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Supplementary Figure 2: (a) Percentage of SNPs at different coverages in IHCS data 
showing that the great majority of SNPs are covered (albeit at ultra-low coverage) in 
exome sequencing data in which the exons are coverage at coverage greater than 10x 
(data plotted for chromosome 20; similar plots are obtained for all chromosomes). (b) 
Discordance rate (computed as percentage of bases discordant with the reference and 
alternate allele called at all European polymorphic loci in the 1000 Genomes project on 
chromosome 20, other chromosomes show similar results) plotted as function of coverage 
in the IHCS data. No unusual increase in the discordance rate is found at coverage less 
than 1x. (c)Distribution of coverage by sample (chromosome 20) in the IHCS data set. (d) 
Distribution of coverage by SNP in the IHCS data set 
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Supplementary Figure 3: (a) Accuracy as function of coverage in IHCS whole-exome 
data set computed across 398,098 SNPs using Illumina genotype calls as ground truth. (b) 
Accuracy as function of frequency in IHCS whole-exome data set computed across 
398,098 SNPs using Illumina genotype calls as ground truth. (c) Cumulative distribution 
of SNPs with accuracy above threshold in the IHCS whole-exome data set. Results 
computed across 398,098 SNPs using Illumina genotype calls as ground truth.  
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Supplementary Figure 4. (a) Plot of association p-values in 100,000 simulated SNPs 
computed over genotype data versus simulated imputation genotypes with r2=0.82 to the 
true data. We simulated imputation with r2=0.82 accuracy by adding random errors with 
corresponding probability in the genotyping calls. (b) Plot of association p-values 
computed on typed versus imputed data on IHCS data set (average coverage of 0.5x). We 
observe a Pearson squared correlation of 0.68 between p-values attained on typed versus 
imputed data. (c)	
  Observed versus expected association minus log 10 p-values at 398,098 
SNPs across the genome in 84 samples (61 cases and 23 controls) ascertained for either 
HIV Controller (cases) or HIV Progressor (controls) phenotype. Red denotes statistics 
computed over typed data, while black denotes statistics using imputed data from 
sequencing reads. 
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Supplementary Figure 5. (a) Effective Sample size attained within a given budget of 
$300,000 with fixed sample preparation cost of $300 and cost per 1x of $1,000. We 
observe the existence of an optimal coverage for maximizing effective sample size. 
(b)Expected power as function of allele frequency assuming study with 1000 cases and 
1000 controls at causal with odds ratio R=1.5 as function of allele frequency. Black line 
denotes expected average power from genotyping while red line denotes expected power 
computed assuming ncp of λ* sqrt(0.82*N), while blue line denotes the average across all 
SNPs (in the MAF bin) of expected power (incorporating the observed variance in r2 
across SNPs of given frequency in the IHCS data). (c)Expected power for a fixed budget 
of $300,000 as function of frequency. Sequencing is denoted in red and assumes 6,800 
samples sequenced at cov=0.1x (with $133 per 1x and $30 per sample prep) yielding an 
effective sample size of roughly 4,600 (r2=0.65). Genotyping at $400 per sample is 
denoted in black (effective sample size of 750). 
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Supplementary Figure 6. P-values attained on simulated phenotype data 
(beta=0.05,0.1,0.15,0.2) using either the typed genotypes versus imputed genotypes from 
sequencing data. 
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Supplementary Figure 7.  (a) P-values attained on SCZ (503) vs. AUT(322) analysis in 
which SCZ samples were used as “controls” and AUT samples as “cases”  using the 
typed genotypes versus imputed genotypes from sequencing data. (b) Expected versus 
observed P-values attained on SCZ (503) vs. AUT (322) analysis in which SCZ samples 
were used as “controls” and AUT samples as “cases” using either the typed (black) 
genotypes versus imputed (red) genotypes from sequencing data. 
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Supplementary Figure 8. Principal component analysis of the 909 samples using either 
typed  (103,977 SNPs), imputed (37,796 SNPs imputed with accuracy accuracy (r2) 
greater than 0.8) or typed (same accurately imputed 37,796 SNPs) genotype data. 
EIGENSTRAT software was used for principal component analysis. 
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Supplementary Tables: 
Chr Start 

(Mb) 
End 
(Mb) 

Recombinatio
n Rate 

(cM/Mb) 

SNPs typed 
in IHCS 

Total SNPs  
(1000 Genomes 

Project, phase1 2011) 

SNPs 
after 

filtering 
3 180 185 1.24 568 25447 20792 
17 15 20 1.08 449 28167 24397 
11 25 30 0.74 599 28490 25010 
1 215 220 1.19 834 28120 24251 
15 75 80 0.81 579 26005 21711 
4 175 180 1.75 644 29705 25823 
11 60 65 1.03 503 25251 20792 
17 55 60 1.22 573 22109 18418 
12 15 20 0.97 650 26826 22982 
1 115 120 1.01 671 25567 21659 

Total 50Mb 1.11 6070 265687(avg 26568.7) 150261 
 

Supplementary Table 1. Summary of randomly selected regions used in simulations. 
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 0.5x coverage 

  1-3% 3-5% >5% 

Beagle 0.60 0.79 0.90 

MaCH/Thunder 0.47 0.70 0.86 

IMPUTE2 0.55 0.75 0.88 

 4x coverage 

 1-3% 3-5% >5% 

Beagle 0.87 0.93 0.97 

MaCH/Thunder 0.75 0.89 0.96 

IMPUTE2 0.78 0.89 0.96 

 

Supplementary Table 2. Accuracy (average r2) binned by minor allele frequency of 

compared methods in simulations of short read data across the 10 considered regions. All 

methods were provided reference panels of haplotypes. From a runtime perspective 

Beagle took ~1h for a 5Mb region, Impute2 close to ~1.5h, while MaCH/Thunder 

performed imputation in ~7h for a given region. 
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(a) 

Sequencing error 

rate 

Imputation + 

Reference Panel 

Imputation No Imputation 

0.000 0.826 (0.915) 0.196 (0.197) 0.107 (0.149) 
0.005 0.819 (0.910) 0.186 (0.191) 0.105 (0.146) 
0.010 0.812 (0.904) 0.177 (0.185) 0.104 (0.143) 
0.015 0.804 (0.898) 0.169 (0.180) 0.102 (0.141) 
0.020 0.795 (0.891) 0.162 (0.175) 0.100 (0.138) 
0.025 0.787 (0.883) 0.155 (0.170) 0.098 (0.135) 
0.030 0.777 (0.874) 0.149 (0.166) 0.096 (0.133) 

