
Genetics and population analysis

miqoGraph: fitting admixture graphs using

mixed-integer quadratic optimization

Julia Yan1,*, Nick Patterson2 and Vagheesh M. Narasimhan 2,3,4

1Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, 2Department of Genetics, Harvard

Medical School, Boston, MA, 02115, USA, 3Department of Integrative Biology, The University of Texas at Austin and 4Department of

Statistics and Data Science, The University of Texas at Austin

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz
Received on August 20, 2020; revised on October 25, 2020; editorial decision on November 12, 2020; accepted on November 16, 2020

Abstract

Summary: Admixture graphs represent the genetic relationship between a set of populations through splits, drift
and admixture. In this article, we present the Julia package miqoGraph, which uses mixed-integer quadratic
optimization to fit topology, drift lengths and admixture proportions simultaneously. Through applications of
miqoGraph to both simulated and real data, we show that integer optimization can greatly speed up and automate
what is usually an arduous manual process.

Availability and implementation: https://github.com/juliayyan/PhylogeneticTrees.jl.

Contact: jyyan@alum.mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The genetic relationship between a set of populations cannot be
described precisely by a simple tree because of the presence of ad-
mixture. An admixture graph provides a way to represent the com-
plex relationship between populations, including their separation,
subsequent drift and possible merging by using distributions of mul-
tiple trees. Several methods exist to build and visualize admixture
graphs as well as to infer optimal parameters of drift lengths and ad-
mixture edges, such as TreeMix (Pickrell and Pritchard, 2012),
AdmixTools (Patterson et al., 2012), MixMapper (Lipson et al.,
2013) and admixturegraph (Leppälä et al., 2017). Some of these
methods cannot simultaneously infer the optimal topology with the
parameters of the graph under that topology. Rather, they require
that the topology of a particular graph be pre-specified, and then
infer the graph parameters. Other methods such as TreeMix
(Pickrell and Pritchard, 2012) and MixMapper (Lipson et al., 2013)
search a restricted space of possible admixtures. In Leppälä et al.
(2017), all possible topologies are enumerated using exhaustive
searches; however, such an approach becomes intractable at larger
problem sizes. Sridhar et al. (2008), Catanzaro et al. (2013) and
Fortz et al. (2017) use mixed-integer linear optimization is used to
infer graph topology and drift lengths simultaneously. However, in
contrast to our approach, which uses a maximum likelihood object-
ive, these works fit trees of maximum parsimony (or, minimum total
drift length). Furthermore, unlike our work, they do not consider
the possibility of admixture.

Here, we describe the algorithms in our miqoGraph package,
which uses mixed-integer quadratic optimization to infer graph

topology, drift lengths and admixture proportions simultaneously.
For medium-size graphs in which admixture occurs only at leaf

nodes, we can find optimal solutions in seconds and prove optimal-
ity (subject to input parameters described in Section 2) in minutes.

We test our algorithm on simulated and real datasets comprising
several populations and show that even as fewer parameters are
specified a priori, running times are sped up over competitive algo-

rithms by orders of magnitude.

2 Materials and methods

A typical approach to admixture graph fitting is to first specify a
topology, and then compute the graph’s fit to genetic data. Drift pat-
terns in the data can be summarized by f-statistics (Patterson et al.,
2012), and for a given topology it is possible to construct a basis set
of expected values of f-statistics that define the graph (Pickrell and

Pritchard, 2012). We will refer to the vector of empirical f-statistics
as f, and given a topology x, drift lengths w and admixture propor-
tions a, we will call the vector of the expected f-statistics gðw; a; xÞ.
Drift lengths and admixture proportions are then selected to maxi-
mize the likelihood as follows:

max

w�0;a2U �
�

f�gðw;a;xÞ
�0

R�1

�
f�gðw;a;xÞ

�
;

(1)

where R�1 is the covariance matrix of the empirical statistics f, and
U represents the set of all valid admixture proportions. This is the

approach of qpGraph, developed by Patterson et al. (2012).

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2020, 1–3

doi: 10.1093/bioinformatics/btaa988

Advance Access Publication Date: 28 November 2020

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa988/6008687 by H

arvard C
ollege Library, C

abot Science Library user on 01 January 2021

http://orcid.org/0000-0001-8651-8844
https://github.com/juliayyan/PhylogeneticTrees.jl
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa988#supplementary-data
https://academic.oup.com/

In our approach, which we call miqoGraph, rather than fixing
the topology x before solving for drift lengths w and admixture pro-
portions a, we optimize over all three simultaneously:

max

x2T ;w�0;a2U �
�

f�gðw;a;xÞ
�0

R�1

�
f�gðw;a;xÞ

�
;

(2)

where T represents the set of all valid topologies. Topologies have
previously been explored by enumeration over small graphs
(Leppälä et al., 2017), but this approach is intractable for larger
graphs. Here, we present a novel formulation of the problem using
mixed-integer quadratic optimization (MIQO), where we model the
problem of determining a best-fit graph topology as assignment of
populations to leaf nodes of a binary tree. Although such problems
are difficult in theory, modern solvers such as Gurobi (Gurobi
Optimization, Inc., 2016), which is available via academic license,
can quickly solve large-scale MIQO problems in practice. For an
overview of integer optimization, see Wolsey and Nemhauser
(2014). For the specifics of formulation (2) and a list of other opti-
mization solver options, see Supplementary Material.

Our approach requires pre-specification of the following
parameters:

1. Tree depth D 2 Z
þ,

2. Number of admixture events A 2 f0g [Zþ and

3. Admixture resolution K for K 2 Z
þ (only needed if A > 0).

If there are no admixture events (A¼0), the populations’ rela-
tionship can be represented using a single binary tree. We model ad-
mixture (A>0) by allowing the population assignments to leaf
nodes to be between 0 and 100%, and the admixture resolution K
allows admixture proportions to be estimated to an accuracy of 1

K.
For example, K¼10 allows values of 0%;10%; . . . ;90%; 100% (see
Supplementary Material).

We then solve optimization problem (2) to find the best-fit tree
topology, drift lengths and admixture proportions under the speci-
fied parameters. A major benefit of miqoGraph over prior
approaches is the flexibility of the parameters, with each specifica-
tion of parameter values representing numerous potential admixture
graphs. As such, although it is computationally intractable to enu-
merate over all potential topologies for several populations, our al-
gorithm quickly finds well-fit topologies using MIQO. Although it
may not be obvious which parameter values are appropriate a priori,
multiple optimization problems can be solved in parallel on a rea-
sonable range of parameter values. In our experiments, we found
that trying one tree depth, several admixture resolutions and a few
admixture events were sufficient to find the correct admixture graph
topologies.

Although it is not required, prior knowledge can reduce the solu-
tion space and speed up the solution time. For example, a user can
specify that the path from the root to a particular population does
not contain admixture, which we found to be a particularly useful
feature in our simulations.

3 Computational results

We first validated our model on simulated data (see Supplementary
Section S5) and showed that we can infer the correct topology on
several known graphs of increasing complexity. We now apply our
model to a six-population dataset of modern and ancient DNA sam-
ples from Eurasia and the Americas, in order to infer the phylogeny
of populations leading to the Karitiana, a South American popula-
tion from Brazil.

On this Eurasian and American dataset, even without specifying
which population should be admixed and at a coarse admixture
granularity of K¼2, miqoGraph found a solution within 8 s and
verified optimality after 9 s. Most importantly, the graph matched
one found using exhaustive searches with qpGraph.

We were able to refine the admixture proportions by running
miqoGraph at higher resolutions of K¼3 and 4. By leveraging the
knowledge that Karatiana should be admixed, learned from the

K¼2 output, miqoGraph inferred the correct topology almost in-
stantaneously (1 and 3 s, respectively). At K¼4, the inferred admix-
ture proportions 25–75% corresponded closely to the values of 28–
72% estimated by qpGraph, and the drift lengths were also similar
(see Supplementary Material). We also ran further instances of
miqoGraph for K¼5 through 10, and as expected, saw convergence
in topology, and qualitatively similar weights and proportions. Even
at the highest granularity of K¼10, miqoGraph terminated in under
a minute.

The admixture graph inferred by miqoGraph at K¼4 is shown
inFigure 1. In this topology, Karatiana is admixed between an an-
cient North Eurasian-related and a present-day East Asian-related
source, consistent with previous results examining the initial peo-
pling of the Americas (Raghavan et al., 2014).

4 Limitations

The main limitation of miqoGraph lies in the restriction of admixture
events to the leaf nodes of the graph and therefore, the interpretation
of its output in the presence of multiple nested admixture events.
Suppose a particular population A has admixture from populations B
and C, and that B itself is admixed from D and E. The ordering of
these events is not captured in our representation of the graph, and it
can be challenging to reconstruct the correct sequence of events lead-
ing to the true admixture graph. Furthermore, if there is drift post-
admixture, we are unable to capture this in our current formulation.
To aid interpretability, our framework allows the user to sequentially
add new populations while fixing the topology for other populations.
The positions of these new populations can vary freely, or they can be
tentatively assigned to positions based on the user’s best guess, giving
the optimizer a ‘warm start’ to improve upon. A second issue with our
approach is that the proportion of admixture inferred is done in dis-
crete values whose granularity is specified a priori. It is possible that
at low admixture granularities, the best-fit topology may be incorrect.
One possible way to mitigate this effect is to use miqoGraph to ex-
plore a possible set of graph topologies and then to use continuous
optimizers such as that implemented in AdmixTools (Patterson et al.,
2012) to fit parameters on these topologies.

5 Conclusion

Using miqoGraph, we are able to simultaneously infer topologies,
drift lengths and admixture proportions in seconds to minutes on
admixture graphs and we applied our method to several simulated
and real world cases. Due to the restriction of admixture events to
leaf nodes, our formulation is primarily useful in settings with few
nested admixture events. Nonetheless, the use of integer

Fig. 1. Topology, drift lengths and admixture proportions inferred on a dataset from

Eurasia and the Americas. Populations with real data are colored in beige, while

auxiliary nodes are uncolored

2 J.Yan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa988/6008687 by H

arvard C
ollege Library, C

abot Science Library user on 01 January 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa988#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa988#supplementary-data

optimization to model what was previously a combination of labor-
intensive manual enumeration and continuous optimization repre-
sents a significant step forward in efficient inference of admixture
graphs. Such methods are likely to become increasingly important as
dataset sizes grow, and our formulation provides an important start-
ing point for the development of future methodologies.

