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More than 220,000 men are expected to be diagnosed with prostate 
cancer and more than 27,000 are expected to die of the disease in 
the United States alone in 2015 (ref. 1). Approximately 58% of risk 
for prostate cancer has been estimated to be due to inherited genetic 
factors2–6. Thus far, genome-wide association studies (GWAS) have 
identified more than 100 common risk variants for prostate cancer 
that explain ~33% of the familial risk7–25, leaving the majority of 
risk unexplained. Because GWAS have primarily investigated com-
mon variants (MAF >1%) for association with prostate cancer risk, an 
unexplored hypothesis is that part of the ‘missing heritability’ is attrib-
utable to rare variants (MAF <1%). To address this hypothesis, we 
focused on examining rare variation at known susceptibility regions 
that are only partially tagged by GWAS arrays. The rationale for inves-
tigating known risk-associated regions is that, (i) unlike in the rest of 
the genome, genetic variation in these regions has been established to 
confer risk and (ii) there are examples of rare and low-frequency vari-
ation at known GWAS-identified risk regions being important for a 
number of common diseases, including prostate cancer (8q24)26–29.

We carried out targeted sequencing of known prostate cancer GWAS 
loci to investigate the contribution of low-frequency and rare variation 

to prostate cancer risk. We targeted all 63 autosomal risk regions for 
prostate cancer that were known to us at the time of study design (since 
then, an additional 37 loci have been discovered). For each region, we 
started with the index SNP previously associated with prostate can-
cer by GWAS and attempted to tile Agilent SureSelect baits to cover 
all nucleotides within a block of strong linkage disequilibrium (LD) 
around the SNP (plus exons and conserved elements within 200 kb  
of the SNP). We constructed individually barcoded next-generation 
sequencing libraries for all of the samples, pooled these into sets that 
typically contained 24 libraries each, and then performed in-solution  
hybrid enrichment. After removal of duplicated molecules, we 
achieved an average coverage of 9.3× in 9,237 cases and controls across 
four ancestry groups (4,006 African, 1,753 European, 1,770 Japanese 
and 1,708 Latino). We identified 197,786 variants that were present in 
all ancestry groups, imputed genotypes into all individuals, and then 
correlated the genotypes to prostate cancer risk.

First, we show that sequencing-based association analysis is able 
to study a substantially larger fraction of the genetic risk for pros-
tate cancer than studies of common variants alone, as we find that  
the variance explained in the trait by all the sequenced variants is  
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significantly larger than the variance explained by known GWAS 
variants at the same loci. Second, we find evidence of genetic het-
erogeneity by ancestry in risk for prostate cancer. Third, we use vari-
ance-components methods to partition the SNP heritability across 
different variant frequency classes and find that a large amount of SNP 
heritability comes from the rare variant class in men of African ances-
try; that is, variants with 0.1%  MAF < 1% explain a point estimate  
of 0.12 of variance in the trait as compared to an estimate of 0.17 for 
variants with MAF  1%. Third, we used the SNP heritability assigned 
to the rare variant class to make the first relatively precise estimate 
of the strength of coupling between selection and allelic effect for 
a common trait. Finally, we replicated association signals at known 
GWAS loci and used an approach that combines epigenetic annotation  
(e.g., localization of androgen receptor binding sites in a prostate 
adenocarcinoma cell line) with the association signal to identify  
plausible causal variants at some of these loci.

RESULTS
Experimental strategy
To explore the contribution of rare and low-frequency variation to 
risk of prostate cancer, we targeted 90 index SNPs at 63 autosomal 
regions that had been associated with prostate cancer risk by GWAS at 
the time that this study was designed (October 2011). For each index 
SNP, we used Haploview30 (HapMap release 24) to visualize the sur-
rounding LD block in European-ancestry individuals. We then manu-
ally identified boundaries for target capture on the basis of the region 
where LD as measured by the absolute value of Lewontin’s D  fell pre-
cipitously (Supplementary Table 1 and Supplementary Data Set 1).  
We also targeted all exons (defined on the basis of RefSeq annotation) 
within 200 kb of each index SNP together with all conserved noncod-
ing sequences (defined on the basis of a 29-mammal alignment31)  
within 5 kb of each exon and elements >100 bp in length or with 
conservation scores >75 within the 200-kb window centered on each 
index SNP. Outside of the targeted GWAS loci, we also included exons 
and conserved elements of MYC and PVT1 because of their poten-
tial importance in prostate cancer. We designed and ordered Agilent 
SureSelect32 in-solution enrichment probes to target a total of 12 Mb 
in two rounds of target design. The total span of the regions we wished 
to target was 16.7 Mb, but we were not able to design probes for  
4.7 Mb owing to the presence of repetitive elements that needed to be 
masked during probe design (Supplementary Table 1).

