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Methods S1. Details of experimental and computational techniques 

used. Related to STAR Methods. 

A. Strontium analysis of the samples. 
We analyzed petrous bones and tooth enamel from twelve individuals which successfully 

produced DNA results, as well as eight individuals from Megiddo where DNA sequencing was 

not successful. The twelve individuals – one from Abel Beth Maacah, nine from Megiddo, and 

two from Hazor yielded 87Sr/86Sr values (Table SA.1). All measurements characterize the 

geographic region in which the samples were found, i.e., northern Hulla valley and Jezreel valley 

(Hartman and Richards, 2014). Both areas are characterized by sediments and soils derived from 

three main sources: local Mesozoic carbonate rocks, local Tertiary basaltic rocks, and 

atmospheric dust mostly from the Sahara, with typical 87Sr/86Sr values ranging between 0.706 

and 0.7083, depending on the relative contribution of the three sources. The sediment and soil 
87Sr/86Sr values determine, in turn, the 87Sr/86Sr values of surface water and groundwater and 

the 87Sr/86Sr values reflecting the diet of the people living in this area. For four individuals, we 

could measure 87Sr/86Sr values in both enamel and petrous bone (one from Abel and three from 

Megiddo). 87Sr/86Sr values of petrous bones were found to be almost identical to those of the 

enamel, indicating that Sr in petrous bones was not significantly altered, and preserve the 
87Sr/86Sr values obtained in-vivo. Moreover, the male sample from Abel Beth Maacah had a 

small but not significant difference between the 2nd Molar, 3rd Molar and petrous, suggesting 

that the person did not travel far during his life-time. In addition, eight other individuals from 

Megiddo that did not produce DNA had similar 87Sr/86Sr values, suggesting that the population in 

Megiddo was local, with no evidence of first-generation foreigners (people that spent their first 

decade of life, when tooth enamel forms and obtains its 87Sr/86Sr value, away from this area). 

Site SampleID Sample archa. label Type Sub-type Sr ppm 87Sr/86Sr  

Abel Beth 
Maacah 

I2201 
(I3813) 

L2521 B25195 a petrous left 248 0.7077 

L2521 B25195 b petrous right 270 0.7078 

L2521 B25195 c enamel  2nd molar 72 0.7080 

L2521 B25195 d enamel  3rd molar 100 0.7079 

Megiddo 

I2189 2014/K/066 LB005  petrous left 293 0.7079 

I2190 2012/K/089 LB015  petrous right 323 0.7078 

I2195 2012/K/057 PT002 LB004 petrous left 380 0.7079 

I2198 2014/K/049 PT007 LB029 petrous left 371 0.7079 

I2200 2012/K/107 PT005 LB005 a petrous right 380 0.7079 

2012/K/107 PT005 LB005 b enamel unknown 82 0.7080 

I4519 2014/K/159 PT001 LB003 a petrous  left 325 0.7082 

2014/K/159 PT001 LB003 b enamel 1st upper molar 1393 0.7081 

I4517 1998/K/100 PT006 LB007 a petrous right 449 0.7083 

1998/K/100 PT006 LB007 b enamel 1st lower molar 98 0.7081 

I4525 2010/K/106 LB007 #2 petrous left 462 0.7082 

I4521 2006/J/008 PT023 LB003 petrous left 363 0.7081 
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Hazor 

I3965 L7953 B48846/1 petrous unknown 268 0.7078 

I3966 L12-371 B78119 petrous left 383 0.7078 

Table SA.1. Sr concentrations and isotopic values for individuals whose genome was sequenced. 
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B. Sensitivity of analyses to down-sampling. 
In the main text, we only used samples with a minimum autosomal SNP coverage of 30,000. To 

justify this threshold, we perform here down-sampling of the data, and test its effects on the 

different methods used in the manuscript. 

For PCA, we down-sampled 16 genomes to 1K, 2.5K, 5K, 8K, 10K, 25K 50K, 250K, and 500K SNPs, 

with 20 replicates for each down-sampling level. All were projected onto the West Eurasian PCA, 

as in Figure 1B. The standard deviation of the PCA position was plotted against the down-

sampling level (Figure SB.1). As expected, the standard deviation decreases with the number of 

SNPs and reaches ~0.005 at 30K SNPs. 

 

Figure SB.1. Standard deviation of PCA position. Each line is a single sample; a few are highlighted for emphasis. 