Acknowledgements

The authors thank Dimitris Bertsimas and members of the Reich laboratory

for productive discussions.

Financial Support: none declared.

Conflict of Interest: none declared.

References

Catanzaro,D. et al. (2013) A mixed integer linear programming model

to reconstruct phylogenies from single nucleotide polymorphism

haplotypes under the maximum parsimony criterion. Algorithms Mol. Biol.,

8, 2.

Fortz,B. et al. (2017) Compact mixed integer linear programming models to

the minimum weighted tree reconstruction problem. Eur. J. Oper. Res., 256,

242–251.

Gurobi Optimization, Inc. (2016) Gurobi Optimizer Reference Manual.

https://www.gurobi.com/wp-content/plugins/hd_documentations/documen

tation/9.0/refman.pdf (7 December 2020, date last accessed).

Leppälä,K. et al. (2017) admixturegraph: an r package for admixture graph

manipulation and fitting. Bioinformatics, 33, 1738–1740.

Lipson,M. et al. (2013) Efficient moment-based inference of admixture param-

eters and sources of gene flow. Mol. Biol. Evol., 30, 1788–1802.

Patterson,N. et al. (2012) Ancient admixture in human history. Genetics, 192,

1065–1093.

Pickrell,J.K. and Pritchard,J.K. (2012) Inference of population splits and

mixtures from genome-wide allele frequency data. PLoS Genet., 8,

e1002967.

Raghavan,M. et al. (2014) Upper Palaeolithic Siberian genome reveals dual

ancestry of Native Americans. Nature, 505, 87–91.

Sridhar,S. et al. (2008) Mixed integer linear programming for

maximum-parsimony phylogeny inference. IEEE/ACM Trans. Comput.

Biol. Bioinf., 5, 323–331.

Wolsey,L.A. and Nemhauser,G.L. (2014) Integer and Combinatorial

Optimization. John Wiley & Sons, Hoboken, NJ.

miqoGraph 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa988/6008687 by H

arvard C
ollege Library, C

abot Science Library user on 01 January 2021

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf

miqoGraph Supplementary Material

Julia Yan1,*, Nick Patterson2, and Vagheesh Narasimhan2

1 Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139
2 Department of Genetics, Harvard Medical School, Boston, MA, 02115

Section 1 provides documentation on installation and running the algorithm. Section 2 reviews some

preliminaries of f -statistics and admixture. Section 3 explains the details of the mixed-integer quadratic

optimization formulation. Section 4 includes the parameters used for simulating the SimpleMix, UnevenMix,

and NestedMix datasets. Section 5 provides detailed computational results on the simulated and real data

sets. Section 6 discusses limitations of the algorithm.

1

1 Documentation

1.1 Installation Instructions

1. Download the Julia language from https://julialang.org/downloads/. This package was devel-

oped using v1.0, but has also been tested on v1.1; for best results, use one of those versions.

Open Julia and you should see a window that looks similar to Figure 1. Documentation for Julia can

be found here: https://docs.julialang.org/en/v1/index.html. Directions for running Julia di-

rectly from the terminal can be found here: https://en.wikibooks.org/wiki/Introducing_Julia/

Getting_started#Running_directly_from_terminal.

Figure 1: The Julia terminal.

2. If you are on a cluster that has the Gurobi Optimizer already installed, you should be able to skip this

step and load Gurobi as instructed by the cluster admins (for example, module load gurobi on Slurm).

Otherwise, download the Gurobi Optimizer. We provide a summary of the necessary instructions

here; for further issues, consult the quick start guide: https://www.gurobi.com/documentation/

quickstart.html (Note: this is more comprehensive than what you will need. For example, you

should not need to follow instructions for interfacing with languages other than Julia).

(a) Students, faculty, and staff at degree-granting academic institutions. You must be on a

university network and use your university email address for this step. Register for an academic

license here: https://www.gurobi.com/downloads/end-user-license-agreement-academic/.

Then log in. Go to the downloads page: https://www.gurobi.com/downloads/. Download the

Gurobi Optimizer. Navigate back to the downloads page, and under Request a License, click

Academic License. Accept the conditions, and run the grbgetkey command given at the bottom

of the page under Installation. The license needs to be renewed after one year.

(b) Other users. A free trial of Gurobi is available here: https://www.gurobi.com/free-trial/.

We are working on compatibility with open-source solvers.

If you installed Gurobi to a non-default location you need to set several environment variables. On a

bash shell you can do this by adding the following lines to your .bashrc file. Once these are added,

please re-login to your shell to set these or export them in your current session.

export GUROBI HOME="/user/gurobi801/linux64"

2

https://julialang.org/downloads/
https://docs.julialang.org/en/v1/index.html
https://en.wikibooks.org/wiki/Introducing_Julia/Getting_started#Running_directly_from_terminal
https://en.wikibooks.org/wiki/Introducing_Julia/Getting_started#Running_directly_from_terminal
https://www.gurobi.com/documentation/quickstart.html
https://www.gurobi.com/documentation/quickstart.html
https://www.gurobi.com/downloads/end-user-license-agreement-academic/
https://www.gurobi.com/downloads/
https://www.gurobi.com/downloads/gurobi-optimizer-eula/
https://www.gurobi.com/downloads/end-user-license-agreement-academic/
https://www.gurobi.com/free-trial/

export PATH="${PATH}:${GUROBI HOME}/bin"
export LD LIBRARY PATH="${GUROBI HOME}/lib"
export GRB LICENSE FILE="/user/gurobi801/linux64/bin/y/gurobi.lic"

Please change these according to the relevant locations for your installation. GUROBI HOME should be

set to the location of gurobi.sh, and GRB LICENSE FILE should be set to the location of gurobi.lic.

You can now test your license by opening the Gurobi Interactive Shell. On Windows, this can be done

by opening the Gurobi Interactive Shell application or double clicking on the desktop Gurobi icon. On

a Mac or on Linux, this can be done by typing gurobi.sh in the Terminal. The shell should display

text similar to the following:

Gurobi Interactive Shell, Version 8.1.1

Copyright (c) 2019, Gurobi Optimization, LLC

Type "help()" for help

gurobi>

More details are available in the quick start guide.

3. Within Julia, open the Julia package manager. This can be done by typing the right bracket (]) key

in the Julia terminal shown in Figure 1. You should see you are in the package manager if the text

in front of the cursor switches from julia> to (v1.0) pkg> or (v1.1) pkg>. Install miqoGraph by

running the following command in the package manager:

(v1.0) pkg> add https://github.com/juliayyan/PhylogeneticTrees.jl.git

(Do not type the colored text; it is just meant to indicate that you should be in the package manager.)

For a full reference to the Julia package manager, see https://julialang.github.io/Pkg.jl/v1/.

The code for PhylogeneticTrees should be contained in /.julia/packages/PhylogeneticTrees/xx

where xx is a unique hash code.

4. To get access to solver-specific parameters such as time limits and output flags, you will want to install

the Gurobi package separately. It will also be helpful to install the JuMP, CSV, and DataFrames

packages separately. Run the following command in the package manager:

(v1.0) pkg> add Gurobi

(v1.0) pkg> add JuMP@0.18.5

(v1.0) pkg> add CSV@0.4.3

(v1.0) pkg> add DataFrames@0.17.1

(You can generally add packages using the package name instead of the git url. Since our package is

not registered in the wider Julia package ecosystem, we use the git url for installation.)

5. Within the Julia package manager, test the package by running the following command:

(v1.0) pkg> test PhylogeneticTrees

This will take a few minutes and print a lot of output. The final message should say Testing

PhylogeneticTrees tests passed. You can exit the package manager by pressing backspace.

6. (For future reference) If at a future point you need to update the package, you can run the following

command:

(v1.0) pkg> update PhylogeneticTrees

Installation troubleshooting. If you are unable to run test PhylogeneticTrees, you may have an

issue with the package dependencies. Here are some common issues:

3

https://www.gurobi.com/documentation/quickstart.html
https://julialang.github.io/Pkg.jl/v1/

� Build errors. If you see an error message saying something like Please run Pkg.build("X") (where

X is some package name), then within the Julia package manager, run the following:

(v1.0) pkg> build X

(Do not type the colored text; it is just meant to indicate that you should be in the package manager.)

Note that there are no quotation marks around the package name X in the command executed within

the package manager. Quit the Julia application and try again.

� Older or newer package versions. Within the Julia package manager, type the following command:

(v1.0) pkg> status

This package was developed under JuMP v0.18.5, CSV v0.4.3, and DataFrames v0.17.1. If you see

other versions listed, you can switch to these versions with the following commands:

(v1.0) pkg> add JuMP@0.18.5

(v1.0) pkg> add CSV@0.4.3

(v1.0) pkg> add DataFrames@0.17.1

Note that if you are using Julia 1.2 or above, you will need JuMP v0.18.6 instead of JuMP v0.18.5.

� Solver access. Gurobi is available under both academic and commercial licenses. For those who do

not have access to such licenses, a variety of free, open-sources solvers that can solve MIQO problems

are available. Among open-source JuMP-compatible solvers, there are mixed-integer nonlinear solvers

such as Bonmin [3], Couenne [2], and SCIP [1]; and the mixed-integer convex solvers Juniper [9] and

Pajarito [5]. The ECOS BB [6] and MIOSQP solvers [13] are options in Python. Although the code

in our package is not solver-agnostic, the JuMP-compatible solvers could be substituted for Gurobi by

replacing all instances of Gurobi in the package with the chosen solver name.

1.2 Usage

Some code and data examples are provided in the test/ directory of the GitHub repository. Here, we give

more detail on the required input data and code.

1.2.1 Input Data

f3-statistics file. The f3-statistics are provided as a CSV. The CSV must follow the following header

format:

Outgroup,A,B,f3

where the first column is the outgroup, the second and third columns are populations, and the fourth column

is the value of the statistic F3(Outgroup; A, B). Each row will be a different f3-statistic, but it is not necessary

to include both permutations of the A and B columns. All population names must be Strings, i.e., 7 is not

a valid population name. They also should not include spaces.

The first few rows of a sample f3-statistics CSV are shown below as an example. The remainder of the

file can be found in test/testdata/f3.Europe6.csv.

