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Supplementary Table 9. Ascertainment bias around microsatellite loci 
 

Population  HapMap ID
msat 

region
random 
region ratio 

CEU  NA12891 0.088 0.085 1.037 
CEU  NA12892 0.087 0.082 1.067 
CEU  NA12878 0.090 0.085 1.057 
YRI  NA19239 0.118 0.113 1.041 
YRI  NA19238 0.110 0.105 1.046 
YRI  NA18508 0.119 0.116 1.025 
YRI  NA19240 0.121 0.114 1.059 
YRI  NA18507 0.112 0.107 1.043 
YRI  NA18506 0.118 0.114 1.036 

   
human‐chimp  2.347 2.248 1.044 
human‐macaque  7.978 7.884 1.012 

 

We  compared  sequence  heterozygosity  (in  units  of  X*10‐2)  of  regions  surrounding  our  set  of 
microsatellites  to  that  of  a  random  region. On  average,  the  sequence  heterozygosity was  about  4% 
higher,  suggesting  that we  have  a  slight  bias  towards  the  deeper  trees  in  the  human  genome. Our 
modeling of evolutionary parameters explicitly corrects for such biases in two ways. First, we correct for 
unusual mutation  rates around microsatellites by normalizing  inferences by  the  ratio of  local human‐
macaque sequence divergence to genome‐wide average human‐macaque sequence divergence. Second, 
we correct for unusual gene tree depths around microsatellites by making all  inferences based on the 
comparison of local microsatellite ASD to heterozygosity in the flanking sequence data. 
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Supplementary Notes  
 
 
Chapter 1: Estimating the Genotyping Rate 
 
Based on the discordance rate of multiple-genotyped alleles, we estimated the per-allele 
genotype error rate for each locus. Formally, at a particular microsatellite locus, a single allele is 
observed after genotyping. There is a non-zero probability that the genotyping yielded an 
erroneous allele length. What is this probability of error? 
 
Let ̂݌ ൌ  Our goal. 0 ൑ ̂݌ ൑ 1. 

݇ ൌ  Number of times an allele is repeatedly genotyped.  
݊௞ ൌ  Total number of individuals who were each genotyped k-times.  
௞ݕ ൌ  Number of individuals that resulted in inconsistent genotypes.  

 
For a given individual at a given locus, suppose the true bi-allelic genotype is a, and after 
genotyping, bi is observed. 

 
 
To further simplify, suppose that after repeatedly genotyping k times (k is a known quantity), 
with εij IID (independent and identically distributed) with probability p of being nonzero, we 
only observe the indicator random variable X: 
 

ܺ ൌ 1 െ ॴሺ࢈૚ ൌ ૛࢈ ൌ ڮ ൌ  ሻ࢑࢈
  
Assuming that the probability of making k identical errors is negligibly small, then 
 

 
 
Suppose for n individuals genotyped k times at this particular locus, p is unknown but constant. 
Our goal is to find the optimal estimate for parameter p. 
 
Thus, our data is modeled as IID . 
 
By using the maximum likelihood estimate (MLE) for the Bernoulli family, and applying the 
invariance property of MLE, the MLE for p is  
 

 
 
The approximation is a 1st-order Taylor expansion around , and hence is good only for 
sufficiently small genotype error probabilities, which we expect in this case. With this 
approximation, . We use this approximation for all subsequent analyses. 
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Above we gave the derivation of a single k. For multiple k, what is the best estimate of p, 
assuming p is constant for all k? To derive the correct MLE, let , where the subscript 
k emphasizes the dependence on k. It can be shown that Yk is a sufficient statistic for p, and  
 

 
 
Importantly, Yk are independent for different k, but clearly not identically distributed. 

 
 
Differentiating and setting equal to 0 yields: 
 

 
 
 
Unfortunately, p cannot be expressed explicitly. A numerical algorithm such as Newton’s 
Method is needed to find p. However, if we use the Poisson approximation to the binomial, i.e. 
nk is large and 2kp is small, then an analytical solution can be found: 
 

 
 

 
 
Differentiating and setting equal to 0 yields: 
 

 
 
We use this formula to estimate the per allele genotype error rate at each microsatellite locus. 
Supplementary Figure 2 shows the distribution of error rates across the 2,477 loci. The median 
rate is 1.8x10-3, with a 95% central range of 1.7x10-4 to 1.4x10-2. Since this number is 
comparable to the expected microsatellite mutation rate, a simple search for mutations using trios 
genotyped at 1× coverage will lead to many erroneous mutations. Thus, we developed the “trio 
approach” and “family approach” to obtain mutations that are highly likely to be genuine. 
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We removed loci that have an excess rate of homozygous-to-homozygous mutations, compared 
with the expectation from Hardy-Weinberg equilibrium. To do this, for each locus we compare 
the observed homozygosity of all alleles to the observed homozygosity of the mutations. We 
perform a one-sided binomial test and remove any locus with a p-value < 0.05 (plus a Bonferroni 
correction by a factor of 2477, the number of loci examined). Formally, for each locus let 
 
݌  ൌ  Observed homozygosity of all alleles genotyped. 0 ൑ ݌ ൑ 1. 

݊ ൌ  Number of mutations observed.  
݇ ൌ  Number of mutations that are from a homozygous-parent to a homozygous-child 

 

P‐value ൌ෍ቀ݊݅ ቁ ݌
ଶ௜ሺ1 െ ଶሻ௡ି௜݌

௡

௜ୀ௞

 

 
Note that we have p2 instead of p because we are observing two homozygous genotypes 
simultaneously. In this manner, 49 loci were removed from the trio approach.  
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Chapter 3: Details of the family approach in mutation detection 
 
 
Assigning alleles to haplotypes: a constraint satisfaction problem 
 
Since Allegro cannot determine haplotypes in the presence of a mutation (a Mendelian 
inheritance error), we initially mask out any locus that generates inheritance errors. Based on 
neighboring loci, Allegro imputes haplotypes into the masked loci. To optimally assign 
haplotypes to alleles, this problem can now be posed as a constraint satisfaction problem (CSP) 
and solved. 
 
Goal:  Given the family structure below, a set of haplotypes, and a set of alleles at a particular 

locus, assign haplotypes to alleles in a way that is consistent with the family structure. 
 

 
 
Solution: 

We formulate this problem in terms of a constraint satisfaction problem (CSP). Suppose 
we have individuals ܫଵ, ,ଶܫ … , ,ଶܪ,ଵܪ ௠ and haplotypesܫ … ,  ௡, where n is even. Then, we canܪ
write the alleles in a sparse matrix format, as shown below. Each row is an individual, each 
column is a haplotype, and each matrix entry is the pair of alleles of the corresponding individual. 
Since each individual has 2 haplotypes, we have 2 matrix entries per row. The CSP problem is 
then to find the suitable unique number for each matrix entry.  

Formally, the set of variables is the non-empty entries of the matrix, denoted as ௜ܺ௝. In 
the example below, there are 6 variables. Each variable has a domain of values. Since loci are 
diploid, we have 2 values per domain. There are two constraints for this CSP: (1) The non-empty 
entries of each column must be equal. (2) The non-empty entries of each row must be different, 
unless the domain is a homozygote, such as “7, 7”. The desired outcome of the CSP is shown 
below. 

CSP in the presence of mutation. Without mutations, we simply run the algorithm over 
the entire family in one batch. However, suppose that there is a candidate mutant in the proband, 
then a single batch CSP would yield an empty solution. To resolve this, we instead use the 
following steps: (1) Run CSP over b1, b2, and b’. This group should carry the ancestral allele. (2) 
Run CSP over a, as, and a’. This group should carry the mutant allele. At this point, we should 
have the 6 six haplotypes assigned to the alleles, with 1 haplotype assigned inconsistently 
between the two groups. Thus, in combining the results, we have successfully identified the 
haplotype carrying the mutant, the mutant allele, and the ancestral allele. 

 
Example. In this family, we have 2 members of a’ and 2 members of b’. We first run CSP over 
the ancestral group, yielding:  
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This yields a haplotype assignment of  
 

 
 

 
Next, we run CSP of the mutant group, yielding: 
 

 
 

This yields a haplotype assignment of 
 

 
 

We see that haplotype 2 is inconsistent between the two sets of assignments. Therefore, 
haplotype 2 is the one of interest, carrying ancestral allele 4 and mutant allele 6. Below is the full 
haplotype of the entire region and the 4th microsatellite locus as the mutating one: 
 

 
 
Note that in this example, if we instead used the trio approach, i.e. we are limited to the data of 
ܾଵ ൌ ሺ4, 8ሻ, ܾଶ ൌ ሺ2, 8ሻ, ܽ ൌ ሺ6, 8ሻ. The mutant allele of 6 would be detected, but we would not 
be able to find the parental origin of the mutation. Thus, by using additional family members and 
neighboring loci, the family approach allows parental assignment of the mutation.  

8
4

2
8

1 2 3 4 5 6 7 8

8
2

4
8

6
8

4
6

8
4

6
6

H1
H2
H3
H4
H5
H6
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Chapter 4: Testing the Heterozygote Instability Hypothesis 
 
 
Amos et al.3 suggested that if the parental allele is heterozygous, the mutation rate will be 
elevated compared to homozygous parental alleles. This would have significant implications as 
population size (N) is related to heterozygosity, and thus ߤ ൌ ݂ሺܰሻ  would significantly 
undermine the population genetics assumption that ܰ and ߤ are independent. 
 
We tested the Heterozygote Instability hypothesis as follows: 
 

The Heterozygote Hypothesis: If the parent is more heterozygous (i.e. length differences 
of alleles are large), then the mutation rate is higher. 

 
Prediction of the hypothesis: For each microsatellite mutation, the magnitude of length 
difference in the parent who transmitted the mutation is expected to be larger than that of 
an individual randomly sampled at the same microsatellite locus. 

 
Definitions: 

 
Ω  The entire sample space of individuals genotyped. 
ܵԢ  The subspace of parents who transmitted mutations. 
ܵ  The subspace of individuals who do not belong to ܵԢ (complement of ܵԢ). 
 
