
Cite as: M. E. Prendergast et al., Science 
10.1126/science.aaw6275 (2019).  

 
 
 

  RESEARCH ARTICLES 
 

First release: 30 May 2019   www.sciencemag.org  (Page numbers not final at time of first release) 1
   
 

Domestic sheep, goats, and cattle of southwest Asian origin 
were first introduced to northeastern Africa ~8000 years be-
fore present (BP), and spread into eastern Africa beginning 
~5000 BP, ultimately reaching southernmost Africa by ~2000 
BP (1, 2). How pastoralism—a way of life centered on herding 
animals—spread into eastern Africa is unclear. Livestock ap-
pear in northern Ethiopia and Djibouti relatively late, ~4500-
4000 BP (3), and are poorly documented elsewhere in the 
Horn of Africa and in South Sudan. Instead, the earliest 
known domesticated animals in sub-Saharan Africa are 
found in Kenya at the beginning of the Pastoral Neolithic 
(PN; ~5000-1200 BP) era near Lake Turkana, where archaeo-
logical evidence documents groups that pursued fishing and 
herding and constructed elaborate monumental cemeteries 
(4–6). Although livestock spread quickly through the Turkana 
Basin, herding practices were not transmitted farther south 
for many hundreds of years. Sheep, goats, and pottery typical 

of Turkana began to trickle into Kenya’s south-central Rift 
Valley ~4200 BP (7, 8), but it was not until ~3300 BP that 
specialized pastoralism spread across Kenya and northern 
Tanzania, transforming the economic, social, and physical 
landscapes of the region (9–11). 

The core PN era (~3300-1200 BP) in Kenya and Tanzania 
witnessed the development of diverse herder societies, some 
heavily reliant on livestock (2). However, pastoralism did not 
fully replace Later Stone Age (LSA) economies present in the 
region since ~50,000 BP, creating a mosaic of herding and 
foraging communities on the landscape. Two contemporane-
ous pastoralist traditions have been identified: Elmenteitan 
and Savanna Pastoral Neolithic (SPN) (12, 13). Elmenteitan 
sites are found between the central Rift Valley and the west-
ern Lake Victoria basin of Kenya. Occupants used a particular 
obsidian source, and left behind distinctive lithic and ceramic 
traditions, and primarily cremation burials. By contrast, SPN 
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How food production first entered eastern Africa ~5000 years ago and the extent to which people moved 
with livestock is unclear. We present genome-wide data from 41 individuals associated with Later Stone 
Age, Pastoral Neolithic (PN), and Iron Age contexts in what are now Kenya and Tanzania to examine the 
genetic impacts of the spreads of herding and farming. Our results support a multi-phase model in which 
admixture between northeastern African-related peoples and eastern African foragers formed multiple 
pastoralist groups, including a genetically homogeneous PN cluster. Additional admixture with 
northeastern and western African-related groups occurred by the Iron Age. These findings support several 
movements of food producers, while rejecting models of minimal admixture with foragers and of genetic 
differentiation between makers of distinct PN artifacts. 
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sites are found across a wider part of Kenya and Tanzania. 
Occupants used different obsidian sources, had greater diver-
sity in material culture, and mainly buried their dead in 
cairns. The heterogeneous SPN category likely encompasses 
multiple groups. Some distinctions between SPN and Elmen-
teitan traditions, such as mortuary practices, are variable (6), 
and relationships between PN groups—both cultural and ge-
netic—remain uncertain. In addition, little is known about 
herder interactions with LSA foragers, or about relationships 
among later PN herders and the first iron-using herders after 
~1200 BP. By this time, farming is also documented in the 
region (14, 15). 

Archaeologists have debated the cultural and genetic af-
finities of the first pastoralists in eastern Africa and the role 
that movement of people played in the spread of herding to 
the region. Because the oldest instances of livestock remains 
and associated pottery and stone tool traditions have been 
found near Lake Turkana, it has been hypothesized that pas-
toralism was introduced by migrants from Sudan and/or 
Ethiopia, potentially in a series of small movements, and that 
their descendants gave rise to PN traditions farther south (12, 
13, 15, 16). However, there are no unambiguous cultural con-
nections between Kenya’s earliest herders and northern 
groups, and archaeological evidence supports the local adop-
tion of herding to some degree (8, 16, 17). Other archaeologi-
cal and linguistic evidence has been jointly used to 
hypothesize two expansions into eastern Africa: an initial ex-
pansion of herders speaking Afro-Asiatic (specifically proto-
Southern Cushitic) languages from the Horn of Africa linked 
with the SPN, and a second expansion of herders speaking 
Nilo-Saharan (specifically Nilotic) languages linked with the 
Elmenteitan. 

People of the latter expansion have also been hypothe-
sized to be ancestral to some Iron Age groups (18, 19). One 
subset of Rift Valley sites is designated Pastoral Iron Age 
(PIA; ~1200 BP to recent) on the basis of material culture and 
evidence for herding, whereas other sites appear connected 
to farming and are classified into early, middle, and later Iron 
Age (IA; ~2500 BP to recent) variants (2, 14). Iron-working 
first entered eastern Africa via the Lake Victoria Basin ~2500 
BP and spread toward the coast by 2000 BP (14). This may 
have brought early IA farmers – thought to have spoken 
Bantu languages originating in equatorial western Africa – 
into contact with PN herders, although iron-working is not 
widely attested among herders until ~1200 BP at PIA sites (2, 
15). Alternatively, PIA sites may reflect other iron-working 
traditions entering from the north, potentially associated 
with movements of Nilotic-speaking pastoralists into and 
within the Rift (2). This complex mosaic of foragers, herders, 
and farmers gave rise to much of the present day ethno-lin-
guistic landscape of eastern Africa (20). 

Rigorous testing of models for how herding spread has 

been inhibited by several factors. A spatial and chronological 
gap exists between the earliest evidence of pastoralism in the 
Turkana Basin and the later PN expansion, with few material 
culture similarities between them. Additionally, relationships 
among PN and diverse Iron Age groups remain poorly under-
stood. Human skeletal material from relevant contexts tends 
to be fragmentary, limiting bioarchaeological analysis, and 
reliable radiocarbon dates are rare. Finally, the persistence of 
foraging groups raises questions about interaction networks 
during this period (12, 15), and whether food production 
spread primarily via demic expansion or via local adoption of 
novel practices and livestock. 