Outgroup,A,B,f3

Mbuti,Altai,Altai,482.47

Mbuti,Altai,WEHG,34.748

Covariance file. The covariance matrix is also provided as a CSV. The CSV must have the following

header format:

4

https://projects.coin-or.org/Bonmin
https://projects.coin-or.org/Couenne
https://scip.zib.de/
https://github.com/lanl-ansi/Juniper.jl
https://github.com/JuliaOpt/Pajarito.jl
https://github.com/embotech/ecos
https://github.com/oxfordcontrol/miosqp
https://github.com/juliayyan/PhylogeneticTrees.jl

A1,B1,A2,B2,covariance

where the first four columns are populations, and the fifth column is the value of the covariance for

F3(Outgroup; A1, B1) and F3(Outgroup; A2, B2). Each row will be a different element of the covariance ma-

trix, but it is not necessary to include all permutations of the columns. All population names must match

those in the f3-statistics file.

The covariance matrix can be obtained by running qpGraph (version 6.0) with the following parameter

settings:

fstatsname: filename.txt

doanalysis: NO

The first few rows of a sample covariance CSV are shown below as an example. The remainder of the

file can be found in test/testdata/f3.Europe6-covariance.csv.

A1,B1,A2,B2,covariance

Altai,Altai,Altai,Altai,4.531

Altai,Altai,Altai,WEHG,1.535

1.2.2 A Default Wrapper

For user convenience, a default wrapper is contained in example/default.jl, along with a default param-

eters file in example/params-miqo.csv.

The params-miqo.csv file contains the following fields:

� mean file The name of the file containing the f3-statistics,

� cov file The name of the file containing the covariance matrix,

� output file The name of the file that PhylogeneticTrees should write output (the topology) to,

� log file The name of the file that PhylogeneticTrees should write logging information to,

� time limit A time limit (in seconds) for Gurobi,

� warm start 1 if the model with admixture should warm-start the problem with a tree without admix-

ture and 0 otherwise,

� warm start time limit A time limit (in seconds) for the warm start model,

� depth Depth of the tree (a count of the edges from root to leaf),

� granularity Admixture granularity (K ≥ 1),

� admixture events Number of admixture events (A ≥ 0),

� unmixed pops Any populations (whose names should match those in the mean and covariance files)

that should not experience admixture in the model, separated by spaces.

The default wrapper for the Americas example in our paper can be run by navigating to example/ and

running the command julia default.jl params-miqo.csv. The wrapper by default looks for a file called

params-miqo.csv, so the argument can be omitted if this is the parameters file name.

5

https://github.com/DReichLab/AdmixTools

1.2.3 Reading Data

1. If you are still in the Julia package manager, exit the package manager by pressing backspace. You

should see the julia> text before your cursor.

2. Within Julia, navigate to the directory containing your data files. Open the shell mode by typing the

semicolon (;) key in the Julia terminal shown in Figure 1. You should see that you are in shell mode

if the text in front of the cursor switches from julia> to shell>. Once in shell mode, you can use

the system shell to execute system commands. Navigate to the directory that is storing your data files

with the following command:

shell> cd YOUR DIRECTORY

3. Exit shell mode by pressing backspace. You should see the julia> text before your cursor. Load the

PhylogeneticTrees and Gurobi packages with the following line of code:

julia> using PhylogeneticTrees, Gurobi

4. You can then read data from your files using the following code:

julia> pd = PhylogeneticTrees.PopulationData("F3 FILE.csv", "COVARIANCE FILE.csv")

The first argument of the PhylogeneticTrees.PopulationData() function is the file name of the

f3-statistics CSV file, and the second argument is the file name of the covariance CSV file. This code

stores the population data in a data structure named pd.

5. The number of populations, outgroup key, population names, f3-statistics, and covariance matrix can

be accessed through pd.npop, pd.outgroup, pd.pops, pd.f3, and pd.cov, respectively.

1.2.4 Fitting a Model

Following these steps will allow you to construct a model without admixture.

1. Build a binary tree data structure of depth D = 3 with the following code:

julia> D = 3

julia> bt = PhylogeneticTrees.BinaryTree(D)

This will create a binary tree with 2D+1 − 1 = 15 nodes, 2D = 8 of which are leaf nodes.

2. Construct the optimization model with the following code:

julia> tp = PhylogeneticTrees.TreeProblem(pd, bt, solver = GurobiSolver(TimeLimit = 60))

The first argument of PhylogeneticTrees.TreeProblem() is the data structure containing the pop-

ulation data, the second argument is the binary tree, and the third is the solver. The TimeLimit flag

indicates that the solver will terminate after 60 seconds.

3. To solve the model, use the following code:

julia> solve(tp.model)

The solve() function comes from the JuMP package, which you should have installed separately.

4. To print which populations were assigned to which nodes, you can use the following code:

julia> PhylogeneticTrees.printnodes(tp)

In this output, the first column is the population name, the second column is the node, and the third

column is the proportion of the population that was assigned to that node (always 1.0 if there is no

6

admixture).

For relatively small trees (depth 4 and below), you can print a visualization of the tree itself using the

following code:

julia> PhylogeneticTrees.printtree(tp)

Admixture events can be added using optional arguments to the PhylogeneticTrees.TreeProblem()

function:

� nlevels (default 1): the level of granularity K that is desired for admixture proportion estimation.

The higher K is, the more precise the estimation, which is in intervals of 1
K . By default, the gran-

ularity level is set to 1, indicating no admixture. We recommend starting with a low level before

moving to higher levels to test what your computer can handle. We have tested up to K = 10,

and do not recommend going significantly further. At K = 10, the proportions can take on values

0%, 10%, 20%, . . . , 90%, 100%.

� nmixtures (default pd.npop): the maximum number of nodes that can be assigned to, or pd.npop+A,

where A is the number of admixture events. By default, nmixtures = pd.npop indicates A = 0,

meaning that there are no admixture events.

Now, to construct a model with admixture, we model the previous procedure as follows:

1. Same as without admixture

2. Construct the optimization model with the following code:

julia> tp = PhylogeneticTrees.TreeProblem(pd, bt, solver = GurobiSolver(TimeLimit = 60),

nlevels = 2, nmixtures = pd.npop + 1)

The extra parameters allow one of the populations to be mixed at 50%-50%.

3. The mode can be solved directly as before, but a couple of extra lines of code can help the model solve

more quickly.

(a) A “warm start” can be provided to the solver using the following code:

julia> PhylogeneticTrees.warmstartunmixed(tp, timelimit=30)

This finds the best possible tree without admixture within the time limit specified by the (optional)

timelimit parameter (in seconds, with a default of 30 seconds). Then it loads the tree without

admixture as a starting solution before attempting to add admixture.

(b) Populations that should not be admixed can be specified using the following code:

julia> PhylogeneticTrees.unmix(tp, "POPULATION")

where the name of the population is provided as a String in the second argument to PhylogeneticTrees.unmix().

This name must match what is in pd.pops.

4. Same as without admixture

Model-fitting troubleshooting. Here are some common issues:

� Data input. If you see an error message saying something like Objective Q not PSD, then you have

probably inputted your covariance matrix incorrectly. Check the formatting instructions and try again.

7

1.2.5 Running Scripts

If you have saved all your previous commands in a script called script.jl, you can save yourself some

typing by using the following code to execute the commands of the script:

julia> include("script.jl")

8

2 Preliminaries

This section introduces notation and discusses properties of f -statistics that will be useful in developing an

optimization formulation for phylogenetic inference. For more background on f -statistics, see [10].

2.1 f-Statistics

Let P represent a set of populations. Let Xp denote the random variable corresponding to the allele fre-

quencies at a single polymorphism in population p ∈ P. We also have a tree T that is composed of nodes V
and edges E . In general, we use the indices o, p, q, r, s, u, and v to refer to specific populations.

Allele frequencies are considered to follow a martingale property. In particular, if the edge (p, q) is present

in the graph, meaning that q is a descendant of p, then we have

E[Xq|Xp = x] = x. (1)

The f2-statistic, also called branch length, is the squared drift. For two populations p and q, it is defined

as follows:

F2(p, q) = E[(Xp −Xq)2]. (2)

It is assumed that drifts on distinct edges of the phylogenetic tree are orthogonal. Namely, for two distinct

edges (p, q) and (r, s), we have

E[(Xp −Xq)(Xr −Xs)] = 0. (3)

This property means that f2-statistics (branch lengths) are additive. Consider a path p→ q → r in our tree.

We can show the additivity of branch lengths as follows:

F2(r, p) = E[(Xr −Xp)2]

= E[(Xr −Xq +Xq −Xp)2]

= E[(Xr −Xq)2] + 2E[(Xr −Xq)(Xq −Xp)] + E[(Xq −Xp)2]

= E[(Xr −Xq)2] + E[(Xq −Xp)2]

= F2(r, q) + F2(q, p).

The rest can be shown by induction.

The f3-statistic, for three populations o, p, and q, is defined as follows:

F3(o; p, q) = E[(Xo −Xp)(Xo −Xq)]. (4)

The f3-statistics can also be computed as sums of the f2 statistics by inspecting the paths from population

p to population o in the tree, and similarly for population q to population o (ignoring edge direction).

F3(o; p, q) = E[(Xo −Xp)(Xo −Xq)]

9

= E

 ∑
(u,v)∈E

(Xu −Xv)1{(u,v)∈path(p, o)}

 ∑
(u,v)∈E

(Xu −Xv)1{(u,v)∈path(q, o)}


= E

 ∑
(u,v)∈E

(Xu −Xv)21{(u,v)∈path(p, o)∩path(q, o)}


=

∑
(u,v)∈E

E
[
(Xu −Xv)2

]
1{(u,v)∈path(p, o)∩path(q, o)}

=
∑

(u,v)∈E

F2(u, v)1{(u,v)∈path(p, o)∩path(q, o)}, (5)

where path(p, o) indicates the sequence of edges on the path from the node containing population p to the

node containing population o, ignoring edge direction. Namely, the statistic F3(o; p, q) is the sum of the

branch lengths of the overlapping edges of the paths from p to o and q to o. For an illustration of equation

(5), see Figure 2. In Figure 2, the edges corresponding to the intersection of path(p, o) and path(q, o) are

highlighted bold and blue.

o p q

Figure. Illustration of relevant edges for F3
statistics

Figure 2: (Color online) An illustration of the computation of the statistic F3(o; p, q). The bold blue edges
are those that contribute to the computation of F3(o; p, q), as per equation (5).

