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Abstract 

Genetic history of the Thai people and, more generally, speakers of the Kra-Dai languages (also known as 

Tai-Kadai languages) in Thailand remains a topic of debate. Recently, Kutanan et al.1 analyzed genome-

wide genetic data for dozens of present-day human populations from Thailand and surrounding countries 

and concluded that the Central Thai, Southern Thai, and Malay from Southern Thailand are genetically 

continuous with Austroasiatic speakers such as Mon, and thus the advent of Kra-Dai and Austronesian 

languages to Central and Southern Thailand was overwhelmingly a result of cultural rather than genetic 

diffusion. We re-analyzed the genetic data reported by Kutanan et al.1 using an advanced technique for 

inferring admixture graph models, using autosomal haplotypes, and other methods. We did not reproduce 

the results by Kutanan et al.1, and our analyses revealed a more complex picture of the genetic history of 

Kra-Dai speakers and other populations of Thailand. 
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Introduction 

Kra-Dai is a language family uniting about 90 languages spoken mainly in Southern China, Laos, 

Thailand, Vietnam, and Myanmar2. It is believed based on evidence from historical linguistics that this 

language family has been spreading from Southern China in the last two millennia3. Limited genome-

wide archaeogenetic data that were possible to generate in the tropical climate showed that speakers of 

another large language family distributed over the same territory, Austroasiatic, are genetically very close 

to the first farmers in Mainland Southeast Asia (MSEA)4,5, but Kra-Dai speakers are not fully genetically 

continuous with these farmers and likely represent a later wave of migrants to MSEA5. Similar to 

discussion of other large cultural areas, with respect to the area inhabited by Kra-Dai speakers there is a 

debate around the contribution of cultural vs. demic diffusion to the origin of this area1,6-8. Kutanan et al.1 

generated genome-wide genotyping data (on the HumanOrigins SNP array9) for 17 present-day Kra-Dai-

speaking groups from Thailand and Laos, and for other groups from Thailand. One of the main 

conclusions of that study is the existence of nearly perfect genetic continuity between Austroasiatic 

speakers (represented, for example, by Mon) and Central Thai, Southern Thai, and Malay from Southern 

Thailand. Another scenario for the arrival of the latter three populations to Central and Southern Thailand, 

that is genetic admixture between the incoming Kra-Dai and Austronesian migrants and the indigenous 

Austroasiatic population, was not discounted by Kutanan et al.1, but cultural diffusion was clearly favored 

as an interpretation for the results of their genetic analyses. These results rely on two lines of evidence: 1) 

most importantly, admixture graphs fitted to allele frequency data in the form of f3-statistics9 and co-

modelling Central Thai, Southern Thai, Malay from Southern Thailand, and Mon, in addition to several 

reference populations, 2) a principal component analysis (PCA) of genetic data10, and 3) “ancestry 

painting” performed with GlobeTrotter, a tool relying on autosomal haplotypes11. 
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In this study we re-analyzed the HumanOrigins genotyping data published by Kutanan et al.1 along with 

other compatible data for present-day groups from MSEA, East Asia, and South Asia12-16. We relied on 

analytical protocols different from those employed by Kutanan et al.1 but tailored to the same types of 

data: 1) findGraphs17, a tool for exploration of large admixture graph topology spaces and for comparison 

of admixture graph model fits in a rigorous way (another automated admixture graph inference tool, 

AdmixtureBayes, was used in the original study; see https://github.com/svendvn/AdmixtureBayes); 2) 

SOURCEFIND v.218, a haplotype-based tool building an admixture model for a target group from a panel 

of source proxies (GlobeTrotter was used instead in the original study). Our re-analysis does not support 

the genetic continuity of Austroasiatic speakers with the Thai and Malay groups in Thailand. In addition 

to a methodological discussion, below we present a fine-grained model for recent ancestry of the Thai and 

of Kra-Dai speakers in Thailand in general. 