(b) 

σ2 in average sample 

coverage (cov=0.5x) 

Imputation + Reference 

Panel 

Imputation No Imputation 

0.05 0.831 (0.925) 0.185 (0.193) 0.110 (0.150) 
0.10 0.829 (0.923) 0.184 (0.191) 0.108 (0.149) 
0.15 0.825 (0.919) 0.180 (0.187) 0.106 (0.145) 
0.20 0.812 (0.904) 0.177 (0.185) 0.104 (0.143) 
0.25 0.790 (0.879) 0.175 (0.182) 0.101 (0.141) 
0.30 0.764 (0.848) 0.173 (0.182) 0.099 (0.139) 
0.35 0.723 (0.801) 0.171 (0.179) 0.098 (0.137) 
0.40 0.698 (0.773) 0.171 (0.179) 0.098 (0.137) 

(c)  

Shape of Gamma 

distr(α) 

Imputation + Reference 

Panel (r2) 

Imputation (r2) No Imputation (r2) 

2.0 0.812 (0.904) 0.173 (0.184) 0.103 (0.144) 
3.0 0.813 (0.905) 0.176 (0.185) 0.103 (0.144) 
4.0 0.812 (0.904) 0.177 (0.185) 0.104 (0.143) 
5.0 0.812 (0.904) 0.179 (0.190) 0.104 (0.147) 
6.0 0.814 (0.904) 0.180 (0.191) 0.104 (0.147) 
7.0 0.813 (0.904) 0.180 (0.189) 0.104 (0.145) 
8.0 0.813 (0.905) 0.180 (0.191) 0.105 (0.146) 

(d) 

Sample size (N) Imputation + Reference 

Panel (r2) 

Imputation (r2) No Imputation (r2) 

50 0.807 (0.910) 0.181 (0.185) 0.108 (0.147) 
100 0.812 (0.904) 0.177 (0.185) 0.104 (0.143) 
150 0.825 (0.909) 0.179 (0.189) 0.105 (0.144) 
190 0.828 (0.907) 0.178 (0.187) 0.104 (0.142) 

 

Supplementary Table 3. Accuracy (measured as average r2 across SNPs) as function of 

(a) sequencing error rate (b) variance across samples (c)  distribution of coverage across 
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loci (d) sample size. When not varying, N=100, error rate is set to 0.01, cov=0.5x, σ2 

=0.2 and α = 4. Results in parenthesis denote averages over only the 6070 SNPs 

genotyped in IHCS data set. 
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Chr. 
Avg. coverage 

(Illumina SNPs) 
σ2 avg. sample 

coverage 
σ2 avg. locus 

coverage 
SNPs typed on 
Illumina arrays 

Accuracy 
(r2) 

1 0.54 0.16 0.48 31068 0.83 
2 0.48 0.15 0.43 32975 0.83 
3 0.47 0.13 0.43 27837 0.82 
4 0.41 0.12 0.38 23457 0.82 
5 0.47 0.13 0.43 25314 0.82 
6 0.47 0.13 0.43 26147 0.82 
7 0.47 0.14 0.44 21736 0.82 
8 0.48 0.15 0.42 22873 0.82 
9 0.49 0.15 0.46 19602 0.81 
10 0.51 0.16 0.44 21566 0.82 
11 0.52 0.15 0.47 20034 0.83 
12 0.50 0.14 0.46 19881 0.82 
13 0.43 0.12 0.39 14966 0.80 
14 0.50 0.14 0.45 13401 0.81 
15 0.52 0.16 0.47 12293 0.81 
16 0.58 0.20 0.49 12687 0.81 
17 0.59 0.20 0.52 10701 0.80 
18 0.47 0.15 0.43 12304 0.80 
19 0.63 0.23 0.57 6646 0.82 
20 0.58 0.21 0.50 10602 0.81 
21 0.46 0.15 0.42 5984 0.79 
22 0.63 0.25 0.53 6024 0.81 
All 0.50 0.14 0.45 398098 0.82 

 

Supplementary Table 4. Average coverage by Chromosome and accuracy attained by 

genotype imputation from read data at SNPs also typed on Illumina platforms in the 84 

IHCS samples. The Illumina genotyped SNPs were used as gold standard.  
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RsID Chr Pos Coverage r2 p-value 

typed 

(-log10) 

p-value 

imputed 

(-log10) 

Ratio Effect typed 

[conf. int] 

Effect 

imputed 

[conf. int] 

rs6905949 6 30140525 0.29 0.89 0.23 0.35 1.53 
0.04 

[-0.11 0.19] 
0.06 

[-0.10 0.21] 

rs17475879 6 30364508 0.3 0.81 0.42 0.36 0.87 
0.10 

[-0.13 0.33] 
0.09 

[-0.14 0.33] 

rs13201769 6 30756066 0.62 0.86 0.03 0.09 3.63 
0.00 

[-0.13 0.14] 
0.02 

[-0.13 0.16] 

rs4713380 6 30785273 0.32 0.93 0.33 0.21 0.63 
0.07 

[-0.12 0.26] 
0.05 

[-0.15 0.25] 

rs4713385 6 30787593 1.12 0.95 0.33 0.36 1.08 
0.07 

[-0.12 0.26] 
0.08 

[-0.12 0.27] 

rs9295928 6 30823630 1.32 0.94 0.6 0.71 1.17 
0.12 

[-0.09 0.33] 
0.14 

[-0.07 0.36] 

rs7756521 6 30848253 0.33 0.96 1.38 1.12 0.81 
0.19[0.01 

0.38] 
0.17 

[-0.02 0.36] 

rs3873332 6 30895990 0.79 0.94 0.9 1.04 1.16 
0.16 

[-0.05 0.37] 
0.18 

[-0.03 0.39] 

rs3871466 6 30983683 0.07 0.88 0.94 0.86 0.92 
0.16 

[-0.04 0.36] 
0.16 

[-0.05 0.37] 