To address these debates, we generated genome-wide an-
cient DNA data from individuals buried at sites associated 
with LSA (n = 3), early pastoral and PN (n = 31), IA (n = 1), 
and PIA (n = 6) archaeological traditions in what are now 
Kenya and Tanzania (Fig. 1, Table 1, and table S1). We ex-
tracted DNA from a combination of tooth and bone samples 
and enriched for a targeted set of ~1.2 million single nucleo-
tide polymorphisms (SNPs; (21)). Surprisingly, given the trop-
ical climate and variable curatorial conditions, we obtained 
excellent data quality, with a median of approximately 0.51× 
coverage, or 440,000 SNPs covered by at least one sequence, 
for the 41 newly reported individuals (from a total of 67 se-
quencing libraries; table S2). The data scored well in stand-
ard ancient DNA authenticity metrics for all but two 
individuals (I12391 and I13970, whom we excluded from ge-
nome-wide analyses but for whom we obtained Y chromo-
some and mitochondrial DNA [mtDNA] haplogroups; (21)). 
We also generated direct radiocarbon dates for 35 individuals 
(tables S3 and S4 and fig. S1). We analyze these data jointly 
with sequences from published ancient African individuals 
(22–27), as well as from people living in eastern Africa today 
(28–31). 
 
Overview of genetic affinities of ancient eastern  
Africans 
We visualized the genetic structure of the ancient individuals 
using principal component analysis (PCA) of the genome-
wide data (Fig. 2 and table S5). We defined PCs using a small 
set of present-day groups (southern Africans, northeastern 
Africans, and non-Africans; (21)) and projected a large num-
ber of diverse individuals onto these axes. An alternative 
analysis with western Africans additionally used to compute 
the axes yielded almost identical results (fig. S2). Present-day 
groups from Sudan mostly lie along a cline extending from 
Copts (upper right, near individuals from northern Africa and 
the Levant) to Nilotic speakers such as Dinka and Nuer (bot-
tom left). Afro-Asiatic speakers (mostly from Ethiopia) form 
a second cline, with the right end near Sudanese Beja and 
Nubians, and the left end extending toward eastern African 
foragers (who themselves form a south-to-north gradient; cf. 
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ref. (22)). Present-day Kenyans largely fall in the space be-
tween Sudanese, Ethiopians, and western Africans, with their 
language family affiliations tending to predict their broad-
scale genetic affinities. 

The positions of ancient eastern Africans on the PCA 
strongly correlate with archaeological associations. The three 
individuals from LSA cultural contexts all cluster with previ-
ously reported ancient foragers, falling intermediate between 
those from southern Ethiopia (Mota) and coastal Tanzania 
(Zanzibar and Pemba Islands), consistent with their geo-
graphic position (22, 24). Individuals from pastoralist con-
texts (including one from Luxmanda in Tanzania (22)) are 
highly differentiated from foragers, with the exception of 
three individuals uncertainly assigned a pastoral context at 
Gishimangeda Cave in Tanzania, who cluster with foragers. 
PN individuals, including Elmenteitan and those within the 
heterogenous SPN category (whom we refer to as “other PN”), 
mostly form a tight cluster near present-day Afro-Asiatic 
speakers, with a small number of modest outliers, including 
the two individuals buried at Prettejohn’s Gully, whose ear-
lier date (~4000 BP) coincides with the initial limited spread 
of herding into the area. Finally, five Iron Age individuals are 
shifted to the left in the PCA: four PIA individuals toward 
Nilotic speakers, and an IA child from Deloraine Farm 
(I8802)—the earliest agricultural site in Kenya’s Rift Valley 
(32)—toward western Africans and Bantu speakers. 

We also examined the uniparentally inherited loci 
(mtDNA and Y chromosomes) of the sampled individuals. 
The most striking pattern is the high frequency among the 
PN individuals (7-12 out of 17 males; table S6) of the E-M293 
haplogroup (E1b1b1b2b2a1), a Y chromosome lineage that has 
been hypothesized to be associated with the spread of pasto-
ralism in the Horn of Africa, Kenya, and Tanzania and from 
there to southern Africa, on the basis of its present-day dis-
tribution and diversity (33, 34). Other males also carried hap-
logroups most frequently found in present-day eastern Africa, 
with the exception of E-M58 (E1b1a1a1a1a; predominantly 
western African) in the IA individual I8802, consistent with 
his position in PCA. The observed mtDNA lineages form more 
of a mosaic pattern, including types most closely associated 
with eastern and northeastern Africans, eastern African for-
agers, and northern Africans and western Eurasians (table 
S7). 
 
Formal modeling of admixture 
To obtain quantitative inferences about the genetic relation-
ships among the ancient and present-day individuals, we 
used qpAdm (35, 36), which provides a flexible framework for 
testing admixture models and estimating mixture propor-
tions. Guided by the PCA, we began by using three groups of 
individuals—present-day Dinka (28), ancient Chalcolithic-pe-
riod individuals from Israel (25), and the ~4500 BP forager 

from Mota, southern Ethiopia (24)—to represent distinct 
components of ancestry plausibly found in ancient and pre-
sent-day eastern Africans, with present-day western Africans 
among the outgroups (21). We note that the use of these proxy 
groups in qpAdm modeling does not imply an assumption 
that they are directly ancestral to the true sources contrib-
uting to the individuals we analyzed. Instead, for a model to 
be properly formulated, the reference groups only need to be 
more closely related to the true sources than are the out-
groups, without substantially different admixture (35). Thus, 
for example, ancestry related to the Chalcolithic Israel refer-
ence individuals could plausibly have originated anywhere in 
northeastern Africa or the Levant, and could have been pre-
sent in northeastern Africa for many thousands of years. We 
use the Chalcolithic individuals in this study because we lack 
genetic data from a phylogenetically adjacent reference 
group from Egypt, Sudan/South Sudan, or the Horn. Addi-
tionally, qpAdm does not require any assumptions regarding 
the internal phylogeny relating the references and outgroups, 
and it provides both standard errors for mixture proportion 
estimates and a p-value for overall model fit quality (35). 