We produced a total of 9,237 next-generation Illumina sequencing 
libraries from four ancestry groups (4,006 African, 1,753 European, 
1,770 Japanese and 1,708 Latino) using a high-throughput library con-
struction strategy previously described in ref. 33 (Online Methods). The 
results of the sequencing are presented in Table 1, where information on 
the mean coverage and the total number of variants discovered is pro-
vided for each ancestry group. The total number of megabases targeted, 
the mean coverage, the number of sites discovered and other metrics 
for each region are provided in Supplementary Table 2. The average 
coverage across samples was 9.3×, with s.d. of 
5.4 across individuals and 5.4 across targeted 
nucleotides. We identified a total of 197,786 
variants, of which 44% were not identified in 
the 1000 Genomes Project (Supplementary 
Table 3). The coverage we obtained for the 
great majority of samples was high enough in 
theory to obtain reliable diploid genotype calls 
after imputation at most targeted bases34. To 
assess the accuracy of sequencing, we meas-
ured the Pearson correlation of these genotype 

calls with those made using arrays (roughly half of the samples had also 
been assayed using GWAS arrays). The correlation between the geno-
type calls from sequencing and arrays was  r2 = 0.84 before imputation, 
increasing to 0.92 after imputation (Supplementary Fig. 1).

Sequencing explains additional variance beyond GWAS SNPs
To explore the value of sequencing in explaining additional variance 
in prostate cancer risk, we fit the genetic data to variance-components  
models to estimate the contribution of all genetic variants at the 
sequenced risk loci to the underlying liability of prostate cancer. First, we 
used simulations starting from the real genotype data to quantify poten-
tial biases in variance-components estimation. Consistent with findings 
of previous studies35, our simulations show that the approach of using 
two variance components—one for rare variants (0.1%  MAF < 1%)  
and one for common variants (MAF  1%)—estimated from dos-
age data and fitted jointly using restricted maximum likelihood 
(REML) as implemented in GCTA36 produces the least amount of 
bias when estimating SNP heritability (Supplementary Figs. 2–9 and 
Supplementary Table 4). We also investigated the performance of 
fitting the REML equations with AI-REML, a Newton-style approach, 
versus an EM-based approach, EM-REML, as implemented in GCTA, 
with AI-REML attaining the least bias in our data (Supplementary  
Fig. 10, Supplementary Tables 5 and 6, and Supplementary Note). 
We considered the effect of estimating SNP heritability from best-guess 
calls rather than imputed dosages and found that these approaches 
give statistically indistinguishable results. Lastly, we explored the role 
of adjustment for LD in estimating the genetic relationship matrix 
(GRM) and observed upward bias for LD-adjusted GRMs when the 
underlying heritability explained by rare variants (hg,rare2 ) was set to 0 
in our simulations. This upward bias was also reflected in estimates 
made using real phenotype data (Supplementary Table 7). Similar 
results were obtained over a variety of simulated disease architectures 
with various amounts of contribution from rare variation and total 
numbers of underlying causal variants (Supplementary Note).

Motivated by our simulation findings, we estimated the con-
tribution of rare and common variation to risk of prostate cancer  
by fitting two variance components in GCTA while correcting for 
the top ten principal components and age; we report heritability 
estimates on the liability scale (Online Methods; see Supplementary 
Fig. 11 for the principal-component analysis plot). We find that the 
total variance explained by all variants at these loci (SNP heritabil-
ity h h hg g g

2 2 2
, ,rare common) is larger than what is explained by the 

index variants alone (Table 2). For example, we estimate the vari-
ance explained by all variants in the African-ancestry sample at 0.30  
(s.e. = 0.06), which is significantly larger (P < 0.05) than the variance  
explained by all 84 index variants present in these data (0.06,  
s.e. = 0.01) (six of the 90 SNPs targeted were not covered by  
reads passing our analysis filters). This finding is consistent across 
all ancestry groups, thus emphasizing the usefulness of sequencing  
in recovering additional signal beyond index GWAS variants37.

Table 1 Sizes for each ancestry group and the coverage and standard deviation in 
coverage achieved

Ancestry

Number of samples Average  
coverage per  
sample (s.d.)

Average  
coverage per 
locus (s.d.)

Variants

Cases Controls
Rare  

0.1%  MAF < 1%
Common 

MAF  1% Total

African 2,054 1,952 8.3 (5.1) 8.4 (5.2) 58,699 63,972 122,671
European 900 853 8.8 (6.0) 8.8 (6.0) 33,606 53,164 86,770
Japanese 914 856 11.8 (5.2) 11.9 (5.2) 29,121 40,742 69,863
Latino 864 844 8.0 (5.7) 8.1 (5.7) 46,374 45,932 92,306
Overall 4,732 4,505 9.3 (5.4) 9.4 (5.4) – – –
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Next, we searched for genetic heterogeneity by ancestry in prostate 
cancer risk using a bivariate REML analysis38. Briefly, we computed 
a single GRM for each unique pair of ancestry groups over the set 
of SNPs common to both ancestry groups (Online Methods) and 
estimated the genetic correlation using GCTA36. We then tested the 
hypotheses that there is no shared genetic liability (SNP rg = 0) and 
that liability is completely shared (SNP rg = 1) (Online Methods). 
We find significant heterogeneity (after accounting for the six pairs 
tested) for the African and European ancestry groups (SNP rg = 0.56, 
s.e. = 0.15; P value (SNP rg = 1) = 2.42 × 10–3; Table 3) and nominally 
significant heterogeneity (P value = 0.04) for the Latino and African 
ancestry groups (Table 3).