Note that F3(o; p, p) = F2(o, p).

Typically, f3-statistics are collected with an outgroup as the first argument. An outgroup is a population

that split up from the ancestral populations of the other populations of study, before the population splits

leading to the other populations. We reserve the index o to refer to the outgroup.

2.2 Admixture

If two populations p and q are admixed with mixing proportions α and 1−α, respectively, then the resulting

allele frequency will be

αXp + (1− α)Xq. (6)

Given the mixing relationship (6), we can derive the theoretical formulas for admixed populations. For

example, if population p is mixed from populations q and r at frequencies α and (1 − α) respectively, and

both q and r do not experience admixture, then F2(o, p) (with outgroup o) can be calculated as follows:

F2(o, p) = E[(αXq + (1− α)Xr −Xo)2]

= E[(α(Xq −Xo) + (1− α)(Xr −Xo))2]

10

= α2E[(Xq −Xo)2] + 2α(1− α)E[(Xq −Xo)(Xr −Xo)] + (1− α)2E[(Xr −Xo)2]

= α2F2(o, q) + 2α(1− α)F3(o; q, r) + (1− α)2F2(o, r)

= α2
∑

(u′,v′)∈path(o,q)

F2(u′, v′)

+ 2α(1− α)
∑

(u′,v′)∈path(o,q)∩path(o,r)

F2(u′, v′)

+ (1− α)2
∑

(u′,v′)∈path(o,r)

F2(u′, v′). (7)

We now provide a general statement on f3-statistics with admixture. For brevity, we will refer to popu-

lations that do not experience admixture in their path to the root as “unmixed.” If population p is mixed

from unmixed ancestral populations r ∈ Ap at levels {αr}r∈Ap (αr ≥ 0 and
∑

r αr = 1) and population q is

mixed from unmixed ancestral populations s ∈ Aq at levels {βs}s∈Aq (βs ≥ 0 and
∑

s βs = 1), the statistic

F3(o; p, q) can be computed as follows:

F3(o; p, q) = E

∑
r∈Ap

αrXr −Xo

(∑
s∈As

βsXs −Xo

)
= E

∑
r∈Ap

αr(Xr −Xo)

(∑
s∈As

βs(Xs −Xo)

)
=
∑
r∈Ap

∑
s∈As

αrβsE [(Xr −Xo) (Xs −Xo)]

=
∑
r∈Ap

∑
s∈As

αrβs

 ∑
(u,v)∈path(r,o)∩path(s,o)

F2(u, v)

 . (8)

Note that if there is no drift, equation (8) can also represent nested layers of two-way admixtures, since

any admixture topology can be represented as a mixture of multiple unmixed ancestral populations. For

example, as shown in Figure 3, if population q is 50% population p and 50% population r, and population r

is in turn 50% population s and 50% population u, then population q is 50% population p, 25% population

s, and 25 population u.

q

p r

Figure. Illustration of nested admixture

s u

q

p s u

0.50.5

0.5 0.5 0.5 0.25
0.25

Figure 3: An illustration of nested admixture without intermediate drift. The left and right graphs are
equivalent.

11

In our formulation, it will be more convenient to rearrange the terms of (8). An edge (u, v) is in

path(r, o) ∩ path(s, o) if it satisfies certain conditions. There are two cases. First, if (u, v) is not on the

path from the root to the outgroup, then there must exist ancestral populations r and s that are both in

the subtree rooted at v, which we call Sv. Second, if (u, v) is on the path from the root to the outgroup,

then there must exist ancestral populations r and s that are both outside of Sv. Therefore, equation (8) is

equivalent to the following:

F3(o; p, q) =
∑

(u,v)∈E\path(root,o)

F2(u, v)
∑

r∈Ap∩Sv

∑
s∈Aq∩Sv

αrβs+

∑
(u,v)∈path(root,o)

F2(u, v)
∑

r∈Ap\Sv

∑
s∈Aq\Sv

αrβs. (9)

Note that if p and q each only have one ancestor, equation (9) reduces to equation (5), but rearranged in

our more convenient format for our eventual formulation. For an illustration of equation (9), see Figure 4.

Figure 4 highlights in bold colors the relevant edges for computation of the f3 statistic, with green denoting

the (u, v) ∈ E \ path(root, o) case, and with blue denoting the (u, v) ∈ path(root, o) case.

r2 s1 s2

p

α 1-α

o r1

q

1-ββ

Figure 4: (Color online) An illustration of the computation of the statistic F3(o; p, q) in the presence of
admixture (dashed edges leading to populations p and q). The bold colored edges are those that contribute
to the computation of F3(o; p, q), as per equation (9). Green edges denote the first case, when edges are not
on the path from the root to the outgroup. Blue edges denote the second case, when edges are on the path
from the root to the outgroup.

12

3 Integer Optimization Formulation

We can now formulate a mixed-integer quadratic optimization problem to solve for an optimal tree. We first

study the case without admixture in Section 3.1, and then generalize to admixed populations in Section 3.2.

3.1 Without Admixture

3.1.1 A Motivating Example

Phylogenetic inference can be framed as the problem of finding a graph topology and set of edge weights

that best fit a set of given f3-statistics. The graph topology itself can be seen as the assignment of each

population to leaf nodes of a binary tree.

Given a topology, it is straightforward to compute weights that best fit the given f3-statistics using a

tool such as qpGraph [10]. A dedicated practitioner could conceivably propose a topology, then compute

weights to fit the f3-statistics using qpGraph, and iterate through all possible topologies to find the best one.

However, we can dispense with this iteration by formulating a mathematical model incorporating topology

and weights together, and using optimization solvers to efficiently search the space of potential topologies

and weights.

Before discussing the formulation in detail, we will provide an illustrative example based on Figure 5,

which involves the populations Chimp, Modern African, and Neanderthal.

Our approach will require that we first determine an appropriate depth for a binary tree to hold our

populations. A binary tree of depth 2, which is shown on the left hand side of Figure 5, contains four leaf

nodes (Nodes 4-7), and so is sufficiently large to hold the three populations. Larger trees could also be

considered, but are unnecessary for this example. Note that there is a distinction between populations (i.e.,

Chimp, Modern African, and Neanderthal) and general nodes (i.e., Nodes 1-7) in a tree structure. The

latter solely indicate positions on trees, and these positions might or might not eventually be associated with

populations. We will restrict the assignment of populations to leaf nodes.

On the right hand table of Figure 5, we use shaded cells to show a set of population-node assignments

that matches conventional understanding of these populations, with Chimp in Node 4, Modern African in

Node 6, and Neanderthal in Node 7. Node 5 remains empty. This sort of assignment, along with the edge

weights w, comprise the output of our optimization model.

Our approach, which decides whether to assign each population to each node, differs from prior works

such as [12], [4], and [7], which use path-based formulations that decide whether or not to draw edges between

nodes in a graph subject to constraints that the resulting graph must have tree structure. Although the

path-based formulations can be solved efficiently, they cannot accommodate admixture, which we will discuss

in Section 3.2.

In addition to the pre-specification of the depth of the tree, our approach will also require that the

user designate one population as the outgroup, and manually assign the outgroup to a node, so that this

information is known before the optimization. The designation of the outgroup is consistent with standard

practice [10], as it facilitates computation of the f3-statistics, which are measured relative to the outgroup.

The assignment also breaks symmetries in the optimization problem.

Detailed readers might observe that as a result of the outgroup’s pre-assignment, the outgroup is more

constrained than the other populations in the tree. This is by design, and the tree’s symmetry prevents this

choice from influencing the final results. To see this, first suppose the Chimp is taken as the outgroup, and

assigned to Node 4. In addition to the Chimp’s assignment to Node 4, the Modern African is assigned to

13

Node 6, and the Neanderthal is assigned to Node 7, as in Figure 5. However, an equivalent permutation of

the tree could assign the Chimp to Node 6, the Modern African to Node 4, and the Neanderthal to Node

5. Indeed, regardless of where the outgroup is placed, the resulting tree can be permuted accordingly to

produce the original assignment. We will follow a convention of always placing the outgroup in the leftmost

leaf node.

Figure. Intuition of no admixture case

Node 4 Node 5 Node 6 Node 7

Chimp

Modern African

Neanderthal

1

2 3

4 5 6 7

w2,4

w1,2 w1,3

w3,7w3,6w2,5

Figure 5: (Color online) A small illustrative example without admixture, involving the assignment of Chimp,
Modern African, and Neanderthal populations to the leaf nodes of a binary tree. The shaded cells in the
table indicate the node assignments.

3.1.2 Formulation

Consistent with Section 2, we will use the indices o, p and q to refer to specific populations (e.g., Chimp,

Modern African, Neanderthal in Figure 5) and their associated statistics. We further use the indices i and j,

and n to refer to nodes (e.g., Nodes 1-7 in Figure 5). The population index o is reserved for the pre-specified

outgroup population, and the node index n is reserved for the pre-specified outgroup node.

Input Data and Parameters We begin with the following input data:

� P: A set of populations

� o ∈ P: An outgroup

� f̂p,q: f3-statistics F3(o; p, q) measured relative to the outgroup.

We also specify the following tree parameters:

� D ∈ Z+: Desired depth of the tree (which will have nodes 1, 2, . . . , 2D+1 − 1)

� n = 2D: The node at which to fix the outgroup.

The depth of the tree should be chosen large enough so that the populations P can comfortably fit in the

2D leaf nodes. The choice of n = 2D is arbitrary; any leaf node 2D, 2D + 1, . . . , 2D+1 − 1 would suffice. The

set of nodes is denoted by V := {1, 2, . . . , 2D+1 − 1}, and the set of all (undirected) edges is denoted by

E := {(i, j) | i ∈ V, j ∈ V, j ∈ {2i, 2i+ 1}}.

Decision Variables Our optimization problem will have the following main decision variables that

parametrize the tree:

� xp,i ∈ {0, 1}: 1 if population p is assigned to node i, 0 otherwise. We only include nodes i that are

leaves of the tree, which we will refer to as VD := {2D, . . . , 2D+1 − 1}. The root node is labeled 1.

14

� wi,j ≥ 0: branch length on edge (i, j). This is also the f2-statistic of equation (5).

Given a particular topology, parametrized by the main variables x and w, we must compute the associated

f3-statistics. For this task, we use the following auxiliary decision variables to determine which edges

contribute to computation of the f3-statistics:

� yp,q,(i,j) ≥ 0: although not explicitly defined to be binary, will be constrained to take on the value 1 if

edge (i, j) contributes to the F3(o; p, q) statistic, and 0 otherwise.

� zp,q,(i,j) ≥ 0: the branch length on edge (i, j) if it contributes to F3(o; p, q), and 0 otherwise.

Finally, the f3-statistics and errors will be computed using the following fitting decision variables:

� fp,q ≥ 0: the fitted value of F3(o; p, q)

� εp,q: the error associated with fitting F3(o; p, q).

Constraints We now turn to the constraints necessary to model the problem. First, the outgroup must

be assigned to the proper node:

xo,n = 1. (10)

Recall that o and n are known data and parameters, not optimized.

Each population is assigned to a leaf node using the following constraint:∑
i∈VD

xp,i = 1 ∀p ∈ P. (11)

Similarly, each leaf node is assigned at most one population as follows:∑
p∈P

xp,i ≤ 1 ∀i ∈ VD. (12)

Using Sj to denote the leaf nodes that are in the subtree rooted at j, and recalling equation (9), we use

the following constraints to link the auxiliary y and main x variables, so that the population-node assignment

induces the correct computation of the f3-statistics between populations:

yp,q,(i,j) ≤
∑
j′∈Sj

xp,j′ (13a)

yp,q,(i,j) ≤
∑
j′∈Sj

xq,j′ (13b)

yp,q,(i,j) ≥
∑
j′∈Sj

(xp,j′ + xq,j′)− 1 ∀p ∈ P, q ∈ P, (i, j) ∈ E \ path(n, 1), (13c)

for edges not in the path from the outgroup node to the root, and

yp,q,(i,j) ≤ 1−
∑
j′∈Sj

xp,j′ (14a)

yp,q,(i,j) ≤ 1−
∑
j′∈Sj

xq,j′ (14b)

15

yp,q,(i,j) ≥ 1−
∑
j′∈Sj

(xp,j′ + xq,j′) ∀p ∈ P, q ∈ P, (i, j) ∈ path(n, 1). (14c)

for edges in the path from the outgroup node to the root. Constraints (13) and (14) are intended to express

that for a particular edge (i, j), whether populations p and q are assigned to particular portions of the tree

(as represented by x) then determines whether that edge contributes to the calculation of F3(o; p, q). Note

that constraints (13) and (14) are exact even without explicitly enforcing that the y variables be binary; if

the y variables are constrained to be nonnegative then they will naturally only take 0-1 values.

With the y variables set to the appropriate values, the theoretical F3(o; p, q) statistic can be computed

as follows:

fp,q =
∑

(i,j)∈E

wi,jyp,q,(i,j) ∀p ∈ P, q ∈ P, (15)

which is bilinear. However, because the y variables only take 0-1 values, we can set auxiliary variables

zp,q,(i,j) to take on the values of wi,jyp,q,(i,j) using the McCormick relaxation:

zp,q,(i,j) ≤Myp,q,(i,j) (16a)

zp,q,(i,j) ≤ wi,j (16b)

zp,q,(i,j) ≥ wi,j +Myp,q,(i,j) −M ∀p ∈ P, q ∈ P, (u, v) ∈ E , (16c)

where M is an upper bound representing the largest possible edge weight. Note that if yp,q,(i,j) = 1, these

constraints reduce to zp,q,(i,j) ≤ M, zp,q,(i,j) ≤ wi,j , zp,q,(i,j) ≥ wi,j , thereby inducing zp,q,(i,j) to be equal to

wp,q,(i,j). By contrast, if yp,q,(i,j) = 0, these constraints reduce to zp,q,(i,j) ≤ 0, zp,q,(i,j) ≤ wi,j , zp,q,(i,j) ≥
wi,j −M , thereby inducing zp,q,(i,j) to take the value 0. It then remains to pick a suitable upper bound M

based on our input data. We choose M = Γ maxp,q f̂p,q, with Γ ≥ 1. Then, we can replace constraint (15)

with the linear constraint

fp,q =
∑

(i,j)∈E

zp,q,(i,j) ∀p ∈ P, q ∈ P. (17)

Finally, we can set the error terms using the following constraint:

εp,q = f̂p,q − fp,q (18)

We seek to minimize the error (weighted by the inverse covariance matrix):

min
x,y,w,g,ε

∑
p∈P,q∈P

∑
p′∈P,q′∈P

Σ−1
p,q,p′,q′εp,qεp′,q′ , (19)

where Σ−1
p,q,p′,q′ is the entry in the inverted covariance matrix corresponding to F3(o; p, q) and F3(o; p′, q′).

3.1.3 Example Variable Values and Constraints

To illuminate the formulation in Section 3.1.2, we return to the example in Figure 5. For this example,

we provide values for relevant x and y variables under the assignment in the figure, and show these values’

consistency with a selection of constraints. We will use the abbreviations “CP” for “Chimp”, “MA” for

16

“Modern African”, and “NT” for “Neanderthal”.

Given the population-node assignments in the table of Figure 5, the optimal x values are as follows:

� xCP,4 = 1,

� xMA,6 = 1,

� xNT,7 = 1,

� and xp,i = 0 for all other (p, i) ∈ P × VD not listed.

It is straightforward to verify that these given x values satisfy constraints (10) through (12), recalling that

the Chimp is the outgroup and that we take the convention n = 2D = 4.

We now turn to the y variables, which are needed for computation of the f3-statistics. The given x

values, combined with constraints (13) and (14), induce the following y values:

� Computation of F3(CP; MA,MA):

– yMA,MA,(3,6) = 1,

– yMA,MA,(1,3) = 1,

– yMA,MA,(1,2) = 1,

– yMA,MA,(2,4) = 1,

– and yMA,MA,(i,j) = 0 for all other (i, j) ∈ E not listed.

� Computation of F3(CP; MA,NT):

– yMA,NT,(1,3) = 1,

– yMA,NT,(1,2) = 1,

– yMA,NT,(2,4) = 1,

– and yMA,NT,(i,j) = 0 for all other (i, j) ∈ E not listed.

� Computation of F3(CP; NT,NT):

– yNT,NT,(3,7) = 1,

– yNT,NT,(1,3) = 1,

– yNT,NT,(1,2) = 1,

– yNT,NT,(2,4) = 1,

– and yNT,NT,(i,j) = 0 for all other (i, j) ∈ E not listed.

To see how the above x and y values satisfy constraints (13) and (14), we write out the constraints in full

for p = MA, q = NT, and (i, j) ∈ {(1, 2), (3, 7)}, and leave the remainder as an exercise for the reader.

First, recall that the outgroup was manually assigned to Node 4 (see constraint (10) with o = CP, n =

2D = 4, which were pre-determined parameters and input data rather than optimized indices). An optimized

assignment of the other populations to nodes was then computed relative to the outgroup’s position. Because

the outgroup’s location is known before the optimization, we know that edge (1, 2) does lie in the path from

the outgroup node to the root, and so constraints (14) apply. Written in full, these constraints are:

yMA,NT,(1,2) ≤ 1− xMA,4 − xMA,5

17

yMA,NT,(1,2) ≤ 1− xNT,4 − xNT,5

yMA,NT,(1,2) ≥ 1− xMA,4 − xMA,5 − xNT,4 − xNT,5,

and plugging in the given x and y values satisfies the constraints (1 ≤ 1, 1 ≤ 1, 1 ≥ 1). Consistent with Figure

2, the value of yMA,NT,(1,2) is 1, and the edge (1, 2) correctly contributes to the calculation of F3(CP; MA,NT)

in the given solution topology.

For the case (i, j) = (3, 7), we apply constraints (13), recalling that the outgroup’s location is known

before the optimization and that edge (3, 7) does not lie in the path from the outgroup node to the root.

Written in full, the constraints are:

yMA,NT,(3,7) ≤ xMA,7

yMA,NT,(3,7) ≤ xNT,7

yMA,NT,(3,7) ≥ xMA,7 + xNT,7 − 1,

and plugging in the given x and y values satisfies the constraints (0 ≤ 0, 0 ≤ 1, 0 ≤ 0). Consistent with

Figure 2, the value of yMA,NT,(3,7) is 0, and the edge (3, 7) correctly does not contribute to the calculation

of F3(CP; MA,NT) in the given solution topology.

In summary, we have related the assignment of Chimp to Node 4, Modern African to Node 6, and

Neanderthal to Node 7 to the corresponding x values, which, in accordance with constraints on the remaining

variables, correctly compute f3-statistics based on the topological relationship between the populations.

3.2 With Admixture

3.2.1 A Motivating Example

We first motivate the problem of admixture with an example. In Figure 5, we show population-node as-

signments that reflect conventional understanding of the relationships between Neanderthal, Non-African,

and Modern African populations. Unlike the example of Figure 5, this new example includes a fractional

assignment of the Non-African population across Node 5 and Node 6, indicating that it is produced from

admixture between populations in those nodes. The darker shading for Node 6 indicates that the Non-

African population is assigned mostly to Node 6, with a smaller contribution from Node 5. The Neanderthal

population, which is assigned to Node 4, and the Modern African population, which is assigned to Node 7,

are not associated with admixture.

Figure. Intuition of admixture example

Node 4 Node 5 Node 6 Node 7

Neanderthal

Non-African

Modern African

1

2 3

4 5 6 7

w2,4

w1,2 w1,3

w3,7w3,6w2,5

Figure 6: (Color online) A small illustrative example with admixture, involving the assignment of Nean-
derthal, Non-African, and African populations to the leaf nodes of a binary tree.

18

3.2.2 Formulation

As outlined in the Figure 6 example, an option for modeling admixture might be to relax the x variables to be

continuous rather than binary. With continuous x variables, additional auxiliary variables and constraints

would be needed to prevent more than one population from being assigned to each node, which is not

difficult. However, the real stumbling point is that y variables could then take on continuous values in [0, 1],

and therefore the linearization that produced constraints (13) and (14) would no longer be exact. We have

seen computationally that the big-M bounds are not tight enough in the linear relaxation to produce reliable

results.