rs13210132 6 31001143 0.19 0.8 1.01 1.08 1.07 
0.18 

[-0.03 0.40] 
0.21 

[-0.03 0.44] 

rs3130981 6 31083813 0.4 0.98 0.28 0.24 0.85 
0.05[-0.11 

0.22] 
0.05 

[-0.12 0.22] 

rs1062470 6 31084435 0.36 0.97 0.4 0.42 1.05 
0.05[-0.07 

0.18] 
0.06 

[-0.07 0.19] 

rs3094212 6 31085770 0.73 0.96 1.37 1.42 1.03 
0.15 

[0.01 0.29] 
0.15 

[0.01 0.29] 

rs3095320 6 31087934 0.55 0.98 0.28 0.24 0.85 
0.05 

[-0.11 0.22] 
0.05 

[-0.12 0.22] 

rs3094205 6 31091862 0.96 0.97 0.4 0.41 1.05 
0.05 

[-0.07 0.18] 
0.06 

[-0.07 0.19] 

rs9263715 6 31095801 0.85 0.93 0.67 0.68 1 
0.10 

[-0.06 0.25] 
0.09 

[-0.05 0.23] 

rs3823418 6 31100942 1.12 0.96 0.23 0.4 1.69 
0.05 

[-0.13 0.23] 
0.07 

[-0.10 0.25] 

rs3130453 6 31124849 0.35 0.97 0.07 0.03 0.38 
0.01 

[-0.12 0.14] 
0.01 

[-0.13 0.14] 

rs720465 6 31125777 0.4 0.97 0.09 0.01 0.17 
0.02 

[-0.13 0.16] 
0.00 

[-0.15 0.15] 

rs1419881 6 31130593 0.44 0.99 0.69 0.76 1.1 
0.09 

[-0.05 0.22] 
0.09 

[-0.04 0.23] 
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rs3130932 6 31133943 0.42 0.98 0.71 0.75 1.06 
0.10 

[-0.05 0.25] 
0.10 

[-0.05 0.25] 

rs9263870 6 31170514 0.43 0.99 0.16 0.07 0.45 
0.05 

[-0.20 0.29] 
0.02 

[-0.23 0.27] 

rs9263871 6 31170528 0.37 0.87 0.12 0.09 0.75 
0.03 

[-0.13 0.18] 
0.02 

[-0.14 0.18] 

rs2395471 6 31240692 0.27 0.96 1.38 1.41 1.02 
0.14 

[0.01 0.28] 
0.14 

[0.01 0.27] 

rs5010528 6 31241032 0.37 0.76 0.29 0.16 0.54 
0.07 

[-0.14 0.29] 
0.05 

[-0.19 0.29] 

rs9366778 6 31269173 0.43 0.84 1.34 1.87 1.4 
0.15 

[0.00 0.29] 
0.18 

[0.04 0.31] 

rs9264942 6 31274380 0.26 0.69 1.77 2.35 1.33 
0.19 

[0.04 0.34] 
0.24 

[0.08 0.40] 

rs2156875 6 31317347 0.31 0.94 1.56 1.16 0.74 
0.17 

[0.02 0.31] 
0.13 

[-0.01 0.28] 

rs2442719 6 31320538 1.12 0.8 0.66 0.35 0.52 
0.10 

[-0.06 0.26] 
0.06 

[-0.10 0.22] 

rs2523554 6 31331829 0.63 0.95 0.79 0.81 1.02 
0.12 

[-0.05 0.28] 
0.12 

[-0.04 0.28] 

rs9266409 6 31336568 0.77 0.9 0.08 0.11 1.52 
0.02 

[-0.15 0.18] 
0.02 

[-0.14 0.18] 

rs2844529 6 31353593 0.94 0.92 2.53 3.02 1.19 
0.21 

[0.08 0.35] 
0.23 

[0.10 0.37] 

rs2523467 6 31362930 0.63 0.93 2.53 2.39 0.94 
0.21 

[0.08 0.35] 
0.21 

[0.07 0.34] 

rs2596531 6 31387557 0.55 0.94 1.31 1.38 1.05 
0.15 

[0.00 0.30] 
0.16 

[0.01 0.31] 

rs2844513 6 31388214 0.17 0.97 1.23 1.35 1.1 
0.14 

[-0.00 0.28] 
0.15 

[0.01 0.29] 

rs2516513 6 31447588 0.36 0.86 1.53 1.25 0.82 
0.18 

[0.02 0.34] 
0.15 

[-0.00 0.31] 

rs3093662 6 31544189 0.5 0.95 0.92 0.65 0.7 
0.15 

[-0.04 0.34] 
0.12 

[-0.07 0.31] 

rs2844480 6 31564821 0.6 0.83 0.3 0.5 1.65 
0.05 

[-0.09 0.19] 
0.07 

[-0.07 0.22] 

rs9378200 6 31572927 0.12 0.85 0.31 0.64 2.06 
0.07 

[-0.13 0.28] 
0.13 

[-0.08 0.34] 

rs9348876 6 31575276 0.33 0.86 0.31 0.64 2.07 
0.07 

[-0.13 0.28] 
0.13 

[-0.08 0.34] 

rs4151664 6 31920873 2.8 0.98 0.19 0.2 1.03 
0.05 

[-0.16 0.26] 
0.05 

[-0.16 0.26] 

rs12198173 6 32026808 0.19 0.85 0.04 0.33 8.24 
0.01 

[-0.19 0.21] 
0.08 

[-0.13 0.28] 

rs13199524 6 32066765 0.6 0.96 0.01 0.04 3.28 
0.00 

[-0.20 0.21] 
0.01 

[-0.19 0.21] 
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rs12153855 6 32074804 1.31 0.98 0.04 0.02 0.55 
0.01 

[-0.19 0.21] 
0.01 

[-0.19 0.20] 

rs12663103 6 32161324 0.31 0.81 0.71 0.28 0.39 
0.13 

[-0.07 0.32] 
0.07 

[-0.14 0.28] 

rs6906662 6 32266506 0.25 0.95 0.46 0.71 1.54 
0.09 

[-0.10 0.29] 
0.13 

[-0.07 0.32] 

rs7356880 6 32401327 0.07 0.93 0.46 0.4 0.88 
0.10 

[-0.11 0.32] 
0.09 

[-0.12 0.31] 
Average 0.57 0.91 0.69 0.72 1.04  

 