Having established evidence of heterogeneity, we quantified the 
contribution to SNP heritability of variants across the MAF spec-
trum in each ancestry group independently. Rare variants explained 
a significant amount of SNP heritability (hg2 ) in African-ancestry 
individuals (hg , .rare

2 0 12, s.e. = 0.05; P = 2.29 × 10–3); indeed, the 
heritability explained by these rare variants is comparable to the herit-
ability explained by common variants at these loci (hg , .common

2 0 17, 

s.e. = 0.03; P = 7.08 × 10–13; 
h

h
g

g

,rare
2

2  0.42, s.e. = 0.11; Online Methods). 

We did not observe significant contribution of rare variation to her-
itability in the other ancestry groups, although, given the limited 
sample sizes for the other groups, we cannot exclude the possibility 
that the fraction of prostate cancer heritability attributable to rare 
variants is the same in the other groups. In most of the analyses of 
heritability stratified by variant frequency that follow, we focus on 
people of African ancestry, as we had the highest power to carry out 
these studies.

We investigated whether the large contribution from rare vari-
ants in men of African ancestry was an artifact of data quality 

(Supplementary Note). We estimated 
hg , .rare
2 0 13 (s.e. = 0.06) for the African-

American ancestry group after remov-
ing any SNPs whose rate of missing data  
before imputation was associated with the 
trait (P  0.01) (Supplementary Table 8). 
We obtained similar results when estimating 
SNP heritability directly from the hard geno-
type calls before imputation, both with and 
without the differentially missing SNPs for 
the African-American group (hg , .rare

2 0 11,  
s.e. = 0.05; Supplementary Table 9). To quantify whether hidden 
relatedness influenced our results, we estimated heritability at vari-
ous relatedness thresholds; differences in relatedness did not sig-
nificantly influence the SNP heritability explained by rare variants 
(hg , .rare

2 0 13, s.e. = 0.06; GRM < 0.05; Supplementary Table 8;  
see Supplementary Fig. 12 and Supplementary Table 10 for  
distribution of pairwise relatedness values; see Supplementary  
Tables 11–18 for results for other ancestry groups). We also explored 
the role of sequencing coverage and estimated SNP heritability from 
GRMs computed after removing SNPs at various levels of coverage. 
Overall, we found no significant decrease in hg ,rare2  until a large  
fraction of the SNPs were discarded (coverage 7×; Supplementary 
Table 19). To rule out potential tagging of signal by other loci in the 
genome, we repeated the SNP heritability estimation including a third 
variance component that constitutes genotype calls from arrays for 
the rest of the genome; this approach yielded similar results for hg ,rare2  
(Supplementary Tables 20 and 21; see Supplementary Tables 22–27 
for results for other ancestry groups). To account for possible con-
founding from population substructure, we re-estimated the variance 
attributable to the rare frequency class in the African-ancestry sample, 
stratifying on the basis of Ugandan and non-Ugandan  ancestry as 
well as the 8q24 locus, which is known to make a large contribution 
to risk of prostate cancer. Overall, we found no significant difference 
in hg ,rare2  for the African-American subsets with and without the 
8q24 region included in the estimation (Supplementary Table 28).  
We also considered bias in our initial estimates of hg2  resulting from 
potential misspecification of the GRM. Specifically, we estimated vari-
ance components using non-standardized genotype data35 (thereby 
reducing the impact of rare variants in GRM computation) and 
found a similar contribution from the rare variant spectrum (Online 
Methods). We also standardized the GRM on the basis of the expected 
variance rather than the sample estimate and found no significant 

Table 2 Estimates of hg
2 and standard errors using sequencing data

Ancestry
Sample  

size
hg
2
 index  

SNPs (s.e.) hg ,rare
2

 (s.e.) P value hg ,common
2

 (s.e.) P value

African 4,006 0.06 (0.01) 0.12 (0.05) 2.29 × 10−3 0.17 (0.03) 7.08 × 10−13

European 1,753 0.10 (0.01) 0.00 (0.06) 5.00 × 10−1 0.27 (0.06) 5.83 × 10−11

Japanese 1,770 0.08 (0.01) 0.05 (0.07) 2.68 × 10−1 0.13 (0.04) 3.09 × 10−5

Latino 1,708 0.06 (0.01) 0.00 (0.06) 5.00 × 10−1 0.14 (0.05) 2.38 × 10−5

The results for index SNPs correspond to hg
2  contributed solely from the targeted index variants. Estimates for  

hg
2 attributable to rare and common components were obtained from joint REML analysis on the underlying liability 

scale. Rare variants are defined as those with 0.1%  MAF < 1%, whereas common variants are defined as those  
with MAF  1%.