For ADMIXTURE, we down-sampled the entire data set to ~50K SNPs. Due to the variability in 

data quality across sites, the resulting mean coverage varied across the different Levant 

populations, ranging from ~5,000 to ~37,000 SNPs. The qualitative results of ADMIXTURE did not 

change (Figure SB.2), with both outliers from Megiddo presenting an additional significant 

source. Populations analyzed with the reduced SNP set tend to show a small contribution of 

ancestor populations not inferred to be contributors in the extended SNP set. However, as we 

show next, this small contribution is present in all populations, and therefore hardly affects 

comparisons of the ADMIXTURE vectors in the different populations. 
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Figure SB.2. ADMIXTURE plots for the populations first analyzed here, using either a set of 357,334 (A) or 50,165 (B) 
SNPs. For groups with more than one individual (Megiddo_IBA, Megiddo_MLBA, Hazor, Yehud and Baqah), the 
average across individuals is shown. 

For LINADMIX, which is a downstream analysis of ADMIXTURE, we examined the mean absolute 

difference in the Levant_N ancestry, in the models appearing in Table S2, before and after 

down-sampling. We found that when the number of SNPs exceeds 20K, the mean absolute 

difference in the Levant_N ancestry becomes ~5%, equal to the standard error of the model as 

computed by LINADMIX (Table S3, Figure SB.3). In addition, in all populations except for Tel 

Shadud, the change in the Levant_N ancestry was in the same direction, thus maintaining the 

rank of Levant_N ancestry in the different populations. 

 

Figure SB.3. Change in Levant_N ancestry proportions estimated by LINADMIX as a function of SNP coverage. The plot 
shows the mean absolute difference in Levant_N ancestry proportion calculated by LINADMIX after down-sampling, 
versus the mean SNP coverage of the population. 

For qpAdm, which takes the union of SNPs in a population, we down-sampled the entire data set 

to ~46K, ~33K and ~15K SNPs. We then examined the mean absolute difference of Levant_N 

ancestry in Megiddo_MLBA and in Baqah in the models of Table S2 before and after down-
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sampling (Figure SB.4). At 30K SNPs, the mean absolute difference (3.3%) decreases to 

approximately the standard error of the model (3%) and continues to decrease as the number of 

SNPs used increases. 

 

Figure SB.4. The mean absolute difference in Levant_N ancestry proportion calculated by qpAdm after down-
sampling. 

The autosomal SNP coverage threshold for PHCP was different from the other methods, and was 

set to 100K SNPs throughout the manuscript. This threshold was determined using simulations, 

as detailed in Methods S1H. 
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C. Testing the robustness of the relative genomic remoteness of Sidon 
Our analyses in the section "High degree of genetic homogeneity across multiple sites" showed 

that Sidon is relatively distinct from other contemporary populations, and resembles only 

Ashkelon, and to a lesser extent Abel. However, Sidon is also the only population sequenced in a 

different lab using a different sequencing technology. To test whether the results for Sidon are 

due to a batch effect, we repeated the qpWave analysis using SNPs that represent transversions, 

which are less prone to characteristic ancient DNA errors (Wang et al., 2015). Using only the 

111,208 transversion SNPs, we saw that Sidon does cluster with some other Bronze and Iron Age 

Levant populations (Table SC.1). 

Left populations Outgroup (right) 
populations 

P value Outgroup (right) 
populations 

P value 

Sidon 
ASH IA1 

o9a 0.0488 o9aamcn 0.0353 

Sidon  
ASH IA2 

o9a 0.4312 o9aamcn 0.3200 

Sidon 
ASH LBA 

o9a 0.8942 o9aamcn 0.7392 

Sidon 
Hazor 

o9a 0.1512 o9aamcn 0.1291 

Sidon 
Abel 

o9a 0.1443 o9aamcn 0.2275 

Sidon 
Megiddo IA 

o9a 0.3563 o9aamcn 0.3093 

Sidon  
Yehud  

o9a 0.0004 o9aamcn 0.0000 

Sidon  
Megiddo I2200 

o9a 0.0354 o9aamcn 0.0901 

Sidon 
Megiddo MLBA 

o9a 0.0017 o9aamcn 0.0005 

Sidon 
Megiddo I10100 

o9a 0.0290 o9aamcn 0.0495 

Sidon 
Baqah 

o9a 0.0013 o9aamcn 0.0012 

Sidon 
‘Ain Ghazal 

o9a 0.0059 o9aamcn 0.0003 

Sidon 
Levant N 

o9a 0.0000 o9aamcn 0.0000 

Sidon 
Megiddo IBA 

o9a 0.2085 o9aamcn 0.1844 

Sidon 
Shadud 

o9a 0.2105 o9aamcn 0.1031 

Table SC.1. qpWave results on transversion-SNPs testing Sidon and another Levant population (as left populations) 

using either o9a or o9aamn as the outgroups (right populations). o9a: Ust_Ishim; Kostenki14; MA1; Han; Papuan; 

Onge; Chukchi; Karitiana; Mbuti; Anatolia_N. o9aamcn: Ust_Ishim; Kostenki14; MA1; Han; Papuan; Onge; Chukchi; 
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Karitiana; Mbuti;Anatolia_N; Armenia_MLBA; CHG; Natufian. In cyan are pairs that are compatible with being clades 

with each other relative to the outgroup populations. 

