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David Reich3,4,21, Janet Kelso2, T. Bence Viola2,10 & Svante Pääbo2

Wepresent the high-quality genome sequence of a 45,000-year-oldmodern humanmale fromSiberia. This individual
derives from a population that lived before—or simultaneously with—the separation of the populations in western and
eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic
segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating
that Neanderthal gene flow into the ancestors of this individual occurred 7,000–13,000 years before he lived. We
estimate an autosomal mutation rate of 0.43 1029 to 0.63 1029 per site per year, a Y chromosomal mutation rate of
0.73 1029 to 0.93 1029 per site per year based on the additional substitutions that have occurred in present-day non-
Africans compared to this genome, and a mitochondrial mutation rate of 1.83 1028 to 3.23 1028 per site per year based
on the age of the bone.

In 2008, a relatively complete left human femoral diaphysis was discov-
ered on the banks of the river Irtysh (Fig. 1a, c, d), near the settlement
of Ust’-Ishim in western Siberia (Omsk Oblast, Russian Federation).
Although the exact locality is unclear, the femur was eroding out of al-
luvial deposits on the left bank of the river, north of Ust’-Ishim. Here,
Late Pleistocene and probably redeposited Middle Pleistocene fossils
are found in sand and gravel layers that are about 50,000–30,000 years
old (that is, from Marine Oxygen Isotope Stage 3).

Morphology, dating and diet
The proximal end of the bone shows a large gluteal buttress and gluteal
tuberosity, while the midshaft is dominated by a marked linea aspera,
resulting in a teardrop-shaped cross-section (Fig. 1e, f) (for details, see
Supplementary Information section 3). The morphology of the prox-
imal endof the shaft is similar toUpperPaleolithicmodernhumans and
distinct fromNeanderthals (Supplementary Table 3.1, Supplementary
Fig. 3.2.), while the teardrop-shaped cross sectionof themidshaft is sim-
ilar tomost Upper Paleolithic humans and early anatomicallymodern
humans1. Taken together, this suggests that theUst’-Ishimfemurderives
from a modern human.
Two samples of890mgand450mgof thebonewere removedonsep-

arate occasions for dating.Collagen preservation satisfied all criteria for
dating2 and after ultrafiltrationweobtained ages of 41,4006 1,300 years
before present (BP) (OxA-25516) and 41,4006 1,400 BP (OxA-30190).
These twodates, when combined and corrected for fluctuations of atmo-
spheric 14C through time, correspond to an age of about 45,000 calibrated

years BP (46,880–43,210 cal BP at 95.4% probability, Supplementary
Information section 1). TheUst’-Ishim individual is therefore the oldest
directly radiocarbon-datedmodernhumanoutsideAfrica and theMid-
dle East (Fig. 1b). Carbon and nitrogen isotope ratios indicate that the
diet of theUst’-Ishim individual (Supplementary Information section4)
was based on terrestrial C3 plants and animals that consumed them, but
also that an important part of his dietary proteinmay have come from
aquatic foods, probably freshwater fish, something that has been ob-
served in other early Upper Palaeolithic humans from Europe3.

DNA retrieval and sequencing
Nine samples of between41and130mgof bonematerialwere removed
from the distal part of the femur and used to construct DNA libraries
using a protocol designed to facilitate the retrieval of short anddamaged
DNA4. The percentage of DNA fragments in these libraries that could
bemapped to the human genomevaried between 1.8% and 10.0% (Sup-
plementaryTable 1.1). From the extract containing thehighest propor-
tion of human DNA, eight further libraries were constructed. Each of
these librarieswas treatedwithuracil-DNAglycosylase and endonucle-
aseVIII to removedeaminated cytosine residues, and librarymolecules
with inserts shorter thanapproximately 35basepairs (bp)weredepleted
by preparative acrylamide gel electrophoresis before sequencing on the
IlluminaHiSeqplatform(Supplementary Information section6). In total,
42-fold sequence coverage of the,1.86 gigabases (Gb) of the autosomal
genome towhich short fragments can be confidentlymappedwas gen-
erated. The coverage of the X and Y chromosomes was approximately
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half that of the autosomes (,22-fold), indicating that the bone comes
from amale. A likelihoodmethod estimated present-day humanmito-
chondrial DNA (mtDNA) contamination5 to 0.50% (95% confidence
interval (CI) 0.26–0.94%), whereas amethod that uses the frequency of
non-consensus bases in autosomal sequences estimated the contam-
ination to be less than 0.13% (Supplementary Information section 7).
Thus, less than 1% of the hominin DNA fragments sequenced are esti-
mated to be extraneous to the bone. After consensus genotype calling,
such low levels of contamination will tend to be eliminated.