Rather than relax the x variables to be continuous, we approximate the continuous admixture proportions

by choosing a suitably large K ∈ Z+, and introducing the following sum of auxiliary binary variables

χ ∈ {0, 1}|P|×2D×K :

admixure proportion (p, i) =
1

K

K∑
k=1

χk
p,i. (20)

Under this framework, there are K levels at which each population can be assigned to nodes, enabling

fractional assignment that can accommodate the example in Figure 5. Each variable χk
p,i will indicate

whether population p is assigned to node i, for k = 1, . . . ,K. The summation in equation (20) then

represents the proportion of admixture for population p arising from the ancestral population in node i. As

such, a population can be assigned to anywhere between one and K nodes, inclusive; assignment to one node

corresponds to an admixture proportion of 1, while assignment to K nodes indicates that the population is

produced from an equal mixture of the K nodes at a proportion of 1
K each. Higher levels of K allow for more

granularity in the approximation of the admixture proportions; for example, if K = 10, then the admixture

proportions can take on values 0, 0.1, . . . , 0.9, 1. Note that equation (20) is intended as an approximation to

the α and β terms in equation (9).

This model of admixture assigns each population p to one or more leaf nodes, where the level of assign-

ment of population p to node i is given in the definition (20). As such, constraint (11), which had ensured

that each population was assigned to exactly one leaf node, are no longer valid, because each population

may be assigned to up to K leaf nodes. First, the following additional constraint is needed to supplement

constraint (10) and ensure that the outgroup is fully assigned to the proper node:

χk
o,n = 1 ∀k = 1, . . . ,K, . (21)

Then, constraint (11) is entirely replaced with the following constraints on the new χ variables:∑
i∈VD

χk
p,i = 1 ∀p ∈ P, k = 1, . . . ,K. (22)

Constraint (22) ensures that each of the K levels of population p should be assigned to exactly one node.

The x and χ variables need to be linked as follows:

xp,i ≥ χk
p,i ∀p ∈ P, i ∈ VD, k ∈ 1, . . . ,K, (23)

which ensures that if χk
p,i = 1 for any k = 1, . . . ,K, then xp,i = 1 as well.

Constraint (12), which ensures that each node is assigned at most one population, is still valid. Further-

19

more, by upper bounding the χ variables with the x variables, any equality and upper bound constraints on

x will apply on the relevant χ variables as well.

Additionally, if we want to restrict the number of admixture events to be at most some number A, we

can add the following constraint: ∑
p∈P

∑
i∈VD

xp,i ≤ |P|+A. (24)

To understand equation (24), first consider the case A = 0. In that case, the number of node assignments,

denoted by the summation over the x variables, should be at most the number of populations. Combined

with constraint (23), this means that each population can be assigned to at most one node, and therefore, no

populations will be mixed between nodes. The case A = 1 will allow at most one population to be assigned

to at most two nodes, representing a single admixture event. More generally, the parameter A accommodates

admixture by allowing the populations to be spread out over an additional A nodes, in addition to the |P|
nodes that they must occupy in the tree.

Because the new χ variables are binary, we can replace the auxiliary variables y with auxiliary variables

ψ ∈ [0, 1]|P|
2×|E|×K2

, which will help calculate the F3(o; p, q) statistics according to equation (9). For each

variable ψk,`
p,q,(i,j), index k will be associated with population p, and index ` will be associated with population

q. Then, analogous to constraint (13), for edges not in the path from the outgroup node to the root, we

have the following constraints linking χ and ψ:

ψk,`
p,q,(i,j) ≤

∑
j′∈Sj

χk
p,j′ (25a)

ψk,`
p,q,(i,j) ≤

∑
j′∈Sj

χ`
q,j′ (25b)

ψk,`
p,q,(i,j) ≥

∑
j′∈Sj

(
χk
p,j′ + χ`

q,j′
)
− 1 ∀p ∈ P, q ∈ P, (i, j) ∈ E \ path(n, 1), k = 1, . . . ,K, ` = 1, . . . ,K. (25c)

Similarly, analogous to constraint (14), for edges in the path from the outgroup node to the root, we have

the following constraints linking χ and ψ:

ψk,`
p,q,(i,j) ≤ 1−

∑
j′∈Sj

χk
p,j′ (26a)

ψk,`
p,q,(i,j) ≤ 1−

∑
j′∈Sj

χ`
q,j′ (26b)

ψk,`
p,q,(i,j) ≥ 1−

∑
j′∈Sj

(
χk
p,j′ + χ`

q,j′
)
∀p ∈ P, q ∈ P, (i, j) ∈ path(n, 1), k = 1 . . . ,K, ` = 1, . . . ,K. (26c)

As before, since the χ variables are binary, the ψ variables will also take only 0-1 values despite not explicitly

being constrained to be binary.

Then, substituting the expanded variables into constraint (9), we obtain the following:

fp,q =
1

K2

∑
(i,j)∈E

wi,j

K∑
k=1

K∑
`=1

ψk,`
p,q,(i,j), (27)

which is the K-level modification of constraint (15). Note that the summation over ψk,`
p,q,(i,j)/K

2 terms

20

captures the facets of equation (9) via (i) the K-level approximation of the product of p and q’s admixture

proportions, thereby producing K2 terms, (ii) the distinction of whether (i, j) is in the path between the

root and the outgroup or not by separating constraints (25) and (26), and (iii) the summations in constraints

(25) and (26) over the subtrees rooted at j, Sj .
As before, constraint (27) can be linearized again with a McCormick relaxation, since the ψ variables

only take 0-1 values. Analogous to constraints (16), we define auxiliary variables ζk,`p,q,(i,j) that will take on

the values of the product wi,jψ
k,`
p,q,(i,j) with the addition of the following constraints:

ζk,`p,q,(i,j) ≤Mψk,`
p,q,(i,j) (28a)

ζk,`p,q,(i,j) ≤ wi,j (28b)

ζk,`p,q,(i,j) ≥ wi,j +Mψk,`
p,q,(i,j) −M ∀p ∈ P, q ∈ P, (u, v) ∈ E , k = 1, . . . ,K, ` = 1, . . . ,K, (28c)

where M is the data-computed upper bound representing the largest possible edge weight. Then, we can

replace constraint (27) with the linear constraint

fp,q =
1

K2

∑
(i,j)∈E

K∑
k=1

K∑
`=1

ζk,`p,q,(i,j) ∀p ∈ P, q ∈ P. (29)

The constraint (18) and objective (19) remain the same.

This model has O(|P|22DK2) auxiliary variables, and in the case where K = 1, it reduces to the formu-

lation without admixture.

3.2.3 Example Variable Values and Constraints

To illuminate the formulation in Section 3.2.2, we return to the example in Figure 6. For this example, we

provide values for relevant x, χ, and ψ variables under the assignment in the figure, and show these values’

consistency with a selection of constraints. We will use the abbreviations “NT” for “Neanderthal”, “NA”

for “Non-African”, and “MA” for “Modern African”. The Neanderthal is the outgroup.

Given the population-node assignments in the table of Figure 6, the optimal x values are as follows:

� xNT,4 = 1,

� xNA,5 = 1,

� xNA,6 = 1,

� xMA,7 = 1,

� and xp,i = 0 for all other (p, i) ∈ P × VD not listed.

Note that in this example, the Non-African population is assigned to two nodes (Nodes 6 and 7), which

is allowed, having removed constraint (11). With the given x values, the summation on the left-hand side

of constraint (24) is equal to four, while the number of populations is three. As such, in order to allow

assignment with admixture, the input parameter A would need to be set to be greater than or equal to one.

We now turn to the χ variables, which are the K-level generalization of the x variables. Supposing that

the first of the K levels of the Non-African population is in Node 5, and the remaining levels 2 through K

are in Node 6, we have the following χ values:

21

� χk
NT,4 = 1 for k = 1, . . . ,K,

� χ1
NA,5 = 1,

� χk
NA,6 = 1 for k = 2, . . . ,K,

� χk
MA,7 = 1 for k = 1, . . . ,K,

� and χk
p,i = 0 for all other (p, i) ∈ P × VD and k ∈ {1, . . . ,K} not listed.

First, these χ values enforce that the Non-African population is made up of 1
K of a population represented

by Node 5, and K−1
K of a population represented by Node 6. Second, it is straightforward to verify that

these x and χ values satisfy constraints (10) (recalling that o = NT and n = 2D = 4), (21), (22), and (23).

We now turn to the ψ variables, which are needed for computation of the f3-statistics. The given χ

values, combined with constraints (25) and (26), induce the following χ values:

� Computation of F3(NT; NA,NA):

– ψk,`
NA,NA,(3,6) = 1 for k = 2, . . . ,K, ` = 2, . . . ,K,

– yk,`NA,NA,(1,3) = 1 for k = 2, . . . ,K, ` = 2, . . . ,K,

– yk,`NA,NA,(1,2) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– yk,`NA,NA,(2,4) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– ψ1,1
NA,NA,(2,5) = 1,

– and yNA,NA,(i,j) = 0 for all other (i, j) ∈ E and k ∈ {1, . . . ,K} not listed.

� Computation of F3(NT; NA,MA):

– ψk,`
NA,MA,(3,7) = 1 for k = 2, . . . ,K, ` = 1, . . . ,K,

– yk,`NA,MA,(1,3) = 1 for k = 2, . . . ,K, ` = 1, . . . ,K,

– yk,`NA,MA,(1,2) = 1 for k = 2, . . . ,K, ` = 1, . . . ,K,

– yk,`NA,MA,(2,4) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– and yNA,MA,(i,j) = 0 for all other (i, j) ∈ E and k ∈ {1, . . . ,K} not listed.

� Computation of F3(NT; MA,MA):

– ψk,`
MA,MA,(3,7) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– ψk,`
MA,MA,(1,3) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– ψk,`
MA,MA,(1,2) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– ψk,`
MA,MA,(2,4) = 1 for k = 1, . . . ,K, ` = 1, . . . ,K,

– and ψk,`
MA,MA,(i,j) = 0 for all other (i, j) ∈ E and k ∈ {1, . . . ,K} not listed.

To see how the above χ and ψ values satisfy constraints (25) and (26), we write out the constraints for

p = NA, q = MA, and (i, j) ∈ {(1, 2), (2, 5)}, and leave the remainder as an exercise for the reader.