Table 3 Bivariate REML analysis for each pair of ancestry groups
Ancestry pair Sample size SNPs in common hg

2  (s.e.) Covariance SNP rg (s.e.) P value (SNP rg = 0) P value (SNP rg = 1)

African 4,006 46,332 0.20 (0.03) 0.17 0.56 (0.15) 2.10 × 10−4 2.42 × 10−3

European 1,753 0.25 (0.05)

African 4,006 31,954 0.18 (0.03) 0.13 0.99 (0.16) 9.86 × 10−8 0.48
Japanese 1,770 0.13 (0.03)

African 4,006 61,894 0.21 (0.03) 0.10 0.61 (0.20) 7.65 × 10−4 0.04
Latino 1,708 0.15 (0.05)

European 1,753 37,871 0.26 (0.05) 0.15 0.88 (0.18) 3.18 × 10−6 0.27
Japanese 1,770 0.13 (0.04)

European 1,753 58,708 0.27 (0.06) 0.22 0.94 (0.19) 2.56 × 10−7 0.38
Latino 1,708 0.18 (0.05)

Japanese 1,770 39,485 0.13 (0.04) 0.11 1.00 (0.20) 3.12 × 10−6 0.50
Latino 1,708 0.18 (0.04)

Estimates of hg
2 describe the SNP heritability for each ancestry group over a set of SNPs in common for each pair. Estimates are shown of shared genetic variation in tagged SNPs, 

or SNP correlation (SNP rg). The last two columns give the P value for the model under the null hypotheses that no correlation exists (SNP rg = 0) and that perfect correlation is 
present (SNP rg = 1).
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change (hg , .rare
2 0 12 , s.e. = 0.05). We investigated potential bias 

in GCTA estimates from linkage across variants of various frequen-
cies by repeating the analysis with three variance components cor-
responding to rare (0.1%  MAF < 1%), low-frequency (1%  MAF < 
5%) and common (MAF  5%) variants; we observed no significant 
difference in the amount of variance attributable to the rare vari-
ant class (Supplementary Table 29). As the standard errors reported 
by GCTA are asymptotic, we employed a leave-one-out jackknife to 
estimate hg , .rare

2 0 13 with s.e. = 0.06 in the African-ancestry group 
(Supplementary Table 30). We also randomly sampled 1,753 indi-
viduals of African ancestry (corresponding to the size of the European 
cohort) 100 times and found a mean estimate of hg , .rare

2 0 13 (s.e. = 
0.06; Supplementary Table 31). To further investigate the significance 
of hg ,rare2  in African data, we estimated hg ,rare2  in 1,000 simulated 
phenotypes starting from the real dosage data where the true hg ,rare2  
value was set to 0 (all causal variants were set to have MAF  1%). In 
none of the 1,000 runs did we observe an estimate of hg ,rare2   0.12, 
giving an empirical P value <1/1,000. Finally, we performed variance- 
components analyses using genotypes obtained from best-guess  
calls, as well as standard unconstrained REML analyses. Overall, we 
found that most of these potential sources of bias are unlikely to signif-
icantly change our results (Supplementary Figs. 2–9, Supplementary 
Tables 32–35 and Supplementary Note).

Evidence of coupling between selection and allelic effects
In the case of neutral genetic variation, alleles that have a MAF <1% 
account for only a few percent of genetic variation in the popula-
tion. However, our empirical results from this study show that, at 
loci known to harbor common variants conferring risk for prostate 
cancer, variants with MAF < 1% account for an order of magnitude 
larger heritability for the disease. The only plausible explanation 
for this observation is that newly arising mutations that confer risk  
for prostate cancer—especially mutations of strong effect—are  
often subject to selection that is strong enough to prevent them from 
becoming common.

To quantify the extent to which selection is driving down the fre-
quency of alleles that confer risk for prostate cancer, we derived a 
simulation-based pipeline that uses estimates of hg ,rare2  to constrain 
the value of a parameter  that Eyre-Walker proposed to measure 
the coupling between selection coefficients and allelic effect sizes39 
(Online Methods). Briefly, starting from the real genotype data, we 
simulated phenotypes under Eyre-Walker’s model at various values of 
 and estimated hg ,rare2  in the simulated trait. We then compared the 

observed heritability in the real data to the simulations while account-
ing for sampling noise (Online Methods). We estimated  = 0.48 with 
a 95% confidence interval of [0.19, 0.78] for the African-ancestry 
sample under our mapping procedure (Fig. 1). We obtained similar 
results using a MAF cutoff of 5% in assigning variants to the rare ver-
sus common class (Supplementary Fig. 13). We found that our pro-
cedure was relatively robust to changes in parameters. For example,  
when adjusting the effective population size for African ancestry to 
7,500, we re-estimated  = 0.46 with a 95% confidence interval of 