Supplementary Table 5. Association statistics computed at known variants associated to 
the HIV Progressor/Controller phenotype5 using typed or sequencing-based imputation. 
*Average ratio is computed as the ratio of the average of association p-values. To 
compute the statistical significance of the ratio being different from 1 we randomly 
flipped the typed and imputed p-value in the computation of the ratio to observe that in 
more than 18% of the 1,000 permutations the ratio to exceed 1.04.  
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Window 

Size 

Haplotype 

length in 

#SNPs 

Number of 

Distinct 

Haplotypes 

(Hapmap 3) 

Haplotype 

Similarity 

(Hapmap 3) 

Difference in 

number of 

distinct 

haplotypes 

(Hapmap3 – 

1000 Genomes) 

Difference in 

haplotype 

similarity 

metric 

(Hapmap3 – 

1000 Genomes) 

10 Kb 
5.74  

(0.05) 
5.37  

(0.06) 
0.4324 

(0.0029) 
0.32  

(0.01) 
-0.0026 
(0.0001) 

50 Kb 
26.35 
(0.17) 

20.89  
(0.25) 

0.2087 
(0.0022) 

1.59  
(0.03) 

-0.0050 
(0.0002) 

100 Kb 
51.97 
(0.47) 

37.56  
(0.58) 

0.1244 
(0.0030) 

2.50  
(0.06) 

-0.0046 
(0.0004) 

 

Supplementary Table 6. Difference in haplotype similarity statistics across the European 

samples part of both Hapmap 3 and 1000 Genomes project. Numbers in parenthesis show 

standard errors of the mean as computed across randomly sampled windows of given size 

across Chromosome 1 phased data in both projects. Both metrics show an increase in the 

number of distinct haplotypes in HapMap 3 as compared to 1000 Genomes, presumably 

due to the more accurate phasing using trio families or due to joint phasing of all samples 

that missed rare haplotypes in the 4x sequencing coverage data. 
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Supplementary Note: 
1. Selection of genomic regions used in simulation 
We used the following procedure to select regions representative of the whole genome in 

terms of SNP density and recombination rate. First, we divided the genome into non-

overlapping 5Mb windows and computed the average recombination rate in cM per Mb 

(https://mathgen.stats.ox.ac.uk/wtccc-software/recombination_rates/) as well as the 

number of SNPs identified in the 1000 Genomes project (June 2011 phase 1 release). 

Across all windows we found the average recombination rate to be 1.285 cM/Mb (sd 

0.706) and 28,159 (sd 5,471) polymorphic sites in the European data. We randomly chose 

10 regions totaling 50Mb that are within 1 standard deviation to the average 

recombination rate and number of SNPs (Supplementary Table 1). We assigned the 762 

European haplotypes (174 CEU, 186 FIN, 178 GBR, 196 TSI, 28 IBS) of the 1000 

Genomes project to two non-overlapping panels of 381 haplotypes each, with one panel 

serving as the “reference” panel in all our imputation runs and one panel for simulating 

sequencing data. We filtered out all SNPs monomorphic in the reference simulation panel. 

 

2. Comparison of imputation methods from short read data 
 

Our procedure for simulating short read sequencing data sets relies on assumptions 

regarding distribution of coverage across samples and loci as well as the sequencing error 

rate. Following standard approaches1, we use three steps to simulate data sets at average 

coverage cov. First, we draw from the normal distribution with mean equal to cov and σ2 

to obtain cov at each sample φ(j). Second, we use a draw from a Gamma distribution 

Γ(α,1/α) to obtain the shape of coverage at each loci γ(i). Finally, the number of reads at 

locus i in sample j is drawn from a Poisson distribution with mean φ(j)γ(i). Each read is 

generated by randomly copying one of the 2 alleles for sample j and locus i, with 

miscopying errors inserted at a rate of ε. 
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We compared three approaches (Beagle2, Impute23 and MaCH/Thunder4) to incorporate 

LD in the calling of genotypes from short read data. For each considered region, we 

simulated short read data sets assuming 0.5x and 4x coverage followed by imputation. 

Each method was provided the genotype likelihood for all calls, defined as the probability 

of the set of reads given a genotype value under a simple error model with ε=0.01 

assuming uncorrelated errors across reads1.  All methods were provided the reference 

panel of haplotypes as input either as an external haplotype panel for Beagle and Impute 

(default settings) or included in the sample for MaCH/Thunder using the following 

version and parameters: 

• Impute2 (version 2.1.2): -prob_g -pgs_prob –Ne 11418. We used the genetic map 

provided on impute2 website for June 2011 phase 1 release of 1000 Genomes. 

• Beagle (version 3.3.1): no parameters  

• MaCH/Thunder_Glf (version 1.1.0) --shotgun -r 50 --states 100 --dosage –phase 

 

Results in Supplementary Table 2 suggest that Beagle and Impute2 attain increased 

accuracy over MaCH/Thunder per unit of runtime when default parameters are used. We 

also attempted running MaCH/Thunder starting from results of Beagle but the increase in 

accuracy was marginal. Our results do not represent an exhaustive comparison among 

methods for imputation from sequencing (such a comparison is beyond the scope of this 

manuscript); different parameter settings could change the relative performance of 

compared methods and we did not assess all possible settings here. In this work we used 

Beagle for all our experiments as it provides a good balance between runtime and 

accuracy. Improved imputation from sequencing data will only improve the accuracy we 

observe in our experiments from short read sequencing. Thus, our results can be viewed 

as a lower bound on accuracy that can be attained in imputation from sequencing data. 

 

3. Effect of simulation parameters on accuracy 
 

The main parameters of our simulations are the standard deviation in average coverage 

across samples σ2, the shape of the Gamma distribution α and the error rate ε. Intuitively, 
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the accuracy is increased as σ2 decreases, α increases and ε decreases. We conducted 

simulation experiments at various values for these parameters to assess their effect on the 

results using the 762 European haplotypes of the 1000 Genomes project phase 1 June 

2011 release. The 762 haplotypes were split at random between two panels of haplotypes 

each of size 381; one panel was used as reference and another one to simulate sequencing 

data. We simulated data over 100 samples (number chosen to roughly match the number 

of samples in the IHCS whole-exome sequencing data) by randomly pairing with no 

replacement haplotypes from the simulation panel. We compared 3 approaches for 

inferring genotypes from reads: imputation with reference panel (381 haplotypes not used 

in simulation of sequencing data), imputation with no reference panel and no imputation. 