Our qpAdm modeling reveals that the PN individuals had 
substantial proportions of all three ancestry components 
(~40% each for those represented by Dinka and by the Chal-
colithic Israel individuals, and ~20% related to Mota; Fig. 3 
and tables S8 and S9), with no evidence of western African-
related ancestry. The individuals from Prettejohn’s Gully can 
also be well modeled using the same three components, but 
in a modestly different ratio. The Iron Age group as a whole 
(including the more recent ~300 BP individual from Emurua 
Ole Polos, but excluding the possible PIA individual from Ko-
kurmatakore) does not fit well under a three-way model, but 
the fit improves markedly when we exclude the Deloraine 
Farm individual I8802 (p = 0.009 versus p = 0.0003). The re-
maining four individuals (who are confidently assigned to 
PIA contexts) are inferred to have substantially more Sudan 
(Dinka)-related ancestry (~60%) than is seen in the PN. We 
also observe similar patterns for present-day groups falling 
near the ancient individuals in PCA (using data from ref. 
(31)), whereby the three-way model fits better for Afro-Asi-
atic- and Nilo-Saharan-speaking groups than for Bantu-
speaking groups (table S8). Consistent with the PCA results, 
Afro-Asiatic speakers are inferred (as in PN) to have relatively 
even proportions of the components represented by Dinka 
and by Chalcolithic Israel (but with varying proportions of 
Mota-related ancestry), while Nilo-Saharan speakers are in-
ferred to have more Sudan-related ancestry. Alternative 
model formulations in which we either use ancient individu-
als from Taforalt in Morocco (27) in place of the Chalcolithic 
Israel group, or present-day Lemande from Cameroon (28) in 
place of Dinka (with Dinka moved to the outgroup set), fit 
significantly worse for most test groups (table S8). 
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From these results, we formulated a four-part hypothesis 
to explain the origins of the ancestries in the sampled eastern 
African groups. First, admixture in northeastern Africa, likely 
associated with the spread of pastoralism, created groups (as 
yet unsampled with ancient DNA) with approximately equal 
proportions of ancestry related to (1) present-day Nilotic 
speakers such as Dinka and Nuer, and (2) sampled ancient 
and present-day groups from northern Africa and the Levant. 
We refer to this combination as early northeastern African 
pastoralist-associated ancestry (henceforth “early northeast-
ern pastoralist,” or ENP), and the two sub-components as EN1 
and EN2. Second, descendants of these groups mixed with lo-
cal foragers in eastern Africa, leading to the ~20% Mota-re-
lated ancestry in the PN individuals. Third, an additional 
period of Sudan-related gene flow occurred before the Iron 
Age and contributed to PIA groups. Fourth, close to the same 
time, western African-related ancestry related to present-day 
Bantu speakers (also seen in an individual buried on Pemba 
Island ~600 BP (22)) appeared in the Rift Valley (notably at 
Deloraine Farm), in association with the spread of farming. 

To test these hypotheses and gain further insight into 
changes in ancestry over time, we carried out a second round 
of analysis in qpAdm using pairs of reference groups linked 
more closely with each historical phase. For the initial spread 
of pastoralism, we used Hadendowa (Sudanese Beja (29)) 
plus Mota. It is likely that the genetic landscape of northeast-
ern Africa has changed substantially since the time of the 
events we are modeling, so we do not propose that Haden-
dowa are descended directly from ENP; rather, we chose 
them to serve as a proxy for the (approximate) mixture of an-
cestries hypothesized to be present in the true ENP-related 
source (on the basis of the PCA and qpAdm results above). 
This two-way model yields a good fit for the PN individuals 
(p = 0.45), but not for Iron Age individuals (either the PIA 
cluster or the IA individual from Deloraine Farm), nor for 
present-day Nilotic- and Bantu-speaking groups (all p < 1e-6; 
table S8). We also attempted to fit PN as a mixture of possible 
early Kenyan pastoralist (represented by Prettejohn’s Gully) 
and forager-related ancestry, but this combination was re-
jected (p < 1e-6 using either Mota or the three Kenyan LSA 
individuals to represent the forager component), suggesting 
that the two ancient pastoralist groups are not simply differ-
entiated by their proportions of forager-related ancestry. 

Finally, to study later transformations, we built models 
using PN as one proxy source and either Dinka (Sudan-re-
lated), Mota (forager-related), or Lemande (western African-
related) as the other. We obtain improved fits for the Iron 
Age individuals and for present-day Kenyan Nilotic- and 
Bantu-speaking groups in this framework: the PIA cluster 
can be fitted as a mixture of ~57% PN-related and ~43% Su-
dan-related ancestry, while the Deloraine Farm individual 
can be modeled as a mixture of ~29% PN-related and ~71% 

western African-related ancestry (Fig. 3). Similar models also 
yield good fits for present-day Maasai (~47% PN-related and 
~53% Sudan-related) and Kikuyu (~40% PN-related and 
~60% western African-related), while Luhya can be fit as a 
mixture of Sudan-related (~41%) and western African-related 
(~59%) ancestry (Fig. 3). 