[0.21, 0.78] (Supplementary Table 36). Although the small contri-
bution from rare variants together with small sample sizes for the 
European, Japanese and Latino data sets prohibits us from estimating 
a tight confidence interval for Eyre-Walker’s  in these populations, 
the results were roughly consistent across populations (Table 4 and 
Supplementary Fig. 14). For example, the estimated mean value of 
 for the Japanese cohort was 0.38 with a 95% confidence interval of 

[–0.07, 0.32]. In a meta-analysis over all ancestry groups, we estimated 
 = 0.42 [0.22, 0.62], which is similar to the African-ancestry estimates 

(unsurprisingly, as the African-ancestry data contribute the most to 
this analysis).

Single-variant association
An advantage of sequencing data—even with a tenfold lower sample 
size in comparison to the largest current GWAS—is that it interro-
gates all variants in the analyzed samples and thus has the poten-
tial to detect causal variants that are not genotyped or imputed in 
GWAS. We performed marginal association testing at all sequenced 
variants (n = 197,786) and replicated most of the GWAS-identi-
fied loci (Supplementary Tables 37–42). We observed a marginal 
increase in the association signal when including rare variants with 
0.1% MAF < 1% across all populations, as reflected in a decrease 
in the top –log10 (P value) (Supplementary Tables 37–42) and a 
slight enrichment of low P values in a burden test (Supplementary  
Fig. 15). However, a limitation of the present study is its modest sam-
ple size in comparison to the sample size of 87,040 individuals in the 
most recent GWAS meta-analyses24. For example, of the 84 recovered 
index variants (six of the 90 targeted SNPs were not covered by reads 
passing our analysis filters), only seven had a P value <1 × 10−8 (most 
at 8q24) and only 13 had a P value <1 × 10−4. Thus, even though we 
can directly access alleles not on SNP arrays through our targeted 
sequencing, the advantage we obtain by directly genotyping SNPs is 
more than counterbalanced by the tenfold larger GWAS meta-analysis 
that has conducted imputation for fine mapping of common alleles at 
these regions. To explore additional signal beyond the known index 
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Figure 1 Relationship between strength of selection, the coupling 
parameter  and allelic effect sizes in prostate cancer using heritability 
partitioning for the African-ancestry sample. (a) The density estimate  
for hg,rare

2  obtained from real data. (b) The influence of  on hg,rare
2 .  

Each point represents an estimate of hg,rare
2  given phenotypes simulated 

from real genotypes under the Eyre-Walker model. (c) The estimated 
empirical density of . Estimates were obtained by matching a sampled 
value of hg,rare

2  from a with the closest point estimate from b.

Table 4 Estimates of  for each ancestry group under our 
simulation-based pipeline with MAF partitioning at 1%

Ancestry Sample size Mean 
95% confidence 

interval hg ,rare
2

African 4,006 0.48 0.19, 0.78 0.12 (0.05)
European 1,753 0.28 −0.08, 0.90 0.00 (0.06)
Japanese 1,770 0.38 −0.07, 0.92 0.05 (0.07)
Latino 1,708 0.39 −0.08, 1.05 0.00 (0.06)
Meta-analysis 9,237 0.42 0.22, 0.62 0.05 (0.03)

Meta-analysis results were computed using an inverse-weighted variance approach. 
Similar results were obtained with MAF partitioning at 5% (Supplementary Fig. 13).
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variants, we performed a conditioning analysis (Online Methods) on 
the index variants and observed no variants with P value <1 × 10−8 
after conditioning; quantile-quantile plots showed residual signal  
only in the African-ancestry sample, consistent with the hypothesis 
that there is an additional signal beyond that contributed by the  
known variants at these loci (either due to better tagging of a  
single causal variant or the presence of multiple causal alleles37) 
(Supplementary Figs. 16–18).

To investigate sequenced SNPs as plausible causal alleles, we inte-
grated epigenetic and genetic data using PAINTOR40 to estimate 
posterior probabilities for causality at each SNP. We used the meta-
analysis results for SNPs with MAF  1.0% (as the Wald statistic is 
unreliable at MAF < 1% and therefore not well suited to estimation 
within the PAINTOR framework). First, we ran PAINTOR inde-
pendently for each of the 20 functional categories that have previ-
ously been implicated in prostate cancer41 and found a significant 
enrichment for causal variants in FOXA1-binding sites assayed 
in the LNCaP cell lines as well as at binding sites for androgen  
receptor41 (Supplementary Fig. 19). Second, we selected the func-
tional categories with significant enrichment (at a nominal level of  
P  0.05) for a joint PAINTOR model to estimate posterior probabili-
ties that each SNP is causal. Of the 24,840 common variants found 
in all ancestry groups, we identified nine variants with PAINTOR 
posterior probability >0.90 as causal. In particular, two variants 
(rs78416326 and rs10486567) exhibited posterior probabilities >0.99 
owing to a combination of strong association signal and overlap with 
functional elements (Supplementary Fig. 20 and Supplementary 
Table 43). Although biological causality cannot be proven on the 
basis of statistical association alone, we highlight the variants with 
high posterior probability for follow-up validation.