 .݆ ௝ A random sample of a pair of alleles from ܵ at locusܤ ௝ܣ
 .௝ᇱ Likewise, but sampled from ܵԢܤ ௝ᇱܣ

 
௝ܮ .௝  The length difference of the alleles, i.eܮ ൌ หܣ௝ െ  ௝หܤ
௝ᇱܮ   Likewise, but sampled from ܵԢ. 
 

 
Formalized hypothesis: Given the definitions, and assuming the hypothesis is true, then 
ᇱܮ െ ܮ ൐ 0 is true over the set of loci ܬ.  
 
 
Testing the hypothesis: 
 
Dataset: 363 mutations from the family approach. We do not use trio mutations for this 
analysis, because in trio mutations we have directly filtered based on the excessive 
homozygosity of certain mutant loci. Since the filter directly influences the parameter we 
are trying to estimate, we cannot use the larger trio dataset.  
  
Sampling ܮԢ: We use the parents who transmitted the mutations. Thus, ௝݈ᇱ ൌ parental allele 
difference for case ݆.  
 

Nature Genetics: doi:10.1038/ng.2398



40 | P a g e  
 

Sampling ܮ : For each mutation case, we take that locus’ allelic distribution, and 
independently sample ݊ length differences and take the average. More precisely, at case ݆, 
we sample and compute ௝݈ ൌ

ଵ
௡
∑ ௝݈,௜
௡
௜ୀଵ .. 

 
Results: Below is the histogram for the 363 data points of ௝݈ᇱ െ ௝݈, with ݊ ൌ 1000. To test 
whether the mean is significantly different from 0, we perform a one-sample two-sided t-
test, as was done by Amos et al., and obtain ݐଷ଺ଶ ൌ 1.48, ݌ ൌ 0.14. Therefore, our data 
provide no significant support for the Heterozygote Instability hypothesis. 
 

 
 

 
 

   

-15 -10 -5 0 5 10 15 20 25
0

10

20

30

40

50

L′ - L [bp]

Nature Genetics: doi:10.1038/ng.2398



41 | P a g e  
 

Chapter 5: Microsatellite evolution modeling to infer TMRCA 
 
 
I. Overview 
 
Using the mutational characteristics that we observed, we can build a model of microsatellite 
evolution through time. Given additional parameters summarizing evolutionary history, such as 
the coalescent time (tMRCA) of modern-day Western Europeans, we can simulate allelic 
distributions of microsatellites at any genotyped locus. By optimally matching statistics (such as 
ASD) of the simulated allelic distribution to that of the empirically observed data, we can infer 
parameters of interest such as tMRCA.  

Given any local region of the genome, tMRCA between individuals in that region 
(assuming no recombinations occurred in the region) must be constant, regardless of whether the 
genomic features examined are microsatellites or nucleotide substitutions. Therefore, once we 
have determined tMRCA at each microsatellite locus, we can use that value in conjunction with 
neighboring sequence divergence to infer parameters such as the sequence mutation rate. 
Furthermore, given a ratio of human-chimpanzee tMRCA to Western-European divergence, we can 
use our Western-European tMRCA to estimate the genetic divergence of present-day humans to 
chimpanzees. A key point is that all inferences here are performed without a calibration to the 
fossil record.  
 
 
II. Model design 
 
At a particular microsatellite locus, a single run consists of simulating a coalescent tree, adding 
mutations onto the branches of the tree, and finally collecting simulated data at the leaf nodes. 
By default, the coalescent tree has time in units of generations. When conducting inferences that 
require time in years, we rescale the branch lengths into years following a generation-time 
function, as described below. 
 
 

1. Demography: Generating the coalescent tree 
 
We use the 2-bottleneck model from Keinan et al.1 (Fig S13). Coalescent trees are 
sampled using this demography. 
 

 
2. Variation of generation-time in history 

 
In modern-day human populations, the average time per generation is about 29 years4. 
However, this number is likely to have been different in the past. To simulate variation in 
generation-time, we use the logistic curve 
 

݃ሺݐሻ ൌ ݃௔௡௖ ൅
݃௡௢௪ െ ݃௔௡௖

1 ൅ exp ൬ݐ െ ଴ݐ
଴/4ݐ

൰
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Where we define 

݃௔௡௖ Generation time of the common ancestor of humans and chimpanzees 
݃௡௢௪ Generation time of present-day humans 
 ଴ Inflection point of an assumed rapid change between ݃௔௡௖ and ݃௡௢௪ݐ

 
These 3 parameters are stochastic. The shapes of the distribution, means, and variances 
are given in Supplementary Table 7. To determine ݃ሺݐሻ , we first sample these 3 
parameters from their distributions. 
 
 
 

3. Scale coalescent tree into units of years 
 
The ݃ሺݐሻ logistic function is the transformation factor from generations to years. When it 
is necessary to make inferences in years, we use ݃ሺݐሻ to rescale branch lengths as follows: 
The mean generation-time between a node and its parent is analytically calculated as 
 

ҧ݃ሺݐଵ, ଶሻݐ ൌ
1

ଶݐ െ ଵݐ
න ݃ሺݐሻ݀ݐ
௧మ

௧భ
 ൌ ݃௡௢௪ ൅

݃௡௢௪ െ ݃௔௡௖
ଶݎ െ ଵݎ

log
1 ൅ expሺݎଵ െ 4ሻ
1 ൅ expሺݎଶ െ 4ሻ 

 
Where we define 

 ଵ Time of current node, in units of generationsݐ
 ଶ Time of parental node, in units of generationsݐ
 ଴ݐ/ଵݐଵ 4ݎ
 ଴ݐ/ଶݐଶ 4ݎ

 
Once ҧ݃ሺݐଵ,  ଶሻ is calculated, that particular branch length is trivially scaled into time inݐ
units of years. 
 
 
 

4. Mutation generation 
 

Mutations are added onto the coalescent tree, sequentially from the root to the leaves. We 
first generate the baseline mutation rate, which is governed by the mean number of 
repeats of the microsatellite locus (Fig 2C). Furthermore, using our empirical 
observations, we build into our model that the mutation rate changes dynamically as 
generation-time and allele length change (Fig 2A,C) as we propagate from the root to the 
leaves of the tree. Finally, as mutations are generated, there is a constraint on allele length 
(Fig 2D). The details are given below. 
 
(a) The locus-specific baseline mutation rate: For a given locus, we first establish the 

mutation rate ߤ଴ , which is constant throughout the coalescent tree. This baseline 
mutation rate is determined using the mean absolute length.  
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(b) Generation-time effect: In Fig 2A we observed that parental age affects mutation rate. 
Since generation-time ݃ሺݐሻ is modeled as varying as we travel down the coalescent 
tree, ݃ሺݐሻ causes a dynamic change in the mutation rate. In Fig 2A we demonstrated a 
difference in the paternal and maternal behavior, and we therefore first split 
generation-time into paternal time ݃௣௔௧ሺݐሻ and maternal time ݃௠௔௧ሺݐሻ: 
 

݃௣௔௧ሺݐሻ ൌ ݃ሺݐሻ ൅ 0.5 · Δሺݐሻ 
݃௠௔௧ሺݐሻ ൌ ݃ሺݐሻ െ 0.5 · Δሺݐሻ 

 
Δሺݐሻ is the mean difference between paternal and maternal age, at time t. Note that 
this is a time-varying quantity too, as Δ of present-day humans could be different 
from that of the human-chimp common ancestor. In particular, we model Δሺݐሻ as 
entirely analogous to the logistic function of ݃ሺݐሻ. 
 

Δሺݐሻ ൌ Δ௔௡௖ ൅
Δ௡௢௪ െ Δ௔௡௖

1 ൅ exp ൬ݐ െ ଴ݐ
଴/4ݐ

൰
 

 
Δ௡௢௪ and Δ௔௡௖ are sampled values. (See  Supplementary Table 7 for the distributions, 
means, and variances used.) ݐ଴ uses the same value sampled from ݃ሺݐሻ and hence is 
not a new sample. Once ݃௣௔௧ሺݐሻ  and ݃௠௔௧ሺݐሻ  are determined, we can obtain the 
gender-specific mutation rates and the gender-averaged mutation rate: 
 

ሻݐ௣௔௧ሺߤ ൌ ଴,௣௔௧ߚ  ൅ ଵ,௣௔௧ߚ   · ݃௣௔௧ሺݐሻ 
ሻݐ௠௔௧ሺߤ ൌ ଴,௠௔௧ߚ ൅ ଵ,௠௔௧ߚ · ݃௠௔௧ሺݐሻ 

ሻݐ௚ሺߤ                                            ൌ ቀߤ௣௔௧ሺݐሻ ൅ ሻቁݐ௠௔௧ሺߤ /2 
 
Where we define 

 ଴,௠௔௧ The intercepts of regressions in Fig 2Aߚ ,଴,௣௔௧ߚ
 ଵ,௠௔௧ The slopes of regressions in Fig 2Aߚ ,ଵ,௣௔௧ߚ
 

To take into account the stochasticity of the slopes and intercepts, these quantities are 
sampled from the data, using a Bayesian analysis of simple linear regression (or 
equivalently, a draw from the multivariate student-t distribution).  
 
We can summarize ߤ௚ሺݐሻ using the matrix notation below:  
 

ሻݐ௚ሺߤ ൌ
1
2
ሾ1 1ሿ · ൬൤

ଵ,௣௔௧ߚ 0
0 ଵ,௠௔௧ߚ

൨ ൤1   1/2
1 െ1/2൨ ቂ

݃௔௡௖ ݃௡௢௪
Δ௔௡௖ Δ௡௢௪ቃ ൤

1 െ ݂ሺݐሻ
݂ሺݐሻ ൨ ൅ ൤

଴,௣௔௧ߚ
଴,௠௔௧ߚ

൨൰ 

 
    Where ݂ሺݐሻ ൌ ଵ

ଵାୣ୶୮ቀ೟ష೟బ೟బ/ర
ቁ
 

 
We highlight two special cases: 
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i. If mutations are entirely generation-like, i.e. ߚଵ for both parents are 0, then the 
expression simplifies to ߤ௚ሺݐሻ ൌ ሺߚ଴,௣௔௧ ൅  ଴,௠௔௧ሻ/2. Thus, as expected inߚ
this case, the mutation rate does not vary as a function of generation interval.  
 

ii. If mutations are entirely year-like, i.e. ߚ଴ for both parents are 0 and ߚଵ,௣௔௧ ൌ
ଵ,௠௔௧ߚ , then the expression simplifies to ߤ௚ሺݐሻ ൌ ଵߚ · ݃ሺݐሻ . Hence the 
mutation rate per generation perfectly correlates with generation-time. 
However, the mutation rate per year, ߤ௚ሺݐሻ/݃ሺݐሻ, becomes a constant. 