Population relationships
About 7.7 positions per 10,000 are heterozygous in the Ust’-Ishim
genome, whereas between 9.6 and 10.5 positions are heterozygous in
present-dayAfricans and5.5 and7.7 inpresent-daynon-Africans (Sup-
plementary Information section 12). Thus, with respect to genetic di-
versity, the population towhich theUst’-Ishim individual belongedwas
more similar to present-day Eurasians than to present-day Africans,
which probably reflects the out-of-Africa bottleneck shared by non-
African populations. TheUst’-IshimmtDNAsequence falls at the root
of a large group of relatedmtDNAs (the ‘R haplogroup’), which occurs
today across Eurasia (Supplementary Information section 8). The Y
chromosome sequence of theUst’-Ishim individual is similarly inferred
tobe ancestral to a groupof relatedYchromosomes (haplogroupK(xLT))
that occurs acrossEurasia today6 (Supplementary Information section9).
As expected, the number ofmutations inferred to have occurredon the

branch leading to the Ust’-Ishim mtDNA is lower than the numbers
inferred to have occurred on the branches leading to related present-
daymtDNAs (Supplementary Fig. 8.1).Using this observation andnine
directly carbon-dated ancient modern humanmtDNAs as calibration
points5,7 in a relaxedmolecular clockmodel, we estimate the age of the
Ust’-Ishim bone to be ,49,000 years BP (95% highest posterior den-
sity: 31,000–66,000 years BP), consistent with the radiocarbon date.
In a principal component analysis of the Ust’-Ishim autosomal ge-

nome along with genotyping data from 922 present-day individuals
from 53 populations8 (Fig. 2a), the Ust’-Ishim individual clusters with
non-Africans rather than Africans. When only non-African popula-
tions are analysed (Fig. 2b), theUst’-Ishim individual falls close to zero
on the two firstprincipal component axes, suggesting that it doesnot share
muchmore ancestrywith any particular group of present-day humans.
To determine how the Ust’-Ishim genome is related to the genomes of
present-dayhumans,we tested, usingD statistics8,whether it sharesmore
derivedalleleswithonemodernhumanthanwithanothermodernhuman
using pairs of humangenomes fromdifferent parts of theworld (Fig. 3).
Based on genotyping data for 87 African and 108 non-African indivi-
duals (Supplementary Information section 11), theUst’-Ishim genome
shares more alleles with non-Africans than with sub-Saharan Africans
(jZj5 41–89), consistentwith theprincipal componentanalysis,mtDNA
andY chromosome results. Thus, theUst’-Ishim individual represents
a population derived from, or related to, the population involved in the
dispersal of modern humans out of Africa. Among the non-Africans,
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Figure 1 | Geographic location, morphology and dating. a, Map of Siberia
with major archaeological sites. Red triangles: Neanderthal fossils; white
circle within a red (Neanderthal) triangle: Denisovan fossils; blue square:
Initial Upper Palaeolithic sites; yellow asterisk: Ust’-Ishim. 1: Ust’-Ishim; 2:
Chagyrskaya Cave; 3: Okladnikov Cave; 4: Denisova Cave; 5: Kara-Bom.
b, Radiocarbon ages of earlymodern human fossils in northern Eurasia and the
NGRIP d18O palaeotemperature record. Specimens in light grey are indirectly