DISCUSSION
We have used large-scale targeted sequencing to study the contribu-
tion of rare variants to the heritability of prostate cancer for indi-
viduals of diverse ancestry. We find that the total variance in the trait 
contributed by these regions is significantly greater than the vari-
ance localized to known GWAS variants, thus showing that large-scale 
sequencing can uncover missing heritability. We also provide evidence 
of heterogeneity by ancestry as well as the first direct evidence of 
which we are aware of rare variants contributing a disproportionate 
fraction of the genetic heritability for a common disease. On first 
principles, there are reasons to think that our results actually underes-
timate the fraction of heritability due to rare variants. First, our study 
does not have a sample size sufficient to interrogate extremely rare 
variants (frequency << 0.1%). Second, we focused on known GWAS-
identified regions that were ascertained on the basis of harboring an 
association with a common variant, thus guaranteeing that common 
variants would be responsible for a substantial fraction of prostate 
cancer risk at these locations.

Our finding that 42% (95% confidence interval = 21–63%) of the 
genetic risk for prostate cancer is due to variants in the MAF range of 
0.1–1% is striking, given that only a couple percent of neutral varia-
tion is due to SNPs in this frequency range. These results suggest that 
selection has placed downward pressure on the frequencies of many 
alleles contributing risk for prostate cancer, and we have quantified 
this coupling of selection and prostate cancer risk. Prostate cancer is 
a late-onset disease that primarily affects people after reproductive 
age. For diseases with younger onset, it is plausible that the coupling 
of selection to disease risk could be even higher, and we predict that 
this will be observed for other diseases when sequencing studies of 
large sample size are performed and analyzed using methods like the 

ones we report here that are capable of partitioning heritability by 
frequency42. Already, associations with rare variants have been found 
at both the gene and individual-SNP levels43–45 as well as through 
sequencing of known GWAS risk loci46. Because we have shown that 
rare variation is capable of explaining a substantial portion of SNP 
heritability for prostate cancer, we expect that it will be useful to incor-
porate rare variants into statistical models for prediction of disease 
risk. Taken together, these results motivate further large sequencing 
efforts in diverse populations to fully explore the abundance of rare 
variants that might contribute a substantial fraction of the heritability 
for at least some important human phenotypes.

We conclude with several caveats. Although we genotyped the 
majority of variants at the risk-associated regions in the regions 
we targeted in sequencing, we were not able to sequence a subset 
of the regions owing to the fact that the technology we used could 
not enrich for sequences at repetitive regions. Second, the part of 
the genome we analyzed in this study is non-random: we analyzed 
loci discovered by common variant association methods, where the 
fraction of genetic heritability due to common variants is likely to be 
overestimated owing to the fact that the regions were discovered on 
account of containing common variants. Thus, it is plausible that the 
true fraction of heritability for prostate cancer that is due to rare vari-
ants is a conservative underestimate of the true proportion across the 
genome. Third, assaying SNP heritability using variance components 
makes a number of simplifying assumptions; although we could not 
identify any source of bias that could explain our results artifactually, 
it is important to recognize that the analyses we have performed are 
statistically complex and there might be biases we have not appreci-
ated. An important direction for future work will be to carry out 
whole-genome sequencing studies in much larger sample sizes, which 
will provide sufficient statistical power to allow a direct SNP-by-SNP 
understanding of the contribution of variants in the MAF range of 
0.1–1% that this study suggests make a major contribution to human 
genetic risk for prostate cancer.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The data reported in this study are available at the 
database of Genotypes and Phenotypes (dbGaP) under accession 
phs000306.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data sets. The Multiethnic Cohort. The Multiethnic Cohort (MEC) consists of 
over 215,000 men and women enrolled from Hawaii and the Los Angeles region 
between 1993 and 1996 (ref. 47). Participants are primarily of Native Hawaiian, 
Japanese, European-American, African-American or Latino ancestry and were 
between the ages of 45 and 75 years at baseline when they completed a detailed 
questionnaire to collect information on demographics and lifestyle factors, 
including diet and medical conditions. Over 65,000 blood samples were col-
lected from study participants for genetic analysis. To obtain information on 
cancer status, stage and severity of disease, MEC participants were referenced 
against population-based Surveillance, Epidemiology and End Results (SEER) 
registries in California and Hawaii. Unaffected cohort participants with blood 
samples were selected as controls (for case-control sample sizes, see Table 1; 
for stage and grade of cases, see Supplementary Table 44).