We also investigated the fine-scale genetic structure of the 
PN cluster and related individuals using direct tests of asym-
metry in allele frequencies (table S10). First, in agreement 
with their co-localization in PCA, we do not detect any signif-
icant differences in allele-sharing between Elmenteitan and 
other PN individuals relative to a set of 27 comparison 
groups, including the Iron Age and possible early pastoralist 
groups from this study (max nominal Z = 2.1; see also Fig. 4). 
There are hints of differentiation (max Z = 2.6) between the 
main PN cluster and individual I8904 from Kokurmatakore 
(previously dated to the PIA (37)), but this individual’s ances-
try is much more similar to other PN individuals than to PIA 
(Fig. 2 and table S10). We also find only minor asymmetry 
between the primary Kenyan and Tanzanian PN clusters 
(max Z = 2.5). However, four PN-period individuals who ap-
pear as outliers on PCA do have statistically significant an-
cestry differences as compared to the PN cluster. In 
particular, two individuals from Gishimangeda Cave (I13972 
and I13978) and the previously reported ~3100 BP pastoralist 
individual from Luxmanda in Tanzania (22) have evidence of 
more or different forager-related ancestry relative to Sudan-
related ancestry (e.g., f4(Ancient South African foragers, 
Dinka; X, PN) > 0, Z = 3.2, 5.1, and 6.8, respectively; Fig. 4 
and tables S8 and S10), while individual I8759 (an early PN 
individual buried at Naishi Rockshelter in Kenya) has evi-
dence of less forager-related ancestry (e.g., f4(Ancient South 
African foragers, Europeans; I8759, PN) < 0, Z = -4.4). We also 
confirm the differences in ancestry between the PN cluster 
and the two possible early pastoralist individuals from 
Prettejohn’s Gully (both Z > 5). While the individuals from 
Prettejohn’s Gully fall relatively far apart on PCA (Fig. 2), 
their ancestry is only weakly differentiated via f-statistics 
(max Z = 2.2; table S10). 
 
Dates of admixture 
The fact that we observe tight clustering of PN individuals via 
PCA and qpAdm, with little if any spatial or temporal struc-
ture as revealed by direct dating (Fig. 4 and table S9), sug-
gests that the admixture responsible for forager-related 
ancestry in the PN had largely ceased before the lifetimes of 
our sampled individuals. To test this hypothesis, we used 
MALDER (38, 39) to estimate dates of admixture for pairs of 
high-coverage individuals with similar direct radiocarbon 
dates and locations (21). All pairs have inferred dates that 
point to quite distant average times of admixture (mean 
~4600 BP for PN and ~5300 BP for Prettejohn’s Gully; Fig. 5 
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and table S10), with the concordance among the PN estimates 
providing an independent line of evidence for a lack of sub-
stantial ongoing mixture. We infer a more recent average 
date (~2200 BP) for two late PIA individuals, likely associated 
with additional Sudan-related ancestry (table S11). Our power 
to detect multiple waves of admixture is limited with ancient 
data, but for one pair of PN individuals from Naivasha Burial 
Site, we are confidently able to identify two separate events, 
the first at ~5100 BP and the second at ~4000 BP. We also 
infer two waves for a pair of individuals from Gishimangeda 
Cave, dating to ~6000 BP and ~4000 BP. In light of our 
qpAdm results, and given the associated MALDER ampli-
tudes (table S11), these multiple dates plausibly represent es-
timates of the times of (1) the formation of admixed ENP 
ancestry, and (2) admixture in eastern Africa between local 
foragers and descendants of the first mixture, leading to the 
three-component ancestry of PN individuals. In this context, 
the single (and intermediate) estimated dates for other PN 
pairs can be interpreted as averages of these two processes 
(Fig. 5). 
 
Incorporating genetic evidence into models for the 
spread of food production 
The four-phase model emerging from our genetic and radio-
carbon dating results builds upon archaeological reconstruc-
tions for the spread of herding into eastern Africa, supporting 
some theories while rejecting others that until now have been 
considered plausible. Under a proposed “moving frontier” 
model, herders entering new environments would interact in 
diverse ways with indigenous foragers, resulting in varying 
cultural responses and blurred archaeological boundaries as 
groups adopted some of each other’s cultural practices. In the 
ensuing “static frontier,” more intensive herding and/or com-
petition would transform initial relationships into more sta-
ble, long-term patterns (40). Archaeologists interpret the 
construction of cemeteries by the first herders in the Turkana 
Basin and the apparent trickle of people with similar material 
culture into the south-central Rift Valley as part of a moving 
frontier, whereas the explosion of pastoralist cultures in the 
PN reflects more established, static herder-forager relation-
ships (6, 15). 

On the basis of genetic data from a wide sampling of PN 
individuals, we infer two phases of admixture associated with 
the spread of pastoralism: the first likely ~6000-5000 BP in 
northeastern Africa, and the second ~4000 BP between this 
admixed ENP group and eastern African foragers. Archaeo-
logical data show that the Nile Valley was important for herd-
ers seeking reliable water sources toward the end of the 
African Humid Period (~7000-6000 BP) (1, 41). Herders plau-
sibly traced the White Nile southward, following unknown 
trajectories through South Sudan and/or southern Ethiopia 
to arrive in the Turkana Basin ~5000 BP (5, 6). Alternatively, 

they may have moved via the Horn of Africa, but current evi-
dence for herding in that region postdates that of Turkana 
(3). Our results support archaeological hypotheses that no 
matter the routes they took, early herders interacted with lo-
cal foragers as they spread (16, 42). In eastern Africa, exten-
sive forager-herder interactions have been proposed both in 
the Turkana Basin and during the initial trickle of herding 
into the south-central Rift Valley (6–10, 16, 17). Either area, or 
another unsampled region, could have witnessed the admix-
ture we document between descendants of the (already ad-
mixed) ENP group and local foragers, giving rise to the 
groups who then developed the PN cultural traditions of 
southern Kenya and northern Tanzania. 

Our attempts to extract DNA from early herders in Tur-
kana were unsuccessful (21), so the genetic ancestr(ies) of the 
first eastern African pastoralist groups remain uncertain. 
However, some lineages may be reflected in a man and a 
woman buried at Prettejohn’s Gully ~4000 BP. There are few 
associated artifacts, but the individuals’ genetic profiles sug-
gest they may represent an initial limited dispersal of herders 
into the south-central Rift Valley that did not leave large 
numbers of descendants. Previously, evidence of herding 
prior to ~3300 BP was limited to Turkana-related Nderit pot-
tery found sporadically and usually undated in the area (8), 
and to sheep or goat remains associated with a date of ~4200 
BP at a site 33 km south of Prettejohn’s Gully (7). Genetically, 
the two individuals are most similar to those from PN sites, 
but they fall outside the range of sampled PN (and present-
day) variation and cannot be modeled as directly related to 
PN. They also have an older date of admixture, and the male 
individual (I12533) carries a Y chromosome haplogroup (E2; 
E-M75) not found in any of our sampled PN individuals. Our 
results thus imply at least two chronologically distinct move-
ments of herders through eastern Africa, consistent with ar-
chaeological evidence of complex spreads (2), while at the 
same time adding new information by showing that one 
group (the one that gave rise to the PN cluster) was eventually 
much more demographically successful than the others. 