The procedure for no imputation sets the genotype dosage independently for each SNP 

genotype as 2*P(reads | genotype is 2) + 1* P(reads | genotype is 1). The probability of 

the set of reads given a genotype value is computed under a simple error model with 

ε=0.01 assuming uncorrelated errors across reads1.  

Supplementary Table 3(a) displays the accuracy when the error rate is increased showing 

that, as expected, all approaches yield poorer estimates of genotypes with increase in 

error rate. However, we note that the approach that uses a reference panel of haplotypes 

shows the smallest decrease in accuracy demonstrating the robustness of proposed 

approach to increased sequencing error rates. Supplementary Table 3(b) displays the 

accuracy as a function of variation in average coverage across samples. All methods 

show large decreases in performance as the variability in coverage across samples 

increases. This emphasizes the importance of reducing the variation in coverage across 

samples. We also quantified the robustness of our approach to the distribution of 

coverage across loci. We varied the shape of the Gamma distribution α with results 

displayed in Supplementary Table 3(c). As expected, as the variance in coverage across 

loci decreases (as α increases) we notice an increase in performance across all methods. 

Supplementary Table 3(d) shows that the accuracy marginally increases with sample size 

suggesting that the performance of our approach is bound to increase with larger samples. 

In our approach, we impute all SNPs that are polymorphic in the reference panel. To 

quantify the effect of SNPs not polymorphic in the reference panel but at considerable 

frequency in the simulation panel, we computed the number of SNPs filtered out from 
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our simulations due to the fact that they were non-polymorphic in the reference panel but 

attained over 1% minor allele frequency (maf) in the simulation panel. 930 SNPs out of 

the original set of 265,687 SNPs were filtered out from our simulations due to this reason 

and would attain an accuracy r2 of 0 in our approach (none of these SNPs attained over 

5% maf in the simulation panel). Therefore, when adjusting for the SNPs not 

polymorphic in the reference panel, the overall average r2 at 0.5x coverage (including the 

930 SNPs on top of the 150,261 used in simulations) decreases from 0.812 to 0.807 (σ2 

=0.2 and α = 4). As the 1000 Genomes project catalogues a larger proportion of low 

frequency variation across the genome, the number of such SNPs will decrease. 

 

4. Imputation using reference panels of haplotypes boosts accuracy at 

ultra low-coverage 

 
We carried out simulations over 100 samples sequenced at various extremely low-

coverage to estimate the accuracy attained by imputation with reference panels of 

haplotypes as compared with no imputation (independent estimation of genotype calls at 

each sample and each SNP based on the set of reads overlapping that SNP). To quantify 

the potential benefit of performing imputation, we plotted the gain in accuracy as 

function of gain in coverage (derivative of accuracy as coverage) (Supplementary Figure 

1(a)). For a coverage c we estimated the accuracy at coverage 1.25c and plotted the ratio 

r2(1.25c)/r2(c) normalized by the gain in coverage of 0.25. As coverage increases, reads 

are sampled from the same LD blocks and the amount of new information present in each 

read decreases. As expected, we observed a much faster rate of decrease for imputation 

(in imputation a read contains information about the whole LD block and therefore 

smaller amount of sampled reads are required to overlap in information content) rather 

than no imputation.  In the absence of imputation, the derivative is always smaller than 1 

showing, similar to other studies1, that more samples with less coverage are preferred 

(Supplementary Figure 1(b)).  
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5.  Reduced haplotype diversity in the 1000 Genomes phase 1 haplotypes  

 
Our simulations rely on using half of the 1000 Genomes European haplotypes for 

simulating sequencing data sets and the other half as the reference panel. In such a set up, 

a critical assumption being made is that the simulation and reference panels of haplotypes 

comprise random samples from the population (Europeans in this case). An artificial 

increase in the haplotype similarity between the reference and simulation panel as 

compared to two random samples from the same population will yield increased accuracy 

in simulations as opposed to real data. This is a direct effect of the imputation 

methodology that uses reference haplotypes to fill in missing data in the target sample. 

An artificial increase in haplotype similarity between reference and simulation panel, as 

opposed to random samples from the populations, can be caused by under representation 

of rare haplotypes in the data. Intuitively, 1000 Genomes haplotypes have been generated 

from sequencing data at 4x coverage with rare haplotypes being more likely to be missed 

in the joint calling across all samples; such a deficiency in the haplotypic diversity in the 

1000 Genomes haplotype data will cause non-overlapping random subsets of haplotypes 

to be more similar than in real data. To search for such an effect, we compared the 

haplotypic diversity in 1000 Genomes phase 1 European haplotypes with the haplotypic 

diversity in the HapMap 3 phase 2 data (www.hapmap.org), which used a trio-aware 

phasing methodology for increased haplotype inference accuracy. For consistency, we 

restricted to only the samples present in both data sets. We randomly selected regions of 

10, 50 and 100 Kb across Chromosome 1, and we compared the number of distinct 

haplotypes across each window in the HapMap 3 phase 2 data as opposed to the 1000 

Genomes phase 1 data. In addition, we computed the average haplotype similarity, 

defined as the percent of all pairs of haplotypes that are identical across all pairs of 

haplotypes in the data (we excluded windows with only one haplotype across all samples). 

Supplementary Table 6 shows that, 1000 Genomes phase 1 data contains a smaller 

number of haplotypes as compared to HapMap 3 data, presumably due to joint calling 

across all samples that may miss rare haplotypes in the calling from 4x coverage.  
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6. IHCS data set 
 

Genome-wide SNP genotype and whole-exome sequence data on 84 HIV-positive 

individuals of European descent were obtained by the International HIV Controllers 

Study5. 43 of these samples have been genotyped on the Illumina HumanHap 650Y, and 

41 on the Human-1M-duo array.  