However, these results could also be a consequence of the reduced number of SNPs used in the 

analysis. To test this, we randomly pruned the data to a different set of 112,392 SNPs. The 

qpWave results (Table SC.2) resemble those obtained for the transversion-SNPs, suggesting that 

transversion-SNPs do not carry a systematically different signal, and therefore the results are 

not showing evidence for being influenced by a batch effect.  

Left populations Outgroup (right) 
populations 

P value Outgroup (right) 
populations 

P value 

Sidon 
ASH IA1 

o9a 0.0017 o9aamcn 0.0005 

Sidon  
ASH IA2 

o9a 0.4213 o9aamcn 0.3261 

Sidon 
ASH LBA 

o9a 0.5261 o9aamcn 0.7467 

Sidon 
Hazor 

o9a 0.2212 o9aamcn 0.3489 

Sidon 
Abel 

o9a 0.1726 o9aamcn 0.3277 

Sidon 
Megiddo IA 

o9a 0.1023 o9aamcn 0.0750 

Sidon  
Yehud  

o9a 0.0518 o9aamcn 0.0206 

Sidon  
Megiddo I2200 

o9a 0.0971 o9aamcn 0.2024 

Sidon 
Megiddo MLBA 

o9a 0.0063 o9aamcn 0.0000 

Sidon 
Megiddo I10100 

o9a 0.0002 o9aamcn 0.0000 

Sidon 
Baqah 

o9a 0.0000 o9aamcn 0.0000 

Sidon 
‘Ain Ghazal 

o9a 0.0251 o9aamcn 0.0223 

Sidon 
Levant N 

o9a 0.0000 o9aamcn 0.0000 

Sidon 
Megiddo IBA 

o9a 0.0034 o9aamcn 0.0021 

Sidon 
Shadud 

o9a 0.0911 o9aamcn 0.0939 

Table SC.2. qpWave results on a random subset of 112,392 SNPs with Sidon and another Levant population (as left 

populations) using either o9a or o9aamn as the outgroups (right populations). o9a and o9aamcn composition is as in 

Table SC.1. In cyan are pairs that are compatible with being clades with each other with respect to the outgroup 

populations. 
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To better understand the source for the genetic distinctiveness of the Sidon population, we 

carried out qpWave on each of the five Sidon individuals separately (on all SNPs). The results 

show that while some of the Sidon individuals form a clade with various Bronze and Iron Age 

Levant populations, the only populations that form a clade with all Sidon individuals are 

Ashkelon_LBA, Ashkelon_IA2 and Abel. These are precisely the three populations that emerged 

as most closely resembling the Sidon population as a whole (Table SC.3). 

Population  Individuals passing p value ≥
0.05 with o9a 

Individuals passing p value ≥
0.05 with o9aamcn 

ASH IA1 None None 

ASH IA2 All All 

ASH LBA All All 

Hazor 1,2 1,2 

Abel All All 

Megiddo IA 1,2,5 1,2,5 

Yehud 1 1 

Megiddo I2200 1,2 1,2 

Megiddo MLBA None None 

Megiddo I10100 None None 

Baqah 2 None 

‘Ain Ghazal None None 

Levant N None None 

Megiddo IBA 1 None 

Shadud 1,2,3,4 1,2,5 
Table SC.3. qpWave results for the different Sidon individuals and another Levant population (as left populations) 

compared to either o9a or o9aamn outgroup populations (right populations). Listed are the individuals that are 

compatible with forming a clade with the tested population. Sidon individuals: ERS1790729 – 1; ERS1790730 – 2; 

ERS1790731 – 3; ERS1790732 – 4; ERS1790733 – 5. o9a and o9aamcn composition is as in Table SC.1. 

We conclude that the Sidon population has evidence of heterogeneity, with some of its 

individuals being closer to inland Canaanites while others are less so. Nonetheless, the 

population as a whole forms a clade with the Ashkelon_LBA, Ashkelon_IA2 and Abel. 
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D. Choosing an outgroups set for qpAdm 
When using the basic set of nine outgroups (o9) (Lazaridis et al., 2016) in the qpAdm analysis 

(Ust_Ishim, Kostenki14, MA1, Han, Papuan, Onge, Chukchi, Karitiana, Mbuti) we obtained valid 

models for all target populations as mixtures of Neolithic Levant (Levant_N) and Chalcolithic Iran 

(Iran_ChL). Similarly, most target populations showed support for being a mixture of Neolithic 

Levant and Early Bronze Age Armenia (Armenia_EBA; Table S2). However, analysis of 

Chalcolithic populations from the southern Levant found genetic evidence for influence from 

Anatolia (Harney et al., 2018). In order to take into account such possibility, we added Anatolia 

to the set of outgroups, calling this set o9a. For this set of outgroups, most target populations 

still show support for being a mixture of Levant_N and Iran_ChL/Armenia_EBA, with the 

exception of Hazor (p-values just below 0.05) and Baq’ah. However, we noticed that the 

addition of Anatolia to the set of outgroups significantly improved the model by reducing the 

standard errors of the mixing coefficients by 3-fold (Iran_ChL) and 2.1-fold (Armenia_EBA) 

(Figure SD.1). We therefore decided to use the o9a set for all analyses. 