First, recall that the outgroup was manually assigned to Node 4 (see constraint (10) with o = NT, n =

2D = 4, which were pre-determined parameters and input data rather than optimized indices). An optimized

assignment of the other populations to nodes was then computed relative to the outgroup’s position. Because

22

the outgroup’s location is known before the optimization, we know that edge (1, 2) does lie in the path from

the outgroup node to the root, and so constraints (26) apply. Written in full, these constraints are:

ψk,`
NA,MA,(1,2) ≤ 1− χk

NA,4 − χk
NA,5

ψk,`
NA,MA,(1,2) ≤ 1− χ`

MA,4 − χ`
MA,5

ψk,`
NA,MA,(1,2) ≥ 1− χk

NA,4 − χk
NA,5 − χ`

MA,4 − χ`
MA,5,

and plugging in the given χ and ψ values satisfies the constraints so that edge (1, 2) contributes to the

calculation of F3(NT; NA,MA) at fractional value K−1
K in the given solution topology.

For the case (i, j) = (2, 5), we apply constraints (25), recalling that the outgroup’s location is known

before the optimization and that edge (2, 5) does not lie in the path from the outgroup node to the root.

Written in full, the constraints are:

ψk,`
NA,MA,(2,5) ≤ χ

k
NA,5

ψk,`
NA,MA,(2,5) ≤ χ

`
MA,5

ψk,`
NA,MA,(2,5) ≥ χ

k
NA,5 − χ`

MA,5 − 1,

and plugging in the given χ and ψ values satisfies the constraints so that edge (2, 5) does not contribute to

the calculation of F3(NT; NA,MA) in the given solution topology.

In summary, we have related the assignment of Neanderthal to Node 4, Non-African to Node 5 (for k = 1)

and Node 6 (for k = 2, . . . ,K), and Modern African to Node 7 to the corresponding x, χ, and ψ values,

which, in accordance with constraints on the remaining variables, correctly compute f3-statistics based on

the topological relationship between the populations.

23

4 Simulated Data

We used the msprime coalescent simulator [8] to simulate chromosomes (excluding the autosomes) at their

relevant lengths from a set of eight populations with different topologies. We used a mutation rate of

1.5×10−8, a recombination rate of 1×10−8, and Ne of 500, and sampled 20 individuals from each population.

To reflect the analysis performed with real data, we then created 40 haploid chromosomes from these 20

diploid sequences. We then computed empirical f -statistics and their accompanying covariances using a

weighted block jackknife [10].

5 Computational Results

We tested miqoGraph on three simulated admixture graphs that represent the possible varieties of admixture

events to validate its performance. Parameters for the simulation were described in Section 4.

A summary of our simulated graphs is shown in Figure 7. Figure 7a shows the base graph upon which

the three simulated graphs are built. The first of these, in Figure 7b, involves a single admixture event where

Population 3 is produced from equal mixtures of Populations Slot0 and Slot1. The next graph in Figure 7c

is identical to the first except that the admixture proportions are changed to 10% and 90%. A more complex

graph in Figure 7d has Population 3 produced from a nested admixture event between Populations Slot0,

Slot1, and Slot2. These graphs will be referred to as SimpleMix, UnevenMix, and NestedMix, respectively.

These simulations are by no means exhaustive. Because the underlying optimization model’s size scales

quadratically with the admixture granularity K, miqoGraph may not be appropriate for detecting low ad-

mixture proportions; the lowest that we test is 10% in the UnevenMix case. Furthermore, our formulation

models admixture only at the leaf nodes: for example, the NestedMix case is represented as Population 3

being assigned 25% to Slot0, 25% to Slot1, and 50% to Slot2. Although the nesting is straightforward in

this case, miqoGraph may produce less interpretable results for admixture graphs with many interdependent

nested admixture events. Nonetheless, miqoGraph is a powerful tool on a variety of use cases, as we will

show.

5.1 The SimpleMix example

The first step in recovering the SimpleMix graph was to infer a topology without admixture. The optimal

topology was found in merely four seconds, with an objective value of 274.41. The topology without admix-

ture was quite close to the actual topology, with the sole error that population 3 was placed in its ancestral

pre32 node due to the graph being unable to capture admixture.

We then fitted a tree with a single admixture event at an admixture resolution of K = 2. Our miqoGraph

algorithm found the optimal solution in 94 seconds with an objective value of 18.99, although it took

significantly longer to prove optimality, terminating in 1,040 seconds. The optimization progression is shown

in Figure 8, with time on the x-axis on a log scale, and the objective value on the y-axis. The upper bound

(solid line) represents incumbent optimization solutions, with each decrease indicating that a better solution

has been found. The lower bound (dotted line) represents the solver’s progress towards verifying whether

a solution is optimal. A solution is proved to be optimal when the upper bound meets the lower bound.

Figure 8 shows that the optimization solver makes quick progress towards finding the optimal solution, but

takes much longer to prove optimality. As such, common practice is to terminate the solver early.

24

(a) A base graph topology upon which we add admixture events

(b) SimpleMix: Pop-
ulation 3 admixed be-
tween populations Slot0
and Slot1 equally.

(c) UnevenMix: Popula-
tion 3 admixed between
Slot0 (10%) and Slot1
(90%).

(d) NestedMix: Popula-
tion 3 as a mixture of
populations Slot0, Slot1,
and Slot2.

Figure 7: Simulated admixture graph topologies.

If a guarantee of optimality is desired, we now demonstrate that it can be efficiently obtained through a

combination of optimization and grid search. Solution time can speed up dramatically if certain populations

are fixed to be unmixed a priori. Since we are solving for a tree with a single admixture event in the SimpleMix

case, we can fix all populations to be unmixed except for one, and solve the resulting optimization problem

to optimality. If we repeat this process for every population, then we can simply choose the tree with the

lowest objective value, which will be optimal for a single admixture event.

The results for this grid search are shown in Table 1, and mixing population 3 clearly gives the best

result that matches the objective of 18.99, verifying the optimality of the solution in the earlier model that

did not have prior knowledge of which population was admixed. This enumeration takes 106 seconds total, a

dramatic reduction of the running time of the original proof of optimality. The running time of this procedure

can be cut further if prior knowledge is taken into account to reduce the scenarios of the grid search, since

it is often the case that there are a limited number of candidates for admixture.

Most importantly, the optimal solution matched the simulated SimpleMix graph perfectly in topology,

illustrating the power of miqoGraph to quickly recover admixture graphs by optimizing topologies, weights,

and mixing proportions jointly.

25

0

500

1,000

1 10 100 1000

Time (s)

O
b

je
c
ti
ve

 V
a

lu
e

Bound

Upper

Lower

Figure 8: Optimization upper and lower bounds on the SimpleMix data with a single admixture event at a
granularity of K = 2. Time is shown on a log scale.

Table 1: Objective values and solution times on the SimpleMix data, where a single population was allowed
to be admixed and all other populations were constrained to be unmixed.

Admixed Pop. Objective Time (s)

1 274.03 14
2 274.03 21
3 18.99 6
4 274.29 23
5 67.08 13
6 274.29 18
8 248.73 11

26

5.2 The UnevenMix example

In the SimpleMix case, we were fortunate that the actual graph was admixed at exactly 50% and 50%,

allowing for a low admixture granularity of K = 2 to capture the correct admixture event. A natural

question arises when considering unequal admixture proportions that require a higher level of resolution to

capture: what level of resolution is sufficient to infer the correct admixture graph? To answer this question,

we turn to the UnevenMix case of Figure 7c, where the admixture proportions are 10% and 90%.

As in the SimpleMix case, for the UnevenMix case we began with solving for a tree without admixture. In

this case, miqoGraph terminated in three seconds with an objective value of 22.08. We then ran miqoGraph

varying the admixture resolution from K = 2, 3, . . . , 10, specifying that only population 3 was admixed. The

solution objective values for each level of resolution are shown in Figure 9 (solid line). For reference, the

objective values for the correct admixed topology with the closest possible admixture weights to 10% and

90% allowed by the admixture granularity are shown as well (dotted line). For admixture resolutions K ≥ 2,

population 3 was forced to be admixed. For example, for the correct mixing proportions of 10% and 90%,

the closest possible mixing proportions for a tree with granularity K = 2 were 50% and 50%, and for a

mixed tree with granularity K = 3 they would be 33% and 66%. For the tree without admixture, we simply

assigned population 3 to the pre32 node, which was optimal for the problem without admixture.

Because the tree without admixture at K = 1 is actually close in topology to the correct tree, its objective

value is relatively low. However, at K = 2, the estimated and correct topologies differ sharply, as the 50%-

50% mixing dictated by a K = 2 resolution is quite far from the 10%-90% reality, and as such miqoGraph

finds another topology that differs from the correct topology but has lower objective value. Ultimately,

past K ≥ 7, the objectives and topologies converge to the correct values. This trajectory indicates that

to get the right topology, the resolution need not be set exactly to the level required for the correct graph

(K = 10), although it should be reasonably close. A reasonable approach might be to run the algorithm

at increasing levels of admixture granularities until convergence in the topology is seen. A continuous

optimization algorithm such as qpGraph can also be run to fine-tune the admixture proportions and weights.

40

80

120

2 4 6 8 10

Admixture Resolution

O
b

je
c
ti
ve

 V
a

lu
e

Topology

Estimated

Correct

Figure 9: Objective values for increasing levels of admixture resolution on the UnevenMix case.

Formulation size and running times for varying levels of K are shown in Table 2. As K increases, the

size of the formulation, as measured by the number of decision variables, increases dramatically. However,

part of Gurobi’s power is its ability to “presolve” and efficiently identify variables that can be eliminated

from the model. As such, the presolved model size grows at a much more reasonable rate.

27

Past K ≥ 6, Gurobi is unable to prove optimality within five minutes. However, the solutions are most

likely optimal, given that the topology is close to the correct solution at K = 6 and is exactly correct for

K ≥ 7. The time required to find the optimal solution generally increases with K, as expected. However,

even for K = 10, the solution is found in under three minutes.

Table 2: Model sizes and solution times on the UnevenMix data for varying levels of admixture granularity
K. The asterix (*) indicates where miqoGraph found the correct topology and parameters, but was unable
to prove optimality within five minutes.

K Num. Variables Running Time (s)

Initial Presolved Last Soln. Prove Opt.

2 9,090 1,337 5 7
3 20,018 2,734 4 40
4 35,266 4,053 6 61
5 54,834 5,667 20 111
6 78,722 7,627 128 *300
7 106,930 9,951 41 *300
8 139,458 12,561 78 *300
9 176,306 15,493 68 *300

10 217,474 16,371 169 *300

5.3 The NestedMix example

Our final simulated case, NestedMix, followed a similar procedure as SimpleMix and UnevenMix, but had an

additional complexity: in order to capture this graph, two admixture events were needed. The optimal graph

without admixture was found in four seconds with an objective value of 157.16. Admixed graphs were inferred

with two admixture events, and only Population 3 was allowed to experience admixture. For both admixture

resolutions K = 3 and K = 4, the inferred topology once again matched the original topology exactly, albeit

with different admixture proportions, and these trees were found in 33 and 63 seconds, respectively. The

optimization progress for the K = 4 granularity is shown in Figure 10, with time shown on a log scale as in

Figure 8. Even for this larger model, with the addition of the constraints restricting that only population 3

be admixed, the optimal solution is found within ten seconds, and the remainder of the time is spent proving

optimality.

Table 3 shows a summary of the running times of miqoGraph for each dataset, compared with the running

time of qpGraph (with the topology fixed to the correct topology). Our algorithm, miqoGraph, is able to find

the correct graphs orders of magnitude more quickly than qpGraph, and with the exception of the UnevenMix

case, we prove optimality more quickly as well. Our algorithm accomplishes these improved running times

while also allowing exploration of varied graph topologies, when by comparison, qpGraph requires fixing a

single graph topology a priori.

The three cases SimpleMix, UnevenMix, and NestedMix are toy examples, but they represent a range of

common cases. In the following section, we demonstrate the performance of miqoGraph on real data.

5.4 The Eurasian-American example

We ran miqoGraph on a six-population dataset from Eurasia and the Americas to infer the phylogeny of

populations leading to the Karitiana, a South American population from Brazil. An admixture graph

28

0

1,000

2,000

3,000

1 3 10 30

Time (s)

O
b

je
c
ti
ve

 V
a

lu
e

Bound

Upper

Lower

Figure 10: Optimization upper and lower bounds on the NestedMix data with two admixture events at a
granularity of K = 4. Time is shown on a log scale.

Table 3: A comparison of running times of miqoGraph and qpGraph on three simulated admixture graphs.
The asterix (*) indicates where miqoGraph found the correct topology and parameters, but was unable to
prove optimality within five minutes.

Example Running Time (s)

miqoGraph miqoGraph qpGraph

Correct Soln. Prove Opt.

SimpleMix (K = 2) 2 6 393
UnevenMix (K = 7) 42 *300 392
NestedMix (K = 4) 8 63 407

29

created using qpGraph, with the topology pre-specified through manual enumeration, is shown in Figure 11.

Karitiana was admixed between an ancient North Eurasian-related and a present-day East Asian-related

source, which is consistent with [11].

Figure 11: Drift lengths and admixture proportions inferred by qpGraph on the Eurasian-American dataset.
The topology was pre-specified. Populations with real data are colored in beige, while auxiliary nodes are
uncolored.

The admixture graph created using miqoGraph at K = 4 is shown in Figure 12a. Notably, the topology

inferred by miqoGraph matches the pre-specified topology in Figure 11 (and therefore [11]), with some

permutation that we explain stepwise in Figure 12. Permutation is allowed by miqoGraph because the f3-

statistics do not depend on the direction of the edges. For ease of comparison, in Figures 12b and 12c we

show the steps taken to translate the output of Figure 12a into the standard format of Figure 11. The

translation maps the non-leaf nodes 1 − 7 of Figure 12a to an empty node, OOA, EE, Human, preANE,

preEE, and an empty node, respectively. Root and WE from Figure 11 do not appear in Figure 12a, but by

examining the drift lengths, we see that they were absorbed into the (4,Altai-1) and (2,5) edges, respectively.

The drift of 517 along the edge (4,Altai-1) corresponds to the (Root,Altai) and (Root,Human) drifts of 258

each (258 + 258 = 516). Similarly, the drift of 120 along the edge (2,5) corresponds to the OOA-WE and

WE-pre-ANE drifts of 54 each (54 + 54 = 108).

At K = 4, we are unable to capture the full continuity of mixing proportions, and as a result, our drift

lengths and admixture proportions do not match those of qpGraph exactly. Nonetheless, they are close: our

30

inference of 25% and 75% are close to the precise values inferred by qpGraph of 28% and 72%, and the drift

lengths match closely as well. The drift lengths around Karatiana are an exception, but is likely due to the

fact that qpGraph cannot distinguish between drift that occurs before or after admixture.

We also ran further instances of miqoGraph for K = 5 through 10, and as expected, saw convergence

in topology, and qualitatively similar weights and proportions. Even at the highest granularity of K = 10,

miqoGraph terminated in under a minute.

6 Limitations

The main limitation of miqoGraph lies in the restriction of admixture events to the leaf nodes of the graph

and therefore, the interpretation of its output in the presence of multiple nested admixture events. Suppose

a particular population A has admixture from populations B and C, and that B itself is admixed from D and

E. The ordering of these events is not captured in our representation of the graph, and it can be challenging

to reconstruct the correct sequence of events leading to the true admixture graph. To aid interpretability,

our framework allows the user to sequentially add new populations while fixing the topology for other

populations. The positions of these new populations can vary freely, or they can be tentatively assigned to

positions based on the user’s best guess, giving the optimizer a “warm start” to improve upon. A second issue

with our approach is that the proportion of admixture inferred is done in discrete values whose granularity is

specified a priori. It is possible that at low admixture granularities, the best-fit topology may be incorrect.

One possible way to mitigate this effect is to use miqoGraph to explore a possible set of graph topologies and

then to use continuous optimizers such as that implemented in AdmixTools [10] to fit parameters on these

topologies.

Nonetheless, miqoGraph’s ability to produce admixture graphs in seconds and match both qpGraph-

enumerated results as well as knowledge from the literature [11] illustrates the power of mixed-integer

quadratic optimization in fitting topologies, drifts, and admixture proportions jointly.

References

[1] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computation, 1(1):1–41, 2009.

[2] Pietro Belotti. Couenne: a user’s manual. Technical report, Technical report, Lehigh University, 2009.

[3] Pierre Bonami and Jon Lee. Bonmin user’s manual. Numer Math, 4:1–32, 2007.

[4] Daniele Catanzaro, Ravi Ramamoorthi, and Russell Schwartz. A mixed integer linear programming model to reconstruct phy-

logenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. Algorithms for Molecular

Biology, 8(3):2, 2013.

[5] Chris Coey, Miles Lubin, and Juan Pablo Vielma. Outer approximation with conic certificates for mixed-integer convex problems.

Mathematical Programming Computation, pp. 1–45, 2020.

[6] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In European Control Conference (ECC),

pp. 3071–3076, 2013.

[7] Bernard Fortz, Olga Oliveira, and Cristina Requejo. Compact mixed integer linear programming models to the minimum weighted

tree reconstruction problem. European Journal of Operational Research, 256(1):242–251, 2017.

[8] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. Efficient coalescent simulation and genealogical analysis for large

sample sizes. PLoS Comput Biol, 12(5):1–22, 05 2016.

[9] Ole Kröger, Carleton Coffrin, Hassan Hijazi, and Harsha Nagarajan. Juniper: an open-source nonlinear branch-and-bound solver

in julia. In International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations

Research, pp. 377–386. Springer, 2018.

31

[10] Nick Patterson, Priya Moorjani, Yontao Luo, Swapan Mallick, Nadin Rohland, Yiping Zhan, Teri Genschoreck, Teresa Webster,

and David Reich. Ancient admixture in human history. Genetics, 192(3):1065–1093, 2012.

[11] Maanasa Raghavan, Pontus Skoglund, Kelly E Graf, Mait Metspalu, Anders Albrechtsen, Ida Moltke, Simon Rasmussen,

Thomas W Stafford Jr, Ludovic Orlando, Ene Metspalu, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of

Native Americans. Nature, 505(7481):87, 2014.

[12] Srinath Sridhar, Fumei Lam, Guy E Blelloch, Ramamoorthi Ravi, and Russell Schwartz. Mixed integer linear programming for

maximum-parsimony phylogeny inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5(3):323–

331, 2008.

[13] Bartolomeo Stellato, Vihangkumar V Naik, Alberto Bemporad, Paul Goulart, and Stephen Boyd. Embedded mixed-integer

quadratic optimization using the osqp solver. In 2018 European Control Conference (ECC), pp. 1536–1541. IEEE, 2018.

32

(a) Topology, drift lengths and admixture proportions inferred by miqoGraph. Nodes of the binary tree
are labeled with number 1− 15, with the leaves corresponding to nodes 8− 15. The label “Altai-1” in
node 8 means that Altai was assigned to node 8 at 100%; the label “Karitiana-0.25” in node 11 means
that Karitiana was assigned to node 11 at 25%.

(b) An equivalent permutation of the binary tree in Figure
12a, with directedness added to the edges. Root and WE
(red borders) were absorbed into the (4, Altai-1) and (2,
5) edges, respectively. Nodes 1, 7, and 14 do not appear
because they are meaningless filler nodes.

(c) The graph in Figure 12b with the ances-
tral nodes labeled according to Figure 11.

Figure 12: Topology, drift lengths and admixture proportions inferred by miqoGraph on the Eurasian-
American dataset. Each subfigure represents a step in translating the output of miqoGraph to the format
of qpGraph. Figure 12a shows the immediate binary-tree-formatted output produced by miqoGraph, which
is permuted in Figure 12b, and then relabeled in Figure 12a. This process illustrates that the output from
miqoGraph matches that produced by enumeration and qpGraph.

33

	2020_Yan_Bioinformatics_MiqoGraph
	2020_Yan_Bioinformatics_MiqoGraph_supplement
	Documentation
	Installation Instructions
	Usage
	Input Data
	A Default Wrapper
	Reading Data
	Fitting a Model
	Running Scripts

	Preliminaries
	f-Statistics
	Admixture

	Integer Optimization Formulation
	Without Admixture
	A Motivating Example
	Formulation
	blueExample Variable Values and Constraints

	With Admixture
	A Motivating Example
	Formulation
	blueExample Variable Values and Constraints

	Simulated Data
	Computational Results
	The SimpleMix example
	The UnevenMix example
	The NestedMix example
	The Eurasian-American example

	Limitations