While Prettejohn’s Gully may represent a limited trickle 
of herders into the south-central Rift Valley, numerous PN 
sites after ~3300 BP attest to successful specialized pastoral-
ism. Archaeologists attribute this florescence to herder inno-
vations that allowed them to overcome environmental and 
disease barriers, likely facilitated by strong social networks 
reflected in widespread material cultural traditions (8–11). 
The dense cluster of PN individuals in our PCA—including 
burials >450 km apart—suggests these networks formed 
among people with shared ancestry, with the close related-
ness perhaps reinforced by ongoing mobility and gene flow. 
Moreover, it is striking that individuals in our sample buried 
with distinctive Elmenteitan material culture display mini-
mal genetic differentiation from those of other PN burials. 
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Strong Elmenteitan material cultural traditions may reflect 
maintenance of social boundaries, but our results do not sup-
port the view that these people were genetically distinct (12, 
18). In comparison to present-day groups, all PN individuals 
(associated with both the SPN and Elmenteitan material cul-
tures) show the greatest genetic affinity to Afro-Asiatic speak-
ers, supporting the hypothesis that the initial large-scale 
expansion of pastoralism in eastern Africa was linked to the 
spread of Afro-Asiatic languages (18, 19). 

With regard to the “moving frontier” model, we find that 
while sampled PN individuals carry ~20% admixture from lo-
cal forager groups, this gene flow almost all occurred well be-
fore the core PN era, as herders entered new environments. 
By contrast, the rapid spread of pastoralists into Kenya and 
Tanzania after ~3300 BP involved minimal gene flow be-
tween herders and foragers, plausibly due to the formation of 
a static frontier along which social barriers prevented large-
scale gene flow, despite possible social and economic interac-
tion (8, 15). Alternatively, population densities of foragers 
may have been so low that gene flow between the groups had 
little demographic impact on the more numerous pastoralists 
(12). Static frontiers were not absolute, however, in agree-
ment with ethnographic and ethnohistoric records that tes-
tify to some intermarriage between foragers and food 
producers (e.g., 43, 44)). Today, for example, the Eyasi Basin 
is an important interaction zone for diverse foraging and food 
producing groups (44), and is home to speakers of each of the 
four main African language phyla. In our data, the ancestries 
of the individual buried at Luxmanda (22), the southernmost 
known PN site (11), and of two newly reported individuals 
from Gishimangeda Cave in the Eyasi Basin, all attest to ad-
ditional admixture with foragers beyond the events contrib-
uting to the possible early pastoralists from Prettejohn’s 
Gully and to the main PN cluster. Furthermore, at Gishi-
mangeda Cave, we observe three individuals clustering genet-
ically with foragers, which may reflect social ties between 
people with different ancestry and/or ways of life. However, 
given that the three forager-related individuals produced in-
sufficient collagen for radiocarbon dating and substantially 
lower-coverage genetic data than the pastoralist-related indi-
viduals, we speculate that the observation of distinct ancestry 
types is more probably a consequence of multiple burial 
phases at the site (i.e., greater antiquity for the likely forager 
individuals). 
 
Low frequency of genetic adaptation to milk  
consumption 

To test whether the success of PN groups in eastern Africa 
was aided by genetic adaptations linked to diet, we also eval-
uated the sequenced individuals for presence or absence of 
genetic variants associated with adult lactase persistence (LP; 
table S12). While our coverage is limited for some individuals 

and some SNPs, we only observe one instance of an LP-
conferring mutation, in individual I13762, from Gishi-
mangeda Cave in Tanzania. This individual, who falls within 
the main PN genetic cluster and lived during the later PN 
(2150-2020 cal BP), carried the derived allele at the 
rs145946881 (G/C-14010) SNP, which is the most common LP 
mutation found among eastern African groups today. The 
other ancient individuals could possibly have carried differ-
ent variants conferring the same phenotype, but the assayed 
SNPs are found at high frequencies in some present-day east-
ern African groups and thus are likely to have been important 
historically (45). This suggests that eastern African pastoral-
ists were mostly lactose intolerant as recently as 3000-1000 
years ago and that the LP alleles only recently rose in fre-
quency, although our results also demonstrate that the G/C-
14010 mutation was present and could have been a target for 
natural selection by the PN period. Direct evidence for dairy-
ing is currently lacking in the region, despite the specialized 
pastoralist lifestyle inferred from faunal remains at PN sites 
(8). However, culinary innovations such as fermentation 
could have enabled dairy consumption even in the absence of 
LP. 
 
Increasing complexity in the Iron Age 
The eastern African Iron Age can be summarized archaeolog-
ically as a mosaic in which foragers, herders, and early farm-
ers with distinct traditions and ways of life overlapped in 
space and time (2, 14, 15, 19). This complexity is reflected in 
the ancient individuals we analyzed. The young boy buried at 
Deloraine Farm—the site with the earliest direct evidence of 
farming in the Rift Valley (32)—shows affinity to western Af-
ricans and speakers of Bantu languages (both genome-wide 
and on the Y chromosome). This is the earliest documenta-
tion of western African-related ancestry in eastern Africa, in 
a region where today such ancestry is widespread and the 
majority of people speak Bantu languages (46). 