Uganda Prostate Cancer Study. The Uganda Prostate Cancer Study (UGPCS) 
is a case-control study of prostate cancer in Kampala, Uganda, that was initiated  
in 2011. Patients diagnosed with prostate cancer were enrolled from the 
Urology unit at Mulago Hospital, whereas undiagnosed men (controls) were 
enrolled from other clinics (for example, surgery) within the hospital. All 
consenting patients who satisfied strict inclusion criteria (cases, >39 years of 
age; controls, >39 years of age, PSA level <4 ng/ml to dismiss possible undi-
agnosed prostate cancer) were recruited into the study. Written consent was 
obtained, and two identical informed consent forms translated into Luganda 
were provided to each participant for them to read or to be read to them, 
sign or thumb print. Descriptive and prostate cancer risk factor information 
was collected from interviews conducted with patients using a standardized 
questionnaire. Biospecimens were collected using Oragene saliva collection 
kits. The Institutional Review Boards at the University of Southern California 
and at Makerere University approved the study protocol.

Library preparation and target enrichment. We prepared next-generation 
sequencing libraries from all DNA samples following a cost-effective library 
preparation protocol developed for this study, which makes it possible to per-
form multiplexed hybridization enrichment33. DNA samples from cases and 
controls were randomly distributed over 96-well plates to avoid plate effects 
confounding the results. Each sample was molecularly barcoded during the 
library preparation stage in 96-well plates to allow us to pool many samples for 
hybrid capture enrichment and subsequent sequencing. We typically pooled  
24 samples in equimolar ratio per capture reaction using the custom SureSelect 
capture reagent described above. In short, we defined the target region to con-
sist of LD blocks surrounding all prostate cancer risk variants known at the time 
of design (October 2011), all coding sequences surrounding the variants within 
a 200-kb window on either side and evolutionarily conserved elements defined 
by a 29-mammal alignment31. This resulted in a total target size of 16.7 Mb, 
of which probes could be designed for 12 Mb. The missing 4.7 Mb constituted 
non-unique regions of the genome that were filtered out according to Agilent 
design recommendations. An overview table of targeted genes, the variants, the 
size of the targeted region for each variant and the size of the baited region is 
given in Supplementary Table 1. Sequencing was performed at Illumina using 
HiSeq 2000 instruments for 100 cycles of paired-end sequencing. Using this 
approach, we covered 78% of the targeted regions (Supplementary Table 2),  
of which 26 regions (41%) had mean coverage 10×.

Alignment and genotype calling. Sequences were aligned to the human genome 
reference sequence (hg19) using Burrows-Wheeler Aligner (BWA) version 0.6.1 
(ref. 48). Variants were called using the Genome Analysis Toolkit (GATK) best-
practices workflow49, including mapping the raw reads to the reference genome, 
base recalibration and compression, and joint calling and variant recalibration. 
After quality control, 11.3 Mb of autosomal sequence was considered; because 
of complexities in the analysis, we disregarded data on the X chromosome. 
Starting from the GATK likelihoods, we applied LD-aware genotype calling using 
Beagle50,51 version 3.3.2 with 1000 Genomes Project v3 data as the reference. 
Variants that displayed low-quality calling (r2 < 0.6) or MAF <0.1% were dropped 
from the analysis (n = 588,410), resulting in 197,786 SNPs across all ancestry 
groups. To take advantage of the lower error rate of the GWAS arrays, before  
LD-aware calling, overlapping sequenced SNPs were replaced with their array 
counterparts. This resulted in 6,028 replaced calls for 2,042 individuals in the 

African group, 5,395 replaced calls for the European group, 2,642 replaced calls for 
the Japanese group and 2,805 replaced calls for Latinos. To compute accuracy of the 
LD-aware calling, we used 1,172 African samples for which we had GWAS array data 
that was not used to replace calls before the LD-aware calling. The first ten principal  
components for each ancestry group were computed using GCTA36 from the 
sequenced common variants (MAF  1.0%) after LD pruning (r2 < 0.2) (ref. 52).

Genotype array design. To capture SNP heritability tagged outside of the tar-
geted regions, we assayed individuals using the Illumina 1M-Duo BeadChip for 
the African-ancestry group, the Illumina 660W-Quad BeadChip for the Latino 
and Japanese groups, and the Illumina Human610 BeadChip for Europeans. 
The number of samples genotyped by array was n = 3,078 for the African 
group, 1,627 for the European group, 1,674 for the Japanese group and 1,642 
for the Latinos. For quality control, we removed any SNP with missingness 
>0.10. To remove any confounding from tagged variants within the targeted 
sequenced regions, we removed any SNP within 0.5 Mb of any region and any 
SNP with LD >0.2 with respect to index variants. We further pruned the set 
to remove any variants with pairwise LD >0.3. This resulted in n = 251,919, 
182,983, 96,711 and 109,118 array-based SNPs for the Africans, Europeans, 
Japanese and Latinos, respectively (Supplementary Fig. 21).