 

Figure SD.1. Ratio of standard errors of the models using the o9 set of outgroups versus using the o9a set. (A) For a 
mixture of Levant_N and Iran_ChL. (B) For a mixture of Levant_N and Armenia_EBA. Dashed lines represent average 
ratios. 
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E. Comparing Iran_ChL to Armenia_EBA ancestry  
We modeled the Bronze and Iron Age Levant populations as a two-way admixture of Neolithic 

Levant (Levant_N) with either Chalcolithic Iran (Iran_ChL) or Early Bronze Age Armenia 

(Armenia_EBA). The qpAdm algorithm provides equivalent support for both models, with some 

populations slightly and insignificantly favoring either Iran_ChL or Armenia_EBA (Table S2). 

The LINADMIX algorithm gave almost identical model norms to both models, but those of 

Iran_ChL were consistently lower (Table S3). To evaluate the magnitude of this difference, we 

repeated the computations for two additional admixture models of Levant_N with either 

Neolithic Iran (Iran_N) or Chalcolithic Armenia (Armenia_ChL). Whereas all four possible source 

populations are genetically similar, the results demonstrate that the model is sensitive enough 

such that the fit is not as good with Iran_N, and worst with Armenia_ChL (Table 3, Figure SE.1). 

 

Figure SE.1. LINADMIX model norms when testing four models of admixture: Levant_N + either Armenia_EBA, 
Iran_ChL, Iran_N and Armenia_ChL. 

We therefore conclude that with the exception of the Megiddo outliers, all Bronze and Iron Age 

Levant populations studied here can be modeled equally well as a mixture of earlier local 

Neolithic populations (Levant_N) with populations related to Chalcolithic Iran or early Bronze 

Age Armenia. 
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F. PHCP parameters and evaluation 
An implicit assumption in our model is that there is no substantial genetic divergence between 

each of the assumed source populations and the true source populations. We also assume no 

genetic drift in the target population since admixture. While qpAdm is theoretically robust to 

deviations from these assumptions under some scenarios, our copying profiles may be 

influenced. For example, recent genetic drift in the target population may increase the 

frequency of haplotypes coming from one source at the expense of other sources, which may 

affect the ancestry proportions 𝛽1, … , 𝛽𝑆. However, we expect that when averaging over 

numerous genomic regions, changes in frequency will average out.  

In an initial evaluation of the method we observed several issues. First, as we considered fewer 

and fewer SNPs (to simulate ancient DNA), the total length of genetic material copied from each 

donor population became nearly the same, making the copying vectors less informative. This 

also created a problem when samples with different numbers of SNPs were used in the same 

linear model. Second, when there were two source populations that are genetically close, even 

when running the method on samples with the same number of SNPs, the results from the 

linear model were not sufficiently accurate. 

To address the dependence of the results on the number of SNPs, we down-sampled all 

genomes (both target and sources) to the same number of SNPs. When a target or source 

population was modern, we also reduced each SNP to a single random allele. An important 

drawback of down-sampling is that it makes inference at the individual level noisy, and thus we 

recommend that the results are interpreted only at the population level.  Second, we noted that 

for high levels of missing data, the HMM tends to give nearly equal probabilities to copying from 

each donor group, despite the fact that the larger distances between SNPs are incorporated into 

the model. To guarantee that copying vectors are less uniform (and hence more informative), 

we reduced 𝑁𝑒  (the effective population size) by tenfold relative to its original value inferred by 

ChromoPainter's EM algorithm on modern Eurasian and African populations. The reduced 𝑁𝑒  

decreased the probability of recombination, and thus forced the HMM to “choose” between 

each the donor populations. This, in turn, led to larger differences between the total amount of 

genetic material copied from each donor population (Figure SF.1). 
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Figure SF.1. The proportion of the genetic material copied from each of the donor populations by 3 simulated ancient 

Spanish genomes, with different effective population size parameter (N). Reducing N led to larger differences between 

the fraction of genetic material copied from each donor population. 

 

To improve accuracy, we noted that the ancestry estimates became more accurate when we 

chose the most informative donor populations instead of using a predefined set of populations. 