The Deloraine Farm child’s genetic distinctiveness as 
compared to the PN cluster is notable in light of similarities 
in artifacts between Elmenteitan sites and Deloraine Farm, 
viewed as evidence of continuity from the Elmenteitan to the 
Iron Age (32, 47). By contrast, four PIA individuals spanning 
an ~800-year period show greater affinity to present-day Ni-
lotic speakers and are associated with an influx of Sudan 
(Dinka)-related ancestry. Similarities between archaeologi-
cally and ethnographically documented material culture sug-
gest that PIA sites may be associated with ancestors of 
present-day Kenyan Nilotic speakers such as the Kalenjin or 
Maasai (32, 47). Both the PIA individuals and present-day 
Maasai retain substantial components of PN-related ancestry, 
showing that the ancestry composition of PIA and more re-
cent pastoralists reflects mixture with previously established 
herder groups in eastern Africa. For other groups, such as 
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Luhya (who speak a Bantu language), there is little evidence 
of PN-related ancestry, suggesting that their ancestors spread 
into Kenya without mixing substantially with local herders. 
Boundaries between foragers and food producers may have 
been maintained during the Iron Age, as we do not observe a 
significant increase in forager ancestry in the PIA or IA indi-
viduals, but we cannot rule out a small proportion of addi-
tional forager-associated admixture. Overall, we caution that 
these interpretations are limited by small sample sizes and 
may not reflect the more nuanced regional dynamics within 
this mosaic. 
 
Genetic diversity of eastern African foragers 
Archaeological evidence of foragers across Holocene eastern 
Africa encompasses an array of material culture and subsist-
ence traditions (48). This study adds to our understanding of 
LSA genetic variation by reporting ancient DNA from addi-
tional foragers without pastoralist-related admixture, includ-
ing from fisher-foragers near Lake Victoria who may have 
been living contemporaneously with PN herders in the 
broader region. These individuals fall in an intermediate po-
sition between Ethiopian and Tanzanian foragers on a ge-
netic cline that is well correlated (among sampled ancient 
individuals) with geographical location (22). Broadly, how-
ever, the similarity of foragers buried in the Victoria and 
Eyasi Basins to individuals living on the Kenya coast and in 
Ethiopia and coastal Tanzania (22, 24) suggests that shared 
forager ancestry extended widely across the region, as also 
attested by present-day genetic data (20). 
 
Conclusions 
Genome-wide data from 41 ancient eastern Africans show 
that archaeological complexity during the spreads of herding 
and farming is also reflected in genetic patterns, which indi-
cate multiple movements of and gene flow among ancestrally 
distinct groups of people. We identify three components of 
ancestry harbored by ancient pastoralists and propose a se-
quence of admixture events to explain our observations; fu-
ture archaeological and ancient DNA research in the Turkana 
Basin, the Horn of Africa, and other parts of northeastern Af-
rica will be necessary to confirm the earliest stages of the 
spread of herding into the region. At the other end of our 
timeframe, we show that multiple admixture events impacted 
Iron Age groups associated with heterogeneous economic, 
cultural, and linguistic patterns. This complexity can be fur-
ther explored through additional comparisons of genetic and 
archaeological diversity. Ancient DNA offers a new source of 
information about eastern African Holocene prehistory, and 
an important next direction is to integrate this information 
rigorously with insights provided by the longer-established 
disciplines of archaeology and linguistics. 
 

Materials and methods summary 
Human skeletal remains from East African archaeological 
sites, including the petrous portion of the skull, teeth, and 
other bones, were sampled from the National Museums of 
Kenya and Tanzania and the Livingstone Museum in Zambia, 
following protocols to minimize both destruction and con-
tamination. Bioarchaeological data on the analyzed individu-
als, along with detailed information about archaeological 
context, are provided in the full Materials and Methods (21). 
DNA was extracted from bone powder in dedicated clean 
rooms at Harvard Medical School using protocols optimized 
for ancient DNA. Illumina sequencing libraries were pre-
pared with uracil-DNA-glycosylase (UDG) to reduce deami-
nation-induced errors. Before sequencing, libraries were 
enriched for molecules overlapping approximately 1.2 million 
genome-wide SNPs. Of the 77 samples processed for this 
study, 43 (from 41 distinct individuals) provided genome-
wide ancient DNA data. Direct radiocarbon dates were gen-
erated at the Pennsylvania State University (PSU) Radiocar-
bon Laboratory via accelerator mass spectrometry (AMS). 