 
 

(c) Generating the instantaneous mutation rate: At any point along the coalescent tree, 
the instantaneous mutation rate is a function of the baseline rate, generation-time, and 
allele length. We combine these three factors to generate the mutation rate ߤሺݐሻ: 

ሻݐሺߤ ൌ ሺ݉ · ሻݐሺݕ ൅ ଴ሻߤ ·
ሻݐ௚ሺߤ
௚ሺ0ሻߤ

 

 
Where we define 

 ሻ The allelic length of the branch at time tݐሺݕ
݉ The slope in Fig 2C that relates allelic length to mutation rate 
 ଴ The baseline mutation rate described in part (a)ߤ
 ሻ The mutation rate as a function of generation time, as described in (b)ݐ௚ሺߤ
 ሻݐ௚ሺߤ ௚ሺ0ሻ The present-day mutation rate, as determined by theߤ

 
Note that this mutation rate model simplifies to that of the generalized stepwise 
mutation model (GSMM) if ݉ ൌ 0 and ߤ௚ሺݐሻ ൌ  .௚ሺ0ሻߤ
 
 

(d) Generating mutation events: Suppose we are on a branch (shown below) where the 
(k-1)-th mutation occurred at ݐ௞ିଵ, which is marked by the “X”. The allele length 
immediately following that event is ݕሺݐ௞ିଵሻ  and the generation-time is ݃ሺݐ௞ିଵሻ . 
Mutation events are simulated forward in time, from the root of the tree, using an 
exponential distribution with mean ߤሺݐ௞ିଵሻ, which is determined from the equation in 
part (c). After a random sample ܶ~݌ݔܧሺߤሺݐ௞ିଵሻሻ  is drawn, if ܶ ൏ ߬ , generate a 
mutation with length ܻሺݐ௞ሻ and update ߬ to be ߬ െ ܶ. Otherwise, there are no more 
mutations in the branch and move on to the next branch. Details for generating ݕሺݐ௞ሻ 
are described in the next section. 

 
The process for generating mutation events for a coalescent tree re-scaled into units 
of years is very similar, except that the mutation rate at any point in time is divided by 
the generation-time, e.g. we set the mutation rate per year to be ߤሺݐ௞ିଵሻ/݃ሺݐ௞ିଵሻ. 

x

time

௞ିଵሻݐሺݕ

߬
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(e) Generating microsatellite lengths for each mutation event: In the GSMM, the 
microsatellite length ݕሺݐ௞ሻ is the parental length plus the mutational length, which is 
an independent random sample from the mutation length distribution, defined as ݔ for 
the k-th mutation event. However, using our empirical observations (Fig 2D, Fig S7, 
Fig S8), we model the fact that longer microsatellites tend to mutate to a shorter 
length, and vice versa, as a linear function: 
 
௞ሻݐሺݕ                                       ൌ ௞ିଵሻݐሺݕ ൅ ௞ሻݐሺݔ ൅

௬ሺ௧ೖషభሻ
ఙ

݉ 

                                                ൌ ቀ1 ൅ ௠
ఙ
ቁ ௞ିଵሻݐሺݕ  ൅  ௞ሻݐሺݔ

 
Where we define 

 ௞ሻ The mutation length, drawn randomly from the mutation lengthݐሺݔ
distribution in Fig 2B 

 ௞ିଵሻ The microsatellite allele length, just prior to the mutationݐሺݕ
 ௞ሻ The microsatellite allele length, just after the mutationݐሺݕ
݉ The slope in Fig S8A. This quantity is negative, generating the length 

constraint. 
 The standard deviation of the allelic distribution of the locus, based on ߪ

empirical data 
 
Observations: 

• Note that while ߪ  is locus specific, m was obtained from the combined 
mutational data of all loci.  

• If ݉ ൌ 0, this equation reduces to the GSMM. 
• At the root of the coalescent tree, we begin with allele length of ݔ଴, which is 

determined from the empirical allele length distribution. However, we set 
௥௢௢௧ሻݐሺݕ ൌ 0 when propagating mutations. When collecting allele lengths at 
the leaf nodes, ݔ଴ is added back in. 

ߪ/௞ିଵሻݐሺݕ •  produces a Z-score (horizontal axis of Fig S8A) showing the 
degree of deviation from the mean length, and through multiplication with 
slope ݉, gives the strength of the return-to-mean length constraint. 

 
 

III. Model simulation 
 
For an individual whose genome sequence is available, diploid microsatellites genotypes are 
simulated as follows: 
 
1. Generate 1 set of genome-wide parameters (Supplementary Table 7), which are common 

across loci, sampling from the prior distributions obtained from the literature and our direct 
measurements in this study. This includes the genome-wide sequence mutation rate and 
microsatellite mutation rate. 
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2. At locus ࢏ ൌ ૚ , generate locus-specific mutation rate ࢏,࢚ࢇ࢙࢓ࣆ . The local microsatellite 
mutation rate is the genome-wide rate multiplied by  ݈௜/݈௚௘௡௢௠௘ , where ݈௚௘௡௢௠௘  is the 
genome-wide mean microsatellite length, and ݈௜ is the locus-specific length (averaged across 
individuals). The local variation in microsatellite mutation rate is modeled to be purely due to 
allele length variation, which strongly influences mutation rate (Figure 2C).  

 
3. At the locus, generate locus-specific mutation rate ࢏,ࢗࢋ࢙ࣆ. Analogous to step 2, the local 

sequence mutation rate is the genome-wide rate multiplied by ܦ௜/ܦ௚௘௡௢௠௘, where ܦ௜ is the 
local human-macaque divergence, and ܦ௚௘௡௢௠௘  is the genome-wide human-macaque 
divergence. The local variation in sequence mutation rate is modeled to be purely due to 
human-macaque divergence variation, which is known to strongly influence mutation rate. 

 
4. At the locus, generate coalescent time ࢏࢚, using local sequence heterozygosity if available. 

The key is that the coalescent tree is shared between microsatellites and sequence, and if the 
local sequence heterozygosity is highly precise, it puts a strong constraint on the local 
TMRCA. The coalescent time is drawn from a gamma distribution with mean: ே೔ାଵ

ఒ೔ାଵ/ఛ೒೐೙೚೘೐,೔
, 

where ߣ௜ ൌ ௜ܦ௦௘௤,௜ߤ2 , ௜ܰ/ܦ௜  is the local heterozygosity, and ߬௚௘௡௢௠௘,௜ ൌ ௦௘௤,௜ߤ௚௘௡௢௠௘/2ߠ  is 
the genome-wide average TMRCA. Note that if ܦ௜ is small, we revert to the genome-wide 
TMRCA, but if ܦ௜ is large, the locus-specific heterozygosity overwhelms the genome-wide 
estimate. The gamma distribution is demography-free: If ܦ௜  is small, the distribution 
converges to an exponential with mean ߬௚௘௡௢௠௘,௜ . To test our inference’s robustness to 
demographic differences across populations, we use a 2-bottleneck demographic model 
(Supplementary Figure 13) and sample the coalescent time using rejection sampling with the 
following steps: (1) Sample ߬௚௘௡௢௠௘,௜  with demography (distributions for each population 
shown in Supplementary Figure 13B); (2) calculate the importance ratio of ݎ ൌ exp ቂሺ ௜ܰ െ

ሻݐ௜ߣ ڄ lnሺ ሻݐ௜ߣ െ ∑ ln ݅ே
௜ୀଵ ൅ ∑ ln ۂఒ೔௧ہ݅

௜ୀଵ ൧; (3) accept ݐ with probability (4) ;ݎ If rejected, go to 
step (1). 
 

5. Simulate mutations. Mutations are sequentially generated from the root of the coalescent 
tree, using our model of microsatellite evolution which has length constraints and time-
varying mutation rate as follows: At time ݐ  on the coalescent tree, the mutation rate is 
determined using parental length ݕሺݐሻ, mutation rate ݅ߤ, and the mutation rate relative to the 
present, taking into account variation in generation-time: ݃ߤሺݐሻ/݃ߤሺ0ሻ. We model this as: 
ሻݐ௜ሺߤ ൌ ൫݉ఓ ڄ ሻݐሺݕ ൅ ௜൯ߤ ڄ  is empirically determined ߤ݉ ௚ሺ0ሻ. The slope parameterߤ/ሻݐ௚ሺߤ
from Figure 2C. The waiting time until a mutation is sampled from an exponential 
distribution with mean of 1/ߤሺݐሻ generations. Once a mutation event occurs, its length is 
݈݄݈ܿ݅݀ ൌ ሺ1 ൅݉/ߪሻ ݈ݐ݊݁ݎܽ݌ ൅ ܺ, where ݉ is the negative slope reflecting the length constraint 
in Supplementary Figure 8, ߪ is the standard deviation of the allelic distribution at a locus, 
 is the parent allele length, and ܺ is the mutational length, sampled from the histogram ݐ݊݁ݎܽ݌݈
in Figure 2B. At the root of the tree, without-loss-of-generality the absolute length is set to be 
0. Using this scheme of generating mutation events and mutation lengths, we begin at the 
root of the tree and iterate until the leaves are reached. The leaves are the sets of sampled 
microsatellite alleles, which are used to compute ASD. To obtain time in units of years, we 
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rescale branch lengths of the coalescent tree and mutation rates by ݃ሺݐሻ , which is the 
generation-interval logistic function described above.  
 

6. Record ASD between the two microsatellites, and go to Step 2, with ݅ incremented by 1. 
 
We use a Markov Chain Montel Carlo (MCMC) approach to obtain the posterior distribution for 
present-day sequence mutation rate in a single diploid individual. This algorithm is a variation of 
“algorithm F” of Marjoram et al5, and is as follows: 
1. Sample a set of global parameters ߣ from their prior distribution (Supplementary Table 7). 
2. Propose a move of the sequence mutation rate from ߤ௦௘௤ to ߤ௦௘௤ᇱ . We use ߤ௦௘௤ᇱ  as a random 

walk, sampled from a normal distribution with mean ߤ௦௘௤, and standard deviation 0.5 ൈ 10ି଼.  
3. At locus ݅: 

a. Generate 1000 pairs of microsatellite alleles using our evolution model with 
parameters ߤᇱ௦௘௤ and ߣ.  

b. Calculate ASD. Thus, we now have 1000 samples of simulated ASD. 
c. Compute the error distance ݀௜ ൌ ሺ݉݁ܽ݊ሺܦܵܣ௦௜௠ሻ െ ௥௘௔௟ሻଶܦܵܣ  between the 

simulated ASD and the real ASD of the individual. 
4. Sum the error distance across all loci: ݀௧௢௧௔௟ ൌ ඥ∑ ݀௜௜ . If ݀௧௢௧௔௟ ൏ ߳, accept and set ߤ௦௘௤ to 

be ߤ௦௘௤ᇱ  and go to step 2. Otherwise, reject ߤ௦௘௤ᇱ . We choose ߳  such that the overall 
acceptance rate of the MCMC is between 10% and 50%. (Note that since the proposal 
function is symmetric, and we choose a flat prior on ߤ௦௘௤, we do not need to calculate the 
ratio as described in Step F4 of Marjoram et al., because the ratio is always 1.) 

 
The result of MCMC is a correlated ߤ௦௘௤|ߣ  chain. To collect independent samples, the 
autocorrelation function of the chain is calculated and the correlogram is plotted. The first lag in 
which the correlation coefficient drops below 0.1 is recorded. Call this ݊௟௔௚. Then, we thin the 
chain and collect at every ݊௟௔௚-th sample. Finally, we run 1000 independently sampled ߤ௦௘௤|ߣ 
and combine the thinned samples to produce the overall posterior distribution for ߤ௦௘௤. 
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Chapter 6: Testing the microsatellite evolution model 

 

Overview 
 
To test our procedure for using the microsatellite mutation model to estimate evolutionary 
parameters, we use two approaches. First, we show that our inferences based on the model 
produce unbiased sequence mutation rate estimates. To do this, we simulate microsatellite alleles 
and sequence heterozygosity using a 2-bottleneck demographic model (Fig S13), with a known 
sequence mutation rate and effective population size. Then, with the simulated sequence and 
microsatellite data, we infer the sequence mutation rate and compare it to the truth.  
 
Second, we show that the model is robust to each parameter’s prior probability distribution: we 
use different parameter values for our prior and show that our inferences of the sequence 
mutation rate and human-chimpanzee speciation time are not greatly affected (Fig S10). 
 
 
I. Simulated data shows that the model is unbiased 
 
Procedure: 
 

1. Choose a sequence mutation rate to use in simulation: [1.0, 1.5, 2.0, 2.5, 3.0] x10-8 per bp 
per generation. Use Ne of 12,500 for the 2-bottleneck demography model (Fig S13). 
Generate a set of global parameters (Supplementary Table 7). 
 

2. Based on the demographic model and mutation rate chosen for the simulation, generate 
the local TMRCA for each individual at each locus, followed by the local sequence 
heterozygosity and microsatellite ASD. Generate the local sequence heterozygosity using 
a Poisson process, and the local microsatellite ASD using our model of evolution. 
 

3. Run the Markov Chain Monte Carlo inference to obtain a posterior sequence mutation 
rate estimate for each individual, without any knowledge of the values from Step 1 used 
in generating the data (we also do not use knowledge about the values of the global 
parameters used in the simulations).  

 
4. Obtain inferences for 9 individuals, for each of 5 mutation rates, resulting in 45 posterior 

distributions for sequence mutation rate. With these results, we can report the fraction of 
simulations in which the true TMRCA falls in the 90% Bayesian credible interval.  
 
 

Results: 
 

The CDFs (cumulative distribution function) of posterior sequence mutation rate are 
shown below, one panel per individual. There are 5 curves for each individual, each 
corresponding to a different true mutation rate: [Blue=1.0, Cyan=1.5, Green=2.0, 

Nature Genetics: doi:10.1038/ng.2398



49 | P a g e  
 

Yellow=2.5, Red=3.0] x10-8. The table summarizes the results by the percentile (of the 
posterior distribution) in which the true mutation rate lies. Only in 3 of 45 cases (6.7%) 
does the true mutation rates fall outside the 90% Bayesian credible interval. 
 

   True sequence mutation rate 
   1.0E‐08 1.5E‐08 2.0E‐08 2.5E‐08 3.0E‐08 
Person 1  0.018 0.317 0.297 0.349 0.462 
Person 2  0.137 0.412 0.302 0.123 0.607 
Person 3  0.011 0.247 0.553 0.485 0.846 
Person 4  0.427 0.055 0.514 0.826 0.815 
Person 5  0.399 0.214 0.253 0.398 0.670 
Person 6  0.107 0.944 0.485 0.983 0.675 
Person 7  0.208 0.166 0.759 0.470 0.802 
Person 8  0.211 0.502 0.101 0.461 0.838 
Person 9  0.347 0.102 0.312 0.199 0.727 

 

 
 
 
 
 
II. The model is robust to changes in the parameter prior distributions 
 
Each parameter in our evolution model has a prior distribution governing its uncertainty. We 
therefore explored how changing the value of the parameter—within the plausible range given 
by the prior—influences our inferences about the sequence mutation rate and human-chimpanzee 
speciation time.  
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To test for robustness of our priors, for each of 8 parameters (Fig S10), instead of using the 
default prior distribution, we set them to point values at three different points: the lower 95% CI, 
the mean, and the upper 95% CI. Then, this altered set of parameters was fed through our 
inference process. The primary purpose of this exercise was to see whether an extreme value of 
the prior, if used, would cause our inferences to change greatly. Reasonable extreme values are at 
the boundary of our prior distribution specifications. The second purpose is to see whether 
shrinkage in the variance (to zero) of any prior would cause a significant shrinkage in the 
variance of the posterior estimates. Note that we only perturb one parameter at a time. 
 
As shown in Fig S10, using our model of evolution, our inference of sequence mutation rate and 
human-chimpanzee speciation date is reasonably robust to changes in the prior, both in the mean 
and in the standard error of the inferred distributions. We observe the following: 
 

• Aside from the length constraint parameter, when we use extreme values, the inference 
on the sequence mutation rate does not change significantly. This suggests that (1) our 
priors are reasonably tight such that no significant changes are observed, or (2) the model 
is not heavily dependent on that parameter. For example, case (1) holds for the 
microsatellite mutation rate parameter: although the microsatellite mutation rate can in 
principle affect our inferences greatly since it has a linear effect on ASD, it is determined 
with high precision by our direct observations of mutations, with a 95% CI of 2.56-2.91 
x10-4; thus, the extreme values of this prior do not affect our inferences substantially.  
 

• The length constraint governs the non-linear mapping between TMRCA and ASD (Fig 3), 
and changes to it (Fig S11) can cause large changes to our inferences on the sequence 
mutation rate. Our prior distribution for this parameter was determined entirely based on 
the direct observation of mutations (Fig S8, Supplementary Table 7), and not on 
comparisons between microsatellite ASD and sequence heterozygosity (Fig 3, Fig S11). 
As a result, the length constraint prior was not determined to a high level of precision. 
This is in fact desirable, because in the inference machinery, we use the empirical data of 
Fig S11 (comparison to flanking sequence data) to further infer the length constraint 
parameter, rather than being extremely precise about the prior. The result from Fig S10 
shows the power of using this information: If we give the length constraint parameter the 
default prior, the resulting sequence mutation rate distribution is not different from the 
green spike prior, and this is because the data of Fig S11 strongly constrains the true 
value of this parameter, which falls within the prior distribution. On the other hand, if we 
actually forced an unreasonable prior, such as the red or blue spikes, the data of Fig S11 
could not influence the length constraint in any way, and since this is such an important 
parameter in our model, the resulting inferences are inaccurate.  
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Chapter 7: Constraints on sequence mutation rate from calibration 
to the fossil record 

 

(i) Overview 
 

We were interested in obtaining constraints on the sequence substitution rate based on calibration 
to the fossil record, to which we could compare our absolute estimate based on direct 
measurement of the mutation rate at microsatellites. 
 
 
(ii) Assumptions 
 
For the analyses in this note, we make a number of simplifying assumptions: 
 
• dHC, the divergence per base pair between human and chimpanzee, is 0.0130. This number is 
derived from the Enredo-Pecan-Ortheus (EPO) 6-way primate whole genome alignments6. 
 
• dHO/dHC the divergence per base pair between human and orangutan divided by that between 
human and chimpanzee at aligned bases is 2.65, as argued in the main text. 
 
• τHC, human-chimpanzee speciation time, is >4.2 Mya, based on the date of the Australopithecus 
amanensis fossil which is believed to be on the hominin lineage since the split from chimpanzee7.  
 
• τHC/tHC, the ratio of human-chimpanzee time of last gene flow to human-chimpanzee average 
autosomal divergence time, is <0.73. This bound (also discussed in the text) is based on human-
chimpanzee genetic divergence near genes on chromosome X, close to sites where humans and 
chimpanzees share an allele not seen in gorilla, orangutan and macaque. Here, the ratio τHC/tHC is 
0.73. Thus, the time of most recent gene flow between humans and chimpanzees is <0.73.  
 
• tHO, human-orangutan genetic divergence time is <23 Mya. This is based on a view that the 
Proconsul fossil places an upper bound on human-orangutan speciation time of ߬ுை ൏  .8,9ܽݕܯ 18
We assume that ݐுை െ ߬ுை ൏  that is, the human-orangutan average autosomal genetic ,ܽݕܯ 5
divergence time is at most 5 Mya older than human-orangutan speciation time. 
 
• The mutation rate per year has been constant since human-orangutan genetic divergence. (For 
the upper bound on the mutation rate, we only require the assumption that it has been constant 
since human-chimpanzee genetic divergence). 
 
• The present-day human generation time has a lower bound 25.6 years per generation and an 
upper bound of 32.4 years per generation. This range is derived from our prior distribution of 
present-day generation time of 29 ± 2.04 from Supplementary Table 7, and using the 90% 
confidence interval. 
  
(iii) Upper bound on mutation rate: <3.7×10-8 /bp/gen. from Australopithecus anamensis 
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τHC>4.2 Mya     (since Australopithecus anamensis is a hominin) 

⇒ tHC > 5.8 Mya   (since τHC/tHC <0.73)  
⇒  μ௬௘௔௥

௦௘௤ ൏ 1.1 ൈ 10ିଽ  (since  μ௬௘௔௥
௦௘௤ ൌ ݀ு஼/2ݐு஼ = 0.0130/(2×5.8×106) 

⇒  μ௚௘௡௘௥௔௧௜௢௡
௦௘௤ ൏ 3.7 ൈ 10ି଼ (since  μ௚௘௡௘௥௔௧௜௢௡

௦௘௤ ൏  32.3μ௬௘௔௥
௦௘௤  ) 

 
 
(iv) Lower bound on mutation rate: >1.9×10-8 /bp/generation from Proconsul 
 
τHO<18 Mya    (from Proconsul) 

⇒ tHO < 23 Mya  (since we assume that tHC < τHC + 5 Mya)  
⇒  μ௬௘௔௥

௦௘௤ ൐ 7.5 ൈ 10ିଵ଴ (since  μ௬௘௔௥
௦௘௤ ൌ ݀ு஼ሺ

ௗಹೀ
ௗಹ಴

ሻ/2ݐுை = 0.0130(2.65)/(2×23×106)) 

⇒  μ௚௘௡௘௥௔௧௜௢௡
௦௘௤ ൐ 1.9 ൈ 10ି଼ (since  μ௚௘௡௘௥௔௧௜௢௡

௦௘௤ ൐  25.6μ௬௘௔௥
௦௘௤  ) 

 
The most likely way that this lower bound could be in error would be if the mutation rate were 
not constant over time since human-orangutan genetic divergence. For example, if the mutation 
rate slowed down on the African great ape lineage (and perhaps also on the orangutan lineage) 
since the two diverged—perhaps associated with the increase in their body size as documented in 
the fossil record—the lower bound would be substantially less. 
 

 
(v) Upper bound on human-chimpanzee speciation date from fossil record <6.3 Mya 
 
For comparison to the upper bound on human-speciation obtained by direct calibration to the 
microsatellite-based molecular clock, we also use the fossil record of human-orangutan 
divergence to produce a complementary bound based on the fossil record. As in (iv), we write: 
 
τHO<18 Mya    (from Proconsul) 

⇒ tHO < 23 Mya  (since we assume that tHO < τHO+ 5 Mya)  
⇒ tHC < 8.7 Mya  (since ݐு஼ ൌ ுை/ሺݐ

ௗಹೀ
ௗಹ಴

ሻ = (23 Mya)/2.65) 

߬ு஼ < 6.3 Mya  (since τHC = tHC(τHC/tHC), and 

τHC/tHC << 0.73, see Supplementary Note Chapter 8) 
 

As in (iv), the most plausible way that this lower bound could be in error would be if the 
mutation rate were not constant over time since human-orangutan genetic divergence. 
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Chapter 8: Constraints on human-chimpanzee speciation date 

 

(i) Motivation for estimating the ratio of human-chimpanzee speciation to divergence  
 

Our calibration of the molecular clock allows us to estimate the genetic divergence time of 
humans and chimpanzees ݐҧு஼ , averaged across the autosomes. However, the speciation date 
τHC—defined in this study as the date of last gene flow between the ancestors of humans and 
chimpanzees—is also of biological interest. To infer τHC, we require a Bayesian prior distribution 
on the ratio of these two quantities: ߬ு஼/ݐҧு஼. This is the most difficult of our prior distributions 
to formulate, and the following note describes how we construct our distribution based on 
obtaining a number of point estimates of the ratio, as well as conservative upper bounds. 
 
(ii) A point estimate of ࢚/࡯ࡴ࣎ഥ  from modeling of a simple demographic history 0.61 = ࡯ࡴ
 

Burgess and Yang 2008 
For a best estimate of the ratio ߬ு஼/ݐഥு஼, we use the results from Burgess and Yang 2008, who 
analyzed a data set of 7.4 Mb of aligned sequence from human, chimpanzee, gorilla, orangutan 
and macaque across “neutral” autosomal loci using the MCMCcoal software10. This software 
analyzes the 5-species alignment data under the simplifying assumptions that: 

 

(i) The phylogeny is ((((human, chimpanzee),gorilla),orangutan),macaque) 
(ii) The speciation events were instantaneous. 
(iii) The populations in the intervening periods were constant in size and panmictic. 
(iv) All the analyzed loci are unlinked, neutral and free of recombination 

 

Under these assumptions, MCMCcoal estimates the ancestral population sizes and speciation 
times, conditional on the observed divergent site pattern. On page 7 of Burgess and Yang 2008, 
the authors estimate that 1 െ ߬ு஼/ݐഥு஼ = 0.39 (thus, ߬ு஼/ݐഥு஼ = 0.61) under a model of no gene 
flow after initial speciation. 
 

Dutheil et al. 2009 
Dutheil et al. 2009 made inferences under the same demographic assumptions, but using a 
different approach based on a coalescent Hidden Markov Model (CoalHMM) that also exploits 
information from recombination between adjacent loci11. We inferred ߬ு஼/ݐഥு஼  for the four 
autosomal loci (“targets”) that Dutheil et al. analyzed, using their “bias-corrected” estimates of 
demographic parameters in their Table 2. After translating the quantities to estimates of ߬ு஼/ݐഥு஼ , 
we obtained results in the range of Burgess and Yang 2008: 0.67 (Target 1), 0.57 (Target 106), 
0.60 (Target 121) and 0.66 (Target 122). We use the Burgess and Yang 2008 estimate of 
߬ு஼/ݐഥு஼ = 0.61 for our primary calculations because it is based on more data and because it falls 
within the range of the Dutheil et al. estimates. 
 

(iii) Conservative upper bound on the ratio: ࢚/࡯ࡴ࣎ഥ  0.73 > ࡯ࡴ
 

Analyzing subsets of the genome to obtain a conservative upper bound on ߬ு஼/ݐഥு஼  
The published studies infer demographic parameters for human-chimpanzee speciation under a 
simplified model that assumes constant population size, sudden speciation, and no impact of 
natural selection on the genome. However, the truth likely differs from this model, as Yang 
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found in 2010 when he carried out a formal test of the fit of the data from Burgess and Yang 
2008 to the model assumed in that study12. Thus, while the simplified models provide a useful 
initial estimate, deviations from the assumptions might mean that the time of last gene flow 
between humans and chimpanzee was more ancient or more recent. 
 
To obtain a conservative upper bound on the ratio ߬ு஼/ݐഥு஼, we take advantage of an idea of 
Patterson et al. 20068. The idea is to compute human-chimpanzee genetic divergence (dividing 
by human-macaque divergence to correct for variation in the local mutation rate across the 
genome) in subsets of the genome where the genetic divergence is expected to be less than the 
genome-wide average for population genetic reasons. Human-chimpanzee genetic divergence at 
all loci in the genome must be older than the speciation time (by definition, if we define 
speciation as the time of last gene flow). Thus, the ratio of the local divergence at any subset of 
the genome to the genome-wide average provides an upper bound on the speciation date τHC. 
 
A new 5-way alignment of human-chimpanzee-gorilla-orangutan-macaque (HCGOM) 
 

Overview of a 100x larger dataset generated for studying human-chimpanzee-gorilla speciation 
Patterson et al. 2006 analyzed datasets consisting of about 9 Mb of aligned DNA rom human, 
chimpanzee, gorilla, orangutan and macaque8. Here we describe how we generated a similar 
dataset with about 100x more data. In brief, we restricted to data generated using traditional 
Sanger long-read sequencing data from five genomes, and used an alignment and filtering 
procedure described in Mallick et al. 200913 (the detailed filters we applied are given below). In 
comparison to other multi-species alignments methodologies (e.g. EPO6), which have as a goal 
the maximization of the number of covered nucleotides, our alignment procedure filters out a 
larger fraction of the data, since for the purpose of making inferences about population history, 
we do not mind losing data as long as what is left is of high reliability. These filters resulted in 
849.6 Mb of 5-species genomic alignment on the autosomes (48.58 million bi-allelic divergent 
sites passing filters), and 32.6 Mb on chromosome X (1.62 million bi-allelic divergent sites 
passing filters). These datasets are available on request from the authors. 
 

Genome assemblies used as input 
The raw data consisted of 5 whole genome assemblies based on Sanger long-read sequencing 
data. These consisted of the human genome reference sequence (hg18), and four assisted 
assemblies that we built ourselves so as to have full control over the data: chimpanzee (7.3× 
coverage), orangutan (6.2× coverage), macaque (6.3× coverage) and gorilla (1.8× coverage). 
Since we assembled the genomes ourselves, we had a sequence quality score at each nucleotide 
that did not automatically assign low quality to bases overlapping at within-species single 
nucleotide polymorphisms (SNPs), which is a feature of some genome assemblies that makes it 
difficult to carry out population genetic analyses.  
 