 

Investigators can submit a concept sheet detailing their study design, research questions 

and other needs in order to request access to the genetic data presented here. The concept 

sheet with detailed instructions can be downloaded from: 

http://cfar.globalhealth.harvard.edu/fs/docs/icb.topic938249.files/Harvard%20CFAR%20

Concept%20Sheet%20Template%20.docx 

Please e-mail completed forms to Pamela Richtmyer (prichtmyer@partners.org). 

Requests will be reviewed on the basis of scientific merit, feasibility and potential 

overlap with accepted concept sheets or ongoing investigations.   

 

We only used the intersection of SNPs for all analyses described. Only unrelated samples 

with high genotyping rates (>95%) of European ancestry were included, after filtering out 

SNPs with low frequency (MAF < 1%), high missingness (>2%), and departure from 

Hardy-Weinberg equilibrium (P < 10-6).  
 

Starting with 3 ug of genomic DNA (gDNA), sample preparation and in-solution 

hybridization were preformed as described by Fisher et al6. The quantified libraries were 

normalized to 2nM and then denatured using 0.1 N NaOH.  Cluster amplification of 

denatured templates was then performed according to manufacturer’s protocol (Illumina) 

using V4 Chemistry and V4 Flowcells.  Sybr Green dye was added to all flowcell lanes to 

provide a quality control checkpoint after cluster amplification to ensure optimal cluster 

densities on the flowcells.  Flowcells were sequenced on Genome Analyzer II’s, using V4 

Sequencing-by-Synthesis kits and analyzed with the Illumina RTA v1.8.67 pipeline.  

Standard quality control metrics including error rates, % passing filter reads, and total Gb 

produced were used to characterize process performance prior to downstream analysis. 
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A subset of samples was prepared using the protocol previously mentioned with some 

slight modifications. Initial genomic DNA input into shearing was reduced from 3 ug to 

100 ng of total gDNA in 50 uL of solution. Illumina paired end adapters were replaced 

with palindromic forked adapters with unique 8 base index sequences embedded within 

the adapter. These samples were then processed as described by Fisher et al6.  The 

quantified libraries were normalized to 3nM and then denatured. Cluster amplification 

was then performed according to the manufacturer’s protocol using the HiSeq V2 Cluster 

Chemistry and HiSeq V2 Flowcells. Cluster density was checked using the previously 

described Sybr Green dye assay. Flowcells were then sequenced on Illumina HiSeq 2000 

using the HiSeq V2 Sequencing-by-Synthesis kits and analyzed using the Illumina RTA 

v1.10.15. Because of the indexed adapters, it was necessary to use the Illumina 

Multiplexing Sequencing Primer Kit; however the indexed read was not performed.  

 

Read data was processed using the GATK/Picard software package7 for next generation 

sequencing data. Alignment to the human reference genome hg19 was performed using 

the bwa aligner, using parameters “-q 5 -l 32 -k 2 -t 4 -o 1”. Reads with low mapping 

quality as well as reads mapping to multiple locations were removed. The Genome 

Analysis toolkit GATK7 was used to re-calibrate the mapping quality as part of the 

default pre-processing pipeline of next generation sequencing data at the Broad institute. 

 

Although whole-exome sequencing approach increases the amount of reads generated 

from the exonic regions, due to imperfect capture technologies, a significant amount of 

reads falls outside of the exome. For example, using the latest exonic annotation for the 

human genome (http://www.ncbi.nlm.nih.gov/CCDS, April 22, 2011), including 100 

bases around each exon, we observe that only 72% of reads align to exonic regions on 

chromosome 20 (similar numbers are obtained at other chromosomes) with remainder of 

the reads falling in outside of exonic regions (at an average coverage of 0.5x). 

Importantly, we do not observe any increase in discordance with 1000 Genomes 

reference and variant allele calls at polymorphic loci identified by 1000 Genomes in the 

European panel (Supplementary Figure 2). 
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To remove the effect of highly covered loci (e.g. exonic regions and other potential 

artifacts of the capture technology) on genotype imputation from sequencing data, we 

sub-sampled all loci with more than 4x coverage to a mean 0.5x. The threshold of 4x was 

chosen to achieve a near-complete separation between exonic (and near exonic) and non-

exonic loci (Supplementary Figure 2). The average distribution in the 100 samples after 

re-sampling is 0.5x with σ2=0.14 in average coverage across samples and σ2=0.45 in 

average coverage across loci for chromosome 20 (see Supplementary Figure 2 and 

Supplementary Table 5 for data for each chromosome). The distribution of average 

coverage by locus can be approximated using a Gamma distribution with shape parameter 

α = 4 (see Supplementary Figure 2). 

 

7. Genotype imputation from sequencing data 
 

Following standard approaches for genotype imputation from short read data1,8 we 

computed genotype likelihoods from reads overlapping any polymorphic site identified in 

the 1000 Genomes project9 independently at each sample and locus as follows. Given a 

SNP locus i in individual j, a set of observed reads R(i,j) overlapping this locus (given as 

counts of the reference allele; reads not matching both reference and alternate are 

discarded) and the reference and alternate alleles called by 1000 Genomes at this SNP, 

the genotype likelihood of the genotype g having x=0,1,2 copies of the reference allele is 

computed as:
 

. The probability of observing a read 

given a genotype is computable assuming an error model (we used a fixed an error rate ε 

=0.01); e.g. if r=1, P(r|g=0)=ε, P(r|g=2)=1-ε, P(r|g=1)=0.5. 

 

The genotype likelihoods, together with the reference European haplotypes from Phase 1 

release of 1,000 Genomes project, are provided to the Beagle imputation engine that 

computes dosages using an LD-aware approach. To quantify accuracy, we used the 

squared Pearson correlation coefficient r2, as this metric quantifies the loss in effective 

sample size due to errors in imputation. As “gold standard” data, we used genotype data 

inferred using genotyping arrays on the same 84 samples. Therefore, we compared the 

! 

P(R(i, j) | g = x) = P(r | g = x)
r"R (i, j )
#
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imputed genotypes from extremely low-coverage sequencing data with genotype calls 

obtained from Illumina genotyping arrays.  