 

Results and Discussion 

Admixture graph models of genetic history 

Kutanan et al.1 presented two admixture graph models relevant for the central question of genetic 

continuity between Austroasiatic and Kra-Dai speakers in Thailand. The simpler model (in Fig. 6C of that 

study) fitting the data well (with the worst-fitting f-statistic 1.6 standard errors away from the observed 

value) included Southern Thai and Malay as groups cladal with Mon, and Central Thai got 22% of their 

ancestry from another East Asian source according to that model. The more complex model (in Suppl. 

Fig. 19 of that study) fitted the data poorly (it had the worst f-statistic residual of 4.1 SE) and was 

interpreted as largely supporting the simpler model. According to the complex model, Southern Thai, 

Central Thai, and Malay from Southern Thailand are essentially cladal with two Austroasiatic-speaking 

groups (Mon and Cambodians) but differ from them slightly in the proportion of South Asian ancestry or 

Atayal-related ancestry in the case of Malay. In other words, the sources of East Asian ancestry in Mon, 
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Cambodians, and Thai are the same (see the complex published graph in Fig. 1d). These two admixture 

graph topologies were inferred automatically using the AdmixtureBayes tool 

(https://github.com/svendvn/AdmixtureBayes), and no alternative models were shown or discussed. 

Notably, the topological details of these two graphs were used by Kutanan et al.1 as primary evidence to 

support a major conclusion: the genetic continuity between Austroasiatic groups and Thai or Malay1. 

 

We argue that using admixture graph models in this way, i.e., to support very specific statements about 

demographic history, is an exercise that is fraught with problems on many levels. These conceptual 

problems are discussed in detail by Maier et al.17, where novel approaches for admixture graph inference 

are introduced. Here we revisited the same population sets and graph complexities (the number of 

admixture events allowed) that were used by Kutanan et al.1 and explored these spaces of graph 

topologies with an automated tool, findGraphs17, that finds models corresponding to local fit optima in 

these spaces. In other words, we attempted to find alternative well-fitting models for the simple and 

complex graphs presented by Kutanan et al.1, based on a very similar set of SNPs (HumanOrigins) and 

having the same population composition, the same complexity, and the same outgroup populations as in 

the original study. The findGraphs algorithm is seeded by a random graph of a given complexity and 

satisfying given constraints, and applies various graph-modification procedures iteratively, attempting to 

find a local optimum in the graph fit space (see Maier et al.17 for details). For each graph complexity 

class, the algorithm was started 500 times from random graphs, and for simplicity, only one inferred 

graph (best-fitting according to the log-likelihood score) was taken from each such run (see Methods for 

details). Fits of the resulting sets of distinct alternative topologies to the genetic data are visualized in Fig. 

1. 

 

The first problem of the admixture graph framework becomes obvious when inspecting Fig. 1a,b: even a 

shallow exploration of the enormous spaces of alternative topologies reveals that dozens to hundreds of 
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topologies fit the data approximately equally well. Two metrics are used in the literature for estimating 

fits of admixture graphs to f-statistic data, and those are worst f-statistic residuals (WR), also referred to 

as Z-scores and measured in standard errors (SE), or log-likelihood scores (LL) that take into account all 

f-statistics. Here we placed the newly inferred and the published models in the space of both metrics that 

are relatively well correlated (Fig. 1a,b). 

 

Comparing fits of alternative admixture graph models in a statistically rigorous way is needed for any 

large-scale model exploration, and an algorithm for this purpose was introduced by Maier et al.17 The 

essence of this algorithm is fitting two alternative models on a set of bootstrap-resampled replicates of 

genetic data (this is easy to implement since for calculating SEs of f-statistics SNPs are divided into 

blocks based on genetic or physical distance) and comparing the resulting distributions of LL scores (see 

Maier et al.17 for details). Unlike previous methods for comparing fits of admixture graph models19,20, this 

method takes stochasticity in evolution of unlinked SNPs into account and has no assumptions about the 

number of independent model parameters (which in the case of admixture graphs is not trivial to 

estimate)17. Relying on this bootstrap-based model comparison approach, we found that hundreds of 

alternative models (matching both the simple and complex graphs in complexity) have fits to the data that 

are not significantly different from that of the published model (Fig. 1a,b). We note that the same 

constraints on the graph topology were applied as in the original study: French or Mbuti were assigned as 

an outgroup. Even a shallow exploration of both graph spaces found hundreds of models that fit the data 

as good as the published ones, and deeper exploration (performing more findGraphs runs and/or 

extracting more graphs from each run) is guaranteed to deliver further and further models of this kind17. 