dated (OxCal v4.2.3(ref. 33); r:5 IntCal13 atmospheric curve34). H5: Heinrich 5
event, H4: Heinrich 4 event, GI 12: Greenland Interstadial 12. For a more
extensive comparison see Supplementary Information Fig. 2.1. c–f, The Ust’-
Ishim 1 femur. c, Lateral view. d, Posterior view. e, Cross-section at the 80
percent level. f, Cross-section at the midshaft. For other views see
Supplementary Fig. 3.1.
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the Ust’-Ishim genome shares more derived alleles with present-day
people fromEastAsia thanwithpresent-dayEuropeans (jZj5 2.1–6.4).
However, when an,8,000-year-old genome fromwestern Europe (La
Braña)9 or a 24,000-year-old genome from Siberia (Mal’ta 1)10 were
analysed, there is no evidence that theUst’-Ishim genome sharesmore
derived alleles with present-day East Asians thanwith these prehistoric
individuals (jZj, 2).This suggests that thepopulation towhich theUst’-
Ishim individual belonged diverged from the ancestors of present-day

WestEurasian andEastEurasianpopulationsbefore—or simultaneously
with—theirdivergence fromeachother. The finding that theUst’-Ishim
individual is equally closely related to present-dayAsians and to 8,000-
to24,000-year-old individuals fromwesternEurasia, but not to present-
day Europeans, is compatible with the hypothesis that present-day
Europeans derive some of their ancestry from a population that did
not participate in the initial dispersals of modern humans into Europe
and Asia11.

Mutation rate estimates
Thehigh-qualityUst’-Ishimgenome sequence, in combinationwith its
radiocarbondate, allows us to gauge the rate ofmutations by estimating
the numbers ofmutations that are ‘missing’ in theUst’-Ishim individual
relative to present-day humans. This results in amutation rate estimate
of 0.443 1029 to 0.633 1029 per site per year using the high-coverage
genomes of 14present-dayhumans.A challenge for inferring themuta-
tion rate in this way is that differences in error rates among genome
sequences can confound the inference (see discussion in ref. 12). We
therefore developed an alternative approach that leverages thePairwise
SequentiallyMarkovianCoalescent (PSMC), amethodwhich estimates
the distribution of coalescence times between the two chromosomes
across a diploid genome to estimate past changes in population size13,
andwhich is less influenced bydifferences in error rates.When theUst’-
Ishim genome along with 25 present-day human genomes are analysed
by PSMC, a recent reduction in population size similar to that seen for
11present-daynon-Africans is inferred for theUst’-Ishimgenome.How-
ever, the apparent age of this size reduction ismore recent than inpresent-
dayhumans, consistentwith theUst’-Ishimgenomebeingolder (Fig. 4).
We then compute thenumberof additional substitutions that areneeded
to best fit the Ust’-Ishim PSMC curve to those of other non-African
genomes. Assuming that this corresponds to the number ofmutations
that have accumulated over around 45,000 years, we estimate a muta-
tion rate of 0.433 1029 per site per year (95%CI 0.383 1029 to 0.493
1029) that is consistent across all non-African genomes regardless of
their coverage (Supplementary Information section 14). This overall
rate, as well as the relative rates inferred for differentmutational classes
(transversions, non-CpG transitions, andCpG transitions), is similar to
the rate observed for de novo estimates fromhumanpedigrees (,0.53
1029 per site per year14,15) and to thedirect estimateofbranch shortening
(Supplementary Information section 10).As discussed elsewhere14,16,17,
these rates are slower than those estimated using calibrations based on
the fossil record and thus suggest older dates for the splits of modern
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Figure 2 | PrincipalComponents (PC) analysis exploring the relationship of
Ust’-Ishim to present-day humans. a, PC analysis using 922 present-day
individuals from 53 populations and the Ust’-Ishim individual. b, PC analysis
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human and archaic populations. We caution, however, that rates may
have changed over time and may differ between human populations.
However, we expect this mutation rate estimate to apply at least to
non-African populations over the past 45,000 years.
We also estimated a phylogeny relating the non-recombining part of