 

Accuracy across all chromosomes is displayed in Supplementary Table 4. We observe 

similar performance across all chromosomes (average r2 from 0.79 for chromosome 21 to 

0.83 for chromosome 2) showing the robustness of our proposed approach. As expected 

we see accuracy increasing as function of coverage and minor allele frequency 

(Supplementary Figure 3). We also observe a high percentage of all SNPs to achieve high 

accuracy (Supplementary Figure 3) showing that our approach is appropriate for genome-

wide scans. 

 

8. Computing association statistics at imputed genotypes from extremely 

low-coverage short read sequencing 

 
Using the 61 HIV controllers and 23 HIV progressors, we computed case-control 

association statistics at every SNP across the genome using either imputed data from 

sequencing or data from SNP arrays. As an association statistic we computed the standard 

Armitage trend test10 defined as N*ρ2(G,Φ), where N is equal to the number of samples, 

G is the vector of genotypes at given SNP and Φ is the phenotype vector (defined as 0 if 

sample is a Controller  and 1 if Progressor5). This statistic has a χ2 distribution with 1 

degree of freedom and accounts for uncertainty in the imputation data if computed over 

dosages.  

 

Supplementary Table 5 shows that imputation-based statistics recover the same signal (as 

measured by the value of the –log10 p-values) when compared to typed data. We observe 

instances in which statistics over imputed data attain greater significance than typed data, 

an effect likely due to statistical noise.  To quantify whether the ratio of average –log 10 

p-values in imputed versus typed data is significantly different from 1, we performed 

1,000 permutations in which we randomly flipped the typed and imputed p-value at each 

SNP in the computation of the ratio. We observed that in more than 18% of the 
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permutations, the ratio attained a value greater than 1.04 thus showing that the increase in 

significance of imputed data is most likely due to chance. Although our permutation 

approach makes the assumption that all SNPs are independent, the statistical noise is only 

increased when LD among SNPs is considered (only 4 SNPs were deemed as showing an 

independent signal of association in this region5) thus further reducing the significance of 

the p-value.  

 

In addition, we computed the correlation between statistics computed over typed 

genotypes as compared to imputed data (Supplementary Figure 4) and we observed a 

Pearson squared correlation of 0.68 which as expected from imputed genotypes that are 

correlated with 0.83 to the typed data (Supplementary Figure 4). Supplementary Figure 4 

shows the QQ-plot of typed versus imputed p-values attained on the Progressor 

phenotype in the IHCS exome data set. 

 

9. Optimal coverage for sequencing-based GWAS under a fixed budget 

assumption 

Previous work1 has shown that under simplistic cost assumptions (e.g. no sample 

preparation costs) and in the absence of imputation, the optimal design for maximizing 

expected association power is attained at arbitrarily large sample sizes with arbitrarly low 

coverages per sample. Here we show that when realistic cost assumptions are taken into 

consideration, there exists an optimal coverage in short read sequencing for maximizing 

expected association power (effective sample size). 

 

Using simulation experiments at various ultra-low coverages, we estimated the accuracy 

(average squared correlation across SNPs between typed and imputed genotyping calls) 

as a function of average coverage depth in sequencing r2(cov). For a given sample size N, 

sequenced at average coverage cov, we estimated the effective sample size as Nr2(cov). 

We note that by averaging correlations across all markers, we are giving every SNP equal 

weight in our estimation of effective sample size; various assumptions on distribution of 

causal variants may lead to different weights per SNP arising in different computations. 
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Assuming a fixed budged of $300,000, a sample preparation cost of $300 and cost per 

generating 1x of genome-wide coverage of $1,000 we computed the effective sample size 

when genotypes were estimated through imputation from reference panels (e.g. 1,000 

Genomes) versus when no imputation is performed (see Supplementary Figure 5). We 

observe that there exists an optimal coverage for which the expected power (effective 

sample size) is maximized.   

 

We explored the expected power of sequencing versus genotyping at different minor 

allele frequencies and odds ratio. Consider a case-control study in which we assess 

statistics at causal SNP using the standard z-score statistic11: 

 
f-  is the frequency in controls, f+ is the frequency in cases, f  is the mean frequency, N in 

the total number of samples in the study (although we assumed balanced study with half 

cases and half controls, the statistic extends easily when the number of cases is different 

from number of controls12). Power at significance level α is then calculated from the non-

centrality parameter (ncp) as: 

   (1)  

Φ denotes the standard normal cumulative distribution function and Φ–1 is the standard 

normal quantile function. The expected non-centrality parameter at imputed data with r2 

to the typed genotypes is estimated as , which allows us to estimate the expected 

power in imputed data from sequencing. 

 

Although we estimate the effective sample size using the average across loci of 

imputation accuracy (as measured by r2), it is important to quantify the effect that the 

variance in r2 (e.g. SNP accuracy varies by allele frequency, Supplementary Figure 5(a)) 

has on expected power. Therefore, we compared expected power using either the average 

accuracy across all SNPs of 0.82 plugged into equation (1) vs. the average power 

computed across all SNPs from the IHCS data (with their respective accuracies) thus 

incorporating variance in r2 across SNPs. We observe (Supplementary Figure 5(b)) minor 
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differences between the two strategies of computing the average power at any MAF 

considered. 

 

We also computed expected theoretical power as function of allele frequency of a study 

with budget of $300,000 assuming genotyping array cost of $400 per sample as compared 

to sequencing cost of $133 per 1x and $30 per sample in DNA preparation 

(Supplementary Figure 5(c)). 