Generating local alignments 
We applied a stringent local alignment procedure that took advantage of the long range synteny 
information available from the genome assemblies13, and then applied the following filters: 

• Restrict to loci that have alignments of all 5 species over at least 100 bp 
• Restrict to loci for which a unique consensus sequence is available from all 5 species 
 

Identifying divergent sites for analysis 
We identified sites that were divergent across the species after applying the following filters: 
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• Filter out sites with 3 or more alleles across species 
• Filter out sites where any species has a Phred sequence quality score of <30 
• Filter out sites where any species has a Phred score of <15 within 5 bp on either side. 
• Filter out sites within 1 bp of an insertion/deletion in any of the species. 
• Filter out sites within 5 bp of the end of an alignment 
• Filter out sites within 1 bp of any other divergent site, as these sites have consistently 

different properties indicating that they are determined less reliably 
• Filter out divergent sites that could potentially reflect a C→T mutation in the first base of 

a hyper-mutable CpG dinucleotide on either DNA strand (these are subject to high rates 
of recurrent mutation, which could complicate tests of relative divergence time). 

 

Post-processing to remove potential misalignments 
We filtered out entire alignments where the pattern of divergent sites showed evidence of an 
extreme excess on a single lineage compared with genome-wide pattern, which could reflect 
erroneous alignment due to low copy number repeats (paralogs). For 7 species pairs—Human-
chimpanzee, Human-gorilla, Chimp-gorilla, Human-orang, Chimp-orang, Orang-macaque—we 
counted the number of divergent sites reflecting changes on one lineage or the other, using the 
other species to polarize. We compared the ratio of sites on the tested lineage to the average 
genome-wide (performing the analysis separately for chromosome X and the autosomes), and 
removed alignments with P <0.001 by a chi-square test for any of the seven comparisons 
 
Figure S8.1: Bounds on human-chimp speciation based on proximity to sites clustering humans and chimps. 
(Blue curve) We stratify the autosomal data based on the distance to the closest site clustering humans and chimps 
to the exclusion of gorilla. Within 4bp, the divergence is 0.826 of the autosomal average. (Red curve) Repeating the 
same computation on chromosome X, the average divergence as a fraction of the autosomes is 0.851, and within 32 
bp of a human-chimp clustering site is 0.771. (Green curve) We again present data for the X chromosome, but now 
restrict to the quarter of the data with B-statistic <0.4 reflecting an expectation of further reduced divergence due to 
directional selection in the ancestral population. The average X chromosome divergence in this subset of the data is 
0.774, and within 32 bp of human-chimp clustering sites, it is 0.726.  

 

.826 .824 .830
.837

.849
.862

.879

.901

.928

.956

.981
.994 .999 1.000 1.000

.771
.782 .787

.799 .804
.813

.824
.837

.845 .849 .850 .851

.726
.740 .746

.757 .758 .756 .761 .767 .771 .773 .774 .774

0.70

0.80

0.90

1.00

4 16 64 25
6

1,
02
4

4,
09
6

16
,3
84

65
,5
36H
um

an
‐c
hi
m
p 
di
ve
rg
en

ce
 /
 a
ut
os
om

al
 a
ve
ra
ge

Distance in base pairs from a site clustering human and chimpanzee

autosomes
chromosome X
chromosome X (B<0.4)

Nature Genetics: doi:10.1038/ng.2398



56 | P a g e  
 

Bound B: Genetic divergence on chromosome X divided by the autosomes (߬ு஼/ݐഥு஼ < 0.851)  
The second upper bound on ratio of human-chimpanzee speciation time also exploits a strategy 
first described in Patterson et al. 2006, and is based on dividing the human-chimpanzee genetic 
divergence as a fraction of human-macaque on chromosome X by that on the autosomes. The 
motivation is that there is an a priori reason to expect that genetic divergence on chromosome X 
will be lower than on the autosomes. In a constant-sized, freely mixing population, there are 3 
copies of chromosome X for every 4 copies of the autosomes, leading to a lower predicted 
coalescence time at X chromosome loci in the common ancestral population of humans and 
chimpanzees. In addition, selection operates differently on chromosome X and the autosomes 
(because of the exposure of recessive alleles in males), further motivating a search to explore 
whether the genetic divergence is unusually low. 
 
In our new dataset, we computed the ratio of human-chimpanzee to human-macaque divergence 
on chromosome X divided by that on the autosomes, filtering out the pseudo-autosomal regions 
of chromosome X (<2.710 Mb and >154.585 Mb). After applying the correction for recurrent 
mutation (nearly identical results are obtained without the correction), we obtained an upper 
bound of τHC/tHC < 0.851. This is one standard error from the estimate of τHC/tHC < 0.835 ± 0.016 
from Patterson et al. 2006, and so the two inferences are statistically consistent.  
 
Bound C: Chromosome X loci close to sites clustering humans and chimps (τHC/tഥ HC < 0.771) 
We combined the two ideas from Patterson et al. 2006 (bounds A and B) to obtain an even more 
stringent upper bound. Using our 32.6 Mb of X chromosome alignment, we computed the ratio 
of human-chimpanzee to human-macaque divergence close to sites that cluster humans and 
chimpanzees to the exclusion of gorilla. Figure S8.1 (blue curve) shows that just as on the 
autosomes, the closer one is to a human-chimpanzee clustering site, the lower the normalized 
human-chimpanzee divergence. We compute the human-chimpanzee divergence divided by 
human-macaque divergence in the vicinity of these sites, and divide by the autosomal average 
after correction for recurrent mutation, resulting in a bound of τHC/tHC < 0.771 based on data 
from <32 bp away from informative sites. (We focus on the <32 bp distance because of noisy 
estimates in lower bin sizes, although the estimates are qualitatively consistent for smaller bin 
sizes as well: 0.773 (<16 bp), 0.752 (<8 bp) and 0.725 (<4 bp).)  
 
Bound D: Chromosome X loci subject to directional selection close to HC sites (τHC/tഥ HC < 0.726) 
We next studied genetic divergence between humans and chimpanzees at a subset of the genome 
that was not exploited in Patterson et al. 2006: loci that are at increased likelihood of having been 
subject to directional selection in the ancestral population of humans and chimpanzees (due to 
hitchhiking and selection at linked sites), thus reducing the average genetic divergence between 
the two species. McVicker et al. 2009 showed that loci that are close to exons or conserved non-
coding sequences have a reduced genetic divergence between humans and chimpanzees 
compared with the average in the genome, which is likely to reflect directional selection in the 
ancestral population (either positive selective sweeps or negative background selection)2. For 
each nucleotide, they also computed a quantity, B, which predicts the genetic divergence without 
using any information from genetic variation and comparative genomics at all, and only using its 
proximity to functional elements. We confirmed that the B statistic is strongly predictive of 
divergence in our data by stratifying human-chimpanzee genetic divergence along chromosome 
X by the B-statistic (Figure S8.2). Figure S8.2 shows long regions of low divergence on 
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chromosome X where B is low (and which further bound the human-chimpanzee speciation 
time), interspersed with regions of high divergence where B is high. The pattern in this plot can 
only be explained by strong directional natural selection in the ancestral population of humans 
and chimpanzees prior to human-chimpanzee speciation. The cause remains a mystery. 
Possibilities include an increased rate of background selection in the ancestral population of 
humans and chimpanzee, an increased rate of positive selection, or selection to remove 
Dobzhansky-Muller incompatibilities following hybridization8. Determining which factors are 
responsible is outside the scope of this note. 

 
Figure S8.2: B-statistic 
predicts chromosome X 
divergence. We analyzed 
41 equally sized bins of 
40,000 sites excluding 
pseudoautosomal regions, 
and plotted human-chimp 
divergence as a fraction 
of human-macaque 
genetic divergence. This 
strongly correlates to the 
B-statistic, and there are 
large regions (e.g. 46.6-
86.7 Mb, and 95.6-136.1 
Mb) with low average B 
that also have low 
average divergence. 

 

To take advantage of the correlation of divergence with selection to set a new constraint on the 
date of human-chimpanzee speciation, we stratified human-chimpanzee genetic divergence along 
chromosome X into ten approximately equal-sized bins based on the B-statistic, performing the 
analysis separately for chromosome X and the autosomes. Figure S8.3 shows that the bin with 
the smallest B-statistic on the X chromosome gives a new upper bound on τHC/tഥ HC<0.82, even 
without using the additional information from proximity to human-chimpanzee clustering sites.  
 
Table S8.2: Summary of the bounds on human-chimpanzee genetic divergence 
Bound Description ࢚/࡯ࡴ࣎ഥ  ࡯ࡴ
A Genetic divergence near sites clustering humans and chimpanzees < 0.826 
B Genetic divergence on chromosome X divided by the autosomes < 0.851 
C Chromosome X loci close to HC sites (A+B) < 0.771 
D X loci close to HC sites and B<0.4  < 0.726 
 
Motivated by the power of the B-statistics to predict human-chimpanzee genetic divergence, we 
combined all three ideas for finding segments of the genome with reduced divergence to produce 
an even more stringent (but still conservative) upper bound on human chimpanzee speciation 
compared with any of the approaches by themselves: (i) Restriction to chromosome X, (ii) 
Restriction to loci strongly affected by directional selection (B<0.4, where the genetic divergence 
in Figure S8.3B appears to asymptote), and (iii) Restriction to sites that are within 32 bp of a 
divergent site that clusters human and chimpanzee to the exclusion of gorilla. From this subset of 
the data, we obtain a new upper bound of τHC/tഥ HC < 0.726 (green curve in Figure S8.1). For 
completeness the numbers for the even lower bin sizes are: 0.742 (<16 bp), 0.730 (<8 bp) and 
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0.671 (<4 bp).) Table S8.2 lists the various bounds. In what follows and the main text, we use the 
strongest (D), conservatively rounding it off to τHC/tഥ HC < 0.73. 
 

The upper bound of τ
HC
/tഥ HC < 0.73 is conservative and robust 

We conclude this section by noting that the true value of the ratio is likely to be less than 0.73. 
 
(a) Upper bounds using X chromosome data are conservative: Our upper bound on human-
chimpanzee speciation based on data from the X chromosome is conservative. The reason is that 
we are dividing by human-macaque divergence to normalize for differences in the mutation rate 
across loci in the genome, assuming that the average time since the most recent common 
ancestor (TMRCA) between humans and macaques is identical across the genome. In fact, the 
TMRCA varies, and is expected to be less on chromosome X than on the autosomes, since in the 
ancestral population of humans and macaques, the ancestral effective population size is expected 
to have been less on chromosome X than the autosomes (3/4). As discussed in Patterson et al. 
2006, the true TMRCA could plausibly be 0-5% lower on average on chromosome X due to this 
effect, which will result in an overestimate of our upper bound by the same amount8.  
 