the Ust’-Ishim Y chromosome to those of 23 present-daymales. Using
this phylogeny, wemeasured the number of ‘missing’ mutations in the
Ust’-Ishim Y chromosomal lineage relative to the most closely related
present-day Y chromosome analysed. This results in an estimate of the
Y chromosome mutation rate of 0.763 1029 per site per year (95% CI
0.673 1029 to 0.863 1029) (Supplementary Information section 9),
significantly higher than the autosomal mutation rate, consistent with
mutation rates inmales being higher than in females18–20. Finally, using
the radiocarbondate of theUst’-Ishim femur togetherwith themtDNAs
of 311present-day humans,we estimated themutation rate of the com-
plete mtDNA to be 2.533 1028 substitutions per site per year (95%
highest posterior density: 1.763 1028 to 3.233 1028) (Supplementary
Information section 8) for mtDNA, in agreement with a previous
study5.

Neanderthal admixture
The timeof admixture betweenmodernhumans andNeanderthals has
previously been estimated to 37,000–86,000 years BP based on the size

of theDNAsegments contributedbyNeanderthals topresent-daynon-
Africans21. Thus, theUst’-Ishim individual couldpre-date theNeander-
thal admixture. From the extent of sharingofderived alleles between the
Neanderthal and the Ust’-Ishim genomes we estimate the proportion
ofNeanderthal admixture in theUst’-Ishim individual to be 2.36 0.3%
(Supplementary Information section 16), similar to present-day east
Asians (1.7–2.1%)andpresent-dayEuropeans (1.6–1.8%).Thus, admix-
ture with Neanderthals had already occurred by 45,000 years ago. In
contrast, we fail to detect any contribution fromDenisovans, although
sucha contribution exists inpresent-daypeople not only inOceania22,23,
but to a lesser extent also in mainland east Asia12,24 (Supplementary
Information section 17).
The DNA segments contributed by Neanderthals to the Ust’-Ishim

individual are expected to be longer than such segments in present-
day people as theUst’-Ishim individual lived closer in time towhen the
admixture occurred, so there was less time for the segments to be frag-
mented by recombination.To test if this is indeed the case,we identified
putative Neanderthal DNA segments in the Ust’-Ishim and present-
day genomes based on derived alleles shared with the Neanderthal ge-
nome at positionswhereAfricans are fixed for ancestral alleles. Figure 5
shows that fragments of putative Neanderthal origin in the Ust’-Ishim
individual are substantially longer than those in present-day humans.
We use the covariance in such derived alleles of putative Neanderthal
origin across the Ust’-Ishim genome to infer that mean fragment sizes
in theUst’-Ishimgenomeare in the order of,1.8–4.2 times longer than
in present-day genomes and that the Neanderthal gene flow occurred
232–430 generations before theUst’-Ishim individual lived (Supplemen-
tary Information section 18; Fig. 6). Under the simplifying assumption
that the gene flowoccurred as a single event, and assuminga generation
time of 29 years16,25, we estimate that the admixture between the ances-
tors of the Ust’-Ishim individual and Neanderthals occurred approxi-
mately 50,000 to 60,000 years BP, which is close to the time of themajor
expansion ofmodern humans out of Africa and theMiddle East. How-
ever,we alsonote that thepresence of some longer fragments (Fig. 5)may
indicate that additional admixture occurred even later. Nevertheless,
these results suggest that the bulk of the Neanderthal contribution to
present-day people outsideAfrica does not go back tomixture between
Neanderthals and the anatomically modern humans who lived in the
Middle East at earlier times; for example, the modern humans whose
remains have been found at Skhul and Qafzeh26,27.