Association analyses. Each variant was subjected to an unconditional mar-
ginal case-control association test adjusting for age, Ugandan ancestry for 
the African group and the top ten principal components under a log-additive 
model performed by PLINK 1.9 (ref. 53). All reported P values are asymptotic 
estimates from the Wald statistic. We extended the unconditional association 
test by incorporating the known associated variants (index SNPs) as covariates 
for each SNP at a given locus. Conditional association tests were implemented 
in Python 2.7 with the package statsmodels version 0.5. A meta-analysis  
combining individual population results was performed using METAL54 ver-
sion 2011-03-25. Of the 197,786 SNPs analyzed, 183 were removed from the 
meta-analysis because they had multiallelic values when compared across all 
populations. To perform SKAT-O tests for the African-ancestry group, we 
used a non-overlapping sliding window approach to group rare SNPs into 
bins containing at most 100 variants across each targeted region, resulting in a 
total of 601 bins. Tests were performed using the software PLINKSEQ version 
0.10. To predict the total risk from sequenced variants, we performed BLUP 
prediction in GCTA version 1.24 over a single variance component. Predicted 
effects were partitioned into rare and common variants and risk scores com-
puted using the predicted allelic effects with PLINK. Training and prediction 
was performed using tenfold cross-validation over samples for each ancestry 
group (Supplementary Table 45 and Supplementary Note).

Heritability analyses. We estimated the GRM as A
m
ZZt1 ,  where Z is 

the standardized genotype matrix and m is the number of SNPs. For each 
sample, two GRMs corresponding to rare (0.1%  MAF < 1%) and common 
(MAF  1%) SNPs were created using GCTA version 1.24. GCTA assumes 
a linear mixed model where the contribution from each SNP is the result 
of a random effect given by y X g

i
i  where y is a vector of 

phenotypes, X is a covariate matrix (for example, age),  is a vector of 
fixed effects and gi is a vector of random genetic effects for the ith com-
ponent (we partition into grare and gcommon). The variance of y is given by 
var rare rare common common

2y A A I2 2 , where Arare and Acommon corre-
spond to the GRMs for rare and common SNPs, respectively. Creation of the 
GRMs was done directly from the dosage data (similar results were obtained 
using best-guess calls; Supplementary Tables 33 and 34). We estimate the 
SNP heritability contributed from rare variants as 
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2
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that is, the proportion of total SNP heritability explained by rare SNPs.  
The SNP heritability analysis was performed on the dichotomous case-control 
phenotype using constrained REML in GCTA with a prevalence of 0.19 for 
the African-ancestry group, 0.14 for the European- and Latino groups, and 
0.10 for Japanese (SEER; see URLs). Hence, all reported values of hg2  are on 
the underlying liability scale. To estimate the contribution of the known index 
variants to SNP heritability, we computed a GRM restricted to the 84 known 
variants. The covariate matrix for each ancestry group consisted of age and 
the first ten principal components (with an additional binary variable indicat-
ing Ugandan ancestry for the African-ancestry group). LD-adjusted GRMs 
were computed using LDAK56 version 4.2. P values were estimated from a 
likelihood-ratio test by dropping one component and comparing against the 
reduced model (as implemented in GCTA). To estimate GRMs from array 
data, we removed any SNP within 0.5 Mb of the targeted regions and further 
pruned for pairwise LD >0.2 in addition to any remaining variants in LD with 
index SNPs (Supplementary Fig. 22). For bivariate REML analysis, we define 
the GRM for samples over two ancestry groups as 

A
m

Z
Z

Z
Z

t1 1

2

1

2  

where Zi is the standardized genotype matrix for ancestry group i and m is the 
number of SNPs shared by both groups57.

Coupling selection with allelic effect size. We investigated the relationship 
between selection and marginal effect sizes on prostate cancer risk using the 
Eyre-Walker model39, which sets allelic effect sizes 4 1N se . Here 
Ne is the effective population size (set to 10,000 for our analyses58), s is the 
selection coefficient of the allele and  is normally distributed noise ( 0 5. ;  
varying this parameter does not significantly affect underlying rare/common 
variation39). As  increases, we expect the allelic effects and, thus, the contribu-
tion to hg2  from rare variants, to increase as a result of rare SNPs experiencing 
stronger selective pressure than common SNPs (Supplementary Figs. 22–24). 
To determine how  has a possible role in the underlying architecture for 
prostate cancer, we followed a five-step simulation procedure: (i) we randomly 
select a set of 10,000 SNPs to be causal; (ii) we assign selection coefficients to 
each causal variant by mapping their allele frequency to selection coefficients59; 
(iii) we simulate allelic effects under the Eyre-Walker model given selection  

coefficients,  and 0 5. ; (iv) we simulate a continuous trait starting  
from the real genotype data with total SNP heritability matching the SNP 
heritability estimated from real data; and (v) we perform joint REML analysis 
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