(b) Upper bounds using X data are not strongly affected by changes in male-to-female mutation 
rate. In 2009, Presgraves and Yi suggested that the finding of Patterson et al. 2006 of a greatly 
reduced genetic divergence time on chromosome X relative to the autosomes might be an artifact 
of changing male-to-female mutation rates among great apes, for example, due to an acceleration 
of the male mutation rate on the chimpanzee lineage due to more male competition for mates 
leading to larger numbers of sperm cell divisions and a higher male mutation rate14. To evaluate 
whether there is evidence that this might affect our inferences, we computed the human-
chimpanzee genetic divergence as a fraction of human-macaque divergence across the X 
chromosome, after separating the data by mutations on the human lineage and chimpanzee 
lineage since divergence. The inference on the human-specific lineage is τHC/tഥ HC < 0.850, and 
on the chimpanzee-specific lineage is τHC/tഥ HC < 0.852, suggesting that this is not a major effect.  
 
(c) Although ߬ு஼/ݐഥு஼ < 0.73 is a hard bound we conservatively treat it as a soft bound. While 
τHC/tഥ HC < 0.73 is in principle a hard upper bound—in the sense that we have found loci where 
the genetic divergence is 72.6% of the autosomal average making this a maximum on human-
chimpanzee speciation time—in fact we conservatively treat it as a soft bound in the main text, 
where we use it as the upper 5% bound of a 90% Bayesian prior probability distribution on the 
ratio τHC/tഥ HC. Thus, with 5% probability, we allow for the possibility that the true ratio is larger, 
which means that our quoted upper bound on human-chimpanzee speciation reported in the main 
text is actually somewhat less stringent than it should be. 
 
(iv) Point estimates of ࢚/࡯ࡴ࣎ഥ  from modeling of background selection 0.68-0.61 = ࡯ࡴ
 

In this section, we obtain new point estimates of the ratio ߬ு஼/ݐഥு஼ that take advantage of the 
modeling analyses in McVicker et al. 20092, which account for the impact of directional 
selection on human-chimpanzee genetic divergence to obtain not just an upper bound, but also a 
best estimate of the ratio. This kind of modeling analysis is important, since as shown in Figure 
S8.2-S8.3, directional selection is clearly having an important impact on our data. 
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We first used the modeling of autosomal data directly reported in the McVicker et al. 2009 
paper2. In Table 1 of their paper (page 7), they give parameter estimates under their model taking 
into account a fitted model of background selection on the autosomes, which translate to an 
estimate of ߬ு஼/ݐഥு஼ = 0.61, matching the estimate from Burgess and Yang. 
 
As an additional estimate using >100 times more data than was analyzed by McVicker et al. 
2009, we examined the correlation of B-statistic with genetic divergence in our own data. If the 
model underlying the B-statistic is correct, then the value of B (on its scale of 0-1) predicts the 
reduction in genetic diversity in the human-chimpanzee ancestral population at a locus, 
compared with the expectation if there were no selection at all. Assuming that the B-statistics are 
measured with perfect accuracy and the model is correct, if we measure human-chimpanzee 
genetic divergence as a fraction of the autosomal average in ten bins of B-statistic, and fit a line, 
then the y-intercept gives the expected human-chimpanzee genetic divergence at loci in the 
genome where the time to the common ancestor in the ancestral population was zero; that is, they 
give the date of human-chimpanzee speciation.  
 
Figure S8.3: Human-chimpanzee divergence divided by the autosome average, stratified by B. We divided (A) 
the autosomal and (B) chromosome X data into 10 equally sized bins, based on McVicker B-statistics. Blue lines 
show least squares fits to all ten data points, and red lines leave out three points that contribute to non-linearity and 
may reflect model failure (the two points with the lowest B and the one point with the highest B). The y-intercepts 
provide an estimate of human-chimp speciation as a fraction of the autosomal divergence; that is, the expected 
genetic divergence assuming no genetic variation in the ancestors. 

 
 
Figure S8.3 shows the empirical relationship of genetic divergence between human and 
chimpanzee to B-statistics on the autosomes and chromosome X separately. There is evident 
non-linearity, mostly in the two bins with the lowest B-statistics. A potential explanation (even if 
the model is correct) is “regression to the mean”. The assignment of B-statistics to individual 
nucleotides is noisy and thus the bin of nucleotides with the lowest B-statistics is likely to 
contain a substantial fraction of nucleotides that are not in fact so constrained by selection as 
indicated by their assigned B-statistic. Thus, the observed human-chimpanzee divergence in 
these bins is not as reduced as predicted. We therefore fit lines not just to all ten bins, but also to 
a subset of seven bins that exclude the two with the lowest B-statistics, and the highest bin 
(which appears to be an outlier perhaps due to structural variation). In the middle seven bins, the 
points appear linear. The extrapolated y-intercept from the fitted (red) regression line is ߬ு஼/ݐഥு஼ 
= 0.68 on the autosomes, giving a new point estimate. (On chromosome X, it is ߬ு஼/ݐഥு஼ = 0.75 
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(Figure S8.3), but we focus here on the autosomes since McVicker et al. 2009 had much better 
autosomal data to use in their modeling analysis and obtained a much better fit of their B-statistic 
model to the data on the autosomes. Moreover, the best estimate of the ration on chromosome X 
is clearly too high, as it exceeds the upper bound of section (iii).) 
 

 (v) Prior distribution on ࢚/࡯ࡴ࣎ഥ   ࡯ࡴ
 
Above, we described several inferences about the ratio of human-chimpanzee speciation to 
average human-chimpanzee genetic divergence: 
(a) We described a point estimate of ߬ு஼/ݐഥு஼  (0.61) based on the modeling analyses under 

neutral evolution from Burgess and Yang, which is consistent with Dutheil and colleagues. 
(b) We described a conservative upper bound of <0.73. 
(c) We described point estimates of ߬ு஼/ݐഥு஼ (0.61-0.68) from modeling analyses that take into 

account background selection using insights from McVicker et al. 2009. 
 
Taking these various inferences into account, we propose a prior distribution on ߬ு஼/ݐഥு஼ that is 
normally distributed, and that allows 5% of its density above 0.73 and 10% of its density below 
0.61. Thus, its mean is 0.663, and its standard deviation is 0.041 (Figure S8.4). This distribution 
captures the observation that none of the point estimates are substantially below 0.61, and that 
we have a strong upper bound at 0.73 (which conservatively, we treat as a soft upper bound, 
although in fact it would be very surprising if the true value was higher). 

 
Figure S8.4: Prior 
distribution on the 
ratio of human-
chimp speciation to 
genetic divergence, 
ഥ࢚/࡯ࡴ࣎  This .࡯ࡴ
distribution has a 
mean of 0.663 and a 
standard deviation of 
0.041, set so that 10% 
of the density is 
below 0.61 and 5% 
of the density is 
above 0.73. The 
inferences that we 
use to inform this 
prior are indicated by 
dashed lines. 
 
 
 

 
We conclude by discussing what the effect on our inferences would be if the true value of the 
ratio was below 0.61, which is especially relevant since two of the point estimates were at this 
value. Lower values would reduce the posterior estimate of the human-chimpanzee speciation 
date, which is already lower in our paper than would be consistent with some interpretations of 
the fossil record. Figure 4 of the paper allows readers to ignore our prior, and instead infer the 
speciation date that would be obtained for any choice of ߬ு஼/ݐഥு஼ . This analysis shows that 
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autosomal data   

Upper bound 
of 0.73, 
obtained in 
section (iii)

Point estimate of 0.68, obtained 
from extrapolation of divergence of 

B‐statistic bins on autosomes

Nature Genetics: doi:10.1038/ng.2398



61 | P a g e  
 

speciation dates above 6.8 Mya (the current minimum date of the Sahelanthropus fossil) require 
a ratio of ߬ு஼/ݐഥு஼ >0.70.   

Nature Genetics: doi:10.1038/ng.2398
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Line 2 is the product of the hyper-prior distribution, the parameter distribution, and the likelihood. 
Line 3 follows by conditional independence of the parameter and data. 
Lines 4 and 5 follow from our data generative model. ܤሺߙ,  .ሻ is the beta functionߚ
 

3. In order to sample from the posterior, we first find ݌ሺߙ,  ௝ from 0ߠ ሻ by integrating over eachݕ|ߚ
to 1, obtaining: 

 
 

4. A suitable hyper-prior distribution ݌ሺߙ,  ሻ: We would like to choose a diffuse prior. However, anߚ
improper prior such as ݌ሺߙ, ሻߚ ൌ 1 doesn’t work because ݌ሺߙ,  ሻ cannot integrate to 1. This isݕ|ߚ
because  

 
 
 

Instead, we choose a diffuse (uniform) density on ሺ ఈ
ఈାఉ

, ሺߙ ൅ ሻିߚ
భ
మሻ, which are the mean and 

approximately proportional to the standard deviation of ߠ௝|ߙ, ,ߙሺܽݐ݁ܤ~ߚ  ሻ. From equation 5.9ߚ

of Gelman et al15, this leads to ݌ሺߙ, ሻߚ ן ሺߙ ൅ ሻିߚ
ఱ
మ. Hence, 

 

 
 

Drawing simulations from the posterior distributions 
 

1. The first step is to crudely estimate the parameters ߠ, ,ߙ ݊ܽ݁݉ From the data, we find .ߚ ൬௬ೕ
௡ೕ
൰ ൌ

5 ൈ 10ିସ and ݎܽݒ ൬௬ೕ
௡ೕ
൰ ൌ 5 ൈ 10ି଺, obtaining estimates of ሺߠ, ,ߙ ሻߚ ൌ ሺ5 ൈ 10ିସ, 0.05, 99ሻ. 