An Initial Upper Paleolithic individual?
Acommonmodel for themodernhumancolonizationofAsia23,28 assumes
that an early coastal migration gave rise to the present-day people of
Oceania, while a latermore northernmigration gave rise to Europeans
andmainlandAsians. The fact that the 45,000-year-old individual from
Siberia is not more closely related to the Onge from the Andaman
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Islands (putative descendants of an early coastal migration) than he is
to present-day East Asians orNativeAmericans (putative descendants
of a northernmigration) (Fig. 3) shows that at least one other group to
which the ancestors of the Ust’-Ishim individual belonged colonized
Asia before 45,000 years ago. Interestingly, the Ust’-Ishim individual
probably lived during a warm period (Greenland Interstadial 12) that
has been proposed to be a time of expansion of modern humans into
Europe29,30. However, the latter hypothesis is based only on the appear-
ance of the so-called ‘Initial Upper Paleolithic’ industries (Supplemen-
tary Information section 5), and not on the identification of modern
human remains31,32. It is possible that theUst’-Ishim individualwas asso-
ciatedwith theAsian variant of InitialUpper Paleolithic industry, doc-
umented at sites such as Kara-Bom in the Altai Mountains at about
47,000 years BP. This individual would then represent an earlymodern
human radiation into Europe and Central Asia that may have failed to
leave descendants among present-day populations29.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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17. Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human
genomes. Nature 486, 527–531 (2012).

18. Xue, Y. et al.HumanY chromosome base-substitutionmutation ratemeasured by
direct sequencing in a deep-rooting pedigree. Curr. Biol. 19, 1453–1457 (2009).

19. Kuroki, Y. et al. Comparative analysis of chimpanzee and human Y chromosomes
unveils complex evolutionary pathway. Nature Genet. 38, 158–167 (2006).

20. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of
recombination activity and de novo mutation rates in human sperm. Cell 150,
402–412 (2012).

21. Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of
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Figure 6 | Dating the Neandertal admixture in Ust’-Ishim and present-day
non-Africans. Exponentially fitted curves showing the decay of pairwise
covariance for variable positions where Africans carry ancestral alleles and the
Neanderthal genome carries derived alleles.

ARTICLE RESEARCH

2 3 O C T O B E R 2 0 1 4 | V O L 5 1 4 | N A T U R E | 4 4 9

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature13810
http://dx.doi.org/10.1016/j.quaint.2014.05.040
http://dx.doi.org/10.1016/j.quaint.2014.05.040
www.nature.com/doifinder/10.1038/nature13810
http://www.ebi.ac.uk/ena/data/search?query=PRJEB6622
http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project
http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project
http://cdna.eva.mpg.de/neandertal/altai
http://cdna.eva.mpg.de/neandertal/altai
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature13810
mailto:qiaomei_fu@eva.mpg.de
mailto:reich@genetics.med.harvard.edu
mailto:kelso@eva.mpg.de
mailto:bence_viola@eva.mpg.de


METHODS
All sequencing was performed on the Illumina HiSeq 2000 and base-calling was
carried out using Ibis 1.1.6 9 (ref. 35). Reads were merged and remaining adaptor
sequences trimmed before being aligned to theHuman reference genome (GRCh37/
1000Genomes) usingBWA(version0.5.10)36.GATKversion1.3 (v1.3-14-g348f2b)
was used to produce genotype calls for each site. We excluded from analysis tan-
dem repeats and regions of the genome that are not unique. We considered only

genomic regions that fall within the 95%coverage distribution (Supplementary In-
formation section 7) andwhere at least 99%of overlapping 35mers covering a pos-
ition map uniquely, allowing one mismatch.

35. Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the IlluminaGenome
Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009).

36. Li, H. &Durbin, R. Fast andaccurate short read alignmentwithBurrows–Wheeler
transform. Bioinformatics 25, 1754–1760 (2009).
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