Raw sequencing data were filtered and aligned to the hu-
man reference genome. One sequence per individual was cho-
sen randomly from those overlapping each targeted SNP to 
represent that individual at that position. On the basis of au-
thenticity metrics, two individuals were excluded from ge-
nome-wide analyses. The other 39 individuals were analyzed 
in conjunction with published genetic data from ancient in-
dividuals and present-day groups, using a variety of statistical 
approaches. Multiple population genetics methods were ap-
plied to investigate proportions, sources, and dates of admix-
ture, with a particular emphasis on testing of proposed 
admixture models through the qpAdm software. 
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Fig. 1. Map of the study area and regional chronology. Locations of sampled 
archaeological sites in Kenya and Tanzania (A), with detail of the south-central Rift 
Valley (B). A timeline for eastern African archaeological traditions (C) highlights their 
degree of overlap and diffuse endpoints. Numbers in (A) and (B) correspond to sites 
listed in Table 1. Location of 7 is approximate. [Terrain basemaps © 
www.thunderforest.com, data © www.osm.org/copyright, adapted under CC-BY-SA 
2.0] 
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Fig. 2. Principal component analysis. Shaded regions are drawn to highlight notable clines of ancestry. Ancient 
individuals from this study are indicated in the legend with asterisks. Dates for published ancient individuals 
outside of Kenya and Tanzania are ~4500 BP for Mota, ~8100-2500 BP for Malawi foragers, ~6500-5800 BP for 
Israel Chalcolithic, and ~3600-2000 BP for Egypt. ELM, Elmenteitan; LSA, Later Stone Age; PN, Pastoral Neolithic; 
IA, Iron Age (I8802); PIA, Pastoral Iron Age; ENP, early northeastern pastoralists. See (21) for more details and 
table S5 for the full list of individuals shown. 
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Fig. 3. Proposed model of admixture for ancestry in 
eastern Africans. Solid-color bars represent lineages 
of northeastern African (EN1/Sudan-related in green, 
EN2 in gray), eastern African forager-related (orange), 
and western African-related (blue) ancestry, and 
mixed-color bars represent admixed populations 
(hypothesized early northeastern pastoralists, or ENP, 
as green plus gray). Pie charts show ancestry 
proportions for sampled ancient (embedded in figure, 
at approximate date points) and present-day (bottom) 
populations inferred from qpAdm (PN-related ancestry 
as mixed-color sections). Black arrows represent likely 
ongoing interactions and not specific admixture events 
inferred from the data. EN1/EN2, early northeastern 
pastoralist source populations; PN, Pastoral Neolithic; 
ELM, Elmenteitan; PIA, Pastoral Iron Age; IA/DF, Iron 
Age (Deloraine Farm); AA, Afro-Asiatic; NS, Nilo-
Saharan; BA, Bantu. 
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Fig. 4. Mixture proportions for PN individuals. Results are from a two-
component qpAdm model using Sudanese Beja (green-and-gray striped) 
and the ancient individual from Mota, Ethiopia (orange) as proxy sources 
(for early northeastern pastoralist, or ENP, and eastern African forager-
related ancestry, respectively). Radiocarbon-dated individuals (to the right 
of the solid line) are ordered from most ancient on the right (I8874, 3350-
3180 BP) to most recent on the left (I12394, 1530-1400 BP). Bars show two 
standard errors in each direction. The dotted line represents the Kenya PN 
group-level estimate (74.7 ± 1.0% ENP-related ancestry). We note that the 
linear regression coefficient for forager-related ancestry as a function of 
date is not significantly nonzero (R2 = 0.03, p = 0.39), nor as a function of 
latitude (R2 = 0.03, p = 0.37). ELM, Elmenteitan; PN, other Kenyan Pastoral 
Neolithic; TA, Tanzanian PN (including the Luxmanda individual from ref. 
(22)); unc., uncertain. on M
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Fig. 5. Dates of admixture inferred for pairs of ancient individuals. Bars 
show two standard errors in each direction. The shaded areas represent 
implied periods of admixture: from top to bottom, ENP (early northeastern 
pastoralist; red), forager-related (blue), and additional Sudan- related 
(green). Early P, early pastoralists; PN, Pastoral Neolithic; PIA, Pastoral Iron 
Age; TA, Tanzanian PN. See also table S11. 
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Table 1. Ancient individuals reported in this study, ordered by start of calibrated radiocarbon date range. 

Lab ID Site1 

Ma
p # 

Lat Long 
Archaeological as-

sociation2 Genetic cluster Sex 
mtDNA hap-

logroup 
Y chromosome haplog-

roup 
Coverage 
on target 

Uncalibrated years before 
present (BP) (lab number) 

Calibrated years be-
fore present (cal BP), 

2σ 3 
I12533 Prettejohn's Gully (GsJi11) 15  −0.545 36.106 Early pastoral? PN outlier M K1a E2(xE2b); E-M75 0.83 3670 ± 20 (PSUAMS-4982) 4080-3890 

I12534 Prettejohn's Gully (GsJi11) 15  −0.545 36.106 Early pastoral? PN outlier F L3f1b   0.69 3640 ± 20 (PSUAMS-4983) 4060-3860 

I8874 Cole’s Burial (GrJj5a) 14 −0.442 36.267 PN PN cluster M L3i2 E1b1b1a1a1b1; E-CTS3282 3.90 3070 ± 20 (PSUAMS-4723) 3350-3180 

I8809 
Kisima Farm, A5/Porcupine 

Cave 
2 0.458 36.709 PN PN cluster M M1a1 E1b1b1b2b2a1; E-M293 3.48 2855 ± 20 (PSUAMS-4510) 3030-2860 

I8820 
Kisima Farm, A5/Porcupine 

Cave 
2 0.458 36.709 PN PN cluster F M1a1f   0.07 2675 ± 20 (PSUAMS-4717) 2840-2740 

I12398/9 4 Rigo Cave (GrJh3) 12 −0.464 35.971 PN/ELM PN cluster M L3f E1b1b1b2b2a1; E-M293 0.89 
2480 ± 20 (PSUAMS-4945); 
2570 ± 15 (PSUAMS-4946) 

2710-2380; 
2750-2510 

I8759 Naishi Rockshelter 13 −0.458 36.081 PN PN outlier M L3x1a 
E1b1b1b2b; E-V1515 (prob. 

E-M293) 
0.07 2550 ± 15 (PSUAMS-4715) 2750-2500 

I13980 Gishimangeda Cave 20 −3.476 35.348 PN PN cluster M HV1b1 E1b1b1a1b2; E-V22 2.72 2530 ± 20 (PSUAMS-5655) 2740-2490 

I13981 Gishimangeda Cave 20 −3.476 35.348 PN PN cluster F L0a   0.36 2510 ± 20 (PSUAMS-5656) 2730-2460 

I8758 Naishi Rockshelter 13 −0.458 36.081 PN PN cluster M L0a2d A1b(xA1b1b2a); A-P108 0.29 2470 ± 15 (PSUAMS-4624) 2700-2370 

I8804 Keringet Cave? 5 9 −0.358 35.699 PN PN cluster M L4b2a1 A1b1b2; A-L427 0.50 2465 ± 20 (PSUAMS-4716) 2700-2360 

I8923 Rigo Cave (GrJh3) 12 −0.464 35.971 PN/ELM PN cluster M M1a1b (likely) 
E1b1b1b2b2; E-V1486 (prob. 