Formally, let D be a set of all donor populations and let �⃗�𝑠, 𝑠 = 1,2, be the |𝐷|-element copying 

vector of source population 𝑠 (assuming two sources), as inferred by PHCP. For each source, we 

ranked the donor populations according to their contribution (in the copying profile) to the 

source. Then, we scored each donor population based on the difference in the rank of the donor 

population between the two sources. A large rank difference of a donor population means that 

the sources are distinct in the relative amount of genetic material copied from that donor 

population, and thus, that the donor population is expected to be informative when estimating 

the contribution of each source to the target population. We then retained the twelve donor 

populations with the highest rank differences. Once the final set of donor populations was 

selected, we re-ran PHCP and the linear model with these donors, and inferred the ancestry 

proportions of the target population as described in Methods. 

We also considered cases of three or four source populations, for two source populations that 

are relatively close, and other sources being more diverged. For each of the more distant source 

populations, we included one donor population that is closer to that source than to any other 

source. The remaining donor populations were chosen to differentiate between the two close 

source populations as described above. In all cases, the total number of donor populations was 

twelve. 

The models that describe the contribution of ancient populations to present-day populations 

included four source populations - two closely related populations, Iran_ChL and 

Megiddo_MLBA, and two distant populations, Europe_LNBA and Somali. Hence, we chose one 
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European donor population, one East-African donor population, and the remaining ten donor 

populations were optimized to distinguish between Iran_ChL and Megiddo_MLBA. The final set 

of donor populations included some populations that were also target populations we wanted 

to model. In these cases, we dropped the target population from the donors and painted the 

sources and the target with the remaining eleven donor populations. 
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G. PHCP results 

Testing PHCP on ancient target populations 
Applying PHCP to the Bronze and Iron Age populations of the Southern Levant, we obtained 

results that are not statistically significantly different from those of LINADMIX (Figure S3C). We 

also noticed that when the other source population was selected as Armenia_EBA instead of 

Iran_ChL, the contribution of Levant_N slightly increased (Table S3). 

We ran PHCP only on individuals with at least ≈95 k SNPs and only on target populations with at 

least three individuals. Three populations met the inclusion criteria: Megiddo_MLBA, 

Hazor_MLBA and Baqah (Table S3). 

Testing PHCP on present-day target populations 
PHCP was also applied to the 17 present-day populations that were analyzed by LINADMIX 

(Table S4, Figure SG.1). We used the same model as in LINADMIX, of four source populations 

(Megiddo_MLBA, Iran_ChL, Somali and Europe_LNBA). As in the previous section, we ran PHCP 

only on individuals with at least ≈95 k SNPs. 

  

Figure SG.1. Genetic makeup of present-day populations, modeled by PHCP as an admixture of four source 

populations. 

PHCP and LINADMIX agree on the European and Somali contributions to the present-day 

populations (Figure S4A), and hence also on the combined contribution of Iran_ChL and 

Megiddo_MLBA (Figure SG.2).  
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Figure SG.2. Estimation of the combined fraction of Iran_ChL and Megiddo_MLBA by LINADMIX and PHCP 

However, the two methods differ in their estimates of the relative contributions of Megiddo and 

Iran, in that LINADMIX consistently gives a higher fraction of the Iranian component and a lower 

fraction of the Megiddo component relative to PHCP (Figures 3, S4A). In the main text we thus 

only report results when considering Megiddo and Iran as a single source. 
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H. Simulations for LINADMIX and PHCP 
To test the overall accuracy of LINADMIX and PHCP in the setting of the current manuscript, we 

used simulations where we mixed two or three source populations. For the case of two source 

populations, we mixed present-day Jordanians and Iranians in order to mimic Megiddo_MLBA 

and Iran_ChL, which are the two most closely related source populations in our models. We 

used phased present-day Jordanian and Iranian genomes to simulate three admixture settings: 

(1) 20% Jordanian and 80% Iranian; (2) 80% Jordanian and 20% Iranian; (3) 50% Jordanian and 

50% Iranian. In the simulations, the ancestry of each chromosomal segment was randomly 

selected based on the ancestry proportions, and the genotypes along the segment were copied 

from the selected source by randomly choosing a chromosome. The lengths of the segments 

were exponentially distributed with a rate of 0.5 per cM, representing an admixture event 

roughly 50 generations ago. Diploid individuals were constructed by pairing two sets of haploid 

chromosomes. For each admixture setting, five individuals were simulated. The resulting 

simulated genomes represented “present-day” genomes. To simulate the “ancient” sources of 

those genomes, we used other genomes (that were not used for simulating the mixed 

individuals) from the same source populations. In LINADMIX, those genomes were down-

sampled to 60% of the SNPs (which is the average of Megiddo_MLBA in the analysis) and a 

random allele was selected at each SNP. In PHCP, the “source” genomes were down-sampled to 

100K SNPs and a random allele was selected at each SNP. We assumed that neither the source 

populations nor the admixed population have undergone drift since admixture. We then 

reconstructed the ancestry proportions of the simulated genomes using the same pipeline as 

used for the real data, and compared the results to the true (known) proportions. The inferred 

ancestry proportions for both LINADMIX and PHCP were very close to the simulated ancestry 

proportions (Figure SH.1). LINADMIX had a mean deviation (of the 3 simulations) of 1%, and a 

maximal deviation (of the 3 simulations) of 3%. In PHCP, the mean deviation was 5%, and the 

maximal deviation was 8%.

Figure SH.1. Simulation of two source populations – Jordanians and Iranian – with varying ancestry proportions. The 

true and the inferred percentages are shown, averaging in each case over the five simulated admixed individuals. (A) 

LINADMIX. (B) PHCP. 
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For the case of three source populations, we simulated a mixture of Jordanians, Iranians, and 

English, with three admixture configurations: (1) 60% - 30% - 10%; (2) 30% - 10% - 60%; (3) 10% - 

60% - 30%. We assumed that admixture between all three populations has happened 50 

generations ago. The inferred ancestry proportions are close to the simulated ancestry 

proportions, although, as expected, they are less accurate than in the case of two source 

populations (Figure SH.2). In LINADMIX, the mean deviation was 4.2% and the maximal 

deviation was 10%. In PHCP, the mean deviation was 5.7% and the maximal deviation was 10%. 

 

Figure SH.2. Simulation of three source populations – Jordanian, Iranian and English  – with varying ancestry 

proportions. The true and the inferred percentages are shown, averaging in each case over the five simulated admixed 

individuals. (A) LINADMIX. (B) PHCP. 
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I. LINADMIX analysis of the admixture of present-day populations 

Arabic-speaking populations 
We considered ten Arabic-speaking populations (Figure SI.1) – two Bedouin groupings, Druze, 

Egyptian, Jordanian, Lebanese, Palestinian, Saudi, Syrian and Moroccan (which served as a 

control). All, apart from the Druze who are also religiously distinct, have a non-negligible Somali-

related component. This component seems to decrease with the distance from East Africa: it is 

highest in Egyptians and lowest in Lebanese and Syrians. All non-African populations we looked 

at – Iranians and Europeans – show little if any Somali-related component. Moroccans were not 

modeled well by LINADMIX, likely because of a missing source population. Nevertheless, the 

African-related component in Moroccans is high. Many of the Arabic-speaking populations show 

a significant Iranian-related component. This component could have arrived from several 

sources, such as deportees from the Zagros mountains who were settled in the Southern Levant 

by the Assyrians, the Achaemenid (Persian) Empire that ruled the region from the late 6th to the 

late 4th centuries BCE, and Sasanian political control in the early 7th century CE. The two 

conquests to which we refer took over the entire Levant, but did not extend into the heartland 

of the Arabian Peninsula or far beyond the northern parts of Egypt. In accord with the 

expectation from these scenarios, Moroccans do not have a detectable Iranian-related 

component, whereas the Arabic-speaking populations with the smallest Iranian-related 

components are Saudis, Egyptians and Bedouin B, at the fringes of these Persian empires. At the 

same time, as noted in the main text, the contribution of the Iranian-related component relative 

to Megiddo is not well modelled by our algorithms, and is subject to large standard errors. 

Interpretation of the magnitude of the Iranian component should therefore be taken with 

caution. 

Notably, the two populations with the lowest European and Iranian components, Bedouin B and 

Saudi, seem to be the least admixed populations, possibly a result of past arid habitat, pastoral 

lifestyle and geographic isolation.  

Culturally Jewish populations 
We examined four Jewish populations that come from different regions of the world (Figure 

SI.1). All show a sizeable Southern Levant Bronze Age-related component, whereas the other 

components reflect their individual histories. Ashkenazi Jews, coming from Europe, have a 

substantial European-related component as already seen in previous studies (Atzmon et al., 

2010; Carmi et al., 2014). Moroccan Jews, who are thought to be partially descendants of the 

Jews who migrated from the Iberian peninsula prior to and after the expulsion from Spain in 

1492 (Schroeter, 2008), have a substantial European-related component and a minor African 

one. A more appropriate model should include local Berber populations as an additional source. 

Iranian Jews have a majority of Iranian-related ancestry, while Ethiopian Jews have a majority of 

Somali-related ancestry. 
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Figure SI.1. Genetic makeup of present-day populations, modeled by LINADMIX as an admixture of four source 
populations.  
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J. Robustness with respect to changing the representative population of 

the Bronze Age Levant 
When modeling present-day Levantine groups as mixtures of ancient populations, we selected 

Megiddo_MLBA as the Levantine ancient representative. However, as these individuals span a 

wide time range, we decided to repeat the analysis by selecting only a subset of individuals with 

low genetic variability. 

To this end, we applied 𝑘-means clustering to the ADMIXTURE 𝑞-vectors of the Megiddo_MLBA 

individuals. We ran the algorithm for 𝑘 = 1,… ,12. For each 𝑘, we measured the performance of 

the clustering by computing the sum of distances of all points from their clusters’ centroids. To 

select the optimal 𝑘, we plotted this distance as a function of 𝑘 and looked for an ‘elbow’ in the 

graph (Figure SJ.1). 

We found that good clustering is achieved for 𝑘 = 3, dividing the Megiddo individuals by the 

magnitude of their Levant_N component into three subpopulations, denoted here 

Megiddo_High (11 individuals), Megiddo_Medium (8 individuals) and Megiddo_Low (3 

individuals; Figure SJ.2). 

Figure SJ.1. Sum of distances of all points from their clusters' centroids versus the number of clusters, 𝑘. 
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Using qpAdm to test models of admixture between Levant_N and either Iran_ChL or Armenia 

EBA, and using the o9 set of outgroups, Megiddo_MLBA and the three subpopulations give 

comparable models. All are supported by high p-values (Table S2). When using the o9a set of 

outgroups, Megiddo_MLBA was weakly supported by Armenia_EBA and Iran_ChL (𝑃 = 0.065 

and 0.043, respectively). Megiddo_High and Megiddo_Medium show support for both models 

(𝑃 = 0.165 and 0.067 for Megiddo_High, and 𝑃 = 0.277 and 0.822 for Megiddo_Medium). 

Megiddo_Low has a weak support for Iran_ChL with 𝑃 = 0.036, and a bit stronger support for 

Armenia_EBA model (𝑃 = 0.125). 

In LINADMIX, the division into three subpopulations clearly improved the models, reducing the 

standard error from 8% to 5% (Tables S4 and S5). 

Whereas Megiddo_Low has the lowest fraction of the local genetic component, we nevertheless 

selected Megiddo_Medium as our representative of the Bronze Age Levant source population, 

because of the higher number of individuals, and because two out of the three Megiddo_Low 

individuals were found near the royal palace and not in the residential quarters, and hence may 

be atypical. We repeated the analyses replacing Megiddo_MLBA with Megiddo_Medium, and 

obtained qualitatively identical results (Tables S4-S5, Figure SJ.3). 

Figure SJ.2. The fraction of Levant_N in the genomes of the Megiddo_MLBA individuals. Horizontal black lines 
show the clustering of the individuals to three clusters. 
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Figure SJ.3. The contribution of each of the source populations to the examined present-day population using 
LINADMIX, when the proxy for Bronze Age Levant is Megiddo_MLBA, and when changing the proxy to 
Megiddo_Medium. 
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K. Robustness of LINADMIX results with respect to perturbations in 

ADMIXTURE parameters 
To test the robustness of LINADMIX, we performed two perturbations to the parameters used in 

the main text. First, in the main text we used 𝐾 = 6, as this was the optimal value according to 

ADMIXTURE's cross-validation procedure. Here, we changed this to 𝐾 = 7, which has a slightly 

higher cross validation error. Second, in the main text we applied ADMIXTURE to 1,663 

individuals, and here we changed it by more than two-fold to 3,515 individuals. The additional 

individuals came from various, apparently non relevant, populations. For this set of individuals, 

cross validation points at an optimal 𝐾 = 22 (Figure S1B).  

A summary of the differences between the analyses is given in Table SK.1, which compares the 

maximum deviation observed for each of the four source populations. 

Analyses 
compared 

Source 
population 
compared 

Maximum 
absolute 
difference 
(target) 

Minimum absolute 
difference (target) 

Average 
absolute 
differences 

Median 
absolute 
differences 

Standard 
deviation of 
absolute 
differences 

K=6 with 
K=7 

Megiddo 
MLBA 

0.174 
(Tuscan) 

2 ∙ 10−10 (Iranian) 0.056 0.034 0.050 

K=6 with 
K=22 

Megiddo 
MLBA 

0.097 
(Lebanese) 

2 ∙ 10−9 (Iranian) 0.059 0.065 0.032 

K=6 with 
K=7 

Iran ChL 0.118 (Druze) 2 ∙ 10−10 (Tuscan) 0.054 0.075 0.044 

K=6 with 
K=22 

Iran ChL 0.090 (Druze) 2 ∙ 10−9 
(Moroccan) 

0.044 0.051 0.032 

K=6 with 
K=7 

Somali 0.023 
(BedouinB) 

8 ∙ 10−9 (Tuscan) 0.010 0.011 0.006 

K=6 with 
K=22 

Somali 0.062 
(BedouinB) 

1 ∙ 10−8 (Iranian 
Jew) 