 

2. Next, we look for the posterior mode of ݌ሺߙ,  ሻ. When calculating values of the posterior, toݕ|ߚ
avoid numerical issues, we compute the log posterior, then exponentiate at the end. We can use 
the EM algorithm to find the mode, using our crude estimates as a starting point. Alternatively, 
for this 2 dimensional problem, we can simply use a grid of ሺߙ, ሻ to look for maxఈ,ఉߚ ,ߙሺ݌  ሻݕ|ߚ
in the vicinity of the crude estimates. We find that the posterior mode is located at ሺߙ, ሻߚ ൌ
ሺ0.68, 1480ሻ. At the mode, this would correspond to ܧሾߙ|ߠ, ሿߚ ൌ 4.6 ൈ 10ିସ and ݎܽݒሾߙ|ߠ, ሿߚ ൌ
3 ൈ 10ି଻. Our variance here is about 10 times smaller than that of our crude estimates. This is 

because ݎܽݒ ൬௬ೕ
௡ೕ
൰ ൌ 5 ൈ 10ି଺ was estimating ݎܽݒሺߠሻ, taking into account variability in ሺߙ,  .ሻߚ

 

Below is a contour plot of ݌ሺߙ, ሻݕ|ߚ , re-parameterized in terms of ቀlog ఈ
ఉ
, log ߙ ൅ ቁߚ , with 

contours at 0.0001, 0.001, and at 0.05, 0.15, 0.25, …, 0.95 of the modal value. 
 

3. Given our sense of how ݌ሺߙ,  ሻ behaves, we now sample from the posterior. We directlyݕ|ߚ
sample via grids. This method is feasible because we are sampling only in 2 dimensions. Using 
the contour plot above, we compute the grid of points where most of the density lies. Then, we 
numerically sum one dimension to obtain the marginal distribution, say ݌ሺݕ|ߙሻ ߙ .  is then 
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sampled using the inverse-CDF method. Then we sample ߚ using the inverse-CDF method again, 
this time on ݌ሺߙ|ߚ, ,ߙሻ. 1000 samples of ሺݕ   .ሻ are shown belowߚ

 

   
 

4. After sampling from ݌ሺߙ, ,ߙ|ߠሺ݌ using ߠ ሻ, we sampleݕ|ߚ ,ߚ  is ߠ ሻ. Note that the posterior forݕ
beta distributed, and has parameters that combine the data and the hyper-parameters: 

 

 
 

With the hierarchical framework, for each sample of ሺߙ,  .௝ߠ ሻ, we sample the entire set of 2,477ߚ
This is one experiment. Since we have 1,000 samples of ሺߙ,  ሻ, we run 1,000 experiments andߚ
obtain a confidence bound for each ߠ௝. The plot below shows our posterior for ߠ௝. The horizontal 
axis gives the 2,477 mutation rates, taken as the raw ratio of mutant to observed events. The 
vertical axis gives the posterior. Crosses “x” are the median. Gray vertical bars show the 95% 
posterior confidence interval. The y=x line is in red. The red vertical line on the left shows the 
median and confidence interval of a locus that has ௝݊ ൌ 0, an uninformative locus. Note that the 
slope of a regression line through the crosses would be substantially less than 1. This is the effect 
of “smoothing” the raw mutation rates, using the combined information from all loci. 
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Chapter 10: Inferences based on direct estimates of the sequence 
mutation rate (this section is added as a note in proof) 

 
Introduction 
 
After this manuscript was accepted, a paper by Kong et al. reported a direct estimate of the sequence 
substitution rate based on whole-genome sequencing of 79 trios16.  
 
The two studies are concordant in inferring that the male mutation rate is 3-4 times higher than the female 
mutation rate, and that male mutation rate increases rapidly with age while female mutation rate does not. 
However, there are a couple of differences that affect inferences of dates in evolutionary history.  
 
The first difference is that the dependence of mutation rate on paternal age in Kong et al. 2012 is stronger 
than we estimate for microsatellites. Mutation rate is estimated to double every 16.5 years for sequence 
data, compared with every 38 years for microsatellites. We hypothesize that this reflects the different 
mutation processes for sequence substitutions and microsatellites. 
 
The second difference is that the direct estimate of the sequence substitution rate of 1.20×10-

8/bp/generation in Kong et al. 2012 is outside the 90% credible interval of 1.40-2.28×10-8/bp/generation 
inferred here based on modeling of the microsatellite mutation process and extrapolation of the sequence 
mutation rate. Part of the discrepancy is due to different assumptions about present-day generation 
intervals: recalibrating the mutation rate estimates from Figure 2 of Kong et al. 2012 to the male and 
female generation intervals assumed for this study, we obtain a slightly higher estimate of 1.26×10-

8/bp/generation. However, even with this correction the Kong et al. 2012 estimates are less than ours. 
 
Comparison of dates inferred from the two independent estimates of mutation rate 
 
To explore the effect of the direct estimates of the sequence mutation process on our inferences of 
evolutionary parameters, we used the fitted dependence on age in Kong et al.16 (blue dashed curve in their 
Fig. 2). Using the notation of Supplementary Note Chapter 5, the per-generation mutation rate is: 
 

ሻݐ௠௔௧௘௥௡௔௟ሺߤ ൌ 14.2 2.63 ൈ 10ଽ⁄  
ሻݐ௣௔௧௘௥௡௔௟ሺߤ ൌ expሺ2.61 ൅ 0.042 ڄ ሻݐ 2.63 ൈ 10ଽ⁄  

 

We assume here that there is no error in these fitted parameters. 
 
To understand the implication for dates in human evolution, we used a Bayesian procedure similar to that 
of Supplementary Note, Chapter 5 to integrate these sequence mutation rate estimates with ten prior 
distributions on evolutionary parameters that we developed for the microsatellite modeling and which are 
summarized in Supplementary Table 7. These correspond to: (1) ancestral generation time; (2) present-
day generation time; (3) ancestral male-female parental age difference; (4) present-day male-female 
parental age difference; (5) ancestral-to-present-day transition time; (6) Western European heterozygosity 
per base pair; (7) West African heterozygosity per base pair; (8) Ratio of human-chimpanzee to Western 
European sequence divergence; (9) Ratio of human-chimpanzee speciation time to genetic divergence 
time; and (10) Ratio of human-orangutan to human-chimpanzee sequence divergence 
 
Results 
 

Table S10.1 shows that based on the mutation rates inferred from Kong et al. 2012, the average time since 
the most recent common ancestor of two Western Europeans is 880-1,100 thousand years ago, the 
inferred time since human-chimpanzee divergence is13.0-17.2 million years ago (Mya), the inferred time 
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since human-orangutan divergence is 34.0-46.2 Mya, and the inferred date of human-chimpanzee 
speciation is 8.32-11.8 Mya. The dates implied by Kong et al. 2012 are in some cases more than twice 
those inferred from the microsatellite data, even though the present-day generation mutation rate is only 
~1.5-fold higher. This is due to the stronger dependence of mutation rate on generation interval for the 
sequence- than for the microsatellite-based rate estimates.  
 
We discuss two implications of these results. 
 
Implication for the human-chimpanzee speciation date: A first implication is that the inferred human-
chimpanzee speciation date of 8.32-11.8 Mya is greater than the 6.8-7.2 Mya estimate for Sahelanthropus 
tschadensis, a fossil that has been interpreted as being on the hominin lineage since the split from 
chimpanzees, and is excluded by the dates that emerge from the microsatellite analysis. If we accept the 
sequence-based estimates of mutation rate, S. tschadensis is no longer in tension with the genetic data. 
 
Implication for human-orangutan genetic divergence: While using the sequence-based estimates of 
mutation rates makes it possible to reconcile S. tschadensis with being on the hominin lineage, the new 
dates are in tension with the fossils relevant to human-orangutan genetic divergence. The inferred human-
orangutan genetic divergence date of 34.0-46.2 Mya is so much older than the upper bound from the 
fossil record of <18 Mya on human-orangutan speciation that the date is implausible (we discuss these 
constraints further in Supplementary Note, Chapter 7). A possible reconciliation to this conundrum was 
suggested by Scally et al. 201217 who hypothesized that there might have been a slowdown of the 
mutation rate on the African great ape lineage and on the orangutan lineage simultaneously since their 
ancestors separated, perhaps associated with the known increase in body size on both lineages. This 
slowdown would result in an overestimate of the date of human-orangutan genetic divergence using 
models like those in this paper that assume a molecular clock whose rate has been constant over time. 
However, this scenario also requires us to hypothesize a combination of unlikely events: (a) the slowdown 
would need to have been coincidental in both lineages to explain the observations, and (b) the slowdown 
would also have to have been extraordinarily dramatic: about 3-fold in both lineages in the period 
ancestral to human-chimpanzee divergence to produce as extreme an effect as is observed.  
 
Discussion 
 
The differences in the dates implied by the microsatellite- and sequence-based mutation rate estimates are 
striking. If the rate from the microsatellite data is too high, this might be due to a higher rate of false-
positives than we measured empirically or inaccuracies in the model we fit to the data. If the direct 
measurement of the sequence-based mutation rates is too low, this might be due to the stringent filtering 
that Kong et al. 2012 applied to remove false-positive sites, which could have resulted in a substantial 
false-negative rate. Accurate estimates of the human mutation rate are important for evolutionary studies, 
and an important area for future research is to determine which rates are most appropriate. 
 
Table S10.1 Comparison of inferred evolutionary parameters from sequence & microsatellite data 

  Duplicated from Table 2  Using Kong et al.’s mutation rates16 

  Mean  5th – 95th percentile  mean  5th – 95th percentile 

Genetic divergence times (millions of years)     

 ஼ா௎:   Western Europeansݐ 0.546  0.426 – 0.709  1.01  0.88 – 1.10 

 ௒ோூ:    Yoruba (African)ݐ 0.720  0.562 – 0.933  1.33  1.17 – 1.44 

 ு஼:     human‐chimpanzeeݐ 7.49  5.80 – 9.77  15.3  13.0 – 17.2 

 ுை:     human‐orangutanݐ 19.8  15.2 – 25.9  40.5  34.0 – 46.2 

߬ு஼:     human‐chimpanzee speciation time  4.97  3.75 – 6.57  10.1  8.32 – 11.8 
 

Note: 90% Bayesian credible intervals are obtained from the Bayesian posterior distribution. 
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