 

A question arises: is it justified to put a lot of weight on a particular graph and derive historical 

interpretations of its topology if hundreds of diverse topologies fit the data equally well? This is a key 

point discussed by Maier et al.17 when revisiting admixture graphs from eight published studies. For 
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instance, it was found that there are at least several models fitting the data significantly better than the 

admixture graph for East Asians used to support a key conclusion by Wang et al.13, and the alternative 

models do not support the conclusion. These alternative models were found even after applying multiple 

topological constraints (guided by archaeology, linguistics, and other genetic studies) that Wang et al.13 

relied on when constructing their graph manually17. 

 

What are the reasons for this high topological diversity among well-fitting models that was shown to be 

ubiquitous for admixture graph spaces explored in the literature?17 First, there are inherent limitations of 

f-statistics related to directionality of gene flow: distinct graph topologies are known to yield identical f-

statistics (see, for instance, Prüfer et al.21). Second, overfitting becomes a problem if too many admixture 

events are allowed. Overfitting was shown to be a common problem of admixture graphs reported in the 

literature17. Third, diversity of well-fitting topologies may result from a lack of reference populations that 

are differentially related to populations of interest and are needed for constraining the models17. 

 

We believe that the latter point is especially relevant for interpreting the admixture graph results by 

Kutanan et al.1 We note that all the MSEA groups included in the published graphs (Cambodians, Mon, 

Central and Southern Thai, Malay) are separated by very short genetic drift edges: the lengths of these 

edges are very close to 0 in the case of the simple (see Fig. 6C in the original study) and complex (Fig. 

1d) published graphs and all the alternative models we explored (see an example in Fig. 1c). This 

suggests that reference groups that could be instrumental in distinguishing the populations of interest (due 

to their differential relatedness to them) are lacking in the models. The simple eight-population graph is 

especially problematic in this respect since the only East Asian group included that lives outside of the 

region of interest (MSEA) is Atayal from Taiwan, and no Tibeto-Burman-speaking or Kra-Dai-speaking 

proxies for potential ancestry sources were included. For instance, a Tibeto-Burman-related ancestry 

component was detected in Austroasiatic-speaking Mon by Kutanan et al.1 using methods other than 
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admixture graphs, and also by Changmai et al.14 Given these results, the lack of a Tibeto-Burman 

reference population (and of other key reference groups) in both the simple and complex graphs from 

Kutanan et al.1 probably makes these admixture graph systems unconstrained. Therefore, it is not 

surprising that hundreds of simple topologies fit the data well in absolute terms (WR < 3 SE) and fit the 

data as good as the published model (Fig. 1a). 

 

Since the complex graphs are more constrained than the simple ones (likely due to the inclusion of Kra-

Dai-speaking Dai from Southern China), the alternative models we found are more differentiated 

according to their fits to the data (Fig. 1b). The published model on our dataset has a fit (WR = 3.9 SE) 

that is very close to that reported in the original study (WR = 4.1 SE), and such a fit is considered poor by 

convention since it exceeds 3 SE. We found 11 complex topologies (with 11 groups and 9 admixture 

events) that fit the data well in absolute terms (WR < 3 SE) and, moreover, that fit the data significantly 

better than the published topology (with two-tailed empirical model-comparison p-values < 0.05). One 

such topology is shown as an example in Fig. 1c. As discussed in Maier et al.17, inference of demographic 

history in the admixture graph framework has important limitations even if best-practice protocols 

introduced in that study are adhered to. For instance, it is unknown what parsimony level (the number of 

admixture events) is optimal for inferring true history, and changing graph complexity can dramatically 

change the pattern of topologies that fit the data, and hence their historical interpretation17. As discussed 

above, the outcomes of a model inference protocol also depend a lot on the choice of groups included in 

the model17. For these reasons we did not believe that any well-fitting model found by us is accurate; on 

the contrary, we believe that all of them are wrong in one way or another. However, the model shown in 