0.020 0.014 0.019 

K=6 with 
K=7  

Europe LNBA 0.317 
(Tuscan) 

2 ∙ 10−6 (BedouinB) 0.126 0.135 0.074 

K=6 with 
K=22  

Europe LNBA 0.095 
(Tuscan) 

7 ∙ 10−8 (Ethiopian 
Jew) 

0.025 0.019 0.024 

K=6 with 
K=7  

All 0.317 2 ∙ 10−10  0.061 0.032 0.064 

K=6 with 
K=22 

All 0.097 2 ∙ 10−10 0.037 0.031 0.030 

Table SK.1. Maximum deviation of the estimators of the contribution of ancient populations to present-day ones, 
when ADMIXTURE parameters are perturbed. 

It appears from the table that the differences between the analyses happen mainly in the 

contributions of Megiddo_MLBA, Iran_ChL and Europe_LNBA. Differences between the 

ADMIXTURE runs for the Somali contribution are usually small, likely because of the generally 

smaller African component in present-day Levantine populations (Figure SK.1), and because 

Megiddo_MLBA, Iran_ChL and Europe_LNBA are more similar to each other than to Somali. 
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Figure SK.1. The contribution of each of the source populations to the examined present-day population using 
LINADMIX on the original data (using K=6), on ADMIXTURE on 1,663 individuals using K=7, and on ADMIXTURE with 
3,515 individuals using K=22. 

The norms of the residuals, measuring model quality, are shown in Figure SK.2.  In both 

perturbations, as well as in the original analysis (Figure 5A), outgroup populations usually show 

worse fits (especially Tuscan and Moroccan), suggesting – as expected – that outgroup 

populations may have additional components poorly modeled by our analysis. It is striking that 

norms for 𝐾 = 7 are at least an order of magnitude higher than in the original model, 

highlighting the importance of determining an optimal value of 𝐾 using cross validation. 

Figure SK.2. Residual norms of LINADMIX models, when the parameters of ADMIXTURE are perturbed. 
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Bedouin B, and to a lesser extent Saudi, are poorly modeled in the 𝐾 = 22 perturbation, as well 

as by PHCP. Interestingly, these two populations bear the highest Megiddo_MLBA-related 

component, suggesting that the original analysis included in Megiddo_MLBA sources that could 

not be captured using 𝐾 = 22. In the 𝐾 = 7 perturbation, the highest norms are obtained for 

target populations with a pronounced European-related component, which might explain the 

observation that the results based on the 𝐾 = 7 perturbation have a bias toward Europe_LNBA. 

Comparison of all three ADMIXTURE runs (Table S4) shows that they agree very well with each 

other, but that there are roughly 15-25% of the total genetic makeup whose source is difficult to 

pin down and that its attribution to specific source populations fluctuates between the different 

ADMIXTURE runs. Generally, changing the number of ancestral populations from six to seven 

had a greater impact on the results than changing the background individuals, stressing the fact 

that addition of non-relevant populations does not have a great effect on LINADMIX. In the 𝐾 =

22 perturbation, the fluctuating part is ≈15%, and mostly spreads between Megiddo_MLBA and 

Iran_ChL, reflecting their higher standard errors in the original analysis. This is likely a result of 

genetic similarity between Megiddo_MLBA and Iran_ChL, which makes the determination of 

their respective contributions more difficult. Of note, source populations that have a small 

contribution to the model usually also have higher confidence levels. 

The models show high similarity despite the uncertainty in the respective contributions of 

Megiddo_MLBA and Iran_ChL. Overall, Ethiopian Jew is the population that shows the highest 

consistency between the analyses (average of absolute differences in ancestral components 

0.0116 and 0.0144 when comparing the original model with 𝐾 = 7 and 𝐾 = 22, respectively). 

This is not surprising as Ethiopian Jews have neither Iranian nor European contributions. This 

also demonstrates that LINADMIX does not distribute contributions randomly between similar 

source populations, and that uncertainty arises only when more than one similar source 

population contributed to the genome of the target population. The target populations that 

differ the most between the original analysis and with the 𝐾 = 7 perturbation are Moroccan 

and Tuscan. This is probably a result of the worse fit (higher norms) of the model to Moroccan 

and Tuscan in all analyses. The target population that differs the most between the original 

analysis and that with the 𝐾 = 22 perturbation is Lebanese, characterized by high contributions 

of both Megiddo_MLBA and Iran_ChL. 

In summary, we listed here some variations between the results of the different analyses. These 

variations are smallest for the two analyses where 𝐾 has been optimized using cross validation. 

The highest variations amount to up to ≈15% (apart from Europe_LNBA in the poorly modeled 

Moroccan for the non-optimal K=7), and almost always reflect the inability to determine the 

relative contributions of Megiddo_MLBA and Iran_ChL. 