 

10. Combined data set of 909 samples from IHCS, SCZ and AUT whole 

exome studies 

 

Exome data was generated using the data processing and variant calling protocol 

described previously13. Reads were aligned to the reference genome using Burrows-

Wheeler Aligner (BWA)14, PCR duplicate reads were removed using Picard (see Main 

text, Web Resources), base quality scores were recalibrated using Genome Analysis 

Toolkit (GATK7), and alignments near putative indels were refined using GATK. Similar 

to the IHCS data, we observed significant amount of off-target data. Average coverage of 

0.16x (0.30x) in SCZ (AUT) data across the 97% of the SNPs covered at coverage less 

than 4x and over 60x coverage at the remaining 3% of SNPs (threshold of 4x was chosen 

to attain near perfect separation between exome and non-exome SNPs, see above). We 

observe smaller off-target coverage in SCZ and AUT data as compared to ICHS data, 

most likely due to improvements in exome sequencing capture technologies. To remove 

effects from high coverage at or near exons, we removed all data at SNPs covered at 4x 

or more coverage. Our procedure for imputing genotypes from sequencing data follows 

three steps. First reads are aligned to hg19 reference human genome using the BWA 

aligner, using parameters “-q 5 -l 32 -k 2 -t 4 -o 1”. Reads with low mapping quality as 

well as reads mapping to multiple locations were removed. Second, starting from the bam 

aligned files, we computed genotype likelihoods at all loci identified as polymorphic in 

the 1,000 Genomes phase 1 project, using GATK7 software (“GenomeAnalysisTK.jar -T 

UGCalcLikelihoods -out_mode EMIT_ALL_SITES”) for each sample independently in 

batches of 1M loci. Third, genotype likelihoods across all of the 909 samples were 
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provided to the Beagle2 imputation software, together with the 762 European haplotypes 

of 1000 Genomes phase 1 data to compute dosages at each sample and each site 

polymorphic in 1000 Genomes phase 1 (to improve Beagle runtime with no effect on 

accuracy, we restricted Beagle imputation to only the 15,709,633 sites found 

polymorphic in the 762 European haplotypes of the1000 Genomes phase 1 data). 

Imputation using Beagle was performed in windows of 1Mb in size with 250Kb flanking 

regions across all samples. 9 out of the 2764 Beagle window runs crashed due to very 

large CPU and memory requirements. 

 

The 909 samples were also genotyped on a variety of genome-wide SNP arrays (see Main 

Text). We intersected all genotype array data (including the IHCS data) using plink15 

software, to achieve a data set of 909 samples typed on 104,454 genome-wide SNPs, with 

each SNP containing no more than 10% missing calls. After filtering for Hardy-Weinberg 

at a nominal threshold of 0.001, only 104,318 SNPs were retained for all subsequent 

analyses. 103,977 SNPs were successfully imputed using Beagle (the remaining 341 

SNPs belonged to the 9 windows where Beagle imputation crashed).  All results below 

were derived using the 103,977 genome-wide SNPs typed using arrays and imputed from 

sequencing data. We observed an r2 of 0.71 between imputed genotyping calls and typed 

data across the 103,977 SNPs across all the 909 samples, with average r2 of 0.69 for SCZ 

samples, 0.71 for AUT data and 0.83 for ICHS data, consistent with the different amounts 

of off-target reads in these data sets and with simulation results (see Main Text). 

 

Starting from the typed genotype calls, we simulated phenotypes using an additive model 

Φ=g*beta+N(0,1), for various values of beta for each SNP independently to simulate 

103,997  data sets. Statistics were computed at each SNP independently using the 

standard Armitage trend test defined as Nρ2(G, Φ). Supplementary Figure 6 shows that 

association statistics over imputed dosages recover the same signal as association 

statistics computed at typed genotyping calls. 

 

To search for potential batch effects of DNA collection and different sequencing 

approaches, we also performed a case-control analysis in which the AUT samples were 

Nature Genetics: doi:10.1038/ng.2283



treated as “controls” and SCZ samples as “cases”. Since all samples were not ascertained 

for any phenotype, this analysis creates a null data set with “real” phenotype, where the 

phenotype is defined as the cohort label. In this setup, population stratification due to 

genetic differences between SCZ and AUT data sets is a major concern16. Indeed, the 

standard metric of differentiation Fst between the AUT and SCZ samples has a value of 

0.001272 (standard deviation of 2x10-5). Such a non-zero value of differentiation among 

the cases and controls leads to an expected inflation factor λGC =1+N*Fst of 2.02 (N=800 

samples)17 in association statistics computed when the cases and controls are sampled 

from AUT versus SCZ. As expected, we observed an inflation factor λGC of 1.96 (1.81) in 

association statistics computed over typed (imputed) data, λGC likely explained by 

differences in genetic ancestry between the AUT and SCZ populations. The standard 

approach for correcting for population substructure due to ancestry is to use PCA16; 

however, the approach of correcting using PCA is inappropriate in this scenario because 

all cases are sampled from one population and all controls are sampled from the other 

population (AUT vs. SCZ). To obtain properly distributed association statistics, we 

applied λGC to both typed or imputed association statistics. This would not be appropriate 

to rigorously correct for stratification18, but if no false positives remain after applying this 

approach, we can conclude that the approach we propose is not susceptible to false 

positives.  Supplementary Figure 7(a) shows the association statistics computed over 

typed versus imputed data demonstrating the high correlation between p-values (r2=0.63), 

as expected from the imputation accuracy. Supplementary Figure 7(b) shows the QQ-plot 

of the association statistics, demonstrating that both imputed and typed association 

statistics attain expected distributions. Most importantly, we do not observe any genome-

wide significant association between AUT vs. SCZ phenotype and any SNP in either 

typed or imputed genotypes.  

 

Finally, we show that standard approaches from the genotyping arrays GWAS analysis 

toolkit extend to sequencing based GWAS. Using the EIGENSTRAT software, we 

performed principal component analysis on the 909 samples using either the genotypes 

typed in arrays (103,977 in total) or imputed from ultra low-coverage. We performed 

PCA on imputed data by rounding dosages at well-imputed SNPs. As metric for 
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imputation accuracy that does not rely on typed data we used r2hat19 (threshold of 0.8, 

37,796  in total). Supplementary Figure 8 shows that PCA over imputed data recovers the 

same principal axis of variation as data, separating the AUT from the SCZ samples. We 

observed a square correlation of 0.91 across the first Eigenvector. Supplementary Figure 

8(bottom) suggests that the variation between PCA on typed versus imputed data most 

likely comes from smaller SNP set used for PCA over imputed data. Although in this 

simple experiment we assessed the capacity of imputed data to recover the principal 

components as inferred in typed data, we note that in standard GWAS over more than a 

million SNPs, a reduction of 70% to 300k SNPs for performing PCA over imputed data is 

likely going to recover similar axes of variation. Although our analysis shows that PCA 

can be performed using rounded dosages at accurately imputed SNPs, we caution that 

such an approach may lead to biases, especially when there is a sequencing depth 

difference between cases and controls and therefore special care should be taken in this 

scenario. 
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