Fig. 1c has several features that match archaeogenetic results reported in the literature and derived using 

various methods other than admixture graphs: 1) Indians are derived from Ancient North Indians of West 

Eurasian origin and Ancient South Indians related to the Andamanese22,23; 2) there is a fraction of Atayal 
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(Austronesian)-related ancestry in Malay from Southern Thailand, who are Austronesian speakers14; 3) 

there is South Asian (Indian) ancestry in nearly all MSEA groups included in the model1,14. 

 

Importantly, the alternative model shown in Fig. 1c (and other alternative models we found) contradict the 

key conclusion by Kutanan et al.1, that is the nearly perfect genetic continuity between the Austroasiatic 

(Mon) and Thai and Malay groups in Thailand. If we interpret the graph node marked as “MSEA+SAS” 

(Fig. 1c) as an Austroasiatic-speaking group with Indian admixture similar in its ancestry composition to 

Mon1,14, then the Malay group from Thailand gets 49% of ancestry from an Austronesian Atayal-related 

source, Southern Thai get 48% of their ancestry from Malay, and Central Thai get 39% of their ancestry 

from an unidentified East Asian source (Fig. 1c). This topology and inferred admixture proportions are 

hardly compatible with the scenario of genetic continuity between indigenous Austroasiatic speakers 

represented by Mon and Thai or Malay people. We stress that although the alternative model presented in 

this study fits the data well and significantly better than the published one, we do not claim it to be fully 

accurate. We believe that for disproving a claim relying on a particular admixture graph topology, even a 

single well-fitting historically plausible topology serving as a counterexample is enough. 

 

Inference of recent ancestry based on autosomal haplotypes and other evidence 

Another result by Kutanan et al.1 supporting the genetic continuity hypothesis is inference of recent 

ancestry with GlobeTrotter11. According to this analysis, the Mon, Central Thai, Southern Thai, and 

Malay from Thailand were inferred to have similar ancestry profiles (proportions of ancestry derived from 

a panel of potential sources according to the model), and at least 50% of ancestry in these four groups was 

contributed by a source most closely related to Austroasiatic-speaking Kinh (Vietnamese, see Fig. 6A in 

the original paper). These results (the similarity of “ancestry painting” profiles for Mon and Thai or 
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Malay and the high proportion of Kinh-related ancestry in all these groups) were interpreted as supporting 

the genetic continuity hypothesis for Austroasiatic speakers and Thai and Malay. 

 

SOURCEFIND18 was introduced by the team that developed ChromoPainter11,24 and GlobeTrotter11, and 

unlike the latter software, which is mainly aimed at inference of admixture dates, SOURCEFIND is aimed 

specifically at inferring complex mixture models (proportions of admixture). This tool implements a 

mixture model distinct from that used in GlobeTrotter, and this model demonstrates better performance on 

simulated data18. For this reason, we decided to reanalyze the data by Kutanan et al.1 with 

SOURCEFIND. Our analysis was focused on 15 Kra-Dai-speaking groups from Thailand (Fig. 2, Suppl. 

Table 2). Three Austroasiatic-speaking (Bru, Khmu, and Palaung), one Hmong-Mien-speaking (Hmong 

Daw), and one Sino-Tibetan-speaking group (Karen Padaung) were chosen as controls. Most other MSEA 

groups and selected East Asian and South Asian groups from our dataset (Suppl. Table 1) were used as 

potential ancestry source proxies. Unlike GlobeTrotter, SOURCEFIND identifies source proxies whose 

contribution is distinguishable from noise and uses only those in constructing a mixture model. We show 

ancestry proportions for sources accounting for at least 1% of the genome in any target group in Suppl. 

Table 2 and for major sources (>10% of the genome in at least one group) in Fig. 2. We also note that 

another difference in the approaches used here and by Kutanan et al.1 is the composition of the panel of 

potential source proxies (Suppl. Table 1 and Fig. 6A in Kutanan et al.1). For instance, no Kra-Dai 

speakers from Laos and Southern China (except for Dai) were included in this panel by Kutanan et al.1 

 

According to our mixture model (Fig. 2, Suppl. Table 2), a predominant ancestry component in most Kra-

Dai speakers from Thailand is not Kinh-related, but Lao-related (a Lao group from Laos was used as a 

source proxy), although Kinh was also included in the panel of potential source proxies (Suppl. Table 1). 

The fraction of Lao-related ancestry reached 95% in Kra-Dai speakers from the Northeast of Thailand 

near the Laos border. In contrast, the fraction of Kinh-related ancestry reached at most 4.4% in any of the 
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target groups (Suppl. Table 2). Genetic contribution from a Mon-related Austroasiatic source was also 

negligible in Kra-Dai speakers according to our model, 1% at most (Suppl. Table 2). Bru, another group 

from Northeastern Thailand, demonstrates a strikingly different pattern, with <1% of Lao-related ancestry 

(Fig. 2, Suppl. Table 2). Bru is a relatively isolated Austroasiatic-speaking group, and thus the patterns of 

recent ancestry inferred with SOURCEFIND are influenced not only by geography. The Lao-related 

ancestry component accounts for >50% of ancestry in the Central Thai, but is negligible in the Southern 

Thai. Although an Austroasiatic genetic component (Cambodian-related) contributes to some Kra-Dai 

groups in Thailand according to our model (Fig. 2, for example, 7.5% in the Central Thai), in none of 

these groups it accounts for more than 32% of ancestry. In addition to Laos, we were able to trace genetic 

connections to Kra-Dai-speaking groups in Southern China: the Zhuang-related component accounted for 

up to 41% of ancestry in Kra-Dai speakers, but only in the North of Thailand (Fig. 2). Remarkably, it was 

also detected at 11.5% in the Yuan group from Central Thailand who were resettled from Northern 

Thailand about 200 years ago25. 

 

In agreement with our admixture graph model for Southern Thai (Fig. 1c), where 48% of their ancestry is 

derived from a Malay (Austronesian)-related source, this groups was modelled by SOURCEFIND as 

having 66% of their ancestry derived from the same source. We stress that the Malay group involved1 was 

sampled in Thailand, thus this result probably reflects bidirectional gene flow between Malay-speaking 

and Thai-speaking groups in Southern Thailand26. 

 

A surprising result of our inference of recent ancestry with SOURCEFIND is a large proportion of Bamar-

related ancestry in the Central (24%) and Southern Thai (11%) (Fig. 2). This ancestry component was also 

detected in two groups (Palaung and Shan) located close to the border with Myanmar (Fig. 2), and in that 

case the result correlates with geography. Our SOURCEFIND analysis (Suppl. Table 2) did not detect 

appreciable South Asian ancestry in the target groups, but we believe that the signal was obscured by the 
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presence of groups with substantial South Asian admixture among the source proxies (Bamar and 

Cambodians)14. 

 

Thus, to extend our previous mapping of South Asian ancestry in present-day MSEA14, we performed 

dedicated analyses with GlobeTrotter (Suppl. Table 3), ALDER (Suppl. Table 4), and “admixture” f3-

statistics (Suppl. Table 5). We applied GlobeTrotter to exactly the same dataset as was analyzed with 

SOURCEFIND, and substantial South Asian admixture was detected in the following groups: in Kra-Dai-

speaking Southern Thai (31%), Central Thai (24%), Lao Isan (22%), and Khonmueang (16%), and in 

Austroasiatic-speaking Palaung (25%) (Suppl. Table 3). South Asian ancestry in all five groups was 

supported not only by GlobeTrotter, but also by ALDER based on linkage disequilibrium decay (Suppl. 

Table 4), and by “admixture” f3-statistics9 of the type f3(MSEA; SEA, South Asian) based on allele 

frequency correlations (Suppl. Table 5). In the case of ALDER and f3-statistics, all possible pairs of source 

proxies “East or Southeast Asian + South Asian” were tested. 

 

Conclusions 

We aimed at testing a historical scenario recently proposed by Kutanan et al.1, namely that the Central 

Thai, Southern Thai, and Malay from Thailand are genetically continuous with indigenous Austroasiatic 

speakers such as Mon. We demonstrated that this simple model favored by Kutanan et al.1 fits allele 

frequency correlation data (f-statistics) significantly worse that some alternative admixture graph models 

we found relying on a new tool for exploring admixture graph fit spaces17. We also demonstrated that the 

other line of evidence invoked by Kutanan et al.1, namely complex mixture models based on autosomal 

haplotypes, depends critically on details of the modelling algorithm (GlobeTrotter vs. SOURCEFIND) 

and on the composition of the panel of source proxies. Our mixture models inferred with SOURCEFIND 

suggest a rich history of Kra-Dai speakers in Thailand, with several ancestry components correlated with 
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geography or linguistic affiliation. In general, our models, both admixture graphs and SOURCEFIND, 

support substantial Austroasiatic-related admixture in Kra-Dai speakers from Thailand, but they reject the 

model of genetic continuity between these major populations. 

 

Kutanan et al.1 detected substantial South Asian admixture in the Central Thai, Southern Thai, and Malay 

from Thailand, but not in other newly reported groups. We extended this result to few other groups from 

Thailand reported by Kutanan et al.1: Kra-Dai-speaking Lao Isan and Khonmueang, and Austroasiatic-

speaking Palaung. Combining these results with our previous study focused on South Asian admixture 

across MSEA14, we conclude that this ancestry is common in the region, but far from universal. South 

Asian ancestry is likely restricted to populations that were involved in the formation of early states in 

MSEA influenced by Indian culture such as Funan in Cambodia and Dvaravati in Thailand14. 

 

Methods 

Assembling the dataset 

We used exclusively published diploid genotyping data generated on the Affymetrix HumanOrigins SNP 

array9 mainly in the following studies: Kutanan et al.1, Liu et al.12, Wang et al.13, Changmai et al.14, 

Lazaridis et al.15, Nakatsuka et al.16 For a list of individuals, groups, their linguistic affiliations, and data 

sources see Suppl. Table 1. All our work relied on a set of 574,131 autosomal HumanOrigins SNPs 

identical to that used in Changmai et al.14 

 

Exploring admixture graph topology spaces 

All our work with f-statistics and methods relying on them was done using the ADMIXTOOLS 2 

package17 (https://uqrmaie1.github.io/admixtools/). To calculate f3-statistics needed for fitting admixture 
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graph models, we first used the “extract_f2” function with the “maxmiss” argument set at 0, which 

corresponds to the “useallsnps: NO” setting in the classic ADMIXTOOLS9. It means that no missing data 

are allowed (at the level of populations) in the specified set of populations for which pairwise f2-statistics 

are calculated. The “blgsize” argument sets the SNP block size in Morgans, and we used the default value 

of 0.05 (5 cM). Since all groups involved in the admixture graph modelling included more than one 

individual, and diploid variant calls were available for all individuals, the “adjust_pseudohaploid” and 

“minac2” arguments were set to “FALSE”17. The “extract_f2” function calculates f2-statistics for all pairs 

of groups per each SNP block, and those are used by the “find_graphs” and “qpgraph” functions for 

calculating f3-statistics as linear sums of f2-statistics9. In the absence of missing data (and no missing data 

weas allowed at the level of groups) the linear sums should be unbiased17. 

 

We used the “find_graphs” function from the ADMIXTOOLS 2 package for finding multiple alternative 

well-fitting topologies. We worked on the sets of groups and individuals that were identical to those used 

by Kutanan et al.1 for constructing their admixture graphs presented in Fig. 6C (8 groups and 5 admixture 

events) and Suppl. Fig. 19 (11 groups and 9 admixture events). We did not modify the graph complexity 

(the number of admixture events) either and kept the outgroups used by Kutanan et al.1: French for the 

simpler graph and Mbuti for the complex graph. The characteristics of the datasets used for admixture 

graph fitting in our study are as follows: 1) graphs of the “simple” complexity class were based on 8 

groups, 177 individuals (Suppl. Table 1), and 456,719 sites polymorphic in this set of groups and having 

no missing data at the group level; 2) graphs of the “complex” class were based on 11 groups, 207 

individuals (Suppl. Table 1), and 501,703 sites polymorphic in this set of groups and having no missing 

data at the group level. 

 

For each graph complexity class, the findGraphs algorithm was started 500 times independently, seeded 

by random graphs with a specified number of admixture events (5 or 9) and a specified outgroup (French 
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or Mbuti). Random graphs were generated with the “random_admixturegraph” function. The settings of 

the findGraphs algorithm were identical to those presented in Maier et al.17 (see the Methods section in 

that preprint), and French or Mbuti were specified as outgroups at this topology optimization step too. 

From each findGraphs run, one best-fitting topology (i.e., the highest-ranking topology according to the 

log-likelihood score) was extracted, and a set of non-redundant topologies was constructed from all the 

runs. Fits of these topologies to the data (log-likelihood scores and the worst f-statistic residuals) were 

plotted, and best-fitting topologies were inspected manually for features that are important for historical 

interpretations. The published admixture graph topologies (Fig. 6C and Suppl. Fig. 19 from Kutanan et 

al.1) were fitted to the same per-block f2-statistic data using the “qpgraph” function with the following 

settings: “numstart=100, diag = 0.0001, return_fstats=TRUE”. 

 

To find out if newly found admixture graph models fit the data significantly better or worse than the 

published ones, we used a bootstrap-based model comparison algorithm developed by Maier et al.17 Five 

hundred bootstrap replicates of the two SNP block datasets, corresponding to the simple and complex 

published graphs, were generated (with the 5 cM block size). The algorithm reports empirical two-tailed 

p-values, 0.05 was used as a p-value threshold, and the settings of the algorithm were identical to those 

used by Maier et al.17 

 

Methods based on autosomal haplotypes 

We phased a world-wide dataset of 3,945 individuals (compiled from published sources) using SHAPEIT 

v.2 (r900)27 with 1000 Genomes Phase 3 genetic maps28. We then ran ChromoPainter v.211,24 to generate 

inputs for SOURCEFIND v.218 and fastGLOBETROTTER29. We selected 75 surrogates and 20 target 

populations (14 Kra-Dai-speaking groups from Thailand for whom the data were reported by Kutanan et 

al.1, one Kra-Dai-speaking group from Thailand for whom the data were reported by Changmai et al.14, 
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and 5 control groups from Thailand speaking other languages) (see a list of populations involved in 

Suppl. Table 1). We ran ChromoPainter v.2 assigning all the surrogates as donors and recipients, but the 

target populations were assigned as recipients only. This means that target populations receive haplotypes 

only from surrogates, but not from their own population nor other target populations. The other details of 

the ChromoPainter v.2 protocol exactly followed those presented by Changmai et al.14 

 

The settings of the SOURCEFIND algorithm used for inferring complex mixture models for the same set 

of 20 target groups were identical to those used by Changmai et al.14, and all the 75 surrogates were used 

as a panel of potential sources from which the algorithm constructed mixture models for each target. The 

settings of the fastGLOBETROTTER algorithm were also identical to those used by Changmai et al.14, 

and all the 75 surrogates were used for inferring best-fitting admixture models and estimating admixture 

dates. 

 

Fitting admixture models to linkage disequilibrium decay curves 

We used the ALDER tool30 with the default settings for fitting two-way admixture models of the type 

“East or Southeast Asian group + South Asian group” for the set of 20 target groups. For a list of groups 

involved see Suppl. Table 4. 

 

f3-statistics 

Statistics of the type f3(one of the 20 target groups; an East or Southeast Asian group, a South Asian 

group) were calculated using the “qp3pop” function of the ADMIXTOOLS 2 package. For each triplet of 

groups, no missing data was allowed at the group level (the default setting). f3-statistics were calculated 

directly from the genotype data, without f2-statistics as an intermediate. For a list of groups involved see 

Suppl. Table 5. 
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Figure legends 

Fig. 1. Fits of the newly found and published admixture graph topologies to the HumanOrigins autosomal 

genetic data. Each distinct topology is visualized as a dot in the space of two model fit metrics: log-

likelihood score (LL) and worst f-statistic residual (WR), with the published model highlighted in red. 

Results for the simpler complexity class (8 groups and 5 admixture events) are shown in panel a, and 

results for the complex graphs (11 groups and 9 admixture events) are shown in panel b. Results of model 

fit comparison tests on bootstrap replicates of the dataset17 are represented by different border colors 

according to the legend. For example, models fitting significantly better than the published model are 

represented by circles with magenta borders in panel b. The fitted complex published model and its fit 

metrics (log-likelihood score and WR) are visualized in panel d, and an alternative complex model chosen 

as an example and its fit metrics are shown in panel c. Some edges of the alternative model can be 

interpreted as ancient populations attested or inferred in the archaeogenetic literature, and those are 

labeled in panel c. Model parameters (admixture proportions and edge lengths measured in units of 

genetic drift) that cannot be estimated independently are highlighted in red. An algorithm for finding such 

parameters was introduced by Maier et al.17 The Malay group from Thailand is labelled as 

“S_Thailand_AN” on the graphs. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.30.498332doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.30.498332
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Sources of recent ancestry as inferred with SOURCEFIND v.2 in groups from Thailand. Here only 

sources contributing >10% to at least one target group are visualized (for full results see Suppl. Table 2). 

Locations of the groups on the map are shown with circles, and those are colored according to language 

affiliation. Ancestry composition is illustrated using pie charts. 

 

Supplemental Tables 

Suppl. Table 1. Composition of the dataset: groups and their sizes, linguistic affiliations, studies where 

the data were first reported, and their involvement in analyses in this study. 

 

Suppl. Table 2. Complex admixture models for 20 target groups inferred with SOURCEFIND aimed at 

detecting recent ancestry. Data for nineteen groups were published by Kutanan et al.1, and data for a Lue 

group were published by Changmai et al.14 Only source proxies contributing at least 1% of ancestry in 

any target group are shown in this table. 

 

Suppl. Table 3. Most likely two-way or multi-way admixture models inferred with GlobeTrotter (and 

their fits to the data and inferred admixture dates) for the same target groups and the same proxy sources 

that were analyzed with SOURCEFIND. 

 

Suppl. Table 4. Inference of two-way admixture models and admixture dates with ALDER. The set of 20 

target groups was analyzed (the same as in Suppl. Tables 2, 3, and 5), but in contrast to the GlobeTrotter 

approach, only pairs of source proxies composed of an East or Southeast Asian group and a South Asian 

group were tested. Only successfully fitted models are shown in the table. 
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Suppl. Table 5. “Admixture” f3-statistics of the type f3(MSEA; SEA, South Asian). The set of 20 target 

groups was analyzed (the same as in Suppl. Tables 2, 3, and 4). A significantly negative value (Z-score < 

3 SE) is a proof that the target group is admixed between sources related closely or distantly to the two 

other groups9. 
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