E-M293) 
0.15 2440 ± 20 (PSUAMS-4512) 2690-2350 

I13979 Gishimangeda Cave 20 −3.476 35.348 PN PN cluster F L3x1   2.56 2410 ± 20 (PSUAMS-5654) 2490-2350 

I8922 Rigo Cave (GrJh3) 12 −0.464 35.971 PN/ELM PN cluster M L4b2a2c E1b1b1b2b2a1; E-M293 2.79 2400 ± 15 (PSUAMS-4725) 6 c. 2460-2350 

I8814 Naivasha Burial Site 17 −0.663 36.410 PN PN cluster F L4b2a2b   2.53 2400 ± 20 (PSUAMS-4784) 2480-2340 

I13978 Gishimangeda Cave 20 −3.476 35.348 PN PN outlier F L4b2a1   0.56 2355 ± 20 (PSUAMS-5653) 2400-2310 

I8830 Naivasha Burial Site 17 −0.663 36.410 PN PN cluster M M1a1b xBT (prob. A) 0.10 2320 ± 20 (PSUAMS-4720) 2360-2210 

I8920 Naivasha Burial Site 17 −0.663 36.410 PN PN cluster M L3h1a1 E1b1b1b2b2a1; E-M293 1.68 2310 ± 15 (PSUAMS-4724) 2350-2210 

I8919 Naivasha Burial Site 17 −0.663 36.410 PN PN cluster M L4a1 A1b1b2b; A-M13 1.84 2255 ± 20 (PSUAMS-4789) 2340-2160 

I8918 Naivasha Burial Site 17 −0.663 36.410 PN PN cluster M L3x1a E1b1b1b2b2a1; E-M293 2.45 2235 ± 20 (PSUAMS-4744) 2320-2150 

I13762 Gishimangeda Cave 20 −3.476 35.348 PN PN cluster M L3i2 E1b1b1b2b2a1; E-M293 1.81 2140 ± 15 (PSUAMS-5458) 2150-2020 

I10719 Njoro River Cave II 11 -0.389 35.917 PN/ELM PN cluster F L3h1a2a1   1.11 2070 ± 15 (PSUAMS-4758) 2110-1930 

I13970 Gishimangeda Cave 20 −3.476 35.348 PN N/A F L3h1a2a1   0.03 2030 ± 20 (PSUAMS-5650) 2000-1900 

I13977 Gishimangeda Cave 20 −3.476 35.348 PN PN cluster M L0f2a1 
E1b1b1b2b2; E-V1486 (prob. 

E-M293) 
0.30 2005 ± 20 (PSUAMS-5652) 2000-1890 

I8808 Jawuoyo Rockshelter 5 −0.067 34.667 LSA Forager cline M L4b2a2c E1b1b1a1b2; E-V22 1.37 1895 ± 15 (PSUAMS-4783) 1880-1750 

I8805 Egerton Cave (GrJh10) 10 −0.375 35.933 PN/ELM PN cluster F L0a1d   3.79 1880 ± 15 (PSUAMS-4741) 1870-1740 

I12384 Ol Kalou 7 −0.300 7 36.400 7 PN PN cluster M L3d1d E1b1b1b2b2a1; E-M293 0.51 1800 ± 20 (PSUAMS-4940) 1810-1620 

I13972 Gishimangeda Cave 20 −3.476 35.348 PN PN outlier M T2+150 
E1b1b1b2b2; E-V1486 (prob. 

E-M293) 
0.09 1780 ± 25 (PSUAMS-5651) 1740-1580 

I12394 Keringet Cave (GrJg4) 9 −0.358 35.699 PN/ELM PN cluster F K1a   0.42 1585 ± 15 (PSUAMS-4943) 1530-1400 

I8892 Ilkek Mounds 16 −0.603 36.374 PIA PIA cluster M L0f2a E2(xE2b); E-M75 0.10 1170 ± 15 (PSUAMS-4788) 1170-980 

I8802 Deloraine Farm (GqJh6) 8 −0.183 35.809 IA IA other M L5b1 E1b1a1a1a1a; E-M58 2.65 1160 ± 15 (PSUAMS-4625) 1170-970 

I8901 Kisima Farm, C4 3 0.458 36.709 PIA PIA cluster M L3h1a1 E2(xE2b); E-M75 0.02 1110 ± 15 (PSUAMS-4743) 1060-940 

I12391 Kasiole 2 (GvJh54) 18 −1.326 35.939 PIA N/A M L3h1a2a1 
E1b1b1b2b; E-V1515 (prob. 

E-M293) 
0.02 1110 ± 15 (PSUAMS-4942) 1060-940 

I12381 
Laikipia District Burial 

(GoJl45) 
4 0.380 36.893 PIA PIA cluster F L0a1c1   0.92 635 ± 15 (PSUAMS-4939) 650-560 

I12379 
Emurua Ole Polos 

(GvJh122) 
19 −1.396 35.983 PIA/recent PIA cluster M L3h1a2a1 E1b1b1b2b2a1; E-M293 3.38 270 ± 15 (PSUAMS-4938) 420-160 

I13763 Gishimangeda Cave 20 −3.476 35.348 PN Forager cline F ..   0.01 insufficient collagen N/A 

I13982 Gishimangeda Cave 20 −3.476 35.348 PN Forager cline F ..   0.02 insufficient collagen N/A 

I13983 Gishimangeda Cave 20 −3.476 35.348 PN Forager cline M .. BT (low cov.; prob. B) 0.02 insufficient collagen N/A 

I8904 Kokurmatakore 1 3.132 37.433 PIA?8 PN outlier? M L3a2a 
E1b1b1; E-M35 (not E-

M293) 
0.09 insufficient collagen N/A 

I8930 White Rock Point (GrJb2) 6 −0.450 34.321 LSA Forager cline M L2a4 BT(xCT) (low cov.; prob. B) 0.03 insufficient collagen N/A 

I8931 White Rock Point (GrJb2) 6 −0.450 34.321 LSA Forager cline F L0a2 (likely)   0.03 insufficient collagen N/A 

1Site codes, where available, follow a standardized system for Africa (49). 
2PN, Pastoral Neolithic; ELM, Elmenteitan; IA, Iron Age; PIA, Pastoral Iron Age; LSA, Later Stone Age. 
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3Calibrated in OxCal v.4.3.2 (50), modeling for an unspecified mixture of IntCal13 (51) and SHCal13 (52) curves, and rounding to the nearest dec-
ade. 
4Samples are from the same individual, but provided slightly different radiocarbon dates. 
5The context of this individual is uncertain; see (21) for detail. 
6Indirect date on a bone that may be from a different individual (see table S1). All other dates are direct on the individual for whom DNA data are 
reported. 
7Approximate location. 
8New attempts to date this individual failed, but a published date on bone apatite from this individual suggests a PIA association, despite genetic 
clustering with PN individuals; see (21) for detail. 

on M
ay 30, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/

	Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa

