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Data S1: Supplementary information: historical background, archeological 

details, supplementary methods, additional statistical analyses, and 

supplementary discussion. Related to STAR Methods. 
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Section 1. Early Ashkenazi Jewish history and previous genetic studies 

1. The origins of early Ashkenazi Jews 

There are currently two main competing (although not entirely mutually exclusive) historical theories 

to explain Ashkenazi Jewish early origins. The first holds that AJ are at least partially descendants of 

Roman-period Diaspora Jews. This theory is supported by dispersed historical and archaeological 

evidence along the Germanic frontiers of the late Roman Empire. On the basis of the results of the 

Cologne synagogue excavations — a building that the excavator controversially dates to the early 

Carolingian period — it was argued that there is direct demographic continuity between the scattered 

late Roman Jewish “proto-Ashkenazic” presence in the region and the Jewish communities of the 

Rhineland of later times [1, 2]. 

The second theory, which is supported by more historical, onomastic, and linguistic data, regards AJ 

as a purely medieval formation that did not arise until the 10th century. According to this theory, AJ 

communities initially arose in the form of just a handful of family groupings in a few episcopal and 

royal urban centers and were the descendants of Jews from Southern Europe. There was continuous 

Jewish presence in Southern Europe since Roman times, and an extensive network of intercommunal 

ties linked these Jewish communities economically, culturally, and demographically to other Jewish 

communities around the Mediterranean [3-6]. Research suggests that early AJ of Northern Europe 

were the recipients of Jewish liturgical, legal, mystical, and linguistic practices from medieval Southern 

Italy. 

The available historical evidence does not support a third hypothesis that early AJ were primarily 

descendants of early medieval non-Jewish converts to Judaism known as Khazars — a polyethnic tribal 

constellation then resident in the Caucasus and adjacent regions [6]. 

2. Previous genetic studies of substructure in Ashkenazi Jews 

A number of previous studies have searched for genetic patterns of substructure in Ashkenazi Jews. 

Gusev et al. [7] analyzed genome-wide data from about 400 Ashkenazi Jewish individuals from Israel 

and about 300 from New York. They did not find any difference in the distribution of IBD segment 

lengths within or between the groups (Figures 3 and 4A therein). Guha et al. [8] studied about 1300 

Ashkenazi volunteers from Israel recruited from blood banks. They showed all AJ individuals on a PCA 

plot colored by country of origin (Figure 6 therein) and did not observe any pattern indicating the 

existence of structure. The study of Kopelman et al. [9] included about 160 AJ samples from multiple 

studies, not overlapping the two mentioned above. Their MDS and ADMIXTURE analyses on AJ 

individuals from different countries of origin did not show any visible structure (Figure 4E and 5A 

therein). Finally, Privé et al. [10] was able to identify about 1700 UK Biobank participants of Ashkenazi 

ancestry based on their overlap in PC space with reference Ashkenazi samples from other studies. 

These results suggest the absence of major population structure in Ashkenazi Jews, regardless of the 

present country of residence and the pre-WWII geographic origin. 

Three studies used genome-wide data to search for subtler evidence of population structure by 

comparing AJ of Western and Eastern European origin. Behar et al. [11] studied about 200 Jewish 

individuals from various Jewish communities in Israel, including 16 AJ of Eastern European origin and 

13 of Western European origin. In an ADMIXTURE analysis, they found a minor component (≈2%) of 

Central/East Asia-related ancestry in AJ of Eastern European, but not Western European origin (Figure 

3 therein). Granot-Hershkovitz et al. [12] studied about 900 Jewish individuals from Kibbutzim in Israel. 

Among individuals with a documented country of birth, 42 AJ individuals were born in Eastern Europe 
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and 47 in Germany (a proxy for Western Europe). A PCA plot (Supplementary Figure 3 therein) showed 

that the distributions of Western and Eastern AJ were highly overlapping, yet slightly shifted from one 

another. They also found higher levels of IBD sharing within Western AJ. Gladstein and Hammer [13] 

studied 239 Eastern AJ and 19 Western AJ (partly overlapping with [11]), finding that these groups 

were not fully overlapping in PCA and ADMIXTURE analyses (Figures S10 and S11 therein), and that a 

model of Western/Eastern substructure was more likely than a single population model. They dated 

the divergence between the two groups to 15 generations ago and inferred a higher growth rate for 

Eastern AJ (Table 1 therein) and more genetic drift in Western AJ (Figures S12-S14 therein). 

We also note that AncestryDNA found that its AJ users could be divided into three sub-clusters, but 

was not able to assign genealogical or geographical interpretation to these clusters [14] (pages 2-3 in 

their supplementary). Finally, a number of earlier studies found geographic differences within AJ in 

the allele frequencies of specific loci, e.g., mtDNA [15, 16], HLA genes [17], or specific pathogenic 

variants [18, 19]. 

Section 2. The medieval Erfurt Jewish community 

1. Historical background 

The medieval Jewish community in Erfurt was the oldest in Thuringia, and existed between the late 

11th century to 1454. The Erfurt old synagogue is the oldest (partly) intact synagogue in Europe [20]. 

The community practiced rabbinical Jewish law [21]. Erfurt belonged to the territory of the archbishop 

of Mainz, but was surrounded by territories of different counts and nobles. The Jews in surrounding 

towns were also part of the Erfurt community and buried their deceased in Erfurt [22, 23]. In the 

second half of 13th century, several families from the region of Franconia (in today’s Northern Bavaria) 

immigrated to Erfurt and probably to other towns in Thuringia. By the 14th century, about 30 families 

or more lived in Erfurt [23]. 

In 1349, a wave of pogroms (massacres) occurred, and many Jews in Erfurt and other towns in 

Thuringia were murdered [24-26]. Like in other cities with resident Jewish communities, in Erfurt, too, 

anti-Jewish persecutions started even before the arrival of the Black Death in 1350 [26]. Some families, 

particularly the wealthy ones, survived in territories in the region where pogroms did not occur, and 

could even keep parts of their property. It is unknown whether these families lived in Erfurt or in 

nearby towns before 1349, but in 1354, they belonged to those who resettled in Erfurt [25]. 

After 1354, the newly founded, "second" community of Erfurt grew to become one of the largest 

Jewish communities in Germany [27]. As the lists of rentals show, about 50 Jewish families lived in 

Erfurt by the 1370s. The rapid increase in the population between the 1350s and the 1370s was due 

in substantial part to migration of several Jewish families from Bohemia, Moravia, and Silesia to Erfurt 

and nearby towns (see Section 2.2) [28]. Surrounding Jewish settlements were part of the Erfurt 

community and buried their deceased in Erfurt after 1354 as well [29]. 

Some families left Erfurt in the 1380s and 1390s, whereas after 1400, families from nearby towns 

moved into Erfurt. The number of Jews in Erfurt after 1407 is unknown, as no lists of rentals remained 

[22, 23]; but it is known that in 1418, at least 20 families lived in Jewish settlements in the region that 

was part of the Erfurt community [29]. During the 1430s and 1440s, Jews in some areas of Thuringia 

were expelled or were forced to leave, and a few moved to Erfurt [29]. In 1453, the city council of 

Erfurt no longer granted the protection of the Jews. The Jewish families left Erfurt within a year, 
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marking the end the medieval Jewish community [30]. Resettlement of Jewish individuals only 

occurred in the 19th century in a different part of the city. 

2. Documented migration from the East into the second Erfurt community 

The information on the origin of Jewish families who migrated to Erfurt comes mainly from records of 

home rentals from 1354 to 1407. Most persons in these records are mentioned with bynames, which 

often name the town where they lived before [28]. Information in topographic bynames is limited, as 

they can change, and as the time period when a person has lived in the other town could vary. But in 

some cases, we have independent sources validating the former place of residence. From 1354, and 

especially in the 1360s, many families moved to Erfurt whose bynames refer to former places of 

residence in Bohemia, Moravia, and Silesia. For example, several families came from Breslau 

(Wrocław) after a pogrom in 1360, some after moving to Wrocław from other Silesian towns. After 

1400, there are no known cases of families migrating into Erfurt from the East [28, 29]. 

Towns in Silesia (present-day Poland) from where families moved to Erfurt include 

Bunzlau/Bolesławiec (one family, first mentioned in the records in 1383), Liegnitz/Legnica (two related 

families in 1360), Löwenberg/Lwówek Śląski (one person whose family was originally from Brno), 

Breslau/Wrocław (one family in 1355/6, more families after 1360), Striegau/Strzegom (one family in 

1366), Schweidnitz/Świdńica (one person in 1389), and Glatz/Kłodzko (one family in 1380). Towns in 

Bohemia and Moravia (present-day Czech Republic) from where families moved into Erfurt include 

the neighboring towns Braunau/Broumov and Náchod (two families in 1360 or later who moved 

through Wrocław), Prag/Praha (one family in 1366), Pilsen/Plzeň (one family in 1365), Eger/Cheb (one 

family in 1359), and Brünn/Brno (one family in 1363, with a son-in-law in Vienna) [28]. One man is 

known to have moved to Erfurt from Poland in 1327 (i.e., in the first community). 

Section 3. The archaeological excavation 

1. Ethics 

Traditional Judaism imposes very strict regulations on the management of Jewish cemeteries, 

including the directive that the dead should be left in peace—relocation is possible only under very 

particular circumstances. As a result, archaeological investigations in areas where Jewish cemeteries 

have survived (or are suspected to exist) are not allowed by traditional Jewish law as a matter of 

principle. While we know of quite a few medieval Jewish cemeteries in Europe, only few have been 

excavated [1, 31]. All published examples are the result of rescue excavations. In most cases, the 

human bones were reburied as quickly as possible, in consultation with the Jewish communities. The 

excavations in Erfurt took place under similar circumstances. 

2. The cemetery 

The medieval Erfurt Jewish cemetery was located, following religious regulations, outside the city of 

Erfurt itself. Its location today is confidently known based on 14th-century sources [26]. It is unknown 

when the excavated section of the cemetery was used for burial by the Erfurt Jewish community. 

However, some hints arise from examining the fortifications around the site and from archaeological 

evidence from elsewhere in the city. Our excavated section is located between the first city wall (12th 

century) to the south and an outer wall to the north, in an area where a moat used to lie in front of 

the first city wall (Figure 1A in the main text; Figure 1 below). It is conceivable that the excavated 

section was used as a cemetery only after the construction of the outer wall, as prior to constructing 

that wall, the area was used for fortification and the original cemetery must have extended beyond 
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the outer wall to the north. In Brühl, a site in the western part of Erfurt, wood retrieved from the moat 

in front of the first city wall was dated by dendrochronology to 1324/1325. Several years later – at an 

unknown date – the moat was filled and a second fortification wall was built with a new moat in front 

of it. It is plausible that the construction of an outer wall in the Jewish cemetery and in Brühl happened 

at around the same time. We consequently hypothesize that the outer wall in the area of the Jewish 

cemetery was constructed only in the second half of the 14th century. If correct, this would imply that 

the excavated section of the cemetery was used only by the second community. Radiocarbon dating 

of the teeth we sampled indicated dates primarily in the 14th century and definitely not later (Data S2, 

Table 1; Data S2, Table 3). However, the radiocarbon results could not exclude origins in the first half 

of the 14th century or even slightly earlier, which would place the samples in the first community 

(Figure S1C; Figure 2 below). After the expulsion of the Jews from Erfurt in 1454, a barn and a granary 

were built by the city in the years 1465-1473 on top of the cemetery. The granary (Kornhofspeicher) 

still exists today. The southern and northern walls of the granary were constructed on top of the inner 

and outer city walls, respectively (Figure 1 below). 
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Figure 1. The archeological site. (A) The excavation of the  medieval Jewish cemetery in Erfurt, Germany. The 

arrow points in the approximate direction of the north. The large structure behind (to the east of) the excavation 

site is a granary (the “Kornhofspeicher”) that was built in the 15th century on top of the cemetery and now serves 

as a garage. Behind the granary is Moritzstraße (distant building to the left), which delimits the area of the 

original cemetery to the east. To the right of the site is the wall of the old town of Erfurt, which bounded the 

A 

B 
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cemetery from the south. To the left (north) is an outer city wall that was built later. The area between the walls 

underwent salvage excavations before the construction of a ramp in 2013. The cemetery likely extended further 

north and west beyond the area of the excavation: the main part of the cemetery was possibly north of the city’s 

fortifications. (B) Skeletons that were discovered in the excavation (view from the granary). Both photos were 

adjusted for brightness and contrast. 

 

3. The excavation 

In earlier investigations of the area surrounding the granary (over a period of several years), numerous 

gravestones and human bones were recovered. Burials in situ (in graves) were only observed in the 

area a little further north of the outer wall. These could not be recovered due to safety reasons. The 

conversion of the granary into a multi-story car garage in 2013 required the construction of an external 

ramp, which then necessitated an archaeological rescue investigation. The excavation was carried out 

between 8 March and 17 April 2013. Since graves were not recognizable, a planum was first laid out 

by machine, at which point wood remains and some bones started to become visible. From then on, 

excavation was only done by hand. In the course of the excavation, at the suggestion of the builder, 

the recovery of the skeletons was restricted to areas where the constructions were expected to 

destroy the graves. In other areas, the skeletons remained in the ground. 

The number of graves exposed during the excavation is likely a small fraction of the total in the 

cemetery. The size of the excavation area was about 16 x 12 meters. It is certain that the cemetery 

continued to the west, up to an unknown boundary. To the east, burials were partially destroyed by 

the construction of the granary. The ground level inside the granary is so low that its construction in 

the 15th century destroyed all burials along a length of more than 80 meters. If one assumes an overall 

occupancy of a similar density as in the excavation field, about 1000 graves were destroyed by the 

construction of the granary. This assumes burial only on one level, as was encountered in the 

excavation area. 

4. The findings 

The archaeological documentation includes 47 burials. Six further graves were documented only after 

construction was underway and could only be partially recovered. Remains of wooden coffins were 

found in almost all graves. The graves were located remarkably close to one another (Figure 1A in the 

main text), and followed medieval Jewish funerary practice in that the integrity of the graves is always 

preserved. With one exception (I14850), all the burials lay parallel to the city wall, with the legs of the 

interred pointing roughly to the east – i.e., roughly in the direction of Jerusalem (Figure 1A in the main 

text). No grave goods were observed, but there is evidence that some of the dead were buried with 

their clothes. This is suggested by the presence of buckles (I14904, who was violently killed), a piece 

of jewelry on one of the women (I14850 again; the piece has a close parallel in the treasure trove from 

Weißenfels from 1349), and a silk ribbon on the head of a child. A full report detailing the physical 

anthropology of the remains will be published in the future [32]. 

A full description of the site, including an excavation report, will appear in the Die mittelalterliche 

jüdische Kultur in Erfurt (volume 6). 

5. Our study 

The Jewish community of Thuringia approved the genetic study in 2018 under the conditions that only 

detached teeth are used and no excavation is performed specifically for the purpose of DNA research. 
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In 2018, we (K.S. and S.F.) collected detached teeth (mostly molars) for the DNA study. Overall, we 

found 38 teeth, one per individual (see teeth numbers in Data S2, Table 1). In 2021, all skeletons were 

reburied in the recently recovered Jewish cemetery of the 19th-century community, and signs explain 

the history of the cemetery and provide information about the reburied Medieval dead. 

6. Radiocarbon dating 

Radiocarbon dating of ten individuals showed that all lived between about 1270-1400 CE (Figure S1C). 

However, due to a wiggle in the 14C calibration curve (Figure 2 below), we could not determine 

whether they lived before or after the 1349 pogrom. Hence, we could not determine if they belonged 

to the first or second Jewish communities.  

 

Figure 2. The radiocarbon calibration curve of a representative sample. We show a screenshot from OxCal for 

sample I14740 (see also Figure S1C). The figure demonstrates the wiggle in the calibration curve throughout the 

14th century, which prohibits a definitive dating of the sample to before or after the 1349 pogrom. 

Section 4. The DNA analysis 

1. The number of covered SNPs 

The DNA of Erfurt individuals was enriched for about 1.24 million SNPs. The mean and median number 

of covered SNPs in the autosomes of the Erfurt genomes were 402k and 383k, respectively. After 

merging with the Human Origins dataset, the mean and median number of SNPs in the Erfurt genomes 

were 219k and 205k, respectively. 
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Figure 3. The number of covered SNPs in each Erfurt sample. (A) In the original ancient genomes (autosomes 

only). (B) After merging with the Human Origins dataset. The horizontal dashed line indicates the cutoff defining 

the low-coverage genomes (see Section 5 below). 

 

2. Lower coverage in children 

We observed that all EAJ genomes covered at <100k SNPs were under the age of 13. To formally test 

whether children had lower coverage, we used the mid-range of the estimated age at death (see STAR 

Methods) and classified all individuals of estimated age ≤20 as children and all others as adults. We 

excluded two samples whose ages were not estimated. We then used a two-tailed t-test to compare 

the number of covered SNPs between children and adults. The significantly lower coverage in the 

children (P=6.7·10-7) raises the possibility that DNA may be less well preserved (on average) in teeth 

that are not fully developed. 

3. Pathogen DNA scan 

The screening pipeline included a three-step authenticity check of the sequences that align to a 

pathogen: the edit distance distribution, the presence of C-to-T sequence damage, and the edit 

distance distribution of the sequences that contain damage. Only a single pathogen, Enterobius 

vermicularis, passed all three authenticity screening steps (Data S2, Table 4). However, E. vermicularis, 

commonly known as a pinworm, is a human intestinal parasite that has previously been sampled from 

ancient latrines [33]. It is therefore unlikely that this pathogen would have been present in the teeth 

of the Erfurt individuals at their time of death, and the most likely source of this DNA is contaminated 

groundwater in the Erfurt cemetery after burial. The groundwater contamination hypothesis is further 

supported by the presence of reads aligning to E. vermicularis in as many as 23/33 Erfurt individuals 

(Data S2, Table 4), and by the fact that most cases (21/23; Data S2, Table 4) failed tests for the 

authenticity of ancient DNA. Similarly, five Erfurt individuals showed weak evidence for the 

Schistosoma mansoni pathogen, another water-borne human intestinal parasite that could have been 

introduced in the sampled teeth via environmental contamination after death. Very weak evidence 

was detected for pathogens associated with periodontal disease (Parvimonas micra, Fusobacterium, 

and Fusobacterium nucleatum) in a single individual, I14850 (the mother of family A, who was also 
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buried in opposite orientation to all other individuals and possibly with her clothes on; Section 3). 

Fewer than 30 sequences aligned to each of these pathogens, and no evidence of C-to-T damage was 

detected in any of the aligned sequences. However, these are all common oral pathogens [34], 

therefore it is possible that the sequences represent authentic DNA that was present in the oral 

microbiome during individual I14850’s lifetime, but that was not well preserved in this sample. 

Overall, our pathogen screening analysis did not find convincing evidence of any pathogens of interest 

among the Erfurt individuals. Particularly, we found no evidence of Yersinia pestis, the pathogen 

responsible for the plague, among any of the Erfurt individuals. The lack of evidence cannot 

completely rule out the possibility of Y. pestis infection in any given individual, as the preservation rate 

of Y. pestis DNA in teeth from individuals who are known to have died from plague has previously 

been estimated at only 37% [35]. However, the failure to detect any evidence of this pathogen among 

any of the Erfurt individuals suggests that the Erfurt cemetery is unlikely to have been a mass burial 

site for victims of a plague epidemic. 

4. Assignment of terminal Y chromosome and mitochondrial lineages 

Y chromosome. We only considered the ten male Erfurt genomes with >50k covered autosomal SNPs. 

Initial haplogroup calls were generated as described in the STAR Methods section. We used these 

assignments to search for terminal SNPs, which define more refined branches or subclades. We 

defined the terminal branches using reference haplotrees from YFull (v10.05), a Y chromosome 

sequence interpretation service, and from FamilyTreeDNA (FTDNA), a direct-to-consumer genetic 

testing company. For each Erfurt genome, we used the haplogroup assignment to initiate the search. 

We then manually compared the Erfurt genome sequence to downstream or nearby haplotree levels 

where modern AJ are commonly found. We repeated the search until finding a match with a terminal 

SNP. For each putative terminal branch, we validated the absence of variants that define downstream 

branches. Modern AJ Y sequences were available to us (L. R. C. and J. L.) as project administrators at 

FTNDA. The study received the approval of FTDNA. We called the genotype in each relevant SNP in 

each Erfurt genome manually using the BAM file in the Integrative Genomics Viewer (version 2.8.2). 

We converted SNP IDs to hg19 coordinates using 

https://www.genetichomeland.com/welcome/dnamarkerindex.asp. Across all individuals, only in two 

SNPs multiple alleles were present, and we called the genotype in these SNPs based on the majority 

of the reads. The method was effective in establishing a terminal branch for all ten genomes. The 

terminal branches and the nearest associated AJ lineage are listed in Data S2, Table 1. 

Mitochondrial DNA. We used YFull’s MTree (v1.02.17740) to define the reference haplotrees. As for 

Y, we started with the initial haplogroup call. For each Erfurt genome, we searched the mitochondrial 

DNA sequence for SNPs downstream of the initial haplogroup to define terminal branches.  

  

https://www.genetichomeland.com/welcome/dnamarkerindex.asp
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Section 5. Ancestry estimation 

1. The minimal number of SNPs for PCA 

To determine the minimal number of SNPs for a reliable PC projection, we down -sampled seven high-

coverage EAJ (four Erfurt-EU and three Erfurt-ME) to different levels of coverage (5k, 10k, 30k, 50k, 

and 100k SNPs) and examined their location in PC space relative to the original samples. For each 

genome and for each coverage level, we generated 20 down-sampled copies, and projected them 

onto the West-Eurasian PC space, as in the main text.  

The results (Figure 4 below) show that starting from 50k SNPs, the down-sampled genomes remain 

reasonably close to their original positions and there is no overlap between genomes originally 

designated as Erfurt-EU or Erfurt-ME. Hence, in downstream analyses of the PCA results, we only used 

genomes covered by at least 50k SNPs. 
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Figure 4. The effect of the coverage of the Erfurt genomes on the PCA results. Each panel represents different 

coverage level with 20 down-sampled copies for each original sample. The down-sampled genomes are plotted 

as triangles, colored based on their original sample ID. MAJ are plotted as filled green squares, and the original 

EAJ genomes are marked by two polygons corresponding to Erfurt-EU (to the left of MAJ) and Erfurt-ME (to the 

right of MAJ). All PCA plots are zoomed-in versions of the PCA in the main text. 
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2. PCA with AJ of Western and Eastern European origin 

For the analyses of MAJ of Eastern European vs Western European origin, we merged the EAJ genomes 

with those from [11]. The merged dataset included 245,792 autosomal SNPs. The following modern 

populations from [11] dataset were used to learn the PCs: Abkhasian, Adygei, Algerian_Jewish, 

Armenian, Balkar, Bedouin, Belarusian, Bulgarian, Chechen, Croat, Cypriot, Druze, Estonian, French, 

French_Basque, Georgian, Georgian_Jewish, Greek, Hungarian, Iranian, Iranian_Jewish, Iraqi_Jewish, 

Italian, Jordanian, Kumyk, Lebanese, Lezgin, Libyan_Jewish, Lithuanian, Mordovian, Moroccan, 

Moroccan_Jewish, North_Ossetian, Orcadian, Palestinian, Russian, Saudi, Sephardi_Jewish, Spanish, 

Syrian, Tunisian_Jewish, Turkish, Polish, and Ukranian. The total resulting sample size was 𝑛 = 882. 

We projected the Erfurt and MAJ (Ashkenazi_Jewish_Eastern and Ashkenazi_Jewish_Western) 

genomes on the resulting PC space. Due to the smaller number of SNPs after merging the datasets, 

three additional EAJ genomes had fewer than 50k SNPs and were excluded from the PC analysis. 

We designated AJ individuals as being Western European if they had origins in France, Netherlands, 

or Germany. We designated AJ individuals as being Eastern European if they had origins in Russia, 

Belarus, Lithuania, Latvia, Poland, Romania, or Austria-Hungary. 

3. Estimating genetic ancestry using ADMIXTURE 

We ran ADMIXTURE version 1.3.0 [36] using default parameters and using only SNPs that were 

covered in at least 18 Erfurt genomes (about 86k SNPs). We used the populations included in the PCA 

and the following populations: Erfurt, Egyptian, Han, Hazara, Kalash, Mbuti, Mandenka, Yoruba, Pima, 

China_Lahu, She, Adygei, Oromo, Somali, Dinka, Mala, Saami_WGA, Burbur_WGA, Ain_Touta_WGA, 

Azeri_WGA, Shaigi_WGA, Kurd_WGA, Assyrian_WGA, Naro, Shua, Nogai, Altaian, Dolgan, Tajik, 

Turkmen, Luo, Savo, Tunisian, Jew_Ethiopian, Algerian, Mansi, Jew_Cochin, Turkish_Balikesir, 

Saharawi, Irish, Moroccan, German, and Yemeni. Similarly to the PCA, individuals with fewer than 50k 

SNPs were not included in the ADMIXTURE analysis. We ran ADMIXTURE with an increasing number 

of ancestral populations, starting from K=4. At K=10, the Erfurt individuals were modeled as having a 

unique ancestry component, and we thus show results for 4 ≤ 𝐾 ≤ 9. Each run terminated whenever 

the change in the log-likelihood was under 10-4. We visually inspected the ancestry profiles generated 

by ADMIXTURE using different seeds (for K=4 and K=7) to verify that convergence was reached. 

The ADMIXTURE results demonstrated that EAJ are genetically similar to MAJ (and South-Italians), but 

with higher variance (Figure 5 below), consistent with the PCA findings. Individuals classified based on 

the PCA as Erfurt-EU had higher EU-related ancestry. The results also revealed a small but consistent 

East-Asian-related component, especially in the Erfurt-EU group (means of 2.7% and 1.6% in Erfurt-

EU and all EAJ, respectively, for K=7), as previously observed [11]. This suggests either a minor gene 

flow event from East-Asia, as previously attested by mtDNA [37], or gene flow from Eastern European 

populations, who carry (at least today) a minor component of this ancestry (Figure 5 below). See also 

Section 7.5. 
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Figure 5. ADMIXTURE results. (A) Results for all populations, grouped by regions, for 𝐾 =4,5,6,7,8, 9 ancestral 

components. We also show a zoom-in on populations relevant for our study (B) and EAJ alone (C). In (C), we 

divided EAJ into Erfurt-EU and Erfurt-ME and sorted the samples by the European component (red) in 𝐾 = 4. 
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Section 6. Evidence for the presence of two Erfurt sub-groups 

1. The gap statistic 

The gap statistic method [38] identifies the number of clusters that best fit the data given a clustering 

method and a range of possible numbers of clusters. We used the function fviz_nbclust() from the 

factoextra package in R. We used K-means to cluster the samples (“kmeans” option with nstart = 25) 

based on the first two PCs. We set the maximal number of clusters to 𝐾 = 4 and the number of 

bootstrap samples to 500. The low-coverage samples were not included in this analysis. The optimal 

number of clusters was 𝐾 = 2, providing statistical support for the existence of two sub-groups. As a 

control, we determined the number of clusters in modern AJ and in Moroccan Jews (from the Human 

Origins dataset), either separately or jointly, with the results as expected (Figure 6 below). 

 

Figure 6. The number of clusters in EAJ based on the first two PCs. We used the gap statistic to infer the optimal 

number of clusters (dashed line) for EAJ (A). As a control, we also inferred for the optimal number of clusters for 

modern AJ ((B); one cluster expected); Moroccan Jews ((C); one cluster expected); and modern AJ and Moroccan 

Jews together ((D); two clusters expected). 

 

2. A significance test for the difference between the EAJ clusters 

The clustering generated by K-means with 𝐾 = 2 corresponds to our Erfurt-EU and Erfurt-ME groups. 

We used the function test_cluster_approx() from the clusterpval package in R [39] to calculate the P-

value for the difference in means between those two clusters. The number of importance samples 

("ndraws") was 10,000. The difference between the two EAJ clusters was statistically significant 

(P=0.007). 

3. Robustness of the clustering 
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To test the robustness of the clustering of the EAJ individuals, we used two additional methods to 

cluster the EAJ individuals into two groups. First, we used f3(EAJ1, EAJ2; Yoruba) as a metric for the 

similarity between a pair of EAJ genomes, representing the genetic drift shared between them relative 

to an outgroup. We computed the f3 statistics with ADMIXTOOLS version 5.1 with default settings. We 

then defined the distance between the genomes as 1-f3. We finally used hierarchical clustering (hclust 

function in R) to cluster the EAJ genomes based on this distance. The two clusters generated by the 

first split in the tree are identical to the (PCA-based) Erfurt-EU/Erfurt-ME clusters (Figure 7 below). 

 

Figure 7. Clustering based on f3 statistics. The distance metric we used between genomes EAJ1 and EAJ2 was 

f3(EAJ1, EAJ2; Yoruba). The blue and orange colors represent clustering based on the first split in the tree. The 

orange and blue clusters are identical to Erfurt-ME and Erfurt-EU, respectively. Low-coverage genomes were not 

included in the analysis. The late-splitting branches correspond to Families A and B. 

  

We next used a similar clustering approach, now defining the distance between genomes as the 

number of mismatching autosomal SNPs normalized by the number of SNPs covered in both genomes. 

Note that as these genomes are pseudo-haploid, their alleles can either match or mismatch. We then 

ran hierarchical clustering using hclust in R. Here too, the first split in the tree generated clustering 

identical to the Erfurt-EU/Erfurt-ME assignment (Figure 8 below).    
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Figure 8. Clustering based on allele sharing. The distance metric we used for each pair of EAJ genomes was the 

proportion of mismatching SNPs. The blue and orange colors represent clustering based on the first split in the 

tree. The orange and blue clusters are identical to Erfurt-ME and Erfurt-EU, respectively. Low-coverage genomes 

were not included in the analysis. The late-splitting branches correspond to Families A and B. 

 

4. Dependence of the group assignment on the coverage 

The Erfurt-EU individuals had higher coverage than the Erfurt-ME individuals (Figure 9 below). This 

raises the concern that placement of individuals in PC space is coverage-dependent. However, our 

down-sampling experiments demonstrated that coverage did not affect the Erfurt sub-group 

assignment (Section 5 above). We also verified that there is no correlation between the proportion of 

European ancestry and the type of library preparation (Figure 9 below). 



 18

 

Figure 9. The association of the sequencing coverage with the PCA placement. (A) The figure shows a zoomed-

in version of the PCA of the main text, where Erfurt samples are labeled by their coverage. The five individuals 

with the highest and lowest coverage are marked as "highest coverage" and "lowest coverage". [The PCA plot 

does not include the eight samples with <50k SNPs. In other words, the "lowest coverage" samples are the lowest 

only among the samples that were used in the PCA.] Four of the five highest coverage samples are part of the 

Erfurt-EU group. (B) The PC1 coordinate vs the coverage level, along with a regression line. (C) A zoomed-in 

version of the PCA of the main text with EAJ samples marked by their type of library preparation (ss: single-

stranded; ds: double-stranded). The difference in PC1 coordinates between the two treatments was not 

significant (P=0.95, two-tailed t-test). 

 

5. Simulations of substructure 

To study the genetic composition of EAJ from a population genetics perspective, we simulated 

demographic scenarios with or without substructure. We then tested the similarity between summary 

statistics of the real Erfurt data and either simulated scenario. In the first scenario, there was a single 

admixture event between Middle Eastern (50%), Southern European (35%), and Eastern European 

(15%) sources (based on the model of ref. [40]) that happened five generations prior to sampling 

(Figure 10 below). 
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Figure 10. A schematic of an admixture model representing a single EAJ group. Under the model, the EAJ 

population experienced a 3-way admixture five generations prior to sampling. 

 

In the second scenario, we simulated two groups. Both groups experienced an admixture event ten 

generations prior to sampling between Middle Eastern (45%) and Southern European (55%) sources. 

One of the groups experienced a second admixture event with Eastern Europeans (15%) five 

generations prior to sampling (Figure 11 below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. A schematic of an admixture model representing two EAJ groups. In this model, the population 

experienced an admixture event between Southern Europeans and Middle Easterners ten generations prior to 

sampling. The population then split in two, and one group experienced an additional admixture event with 

Eastern Europeans, five generations prior to sampling.  

 

We emphasize that the two scenarios we simulated do not exhaustively cover the space of possible 

models for the EAJ demographic history. Rather, they were selected as representatives of models with 

or without an admixture event into an EAJ subgroup. 

We generated the simulated genomes as follows. Each of the three sources included several 

populations, as listed in Table 1 below. We phased the source genomes using the Sanger Imputation 

Service (https://www.sanger.ac.uk/tool/sanger-imputation-service) [41] with the Haplotype 

https://www.sanger.ac.uk/tool/sanger-imputation-service
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Reference Consortium reference panel. To simulate the admixture events, we followed the method 

described in [42]. For the simulation of a single admixture event, we randomly selected ten individuals 

from each of the three sources. We simulated the genomes as mosaics of haplotypes along the 22 

autosomal chromosomes. We randomly assigned the source of each segment based on the simulated 

admixture proportions. We drew the length in cM of each segment at random from an exponential 

distribution with rate 𝐺/100, where 𝐺 is the time of the admixture event in generations prior to 

sampling. We generated diploid genomes by pairing two simulated haploid genomes. For the scenario 

of two groups we simulated a single admixture event between Southern Europeans and Middle 

Easterners in a similar way for the first group and two admixture events in the second group.  To 

simulate two admixture events, we first randomly selected ten individuals from Southern European 

sources and ten individuals from Middle Eastern sources and generated simulated diploid genomes 

with this admixture only. We then then used the simulated genomes and ten individuals from the East-

EU source to simulate the second admixture event in a similar way. We simulated 30 genomes for the 

first demographic scenario (a single group), and 20 genomes for each group in the second (two-group) 

scenario. 

Middle Eastern populations Palestinians, Lebanese, Jordanians, Syrians, Egyptians, 

Bedouin A, Bedouin B, Saudis, Druze 

Southern European populations North-Italians, Greeks 

Eastern European populations Belarusians, Lithuanians, Ukrainians, Russians 

Table 1. A list of the populations that were used as sources in the admixture analyses. All genomes were from 

the Human Origins dataset. 

 

We ran PCA on each simulated dataset and used the Kolmogorov-Smirnov test (ks.test in R) to 

compare the PC1 distribution between the real data and the simulations (Figure 12 below). The 

distribution of PC1 coordinates was similar between the EAJ genomes and that simulated under the 

two-group scenario (Figure 12D below; P=0.19). The corresponding distribution under the single group 

scenario was different from that of EAJ (Figure 12B below; P=0.03).To validate that coverage does not 

affect the results, we ran PCA on pseudo-haploid down-sampled genomes from the two-group 

simulation. We matched the number of genomes and the number of SNPs of the (non-low-coverage) 

Erfurt-ME and Erfurt-EU samples. The results (Figure 12E below) showed no qualitative difference in 

the PCA plot compared to the full genomes. 
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Figure 12. PCA of genomes simulated under two admixture scenarios and a comparison to EAJ. (A) PCA results 

for simulations of a single group that has experienced recent admixture between Middle Eastern, Southern 

European, and Eastern European sources. Both simulated genomes and EAJ genomes were projected on the PC 

plane. The grey dots correspond to modern populations from the Human Origins dataset (see labels). (B) A 

comparison between the distributions of PC1 of the simulated genomes (from (A)) and EAJ. The distribution of 

the simulated data was shifted and scaled to match the mean and variance of the EAJ data. The EAJ distribution 

is bimodal and does not fit the simulated data. (C) PCA results for simulations of two groups, one that has 

experienced admixture between Middle Eastern and Southern European sources, and one that had additional 

admixture with Eastern Europeans. (D) A comparison between the distributions of PC1 of the simulated genomes 

(from (C)) and EAJ. The distribution of the simulated data was shifted and scaled to match the mean and variance 

of the EAJ data. Here, the distribution of the simulated data is also bimodal. (E) PCA results for the two-group 

simulation after down-sampling the simulated genomes to match the coverage of the Erfurt samples. The results 

are qualitatively similar to those of (C). 

 

We then ran qpAdm modeling on the simulated datasets with Southern European, Middle Eastern, 

and Eastern European sources (South-Italians, Lebanese, and Russians, respectively). When qpAdm 



 22

inferred a negative East-EU ancestry proportion, we used the qpAdm-reported Middle Eastern and 

Southern European ancestry proportions that would be expected had the East-EU ancestry proportion 

been set to zero. We used permutation testing to compare the proportion of individuals without 

Eastern European ancestry as inferred by qpAdm (Figure 13 below) between the real and simulated 

data. In each permutation, we pooled the samples of Erfurt-EU (11 samples), Erfurt-ME (13 samples), 

and the simulation (30 or 40 genomes). We then randomly labelled 24 samples as “Erfurt” and the 

remaining as “simulated”, and computed the difference in the proportion of individuals without East-

EU ancestry between the two sets. The P-value was the fraction of permutations (out of 10k) in which 

the absolute value of the difference was greater than in the real data. The proportion of individuals 

without (qpAdm-inferred) East-EU ancestry in EAJ was similar to that simulated under the two-group 

scenario (Figure 13D below; P=0.79) but not under the single group scenario (P=0.02). 

 

Figure 13. qpAdm results for genomes simulated under two admixture scenarios and a comparison to EAJ. (A) 

qpAdm results for the real Erfurt data with Lebanese, South-Italians, and Russians as sources. This panel is 

identical to Figure 3B of the main text. (B) qpAdm results for the single-group simulations. (C) qpAdm results for 

two-group simulations. (D) The distribution of the Eastern European ancestry proportions in the real EAJ data, 
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the single-group simulations, and the two-group simulations. The proportion of individuals with no East-EU 

ancestry in the real EAJ data is significantly different from that of the single-group simulation (P=0.02; 

permutation test, randomly shuffling the labels of simulated and real data points), but not from that for the two-

group simulation (P=0.79). 

 

Section 7. Ancestry modeling: robustness and additional models 

1. Robustness of the ancestry models 

To validate the robustness of our qpAdm models, we repeated the qpAdm analyses described in the 

main text with the following changes. First, we used all SNPs instead of only transversions (Figure 14A 

below). Second, we used the Ami population as the outgroup (the first population of the “right” 

populations in the qpAdm analysis) instead of Mbuti (Figure 14B below). The models that we 

presented in Figure 3A in the main text are models with P>0.05 in both the main analysis and the 

robustness tests.  

Next, we tested a model for the ancestry of single individuals with the same Middle Eastern and 

Eastern European sources (Lebanese and Russian, respectively) as in the main text and North-Italians 

instead of South-Italians as the Southern European source. As in the main analysis, Erfurt-EU 

individuals have a substantial East-EU component that is missing from most Erfurt-ME individuals 

(Figure 14C below). We finally sought to determine whether the absence of Eastern European ancestry 

in some Erfurt-ME individuals might be due to their lower coverage (Figure 14D below). We used five 

high-coverage samples (two Erfurt-ME and three Erfurt-EU) and down-sampled each genome 20 times 

to 100k random SNPs, as in Figure 4 in Section 5 above. Two samples from Figure 4 were not used: 

one had no East-EU ancestry, and one could not be modeled using the given sources. We used all SNPs 

and the same sources as in Figure 3B of the main text: South-Italians, Lebanese, and Russians. The 

results show that the inferred proportion of East-EU ancestry is reasonably robust to down-sampling.  
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Figure 14. Robustness tests for qpAdm. Panels (A) and (B) are the same as in Figure 3A of the main text, showing 

models for the ancestry of EAJ, with the following changes. In (A), we used all SNPs instead of only transversions. 

In (B), we used the Ami population as the outgroup instead of Mbuti. The plots present the models that were 

plausible in the main analysis. Panel (C), which is analogous to Figure 3B of the main text, shows a model for the 

ancestry of single individuals (labeled by their IDs). The sources were Russians, Lebanese, and North-Italians 

(instead of South-Italians in the main text). Two individuals could not be modeled using these sources and are 

not presented. The individual-level models were estimated using all SNPs. (D) East-EU ancestry proportion 

inferred by qpAdm in the original EAJ samples (horizontal black lines) compared to those inferred in their down-

sampled versions (colored dots). 

 

2. Southern Mediterranean sources 
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We tested additional qpAdm models where we replaced South-Italians with other Mediterranean 

sources. All models included three source populations: the Mediterranean source, a Middle Eastern 

source (Druze, Egyptians, Bedouins, Palestinians, Lebanese, Jordanians, Syrians, or Saudi), and 

Russians. As in the main analysis, we only used transversion SNPs. 

When we used a North-Italian source, two models, with Lebanese and Saudi Middle Eastern sources, 

were plausible (P>0.05), but only the model with Saudis was also plausible in the robustness tests 

(Table S3). When we used a Greek source, several models were plausible, but none of them was 

plausible in the robustness tests (Table S3). When we used Spanish, all models were implausible, and 

the highest p-value was 0.01 (using Druze as the Middle Eastern source). When we used a North-

African source, all P values were close to 0. 

We also merged all Middle Eastern sources that generated plausible models in the qpAdm analysis of 

the main text (Lebanese, Saudis, and Syrians) together with North-Italians, South-Italians, and Greeks 

into a single Mediterranean/Middle East source. We then tested a model with two sources, 

Mediterranean/Middle Eastern and Russian. This model was plausible using transversions (P=0.11), 

although less probable when using all SNPs (P=0.03). 

3. Middle-Eastern sources 

We tested qpAdm models where instead of using one of the Middle Eastern populations as a source, 

we merged all Levant populations (Palestinian, Jordanian, Druze, Bedouin A, Bedouin B, Syrian, 

Lebanese) into a single source. These models had three source populations: Southern European 

(North-Italians, South Italians, or Greeks), Levant, and Eastern Europeans (Russians). We only used 

transversion SNPs. 

The model was plausible when we used South-Italians (P=0.07) but not when we used North-Italians 

or Greeks (Table S3). When we used all SNPs instead of transversions, the model with South-Italians 

was not plausible (Table S3). The results were similar when we added Cypriots to the Levant source 

(Table S3). 

4. A Western European source instead of the Russian source 

Our qpAdm models suggested that Erfurt, or at least Erfurt-EU samples, have a substantial Eastern 

European ancestry component. To test if the Eastern European component can be replaced with a 

Western European one, we repeated the qpAdm analysis, but replacing the Russian source with 

Germans. The other sources were different Southern European and Middle Eastern populations, as in 

the main analysis. We used transversions SNPs and Mbuti as the outgroup population. 

All the tested models were implausible (P<0.05; Table 2 below), indicating that the Eastern European 

source cannot be replaced by a Western European one. 

Middle Eastern source 
South-EU source 

North Italian South Italian Greek 

Druze 2.8e-5 0.0025 9.6e-6 

Egyptian 4.5e-24 9.5e-10 3.2e-7 

Bedouin A 4.7e-17 7.7e-8 9.3e-6 

Bedouin B 1.3e-6 0.00038 0.00093 
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Palestinian 2.3e-11 1.5e-5 8.1e-5 

Lebanese 0.0058 0.020 0.0051 

Jordanian 2.8e-07 0.00049 0.0020 

Syrian 0.00012 0.0027 0.0011 

Saudi 0.0024 0.0030 0.0058 

Levant 9.1e-11 9.1e-6 5.4e-5 

Levant + Cyprus 3.3e-10 1.5e-5 7.0e-5 

Table 2. qpAdm models with a Western European source. In all models, EAJ was the target group and there 

were three source populations: Middle Eastern, Southern European, and Western European. The rows represent 

the Middle Eastern source in each model and the columns represent the Southern European source. We used 

Germans as the Western European source. Models with P>0.01 are highlighted in light green. No model has 

P>0.05. 

 

5. East Asian ancestry 

The ADMIXTURE analysis suggested a minor ancestry component in AJ that may be attributed to East 

Asia. To evaluate the potential contribution of East Asians to the ancestry of EAJ, we tested models 

where the sources were Lebanese, South-Italians or North-Italians, Russians, and Han Chinese (Han 

were dropped from the reference populations for this analysis). The models had P-values of 1.9·10-10 

and 1.8·10-6 with South- and North-Italians, respectively. When the target was Erfurt-EU, the P-values 

were 7.5·10-8 and 1.8·10-4, respectively. Given that the same models for EAJ without Han had plausible 

P-values (Table S3), this analysis supports no major East-Asian ancestry in EAJ. On the other hand, one 

individual (I14740) carried the mtDNA terminal haplogroup N9a3a1b1, which is nested within a 

Central/East Asian branch (https://www.yfull.com/mtree/N9a3a1/). 

6. Relations between EAJ, MAJ, and other Jewish groups 

To quantify the difference in Eastern European ancestry between MAJ and Erfurt-ME, we used qpAdm 

to model MAJ as the target of admixture between Erfurt-ME and Russians. We only used transversion 

SNPs. The model was plausible with P=0.76, with ancestry proportions 87% for Erfurt-ME and 13% for 

Russians. The model was plausible also with Germans as a source instead of Russians (P=0.74; ancestry 

proportions 86% for Erfurt-ME and 14% for Germans). 

To quantify the relation between Erfurt-ME and Sephardi Jews, we used qpAdm to model Erfurt-ME 

using Turkish Jews and Germans as sources. We again used only transversion SNPs. The model was 

plausible with P=0.96, with ancestry proportions 97% for Turkish Jews and 3% for Germans. A model 

with Russians instead of Germans was also plausible (P=0.96; ancestry proportions 96% for Turkish 

Jews and 4% for Russians). Finally, we were able to model modern AJ with Erfurt-ME as Erfurt-EU as 

sources (ancestry 60% and 40%, respectively; P=0.74). 

7. Ancient sources 

Given that the true ancestral sources of EAJ were ancient, we tried to model EAJ as a mixture of ancient 

sources. The sources we used were Imperial or late antique Romans [43], Canaanites [44], and early 

medieval Germans [45]. These models gave poor fit (P<0.01 for both Roman sources), suggesting a 

missing ancestry component. Alternatively, the poor fit might reflect technical artifacts due to 
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inhomogeneous data types: the Canaanite and EAJ datasets were produced by in-solution enrichment, 

while the Imperial/late antique Roman and early medieval German datasets were produced by 

shotgun sequencing. 

Section 8. Estimating admixture times  

1. Estimating the admixture time based on EAJ data 

We hypothesized that the Erfurt individuals may provide information regarding the timing of 

admixture in AJ due to their proximity in time to the events, and attempted to estimate the admixture 

times using DATES [46, 47]. As DATES cannot infer the dates of multiple admixture events, we focused 

on the more recent event, which likely involved Eastern Europeans. We used Erfurt-EU as the target 

admixed population, as most Erfurt-ME individuals lack Eastern European ancestry. We omitted one 

of each pair of first-degree relatives, keeping the individual with the higher coverage. The source 

populations were chosen only as those who were plausible sources in the qpAdm models, with 

Russians as one source and Middle Easterners and Southern Europeans as the other source (Lebanese, 

Syrian, Jordanian, BedouinB, Saudi, South-Italians, North-Italians, and Sicilian. We used an equal 

sample size (37 genomes) from each of the Middle Eastern and the Southern European sources. The 

other source was Russians, with 71 genomes. We used the following DATES parameters: binsize: 

0.001; maxdis: 1; qbin: 10; and lovalfit: 0.45. The estimated admixture time was 21.2 ± 7.3 (Figure 15 

below). 

 

Figure 15. DATES results for Erfurt-EU. The coral circles represent the observed weighted covariance (described 

in [46-48]) between the genotypes of SNPs in each genetic distance apart. The blue line represents the least 

squares fit to an exponential decay. 

 

2. Estimating admixture time in simulated data 

We used simulations to evaluate the accuracy of DATES. The simulated demographic history included 

two admixture events: the first between Middle Eastern and Southern European sources (35% and 

65% ancestry from each source, respectively), and the second with Eastern Europeans (replacing 15% 
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of the gene pool). We simulated two scenarios: one with the admixture events occurring 60 and 10 

generations prior to sampling the target genomes, and another with events 70 and 20 generations 

prior to sampling. We generated the simulated genomes as described in Section 6 above, except that 

we added South-Italians and Sicilians to the pool of the Southern European source. All genomes used 

for the simulations were removed from subsequent DATES analyses. We simulated nine genomes, and 

down-sampled them to form pseudo-haploid data with coverage matching that of Erfurt-EU — the 

target group in the real DATES analysis.  

We repeated each simulated scenario 50 times and analyzed the simulated genomes with DATES. We 

used a combined, balanced Middle Eastern and Southern European source, as in the real data analysis. 

Each of the sources included the populations listed in Table 1 in Section 6 above (with the addition of 

South-Italians and Sicilians to the Southern-European sources). We found that the DATES estimates 

had an upward bias and a very large variance (Figure 16 below). Hence, we conclude that DATES 

cannot reliably infer the admixture time between Middle Eastern/Southern European and Eastern 

European sources. 

 

Figure 16. Simulations testing the accuracy of DATES. We simulated two admixture scenarios, as indicated in 

the x-axis labels. The y axis represents the inferred admixture times by DATES. The plot shows the densities of 

the DATES estimates under the two simulated scenarios. In the box plots, the bold horizontal line represents the 

median, the borders of the box are the first and third quartiles, and the vertical lines extend to the most extreme 

value no more distant than 1.5x the inter-quartile range from the quartiles. We omitted from the plot one data 

point for which the inferred admixture time was 1,915 generations ago. The distribution of the estimated 

admixture times is extremely wide under both scenarios, suggesting that DATES cannot reliably infer the 

admixture time for the real Erfurt-EU data. 

 

Section 9. The mitochondrial DNA analysis 

1. Aligning the K1a1b1a sequences of the modern and ancient samples 
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We noticed that all EAJ carriers had identical sequence except for a single site at position 16223. At 

that site, samples I13867, I13870, and I14903 had the C allele, while the remaining eight carriers had 

T. The same polymorphism also segregated in 107 MAJ K1a1b1a carriers (C count: 48/107). In the 

modern samples, beyond 16223C/T, there were 36 variants: 32 singletons, one doubleton, two 

variants that appeared in three samples, and one variant that appeared in four. Excluding the 

16223C/T site, 76/107 MAJ carriers had an identical sequence to that of EAJ. 

To determine whether MAJ carriers have significantly more diversity compared to EAJ carriers, we 

used down-sampling experiments. In each experiment, we sampled at random 11 MAJ carriers, and 

computed the number of pairwise differences (excluding site 16223). In comparison, the 11 EAJ 

carriers had no pairwise differences. Over 10,000 runs, the mean number of pairwise differences in 

MAJ carriers was 0.83 (SD: 0.44). The proportion of runs where MAJ carriers had zero pairwise 

differences (as in EAJ) was 1.83%. These results are expected given the longer time of the modern 

samples to their most recent common ancestor (TMRCA) compared to the ancient samples. 

2. The BEAST analysis 

The total effective sample size (ESS) for the TMRCA, as estimated by BEAST, was 3508. The mutation 

rate (across the entire mtDNA sequence) was estimated as 4.6·10-8 per bp per year, broadly in 

agreement with previous estimates [49, 50], although with a relatively low ESS of 148. We show the 

posterior distribution of the TMRCA in Figure 17 below. 

 

Figure 17. The posterior distribution of the mtDNA tree height (time to the most recent common ancestor 

(TMRCA)) based on ancient and modern K1a1b1a carriers. The plot shows a screenshot of the Tracer software 

showing the output of the BEAST analysis, as described in STAR Methods. Briefly, we used an alignment of the 

mtDNA sequence of 11 EAJ and 107 MAJ K1a1b1a carriers. We ran BEAST with a strict clock, Gamma distributed 

mutation rates, and a skyline population size prior. The effective sample size (ESS) was 3508, and the total 
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number of samples from the posterior was 900. The median posterior TMRCA was 1499 years ago, with a 95% 

highest posterior density (HPD) interval 655-6701 years ago. Other characteristics of the distribution are shown 

above the plot. 

 

We present the maximum clade credibility tree based on these runs in Figure 18 below. As expected 

given the pattern of polymorphism in 16223, the Erfurt lineages (IDs S1XXXXMT, where X is any digit) 

coalesced with the modern lineages based on their genotype at 16223, and thus the TMRCA of the 

Erfurt samples is the same as that of the modern samples. 

 

Figure 18. The maximum clade credibility tree of modern and ancient K1a1b1a carriers based on the output 

of BEAST. The tree was visualized using FigTree. The x-axis represents the time since the present. The ancient 

Erfurt genomes were assumed to be sampled 650 years ago. 

 

We show the inferred effective population size trajectory in Figure 19 below. The extremely large 

uncertainty associated with the inferred population size (see the 95% highest posterior density 

interval) does not permit definitive conclusions based on this data alone. The median estimate shows 

population expansion starting about 750 years ago, consistent with autosomal IBD results [51] (Figure 

4A and Figure 4E in the main text). 
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Figure 19. The reconstructed effective population size history based on the mtDNA sequences of modern and 

ancient K1a1b1a carriers. We ran BEAST on 11 ancient EAJ samples and 107 modern samples carrying the 

K1a1b1a mtDNA haplogroup, as explained in STAR Methods and in Figure 17 above. The plot shows a Tracer 

screenshot of the inferred population size history. The x-axis represents years before present. The y-axis is the 

effective population size. The thick middle line is the median estimate, and the two thin lines are the upper and 

lower bounds of the 95% highest posterior density (HPD) interval. Based on these estimates, the AJ population 

began to expand about 700-800 years ago. The dotted vertical line is the bottom of the 95% HPD interval for the 

TMRCA of K1a1b1a. 

 

We finally performed the same BEAST analysis on the 107 modern carriers alone. Given that all 

samples are present-day, the mutation rate cannot be learned from the data itself. We used the value 

of the mutation rate as estimated in the joint modern-ancient analysis (4.6·10-8 per bp per year) to 

convert the estimated TMRCA to years ago. All other BEAST parameters were as in the joint analysis. 

The estimated median posterior was 1409 years ago, slightly earlier than in the joint analysis. The 95% 

highest posterior density (HPD) interval was 478-4041 years ago. Therefore, the availability of ancient 

samples from 650 years ago pushed the estimated TMRCA backwards (P<2.2·10-16; two-tailed 

Wilcoxon test comparing the two posterior distributions). This is expected, given the presence of the 

polymorphism 16223C/T in the Erfurt carriers, which excludes the possibility that the TMRCA of all 

modern carriers has post-dated their time. 

Section 10. Runs of homozygosity 

1. The effect of the coverage on ROH calling 

We verified that the number of ROH segments does not depend on the coverage. The correlation 

between the number of segments and the coverage was r=-0.07 (P=0.8). There was also no correlation 

between the coverage and the number of ROH segments of length <10cM, which are more prone to 

error (r=-0.01; P=0.96). 

2. ROH levels across Erfurt sub-groups 

For each of 16 high-coverage (>400k SNPs) EAJ genomes, we computed the total length of ROH 

segments longer than 4 cM. We compared the total ROH length between Erfurt sub-groups (Figure 20 

below). First, we compared Erfurt-EU and Erfurt-ME genomes and found similar total ROH lengths in 

the two groups (P=0.43; two-tailed Wilcoxon test). Next, we compared K1a1b1a carriers to the rest of 
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the samples and found that the total ROH length in K1a1b1a carriers was greater (P=0.03; one-tailed 

Wilcoxon test). 

 

Figure 20. ROH segments across EAJ sub-groups. (A) The total ROH length (cM) per genome in Erfurt-EU and 

Erfurt-ME individuals. (B) The total ROH length per genome in K1a1b1a carriers compared to all other genomes. 

 

Section 11. Founder alleles 

1. Examining biases in the binomial simulations of the founder allele counts 

We used binomial simulations to estimate whether the number of founder alleles in Erfurt is expected 

given that they already experienced the AJ bottleneck (STAR Methods). However, the number of 

observed founder alleles in EAJ may be underestimated due to a “reference allele bias”. To model the 

bias in our simulations, we assumed that if the real genotype is heterozygous, there is probability 0.55 

that the observed allele will be the reference. [A homozygous genotype (alternate or reference) will 

be observed correctly.] Hence, the probability to observe the alternate allele changes from 𝑝 to 𝑝2 +

0.45 ∙ 2𝑝(1 − 𝑝). When we repeated the simulations with these probabilities, the [2.5,97.5]-

percentiles for the number of observed alleles became [12,29]. 

The expected number of founder alleles in EAJ may also be biased due to the conditioning on 

exceeding a given frequency in MAJ. This is because alleles that increased in frequency since ancient 

times to exceed the cutoff in the modern population are included, but alleles that decreased in 

frequency below the cutoff are not. Therefore, our binomial simulations would tend to overestimate 

the number of alleles that are expected to be present in EAJ. This problem should exacerbate with 

higher allele frequency cutoffs. Indeed, when we repeated the analysis with a cutoff of 1% (as opposed 

to 0.5% above), six alleles were observed in EAJ, which was at the lowest range of the expectation 

based on binomial simulations ([2.5,97.5]-percentiles: [6,18]). In contrast, when we set the cutoff to 

0.1%, 32 alleles were observed in EAJ, compared to simulated [2.5,97.5]-percentiles of [26,49]. 

In conclusion across analyses, the number of founder alleles observed in EAJ was consistent with the 

expectation based on modern AJ allele frequencies. 

2. Founder alleles in Erfurt sub-groups 
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Erfurt-EU and Erfurt-ME. The proportion of individuals carrying founder alleles was similar between 

Erfurt-EU (4/9, 44%) and Erfurt-ME (6/13, 46%). However, this result may be confounded by the higher 

coverage in Erfurt-EU. We therefore used quasi-Poisson regression to model the number of founder 

alleles carried by an individual as a function of the group affiliation (Erfurt-EU/Erfurt-ME), with the 

number of covered founder SNPs as an offset. Mathematically, 

(1)  log 𝐸 [
# 𝑎𝑙𝑙𝑒𝑙𝑒𝑠

# 𝑆𝑁𝑃𝑠 𝑝𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
] = 𝛽0 + 𝛽1 ∙ 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝, 

where the sub-group was coded as 1 for Erfurt-ME and 0 for Erfurt-EU. Even after adjusting for 

coverage, the correlation between the number of founder alleles and the group affiliation remained 

insignificant (Table 3 below). 

 Coefficient Standard error P-value 

Intercept (𝛽0) -5.36 0.52 1.62e-09 

Erfurt-ME (𝛽1) 0.50 0.65 0.45 

Table 3. The quasi-Poisson regression for the number of founder alleles vs the Erfurt subgroup affiliation. The 

model is described in Eq. (1). 

K1a1b1a carriers. We found that 8/11 (73%) carriers of K1a1b1a also carried at least one founder 

allele, compared to 3/18 (17%) of carriers of other mtDNA haplogroups (P=0.005, two-tailed Fisher’s 

exact test). Here too, we accounted for differences in coverage using quasi-Poisson regression with an 

offset, 

(2)  log 𝐸 [
# 𝑎𝑙𝑙𝑒𝑙𝑒𝑠

# 𝑆𝑁𝑃𝑠 𝑝𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
] = 𝛽0 + 𝛽1 ∙ ℎ𝑎𝑝𝑙𝑜𝑔𝑟𝑜𝑢𝑝, 

where the haplogroup was coded as 1 for K1a1b1a and 0 for all others. Here, the correlation 

diminished after accounting for coverage, though the P-value remained less than 0.05 (Table 4 below). 

 Coefficient Standard error P-value 

Intercept (𝛽0) -5.7424 0.4863 3.58e-12 

K1a1b1a (𝛽1) 1.2631 0.5788 0.038 

Table 4. The quasi-Poisson regression for the number of founder alleles vs the mtDNA haplogroup. The model is 

described in Eq. (2). 

Together with the observation of longer ROH among carriers of the K1a1b1a mtDNA lineage (Section 

10.2), these results suggest that the K1a1b1a carriers experienced of a narrower bottleneck compared 

to the rest of EAJ. However, the demographic interpretation of this finding is unclear. 

Section 12. Demographic modeling using IBD and ROH segments 

1. Inferring the parameters of a single-population model using IBD sharing 

Our single-population demographic model is illustrated in Figure 4A of the main text. Under the model, 

the effective population size has been 𝑁𝑎  (diploids) until 𝑇𝑏 generations ago, at which point it became 

𝑁𝑏 for 𝑑 generations (the bottleneck). The population size then expanded exponentially, until reaching 

a present-day population size of 𝑁𝑐 . We assume generations are discrete. To infer these five 

parameters based on IBD sharing data, we used the counts of IBD segments across 11 length bins, 

equally spaced on a logarithmic scale between 4 to 15 cM. We then searched for the parameters of 

the demographic model that provided the best fit to the data. 
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To compute the expected number of segments in each length bin, we used theory from Ringbauer et 

al. (2017) [52] (see also [53-55]). Consider first two present-day chromosomes of length 𝐿 (Morgan), 

and fix the coalescence time (i.e., their time to the most recent common ancestor (TMRCA)) to 𝑡 

generations before present. The expected number of IBD segments between these two chromosomes 

with length in the interval [ℓ1, ℓ2] is [52] 

(3) 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡]  =  ∫ 4𝑡𝑒−2𝑡ℓ(1 + 𝑡(𝐿 − ℓ))𝑑ℓ
ℓ2
ℓ1

= 𝑒−2𝑡ℓ1[2𝑡(𝐿 − ℓ1) + 1] −

𝑒−2𝑡ℓ2[2𝑡(𝐿 − ℓ2) + 1]. 

Denote the historical (diploid) population size as 𝑁(𝑡), for 𝑡 = 0,1,2. , …. Under our demographic 

model (Figure 4A in the main text), 

(4) 𝑁(𝑡) =

{
 

 
𝑁𝑎 , 𝑡 > 𝑇𝑏
𝑁𝑏 , 𝑇𝑏 − 𝑑 < 𝑡 ≤ 𝑇𝑏

𝑁𝑐 ⋅ (
𝑁𝑏

𝑁𝑐
)

𝑡

𝑇𝑏−𝑑+1 , 0 ≤ 𝑡 ≤ 𝑇𝑏 − 𝑑

 

The probability of the TMRCA at a random locus to equal 𝑡 is 

(5) 𝑃(𝑇𝑀𝑅𝐶𝐴 = 𝑡) =
1

2𝑁(𝑡)
⋅ ∏ (1 −

1

2𝑁(𝜏)
)𝑡−1

𝜏=1 . 

[Eq. (5) is true for any single-population demographic model. It is the probability not to coalesce until 

and including generation 𝑡 − 1, multiplied by the probability of coalescence (1/2𝑁) at generation 𝑡.] 

In the regime 𝑡 > 𝑇𝑏, 𝑁(𝑡) = 𝑁𝑎  is independent of 𝑡, and thus the distribution of the TMRCA is 

(6) 𝑃(𝑇𝑀𝑅𝐶𝐴 = 𝑡) =
1

2𝑁𝑎
(1 −

1

2𝑁𝑎
)
𝑡−𝑇𝑏−1

∏ (1 −
1

2𝑁(𝜏)
)

𝑇𝑏
𝜏=1 ;     𝑡 > 𝑇𝑏 

Summing over all 𝑡, the mean number of IBD segments of length in [ℓ1, ℓ2] between two 

chromosomes of length 𝐿 is 

(7) 𝜆2(ℓ1, ℓ2 ; 𝐿) = ∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡)] ∙ 𝑃(𝑇𝑀𝑅𝐶𝐴 = 𝑡) =
∞
𝑡=1  

∑𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡)] ∙
1

2𝑁(𝑡)
∙∏(1 −

1

2𝑁(𝜏)
)

𝑡−1

𝜏=1

𝑇𝑏

𝑡=1

+ 
1

2𝑁𝑎
∏(1−

1

2𝑁(𝜏)
)

𝑇𝑏

𝜏=1

∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2 | 𝐿, 𝑡)] (1 −
1

2𝑁𝑎
)
𝑡−𝑇𝑏−1

∞

𝑡=𝑇𝑏+1

 

Finally, the mean number of (autosomal) IBD segments of length in [ℓ1, ℓ2] between 𝑛 diploid 

genomes is 

(8)  𝜆𝐼𝐵𝐷,𝑛(ℓ1, ℓ2) = [(
2𝑛
2
) − 𝑛]∑ 𝜆2(ℓ1, ℓ2 ; 𝐿𝑖)

22
𝑖=1 , 

where 𝐿𝑖  is the length of chromosome 𝑖 = 1, … ,22 in Morgan. The pre-factor (2𝑛
2
) − 𝑛 is the number 

of haplotype pairs when comparing 𝑛 diploid individuals to each other. We used Mathematica to find 

a closed-form solution to the term with the infinite sum in Eq. (7). Eq. (8) thus provides the expected 

number of segments in each length bin under our demographic model. 

Following previous studies [52-55], we assumed that the number of segments in each bin inferred 

from the real data is Poisson distributed with the expected mean (Eq. (8)) and independent across 

bins. This allowed us to write a composite likelihood for the observed segment counts given a 
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proposed demographic model. Denote by ℬ the set of bins and by 𝑐(ℓ1, ℓ2) the observed number of 

IBD segments in the bin [ℓ1, ℓ2] (across 𝑛 = 637 modern genomes). The composite likelihood is 

(9)  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = ∏ 𝑒−𝜆𝐼𝐵𝐷,𝑛(ℓ1,ℓ2)
𝜆𝐼𝐵𝐷,𝑛(ℓ1,ℓ2)

𝑐(ℓ1,ℓ2)

𝑐(ℓ1,ℓ2)!
(ℓ1,ℓ2)∈ℬ

. 

The log-likelihood is (up to an additive constant) 

(10)  𝑙𝑙 = ∑ [𝑐(ℓ1, ℓ2) ∙ log 𝜆𝐼𝐵𝐷,𝑛(ℓ1, ℓ2) − 𝜆𝐼𝐵𝐷,𝑛(ℓ1, ℓ2)](ℓ1,ℓ2)∈ℬ . 

We maximized the log-likelihood with respect to the five model parameters (𝑁𝑎, 𝑇𝑏, 𝑁𝑏, 𝑑, 𝑁𝑐) using 

the function Deoptim from the R package “Deoptim”. When inferring these parameters, we used the 

following boundaries to the search space: 𝑁𝑎 ∈ [1000, 50,000], 𝑁𝑏 ∈ [100, 5000], 𝑇𝑏 ∈ [20,60], 𝑑 ∈

[1,30], and 𝑁𝑐 ∈ [10
5, 107]. These ranges span previous models inferred for the AJ demography [12, 

13, 51, 53] and are historically plausible [56]. We ran the optimizer for 5000 steps after setting the 

seed to 1, and validated that the inferred parameters remained very similar when starting from other 

seed values. The inferred parameters of the model are listed in Table S5, model (A). We also inferred 

the model parameters after fixing the bottleneck duration to 𝑑 = 1, as in previous studies [12, 51]. 

The estimated parameters are listed in Table S5, model (B). 

To compute confidence intervals for the inferred model parameters, we used parametric bootstrap. 

In a naïve implementation of the non-parametric bootstrap, we would resample individuals with 

replacement. However, detecting IBD sharing between an individual and itself would be nonsensical. 

We therefore generated each new bootstrap sample as follows. For each segment length bin, we drew 

a new count for the total number of segments as a Poisson variable with mean equals to the count in 

the real data. We generated 100 bootstrap samples, and, for each sample, we inferred all model 

parameters as for the real data. For each parameter 𝜃, we computed the 95% confidence interval for 

the parameter as [2𝜃 − 𝜃97.5%, 2𝜃 − 𝜃2.5%] [57], where 𝜃 is the estimate based on the real data, and 

𝜃2.5% and 𝜃97.5% are the 2.5- and 97.5-percentiles, respectively, of the estimates across the bootstrap 

samples. We calculated the 2.5-percentile as the average of the estimates that ranked second and 

third (out of 100), and similarly for the 97.5-percentile. 

2. Inference using modern ROH segments 

We next attempted to infer the parameters of the single-population model (Figure 4A in the main 

text) using counts of ROH segments in modern genomes. The derivation is exactly as in Eqs. (3) to (10) 

above, except that in Eq. (8), the pre-factor (2𝑛
2
) − 𝑛 is replaced by 𝑛 (the number of haplotype pairs 

that would generate ROH is 𝑛), 

(11)  𝜆𝑅𝑂𝐻,𝑛(ℓ1, ℓ2) = 𝑛∑ 𝜆2(ℓ1, ℓ2 ; 𝐿𝑖)
22
𝑖=1 . 

We also assumed 𝑁(𝑡) → ∞ for 𝑡 = 1,2. This represents the fact that two chromosomes in the same 

individual cannot coalesce in the immediately following generation, as well as that sib-mating is 

unlikely. We then found the demographic parameters that maximized the composite likelihood as 

with the IBD data. Across runs, optimization converged to two distinct optima of similar likelihood, 

likely due to the small amount of data. The first is listed in Table S5, model (C) (𝑁𝑏 = 1295, 𝑇𝑏 = 30, 

and 𝑑 = 11). The other optimum was at 𝑁𝑏 = 598, 𝑇𝑏 = 25, and 𝑑 = 3. Both models date the end of 

the bottleneck to around the same time and have similar bottleneck intensities, but they differ in their 

bottleneck duration. 

3. Modeling consanguinity in the ancient individuals 
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The empirical results (Figure 4D in the main text) suggest that the inferred demographic model (based 

on IBD sharing in modern genomes; Table S5, model (A)) underestimates the expected number of ROH 

segments in the ancient genomes. We observed that a few EAJ individuals had very long ROH segments 

(five individuals with an average of 43.7cM in ROH segments of length >20cM; Figure 4C in the main 

text), which may result from their parents being related. We thus hypothesized that modeling 

consanguinity in EAJ may better fit the expectation based on the modern data, and we attempted to 

fit a model where the demographic parameters are as in Table S5, model (A), but a proportion 𝛼 of 

the ancient individuals are offspring of first cousins. 

To determine the expected number of ROH segments of a given length under the consanguinity model, 

we followed Ringbauer et al. (2021) [58]. For children of 𝑟th full-cousins, the expected number of ROH 

segments due to consanguinity in a chromosome of length 𝐿 Morgan is (see also Eq. (3)) 

(12)  𝜆2,𝑐𝑜𝑛𝑠(ℓ1, ℓ2 ; 𝐿) ≡ 𝐸[𝑛𝑠𝑒𝑔,𝑐𝑜𝑛𝑠(ℓ1, ℓ2 | 𝐿, 𝑟)] = ∫
4

2𝑚
𝑒−ℓ𝑚(2𝑚 + (𝐿 − ℓ)𝑚2)𝑑ℓ

ℓ2
ℓ1

, 

where 𝑚 = 2𝑟 + 4 is the total number of meioses between the two chromosomes of the child and 

the most recent common ancestor. For the case of first cousins, where this common ancestor is a 

great-grandparent, 𝑚 = 6. 

The mean number of ROH segments of length in [ℓ1, ℓ2] due to consanguinity in 𝑛 genomes of children 

of first cousins is 

(13)  𝜆𝑅𝑂𝐻,𝑐𝑜𝑛𝑠,𝑛(ℓ1, ℓ2) = 𝑛∑ 𝜆2,𝑐𝑜𝑛𝑠(ℓ1, ℓ2 ; 𝐿𝑖)
22
𝑖=1 . 

The mean number of ROH segments between two ancient chromosomes of length 𝐿 due to genetic 

drift, i.e., due to coalescence under the demographic model, is 

(14) 𝜆2,𝑎𝑛𝑐(ℓ1, ℓ2 ; 𝐿) = ∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡 − 𝑇𝐸)] ∙ 𝑃(𝑇𝑀𝑅𝐶𝐴 =
∞
𝑡=𝑇𝐸+3

𝑡) =∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡 − 𝑇𝐸)] ∙
1

2𝑁(𝑡)
∙ ∏ (1 −

1

2𝑁(𝜏)
)𝑡−1

𝜏=𝑇𝐸+3
𝑇𝑏
𝑡=𝑇𝐸+3

+ 
1

2𝑁𝑎
∏ (1 −
𝑇𝑏
𝜏=𝑇𝐸+3

1

2𝑁(𝜏)
)∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2 | 𝐿, 𝑡 − 𝑇𝐸)] (1 −

1

2𝑁𝑎
)
𝑡−𝑇𝑏−1∞

𝑡=𝑇𝑏+1
. 

𝑇𝐸  is the number of generations ago when the Erfurt population has lived. We assumed a generation 

interval of 25 years, slightly lower than previous studies [59-63], given that early AJ often married 

extremely young [64]. Given our radiocarbon dating to the 14th century, i.e., about 650 years ago, this 

gives 𝑇𝐸 = 26. 𝑁(𝑡) is given by Eq. (4). Eq. (14) is the same as Eq. (7), except that no coalescence is 

possible until 𝑇𝐸  generations ago and that the number of generations to the TMRCA is 𝑡 − 𝑇𝐸 . We 

started the sums at 𝑇𝐸 + 3 to represent the constraint of no sib-mating. The  mean number of ROH 

segments in 𝑛 ancient genomes due to drift is 

(15)  𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2) = 𝑛∑ 𝜆2,𝑎𝑛𝑐(ℓ1, ℓ2 ; 𝐿𝑖)
22
𝑖=1 . 

Finally, the total number of ROH segments of length in the interval [ℓ1, ℓ2] in the ancient genomes 

has mean 

(16)  (1 − 𝛼)𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2) + 𝛼 [(1 −
4

2𝑚
) 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2) + 𝜆𝑅𝑂𝐻,𝑐𝑜𝑛𝑠,𝑛(ℓ1, ℓ2)], 

where 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛 is the expected number of ROH segments due to genetic drift (Eq. (15)), and 

𝜆𝑅𝑂𝐻,𝑐𝑜𝑛𝑠,𝑛 is the expected number of segments due to consanguinity (Eq. (13)). The term 

(1 −
4

2𝑚
) 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2) represents ROH in children of first cousins in genomic regions where the 

two chromosomes do not coalesce at the shared great-grandparents. We then assumed, as above, 
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that the observed total number of (ancient) ROH segments (across the 𝑛 = 16 ancient genomes) in 

each length bin follows a Poisson distribution with the given mean. This gave a composite-likelihood 

similar to Eq. (9). 

We then fixed all demographic parameters to their inferred values as in Table S5, model (A) and used 

the optimization procedure to find the value of 𝛼 that maximized the log-likelihood. Note that we 

used neither modern IBD nor modern ROH data. For the set of bins ℬ, we used (here and in all other 

models based on ancient ROH) 29 bins equally separated on a logarithmic scale between 4 to 40 cM. 

This is different from modern data in that we also considered relatively long ROH segments. The long 

segments likely appeared because (i) the parents of some individuals may have been related, and (ii) 

the individuals lived closer in time to the bottleneck. 

The inferred proportion of individuals who were children of first cousins (Table S5, model (D)) was 

𝛼 = 0.22, which corresponds to 3-4 individuals out of the total of 16. This estimate is reasonable given 

the distribution of total ROH lengths (Figure 4C in the main text). However, the fit to the ROH counts 

did not sufficiently improve (Figure 4D in the main text), possibly as consanguinity generates 

predominantly very long segments (mean nearly 17cM for children of first cousins), whereas the ROH 

counts were underestimated at shorter lengths. We therefore no longer considered consanguinity in 

our next models. 

4. Modeling a narrower or a longer bottleneck 

We next hypothesized that the excess of ROH segments in EAJ is due to the EAJ population 

experiencing a narrower or a longer bottleneck compared to what we inferred based on IBD sharing 

in MAJ (Table S5, model (A)). In the following, we fixed some of the parameters of the modern-based 

model (Table S5, model (A)) and inferred the other parameters using ancient ROH data to fit models 

with a narrower or a longer bottleneck. 

For a model with a narrower bottleneck, we fixed the bottleneck starting time to 𝑇𝑏 = 41 and inferred 

the ancestral population size (𝑁𝑎) and the bottleneck size (𝑁𝑏) based on the counts of ROH segments 

in the ancient genomes. We assumed that the population size remained at 𝑁𝑏 until the time of the 

EAJ individuals. In other words, the EAJ population size history has been 

(17)  𝑁(𝑡) = {
𝑁𝑎 , 𝑡 > 𝑇𝑏 = 41

𝑁𝑏 , 𝑇𝐸 = 26 < 𝑡 ≤ 𝑇𝑏
. 

We plugged this expression for 𝑁(𝑡) into Eq. (14) and used Eq. (15) to compute 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2), 

the expected number of ROH segments in the ancient genomes under our demographic model 

(without consanguinity). We again assumed a Poisson distribution for the number of segments in each 

bin, and used the optimization procedure to find the values of 𝑁𝑎  and 𝑁𝑏 that maximized the 

composite-likelihood. [While our focus was on the bottleneck size 𝑁𝑏, and we generally did not 

attempt the interpret the (highly uncertain) estimate of 𝑁𝑎, we found numerically that allowing 𝑁𝑎  to 

vary improved the fit.] 

This above described procedure did not yet use any modern data. Accordingly, we did not infer the 

values of 𝑑 and 𝑁𝑐 , as these do not appear in Eq. (17) and thus do not affect ancient ROH levels. Once 

we estimated 𝑁𝑎  and 𝑁𝑏 using the ancient ROH data, we fixed these values (along with 𝑇𝑏, which is 

fixed to its value from Table S5, model (A)) and estimated 𝑑 and 𝑁𝑐  using modern IBD data, in the 

same way we inferred the full model (assuming 𝑇𝑏 − 𝑑 ≤ 𝑇𝐸). The complete set of inferred model 

parameters is given in Table S5, model (E). The fit of the model to the ancient ROH data is shown in 

Figure 4D in the main text. 
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We used a similar procedure to infer the parameters of a model with a longer bottleneck. First, we 

fixed 𝑁𝑎  and 𝑁𝑏 to their values from Table S5, model (A), giving the following EAJ population size 

history, 

(18)  𝑁(𝑡) = {
𝑁𝑎 = 47,961, 𝑡 > 𝑇𝑏

𝑁𝑏 = 1,563, 𝑇𝐸 = 26 < 𝑡 ≤ 𝑇𝑏
 

We then used the ancient ROH data to infer the value of 𝑇𝑏 (assuming 80 ≥ 𝑇𝑏 ≥ 41) by comparing 

the inferred segment count based on the data to the expectation based on Eq. (15), as above. We 

finally used the modern IBD data to infer the parameters 𝑑 and 𝑁𝑐 . The inferred parameters are listed 

in Table S5, model (F), and the fit is shown in Figure 4D in the main text. Both a narrower and a longer 

bottleneck fit the ancient ROH data (in particular the narrower model). However, neither model fit the 

modern IBD data (Figure S5A). 

5. Joint inference based on modern and ancient data 

To identify model parameters that would fit both modern and ancient data, we used the same five-

parameter model (Figure 4A in the main text) with population size history 𝑁(𝑡) given in Eq. (4), and 

attempted to infer its parameters using ancient and modern data jointly. Recall that the log-likelihood 

for the modern IBD data was 

(19)  𝑙𝑙𝑚𝑜𝑑𝑒𝑟𝑛 = ∑ 𝑐𝑚(ℓ1, ℓ2) ∙ log 𝜆𝐼𝐵𝐷,𝑛𝑚(ℓ1, ℓ2)(ℓ1,ℓ2)∈ℬ − 𝜆𝐼𝐵𝐷,𝑛𝑚(ℓ1, ℓ2), 

where 𝑐𝑚(ℓ1, ℓ2) is the number of IBD segments of length in [ℓ1, ℓ2] shared between any pair of 

haplotypes among 𝑛𝑚 = 637 modern genomes, and 𝜆𝐼𝐵𝐷,𝑛𝑚(ℓ1, ℓ2) is the expectation based on Eq. 

(8). Similarly, for the ancient data,  

(20)  𝑙𝑙𝑎𝑛𝑐𝑖𝑒𝑛𝑡 = ∑ 𝑐𝑎(ℓ1, ℓ2) ∙ log 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛𝑎(ℓ1, ℓ2)(ℓ1,ℓ2)∈ℬ − 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛𝑎(ℓ1, ℓ2), 

where 𝑐𝑎(ℓ1, ℓ2) is the number of ROH segments of length in [ℓ1, ℓ2] in any of the 𝑛𝑎 = 16 ancient 

genomes, and 𝜆𝑅𝑂𝐻,𝑎𝑛𝑐,𝑛(ℓ1, ℓ2) is the expectation based on Eq. (15). We defined a joint log-likelihood 

as 

(21)  𝑗𝑜𝑖𝑛𝑡 𝑙𝑙 =
𝑙𝑙𝑚𝑜𝑑𝑒𝑟𝑛

(2𝑛𝑚2 )−𝑛𝑚
+
𝑙𝑙𝑎𝑛𝑐𝑖𝑒𝑛𝑡

𝑛𝑎
. 

This definition addresses the issue that the number of haplotype pairs is about 50k times larger in the 

modern IBD data compared to the ancient ROH data. Under Eq. (21), each log-likelihood class (modern 

IBD/ancient ROH) contributes roughly equally to the log-likelihood. For both IBD and ROH, ℬ was 29 

bins between [4,40]cM. We then searched for the maximum likelihood parameters as before, except 

that we enforced the time of EAJ sampling (𝑇𝐸 = 26) to be within the bottleneck (i.e., 𝑇𝑏 ≥ 𝑇𝐸 ≥ 𝑇𝑏 −

𝑑). The inferred parameters are listed in Table S5, model (G). The fit to the modern data was still 

imperfect (Figure S5B).  

6. Inferring the parameters of a two-population model 

To reconcile the demographic models of EAJ and MAJ, we expanded the model to account for 

substructure in AJ during the Middle Ages. While an expanded model can take various forms, we 

sought to minimize overfitting, and hence added only a single parameter. In our model, the AJ 

population split 𝑇𝑏 generations ago into two groups. The first represents EAJ, with effective population 

size 𝑁𝑏. The second had population size 𝑁𝑎 − 𝑁𝑏. This is an arbitrary choice, in order to model 

different population sizes for the two groups without increasing the number of parameters. The 

populations then merged 𝑑 generations later, with proportions 𝑓 and 1 − 𝑓, respectively, and then 

expanded exponentially until reaching the present population size. Note that we did not explicitly 



 39

model the substructure within EAJ, again in order not to add parameters, and given that we have 

modelled substructure in AJ as a whole. The model is illustrated in Figure 4E in the main text. 

We defined a joint modern-ancient likelihood as in Eqs. (19)-(21). The likelihood based on the ancient 

ROH data remains the same, as the model is identical to that of Figure 4A (in the main text) from the 

perspective of the EAJ population. As above, we assumed that the bottleneck must have spanned the 

time of EAJ, i.e., 𝑇𝑏 > 𝑇𝐸 > 𝑇𝑏 − 𝑑. For the likelihood based on the modern IBD data, we modified Eq. 

(7) (for the mean number of segments between a pair of chromosomes of length 𝐿) as follows, 

(22) 𝜆2(ℓ1, ℓ2 ; 𝐿) = ∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡)] ∙
𝑇𝑏−𝑑
𝑡=1

1

2𝑁(𝑡)
∙ ∏ (1 −

1

2𝑁(𝜏)
)𝑡−1

𝜏=1 + ∏ (1 −
1

2𝑁(𝜏)
)

𝑇𝑏−𝑑
𝜏=1 ∙

∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡)]
𝑇𝑏
𝑡=𝑇𝑏−𝑑+1

∙ [(1 −
1

2𝑁𝑏
)
𝑡−(𝑇𝑏−𝑑+1)

∙
1

2𝑁𝑏
∙ 𝑓2 + (1 −

1

2(𝑁𝑎−𝑁𝑏)
)
𝑡−(𝑇𝑏−𝑑+1)

∙

1

2(𝑁𝑎−𝑁𝑏)
∙ (1 − 𝑓)2] + ∏ (1 −

1

2𝑁(𝜏)
)

𝑇𝑏−𝑑
𝜏=1 ∙ [(1 −

1

2𝑁𝑏
)
𝑑
𝑓2 + (1 −

1

2(𝑁𝑎−𝑁𝑏)
)
𝑑
(1 − 𝑓)2 +

2𝑓(1 − 𝑓)] ∙
1

2𝑁𝑎
∙ ∑ 𝐸[𝑛𝑠𝑒𝑔(ℓ1, ℓ2) | 𝐿, 𝑡)] ∙ (1 −

1

2𝑁𝑎
)
𝑡−𝑇𝑏−1∞

𝑡=𝑇𝑏+1
. 

The population size history is 

(23) 𝑁(𝑡) =

{
 

 
𝑁𝑎 , 𝑡 > 𝑇𝑏

𝑁𝑏  or  𝑁𝑎 − 𝑁𝑏 , 𝑇𝑏 − 𝑑 < 𝑡 ≤ 𝑇𝑏

𝑁𝑐 ⋅ (
𝑁𝑏

𝑁𝑐
)

𝑡

𝑇𝑏−𝑑 , 0 ≤ 𝑡 ≤ 𝑇𝑏 − 𝑑

. 

In Eq. (22), for coalescence to occur within the first sub-population, both lineages must descend from 

that population, which happens with probability 𝑓2, and similarly for the second sub-population 

(probability (1 − 𝑓)2). For coalescence to happen in the ancestral (pre-split) population, coalescence 

must not have happened during the bottleneck. This is the case if both lineages descended from the 

first population (probability 𝑓2) and then there was no coalescence (probability (1 −
1

2𝑁𝑏
)
𝑑

), if both 

lineages descended from the second population followed by no coalescence ((1 − 𝑓)2 (1 −

1

2(𝑁𝑎−𝑁𝑏)
)
𝑑
) or if each lineage descended from a different population (probability 2𝑓(1 − 𝑓)). We 

used the same optimization procedure as in the other cases to obtain the maximum likelihood 

estimate for the six parameters (𝑁𝑎, 𝑁𝑏, 𝑇𝑏, 𝑑, 𝑓, and 𝑁𝑐). To compute confidence intervals, we used 

parametric bootstrap as for the single population model. Here, we re-sampled segment counts per 

bin for both modern IBD and ancient ROH from Poisson variables with means as in the real data. 

Section 13. Testing demographic models using simulations 

1. Model selection 

The improved fit of the IBD and ROH data to the two-population model could be due to its increased 

complexity. To evaluate whether the fit is sufficiently improved to justify the additional parameter, 

we used parametric bootstrap [65], testing the null hypothesis that the real data comes from the 

single-population model. We simulated segment length counts under the (five parameter) single-

population model. For each simulated dataset, we fit both the single-population and the (six-

parameter) two-population model, and we recorded the increase in composite log-likelihood when 

(over)fitting the more complex model. We then determined whether the increase in likelihood 

observed in the real data is beyond what is expected when the data is truly derived from the single-

population model. 
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To simulate from the single-population model, we used the best-fit parameters we inferred jointly 

from the MAJ and EAJ data (Table S5, model (G)). We calculated the expected number of segments in 

each length bin (29 bins from 4 to 40 cM) for both IBD segments in MAJ (Eq. (8)) and ROH segments 

in EAJ (Eq. (15)). We then drew a new count at each length bin as a Poisson variable with mean equals 

to the expected count. For each simulated dataset, we maximized the log- composite-likelihood based 

on Eq. (21) for either the single-population or the two-population model. Over 100 simulated datasets, 

the difference in the optimal log-likelihood between the two models, 𝑙𝑙𝑡𝑤𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 −

𝑙𝑙𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , was in the range [-0.003, 0.09]. In the real data, the log-likelihood difference (based 

on the models in Table S5, models (G) and (H)) was 0.21. We thus conclude that, with P<0.01, we can 

reject the hypothesis that the real data derives from the single-population model. 

2. Simulations of the two-population model 

We sought to validate, using simulations, that we can use data of the type available to us to accurately 

infer the two-population model parameters. We used ARGON version 1.0 [66] to simulate the 

demographic model shown in Figure 21 below (all population sizes are haploids). 

 

Figure 21. An illustration of the simulated demographic model. All times are in generations before present 

(gbp). The width of the diagram at different time points increases (schematically) with the effective population 

sizes. The indicated population sizes are in haploid individuals. In our simulations, we sampled either 1400 

haploid chromosomes at present, or 32 haploid chromosomes 26 generations before present (red arrows), 

representing our modern and ancient samples, respectively.  

 

To mimic the extreme imbalance in the real data between the number of modern and ancient 

observations, we sampled 1400 haploid individuals from the present-day population (“modern” data), 

and then ran the simulation again and sampled 32 haploid individuals from the right population at the 

end of the bottleneck (“ancient” data). These sample sizes roughly correspond to our 637 modern 

genomes and 16 ancient genomes. For each individual we simulated a single chromosome of length 

280 Mb with the default recombination rate of 1cM/Mb. The simulator provided ground-truth 

information on all IBD segments shared between all pairs of either “modern” or “ancient” individuals. 

[We computed pairwise IBD also for the “ancient” genomes (and not runs of homozygosity), in order 
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to generate sufficient amount of data, given that we only simulated a single chromosome.] We then 

recorded the number of segments per length bin (29 bins between [4-40] cM). 

We first used the simulated modern data alone to infer the demographic parameters of the single-

population model (Figure 4A in the main text). We used the same methods as for the real data. The 

inferred parameters were 𝑁𝑎 = 46.1 ⋅ 10
3, 𝑁𝑏 = 780, 𝑇𝑏 = 35, 𝑑 = 12, and 𝑁𝑐 = 1.8 ⋅ 10

6 

(population sizes are in haploid individuals). As we observed for the real data (Figures 4B and 4D in 

the main text), the fit was good for the modern IBD data, but it underestimated the number of ancient 

ROH segments (Figure 22A below). We then used the simulated modern and ancient data jointly to 

infer all six parameters of the two-population model (Figure 4E in the main text). The inferred 

parameters were very close to their simulated values: 𝑁𝑎 = 9.1 ⋅ 10
3, 𝑁𝑏 = 704, 𝑇𝑏 = 36, 𝑑 = 13, 

𝑓 = 0.84 and 𝑁𝑐 = 3.4 ⋅ 10
6. The fit was now good for both modern and ancient data (Figure 22B 

below). These results, while not comprehensive, hint that even given the relative scarcity of the 

ancient ROH data, our method should be able to accurately infer the parameters of the two-

population model. 

  

Figure 22. Simulated and fitted IBD segment counts. (A) The mean number of IBD segments per haplotype pair 

across segment length bins. We simulated those IBD segments based on the demographic model shown in Figure 

21 above. Symbols show simulated mean counts (legend). Lines (legend) show the best fit based on a single-

population demographic model (Figure 4A in the main text). (B) The same simulated data as in (A), but with the 

fitted lines based on the two-population demographic model (Figure 4E in the main text). 

 

Section 14. Imputation accuracy and the pathogenic variants 

1. Mendelian inconsistency 

To test the accuracy of imputation using PHCP, we used the two Erfurt families to estimate the rate of 

Mendelian inconsistency. The analysis included SNPs both genotyped and fully imputed, because even 

genotyped SNPs were imputed from haploid to diploid. Given that only one parent was available from 

each family, Mendelian inconsistency would be observable only when the parent and child carry 

opposing homozygous genotypes. Thus, in each family, we started with all SNPs imputed as 

homozygous in the parent, and counted the number of SNPs that were imputed in each child as 
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homozygous to the opposite allele. Overall, we tested three parent-child pairs: mother (I14850) and 

son (I14853) and mother and daughter (I14898) from family A, and father (I14904) and daughter 

(I13869) from family B (Table 5 below). To compare the results to a baseline, we repeated the analysis 

with the mother from family A and the daughter from family B, and for the mother with an arbitrarily 

selected high-coverage genome (I13866) from Erfurt-EU (since the two families belong to Erfurt-EU). 

The proportion of inconsistent SNPs was 0.19-0.23% for the two children who were covered in >500k 

SNPs, and 0.59% for the child with 113k SNPs (Table 5 below). In comparison, the inconsistency rate 

was 2.13-2.15% in unrelated individuals (Table 5 below). 

 

 

Number 

of 

covered 

SNPs 

Parent 

Number of 

imputed 

homozygous 

SNPs 

Parent 

Number 

of 

covered 

SNPs 

Child 1 

Proportion 

of 

inconsistent 

SNPs (%) 

Child 1 

Number 

of 

covered 

SNPs 

Child 2 

Proportion 

of 

inconsistent 

SNPs (%) 

Child 2 

Family A 562·103  15.52·106 519·103 0.23% 113·103 0.59% 

Family B 701·103 15.52·106 601·103 0.19%   

Mother of 

family A 

vs 

unrelated 

562·103 15.52·106 601·103 2.13% 643·103 2.15% 

 

Table 5. Evaluating the imputation accuracy of PHCP using Mendelian inconsistency. We tested the rates of 

Mendelian inconsistency in the imputed genomes of families A and B and compared to the inconsistency in 

unrelated individuals. The table presents the number of covered SNPs (before imputation) in all individuals, the 

number of homozygous SNPs in the imputed genome of the parent (this includes genotyped SNPs, as these were 

also imputed from haploid to diploid), and the percentage of SNPs that are homozygous to the opposite allele 

in the child (out of the number of homozygous SNPs in the parent). In family A, Child 1 is the son (I14853) and 

Child 2 is the daughter (I14898). The unrelated individuals are the mother from family A (I14850) and the 

daughter from family B (I13869; “Child 1”), or another unrelated individual (I13866; “Child 2”). 

 

2. Concordance against masked founder alleles 

We masked genotypes in the 216 founder SNPs defined above and in three pathogenic variants that 

were genotyped and were present in at least one EAJ genome (F11/p.E135X, F11/p.F301L, and 

LRRK2/p.G2019S; Data S2, Table 6). We then imputed these SNPs and tested the concordance 

between genotyped and imputed alleles. Among the 219 SNPs that were tested, 9 were not present 

at the reference panel and were not imputed. 

There were overall 20 cases (across all individuals and SNPs) where the ancient (pseudo-haploid) 

genotype showed the alternate allele. Among these, we correctly imputed at least one alternate allele 

in 15 cases. In the remaining five cases, the imputed genotype was homozygous reference, and we 

thus estimate the false negative rate as 5/20=25%. This is an upper bound, as some of these errors 

may be false positives in the ancient DNA genotypes. Interestingly, the false negative rate was 15% in 
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Erfurt-ME (2/13) but 50% in Erfurt-EU (3/6), though the number of variants is too small to draw any 

conclusion (P=0.26; Fisher’s exact test).  

We evaluated the false-positive rate as follows. First, we identified all cases, across the 29 individuals 

that were tested for founder SNPs (i.e., without the children of family A and B and without the 

individual that was not covered in any of the founder SNPs), and across all masked SNPs, where the 

pseudo-haploid genotype was the reference allele. We then computed the proportion of these cases 

where an alternate allele was imputed. (In all of these cases, the imputed genotype was 

heterozygous.) The observed proportion was 13/2541=0.005. This is an upper bound for the false 

positive rate, because in some cases, the true genotype may have been heterozygous, but only the 

reference allele was observed. To quantify this, we computed the expected number of cases where 

the true genotype should have been heterozygous, based on MAJ allele frequency (gnomAD), but the 

observed allele is the reference. Specifically, we multiplied the MAJ frequency of each founder allele 

by the number of genomes that had the reference allele at this SNP and summed over all SNPs. The 

expected number of heterozygotes was 24.04, greater than the imputed number of alternate alleles 

(13). This could be due to (i) false negatives of imputation; or (ii) lower frequency of the founder alleles 

in EAJ compared to MAJ (Figure S5C). Either way, our estimate of the imputation false positive rate 

(13/2541, or about 1/195) is likely as an upper bound. 

3. Concordance between PHCP and GLIMPSE 

To evaluate the concordance between PHCP and GLIMPSE, we compared their output on the 

pathogenic variants (STAR Methods; Data S2, Table 6). We first considered eight variants that were 

not genotyped and that were imputed by PHCP as having at least one alternate allele with posterior 

probability >97%. A carrier of one variant was not run in GLIMPSE due to low coverage. For the 

remaining variants, GLIMPSE imputed at least one alternate allele with probability >50% in 6/7 

variants. We then considered six variants where GLIMPSE imputed an alternate allele with probability 

>97%. PHCP imputed the alternate allele with probability >50% for all such variants. 

4. Characterizing the detected pathogenic variants 

Some of the AJ-enriched pathogenic variants (Table 1 of the main text) were previously dated using 

genomic modern data. Among dominant variants, the BRCA1 c.68_69delAG (also known as 185delAG) 

is one of three common variants in BRCA1/2 genes in AJ [67] and is known to increase the lifetime risk 

of breast and ovarian cancer to 84% and 35%, respectively [68]. It is also present in Iraqi and other 

Jews, and was previously dated to descend from a single founder who lived 47-77 generations ago 

[69]. The G2019S variant on LRRK2 (which was genotyped) increases the risk of Parkinson’s disease 

[70]. The variant is common in North-Africans and it was found in about 20% and 40% of Parkinson’s 

disease cases in AJ and North-Africans, respectively. The variant was previously dated to a few 

thousands of years ago [71, 72]. The remaining variants were recessive. The c.84dupG variant in GBA 

is an AJ-specific variant for Gaucher disease (along with the more common N409S variant). It was 

previously dated to 56 generations ago [73]. Two variants on F11, leading to Factor XI deficiency, were 

genotyped. The type II variant (E135X; also known as E117X) is present in other Jewish and Arab 

populations [74] and was also found in a Levant individual living 9kya [75]. It was previously dated to 

120-189 generations ago [76]. The Type III variant (F301L; also F283L) is AJ-specific and was dated to 

at least 31 generations ago [76]. The familial Mediterranean fever MEFV variant V726A is found in 

multiple Middle Eastern populations and was dated to a few thousand years ago [77-79]. 
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Other recessive pathogenic variants we detected include the cystic fibrosis CFTR variant G542X [80], 

the retinitis pigmentosa DHDDS variant 124A>G [81], the Usher syndrome (type 3) CLRN1 variant N48K 

[82], and the glycogen storage disease (type 1A) G6PC variant R83C [83]. We also identified a female 

child carrier of the ACADS c.319C>T variant, who had a 44% probability to be homozygous (Data S2, 

Table 6) and thereby affected by acyl CoA dehydrogenase deficiency. While the disease may be 

associated with failure to thrive [84], we did not notice any pathologies in her skeleton that might be 

associated with this phenotype. 

Section 15. Phenotypes 

1. Lactase persistence 

The lactase persistence dominant allele rs4988235/T [85] is known to have a much lower frequency 

in MAJ compared to Europeans (10.0% vs 60.1%, respectively; gnomAD; Data S2, Table 6). This 

difference may reflect a gradient within Europe, where the allele frequency is 69.8% in North-Western 

Europeans but only 33.0% in Southern European (gnomAD). To estimate the frequency of the allele in 

EAJ, we excluded the children from both families, leaving 30 individuals (60 chromosomes). While the 

SNP was captured, it was missing in some individuals, and we used the most likely genotype based on 

the PHCP imputation. The T allele frequency in EAJ was 11.7% (7/60; 95% CI: [6,22]%), similar to the 

MAJ allele frequency. The 95% confidence interval was computed using Wilson’s method, as 

implemented in the binconf function from the Hmisc package in R. 

2. Pigmentation 

We used the same method as above. The blue eye recessive allele rs12913832/G [86] had frequency 

55% in EAJ (33/60; 95% CI: [42,67]%; Data S2, Table 6), again similar to the MAJ frequency (54.8%). 

The red hair recessive alleles rs1805007/T, rs1805008/T, and rs1805009/C [87] were present in 8.3% 

of EAJ (5/60; 95% CI: [3.6,18.1]%, Data S2, Table 6) compared to 12.4% in MAJ. No homozygous carriers 

were observed. 

3. Plague-related alleles 

A recent study [88] found a sharp change in allele frequency for rs17514136 and rs10839708 between 

16th-century plague victims in Ellwangen, Germany, and modern individuals from the same town. We 

estimated the allele frequency in EAJ as above. We found that allele frequencies were similar between 

14th-century EAJ and MAJ (P=0.18 and 0.81, respectively; one-tailed binomial test in the direction of 

the change observed in Immel et al [88]; Data S2, Table 6). 

4. Stature estimation 

We reconstructed body height for two individuals using the anatomical method [89], and compared 

the results with those obtained using the mathematical method [90] based on several long bone 

measurements. As the results matched well, we used Pearson’s regression formulae to reconstruct 

body height in all 14 adult individuals whose long bones were sufficiently preserved (Data S2, Table 

7). We then used, for each individual, the mean over the estimates from all available bones. 

5. A polygenic score for height 

We aimed to test the ability of polygenic scores to predict stature in EAJ. We used summary statistics 

from [91] without additional adjustments. Our data included 704,830 SNPs overlapping the summary 

statistics. We calculated the score for each individual using Plink version 1.9 [92] (--score) with the 

“sum” option and otherwise default settings, such that missing genotypes were imputed to their allele 
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frequencies. The mean number of informative SNPs per individual (among those with osteological 

height estimates) was 340,799 (range 150,420-507,616). 

We compared the osteological height estimates to the polygenic scores in 13 unrelated adults (Data 

S2, Table 7; the daughter from Family B was excluded). We added 9.84 cm, the mean difference 

between males and females in our sample, to the height of each female. The osteological heights and 

the polygenic scores were correlated (𝑟 = 0.48, 95% CI: [-0.10,0.81]; Figure 23 below). While our 

sample size is too small to reach a definitive conclusion, the ability to genetically predict the stature 

of ancient individuals, even if at reduced accuracy, agrees with recent studies [93, 94]. 

 

Figure 23. The correlation between the estimated stature and the polygenic score for height. For each 

individual, we plot the estimated height (mean over all available estimates, shifted up by 9.84 cm for females 

(the empirical mean difference between the sexes); Data S2, Table 7) and the polygenic score for height based 

on summary statistics from [91]. We also plot the linear regression line. The proportion of variance in height 

explained by the score was 23% (𝑟 = 0.48, 95% CI: [-0.10,0.81]). 

 

Section 16. Historical interpretation of the genetic results 

1. Models for AJ ancestral sources 

The good fit of qpAdm models for EAJ that had Italy as a source (particularly Southern Italy) provides 

some support for (although do not definitively prove) the theory of AJ origins in Italy (Section 1.1). 

Southern Italy is one of the very few places in Europe where there is evidence for Jewish demographic 

and cultural continuity from the late Roman into the early Medieval period and beyond [5, 95-102]. 

During this timeframe, the Jewish communities of Southern Italy were at the crossroads of Jewish 

Mediterranean life. They were in direct contact with the Jewish communities of Byzantine and early 

Muslim Palestine from whom they received liturgical traditions that they transmitted into Europe and 

that later turned up in the AJ prayer book. They were also in touch with Jewish communities elsewhere 

in the Eastern Mediterranean by virtue of the fact that Southern Italy was part of the Byzantine Empire 

into the late 11th century. 
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All the evidence currently available indicates that during the Roman and early Medieval periods Jews 

were highly integrated in Southern Italy. There is historical evidence that there was at least some gene 

flow between Jews and non-Jews in Southern Italy, because, in the late Roman and early Medieval 

periods, imperial and ecclesiastical authorities tried to prevent the practice of intermarriage between 

Jews and Christians, as well as the phenomenon of conversion of non-Jews to Judaism. When, in due 

course, highly accomplished and connected Jews from Southern Italy started moving north, they were 

joined by others from Central and Northern Italy. For example, the Kalonymus family—a Jewish family 

from the Italian peninsula—is known to have had major impact on AJ intellectual life in 10th-century 

Mainz and Speyer [5, 103]. This was the multilayered migratory legacy that may be reflected in the 

Southern European-related genetic ancestry we observed in our models for the genomes of Erfurt 

Jews. 

We also found possible fit for a model with Greek as a Mediterranean European source. During the 

Hellenistic age, from the 4th century BCE onwards, Jews moved north into Asia Minor and Greece, 

including islands such as Delos, which was a major commercial hub at the times. While relations 

between Jews and Greeks were strained at first, there was much interaction going on during the 

Roman period. There is plenty of archaeological and inscriptional evidence for vibrant Jewish 

communities in both Greece and on the West coast of Asia Minor in cities that had originated as Greek 

colonies [104]. Later on, from the early Roman Imperial period onwards, we also find Jewish 

communities in Southern Italy and in Sicily in cities that had begun their life as Greek colonies, 

particularly in Taranto (Puglia) and Siracusa (Sicily) [105]. 

Our estimate of about 15% Eastern European-related ancestry is consistent with a previous study [40]. 

The identification of this source as Eastern European relies on the f4 results (Figure S3) and the qpAdm 

models (Table S3). However, this ancestry might derive from a broad area across Central or Eastern 

Europe, particularly given the recorded migration into Erfurt from Bohemia, Moravia, and Silesia 

(Section 2.2). The genetic data suggested a high degree of endogamy in AJ through the last ≈700 years. 

Historical evidence indicates that the social practice of intermarriage between Jews and Christians was 

frowned upon by medieval Jewish and Christian authorities [106, 107]. Our genetic results suggest 

that in practice there was indeed very little gene flow into the Jewish community since this period. 

This suggests that the majority of Eastern European-related gene flow has predated the 14th century. 

2. Limitations of the model 

Models with a South-Italian source were more frequently favored by qpAdm (Table S3) and have a 

plausible historical basis (above). However, these models suggested that only about 20% of EAJ 

ancestry derived from Middle Eastern sources. This is less than previous estimates based on modern 

SNP and sequencing data [40, 51]. This may also be interpreted to imply that present-day AJ derive 

only a small proportion of their ancestry from ancient Judaeans; and if so, most AJ ancestry would 

owe its origin to European converts. While this is one possible explanation, modern Italians 

themselves have had much higher proportions of ME admixture since at least European Imperial 

Roman times [43] and this is especially the case in modern Southern Italy [108]. Thus, an alternative 

explanation for these observations is that the true ME proportion in AJ is higher than in our fitting 

model, and that the actual contribution of Italians is not as large as suggested by this analysis. Under 

this scenario, good qpAdm fits are obtained using South-Italians as sources simply because they are a 

modern population that harbors a relatively high proportion of ME ancestry. If this alternative 

explanation is right, the true ME proportion could be higher than in our models, e.g., close to the 30-

50% estimates from previous studies [40, 51] or when modeling EAJ using North-Italians. 
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In an opposite scenario, AJ may have no ancestry at all from the ancient Levant. This could be the case 

if an unsampled Italian population (with more Levantine-like admixture than in modern South-Italians) 

is the source of all the Levantine-like ancestry seen in AJ. At present, we believe all types of scenarios 

are plausible. Co-analysis of ancient DNA data from the Middle East and the Italian peninsula from 

Antiquity and the early Medieval period would make it possible to distinguish them. 

Further complicating the interpretation of the Middle Eastern origins are multiple demographic 

changes that have also affected the Middle East during the past two millennia. Most notably is African 

admixture, as documented in multiple populations [109-111], particularly Saudis [112, 113] and 

Egyptians [114]. Bottlenecks and population structure were identified in Druze, Bedouin, and 

Lebanese [111, 113, 115, 116], and temporal changes in ancestry were observed in Syria [117] and 

Lebanon [118, 119]. 

3. Historical interpretation of the Erfurt substructure 

Our genetic data support the presence of population structure in Erfurt, where one group had 

elevated levels of Eastern European-related ancestry. These findings may correspond to a 

documented cultural and linguistic division that existed within medieval AJ along a west/east axis in 

Central Europe [120]. The Western communities were referred to as Rhineland Jews due to the 

geographic location of the initial AJ settlements, which at the time was referred to as Ashkenaz. These 

Jews, who were known in medieval Rabbinic literature as “bney hes” (after their way of pronunciation 

of the eighth letter in the Hebrew alphabet [121]), were likely derived mainly from Jews inhabiting 

Northern France and Italy in the centuries immediately prior. They maintained a unique religious rite 

and a different set of given names from the Jews living to the East, and during the first centuries of 

the second Millennium spoke German dialects structurally similar to those of the Christian majority 

[120]. These communities may have been represented by Erfurt-ME, given the genetic similarity 

between Erfurt-ME and MAJ of Western European origin. 

The Eastern Jews inhabited southeastern and eastern Germany, Austria, Bohemia, Moravia, and 

Silesia, with early major settlements being Regensburg, Prague, Magdeburg, and Halle. They were 

known in as “bney khes.” During the first centuries of the second Millennium, the Hebrew geographic 

term of Knaan was applied to a large part of this area, with Old Czech being the main language spoken 

by local Jews. In the westernmost part of the bney khes area (covering Regensburg, Austria, and the 

western communities of eastern Germany) Jews spoke German dialects. Much less is known about 

the earlier roots of the bney khes, but possibilities include Italy, the Byzantine realm, and Jews living 

even further east. Eastern Jews may correspond to Erfurt-EU, given the Eastern European-related 

minor genetic ancestry in that group. This hypothesis naturally requires that Eastern AJ had previously 

admixed with local non-Jewish populations. 

Studies of the names, dialects, and religious rite of modern AJ suggest that the Western and Eastern 

communities eventually merged and formed a single Ashkenazi culture, defined by a unified religious 

rite and the Yiddish language [120]. This is consistent with the near lack of genetic structure in modern 

AJ. 

Erfurt might have been at the boundary between the two AJ communities [122]. The available lists of 

Jewish martyrs from Erfurt (1221) and neighboring Weißensee (1303) [123] show the presence of 

given names typical to Western AJ [124]. These Jews or their ancestors migrated to Thuringia from the 

Rhineland. Yet, in the sources from Erfurt from the second half of the 14th century, numerous Slavic 

given names show the presence there of Eastern AJ [124]. For some of these individuals, as we 
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described above (Section 2.2), their provenance from Bohemia, Moravia, and Silesia is explicitly 

indicated in the historical documents [125]. Others who have resettled in Erfurt came from 

surrounding towns in Thuringia and from Western Germany [125], and likely belonged to the Western 

community. Migration is also supported by the isotope analysis. These considerations may explain 

why our sampling of a single cemetery section was able to capture the medieval AJ substructure. 

4. Timing demographic events in Ashkenazi history 

Our modeling of shared haplotypes dated the onset of the AJ bottleneck to ≈40-45 generations ago, 

or approximately about 1000-1200 years ago. This period is well before the time in the late 11th 

century when the persecution of Jews in the Rhineland became endemic. The appearance of a 

bottleneck in the early stages of the AJ community formation could reflect the historical evidence that 

the original AJ settlers comprised only a few dozen families, which were not always welcome and 

lacked the benefit of a fully developed Jewish community [126]. 

Our models dated the onset of expansion of AJ to about 20-25 generations ago, or approximately 

about 500-700 years ago. This confirms historical research pointing towards a gradual demographic 

growth within the Jewish community in German lands. The growth is hard to quantify numerically, 

but, especially from the 1300s onwards, it appears to have been substantial, considering the rapid 

increase in the number of towns that accommodated Jewish communities [127]. 

In this work, we were unable to reliably estimate the dates of the historical admixture events of AJ in 

Europe. Our previous work inferred a minor post-bottleneck gene flow event from Eastern Europeans 

based on a depletion of EU ancestry in IBD segments [40] (as such segments are expected to descend 

from ancestors who lived during the bottleneck). However, with a model of a prolonged bottleneck 

(about 20 generations; Table S5), such a depletion may be observed also if the admixture event had 

happened late during the bottleneck. Our previous work estimated that admixture between Middle 

Eastern and European sources in AJ history occurred about 30 generations ago [40]. This date may be 

associated with the admixture event with Eastern Europeans. Unfortunately, our EAJ genomes did not 

provide additional insights, as we found that a state-of-the-art tool for admixture time inference 

(DATES) provided unreliable results under simulations of AJ-like demographic history (Section 8 

above).  
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Supplementary Tables 

 

Left population 1 Left population 2 

P-value 

European 

populations 

P-value 

Middle Eastern 

populations 

Erfurt Ashkenazi Jews Modern Ashkenazi Jews 0.15 0.38 

Erfurt-EU Modern Ashkenazi Jews 3.2e-06 0.14 

Erfurt-ME Modern Ashkenazi Jews 0.031 0.63 

Erfurt Ashkenazi Jews Turkish Jews 1.8e-10 0.18 

Erfurt-EU Turkish Jews 4.0e-18 0.085 

Erfurt-ME Turkish Jews 0.0081 0.60 

Turkish Jews Modern Ashkenazi Jews 2.9e-14 0.39 

Erfurt Ashkenazi Jews Germans 2.1e-81 0.00029 

Germans Modern Ashkenazi Jews 8.4e-187 2.0e-8 

Erfurt Ashkenazi Jews South-Italians 0.00020 0.030 

South-Italians Modern Ashkenazi Jews 8.1e-7 0.012 

 

Table S1. qpWave results. Related to Figure 3. Each line presents the P-value for one qpWave test. 

The reference European populations were modern Russian, Norwegian, French, Spanish, Bulgarian, 

and Italian_North, with Primate_Chimp as an outgroup (first right population). The reference Middle 

Eastern populations were BedouinA, Lebanese, Jordanian, and Druze, with Primate_Chimp as an 

outgroup. Entries with P>0.05 are highlighted in dark green, and entries with 0.01≤P≤0.05 in light 

green. The only case with P>0.05 with respect to European populations is when the left populations 

are Erfurt Ashkenazi Jews (EAJ) and modern Ashkenazi Jews (MAJ). When Erfurt is replaced by Erfurt-

ME or Erfurt-EU, the P-value is smaller, reflecting the differences in ancestry between each EAJ sub-

group and MAJ. In the other tests, we replaced MAJ or EAJ with Sephardi (Turkish) Jews or with non-

Jewish Italians and Germans. P-values were very small except when comparing Erfurt-ME and Sephardi 

Jews. 
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Proportion of Eastern European ancestry 

1% 2% 4% 6% 8% 

Admixture 

time 

(generations 

before 

present) 

20 0.36 0.34 0.23 0.034 0.0014 

15 0.33 0.091 0.0010 1.7e-07 2.2e-10 

10 0.040 0.040 0.0060 4.9e-05 2.6e-07 

5 0.21 0.087 0.0018 3.5e-06 2.1e-09 

 

Table S2. Determining the degree of endogamy in AJ in the past ≈700 years. Related to Figure 3. We 

used simulations to quantify the maximal degree of gene flow from Eastern Europeans into a group of 

modern AJ such that this admixed group will remain consistent with being a clade with unadmixed AJ. 

Our unadmixed group was the modern AJ dataset used for the original qpWave analyses. For the 

admixed group, we used 𝑛 = 30 modern AJ genomes that were not used in the original analysis 

(sample size selected to match the size of the Erfurt sample; STAR Methods). In the admixed group, 

we replaced a given proportion of the genome (columns) with haplotypes from Eastern European 

sources (STAR Methods). The haplotype lengths were determined based on the assumed admixture 

times (rows; STAR Methods). Each entry in the table shows the P-value for a qpWave test comparing 

the admixed and unadmixed groups with respect to European populations (as in Table S1; STAR 

Methods). Cells with P>0.05 are highlighted in green. The results suggest an upper bound of about 2-

4% on the degree of Eastern European gene flow separating modern and Erfurt AJ. 
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Middle 

Eastern 

source 

Transversion SNPs 

(main analysis) 

Robustness test: 

all available SNPs 

Robustness test: 

different outgroup 

North 

Italian 

South 

Italian 
Greek 

North 

Italian 

South 

Italian 
Greek 

North 

Italian 

South 

Italian 
Greek 

Druze 0.0016 0.0031 0.00012 6.9e-9 9.4e-10 1.2e-13 0.0027 0.12 0.00022 

Egyptian 1.4e-14 5.4e-6 3.1e-6 0 4.1e-17 2.0e-19 2.3e-12 0.027 0.017 

Bedouin A 1.7e-7 0.0042 0.0036 2.9e-16 2.0e-6 9.2e-7 2.8e-6 0.15 0.098 

Bedouin B 0.022 0.21 0.091 0.00068 0.026 0.0080 0.057 0.45 0.21 

Palestinian 0.0021 0.058 0.020 3.7e-6 0.0020 0.00015 0.0074 0.36 0.12 

Lebanese 0.086 0.32 0.046 0.037 0.15 0.00046 0.15 0.56 0.077 

Jordanian 0.0039 0.13 0.060 0.00014 0.039 0.0041 0.014 0.41 0.18 

Syrian 0.019 0.21 0.021 0.0064 0.061 0.00026 0.053 0.47 0.058 

Saudi 0.36 0.15 0.14 0.094 0.18 0.022 0.30 0.60 0.25 

Levant 0.0090 0.070 0.014 0.00024 0.0013 9.5e-6 0.035 0.41 0.10 

Levant + 

Cyprus 
0.015 0.081 0.016 0.00070 0.0016 1.2e-5 0.052 0.43 0.11 

 

Table S3. qpAdm P-values for models with EAJ as the target group. Related to Figure 3. In all models, 

EAJ was the target group and there were three source populations: Middle Eastern, Southern 

European, and Eastern European. The rows represent the Middle Eastern source in each model and 

the columns represent the Southern European source. The Eastern European source in all models is 

Russians. Models with P>0.05 are highlighted in green, and models with 0.01≤P≤0.05 in light green. 

The three columns under “transversions SNPs” present the results that were described in the main 

text, where we used only transversions to avoid bias due to ancient DNA damage. The next three 

columns (“all available SNPs”) present the results of the same models when all SNPs were used. The 

next three columns (“different outgroup”) present the results of the same models when we set Ami 

as the outgroup instead of Mbuti (using only transversions). In models with “Levant” as the Middle 

Eastern source we grouped Palestinian, Jordanian, Druze, Bedouin A, Bedouin B, Syrian, and Lebanese 

as a single source population. In models with “Levant + Cyprus” we added Cypriot to the Levant source. 

Overall, a South-Italian source was more plausible than a North-Italian or a Greek source, and 

Lebanese, Saudi, Syrian, Jordanian, and Bedouin B were the more likely Middle Eastern sources. 
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Haplogroup 
Freq. in 

modern AJ 

Freq. in 

Erfurt 

Freq. in 

Erfurt-ME 

Freq. in 

Erfurt-EU 

Freq. in low-

coverage 

samples 

K1a1b1a 20% 11/31 7/13 2/10 2/8 

N1b2 9% 1/31 1/13 0/10 0/8 

K1a9 6% 2/31 1/13 0/10 1/8 

K2a2a1 5% 0    

 

Table S4. Ashkenazi Jewish mitochondrial DNA founder lineages. Related to STAR Methods. Previous 

studies showed that modern AJ carry four founder lineages, with a cumulative frequency of 40% [128]. 

We compared the frequencies of these lineages in modern AJ [15] and Erfurt. We excluded the two 

children of family A since their mother is also in the sample. The frequency of K1a1b1a in Erfurt (35%) 

was significantly higher than in modern AJ (P=0.041; two-tailed binomial test (binom.test in R)). The 

frequency of K1a1b1a in Erfurt-ME (7/13=54%) was higher than the frequency in Erfurt-EU 

(2/10=20%), but given the small sample sizes, the difference was not statistically significant (P=0.20; 

two-tailed Fisher’s exact test). The combined count of N1b2 (also called N1b1b1), K1a9, and K2a2a1 

carriers (3/31; 9.7%) was lower in EAJ than expected based on modern AJ frequencies (20%), but again 

the result was not statistically significant (P=0.18; two-tailed binomial test).  
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 A B C D E F G H 

 

Modern IBD, 

variable 

bottleneck 

length 

Modern IBD, 

single-

generation 

bottleneck 

Modern 

ROH 
Consanguinity 

Narrower 

bottleneck 

Longer 

bottleneck 

Joint 

likelihood 

Two-

population 

model 

𝑵𝒂 

47,961 

[45,922 -

72,585] 

10,010 4,671 47,961 5,042 47,961 50,000 

50,000 

[50,000 -

97,465.5] 

𝑵𝒃 

1,563 

[1,363.5 -

1,750.5] 

480 1,295 1,563 529 1,563 905 
627 

[355 - 958] 

𝑵𝒄 

363,484 

[-3,831,093.0 -

545,656.5] 

157,498 107 363,483 107 169,092 107 

1,652,527 

[-6,694,946 - 

2,456,011] 

𝑻𝒃 
41 

[39 - 43] 
31 30 41 41 74 51 

46 

[36 - 58] 

𝒅 
20 

[15 - 24] 
1 (fixed) 11 20 15 48 25 

22 

[9 - 35.5] 

 𝜶 = 0.22  
𝒇 = 0.52 

[0.41 - 0.99] 

 

Table S5. Demographic models for the AJ founder event. Related to Figure 4. The table presents the 

parameters we inferred for various demographic models of AJ history. In all models, the population 

has been of constant effective size 𝑁𝑎  (diploids) until 𝑇𝑏 generations before present, and the 

population has grown exponentially starting 𝑇𝑏 − 𝑑 generations ago and until reaching present size 

𝑁𝑐 . In the single-population models (all models except (H); Figure 4A), the population size has been 

𝑁𝑏 for 𝑑 generations, starting 𝑇𝑏 generations ago. In the two-population model ((H); Figure 4E), the 

population has split 𝑇𝑏 generations ago into one population of size 𝑁𝑏 (representing EAJ) and another 

of size 𝑁𝑎 − 𝑁𝑏. After 𝑑 generations, these two populations merged with proportions 𝑓 and (1 − 𝑓), 

respectively. In the consanguinity model (D), we assume that a proportion 𝛼 of the EAJ individuals 

were born to parents who were first cousins. 

In all models, we estimated the parameters numerically by maximizing the composite-likelihood of 

observing the given number of segments in each length bin (STAR Methods; Data S1, section 12). In 

some models, the maximum likelihood was obtained when some parameters were at the boundary of 

the search space (e.g., 𝑁𝑎 = 50𝑘 and 𝑁𝑐 = 10
7). For models (A) and (H), we computed 95% 

confidence intervals (shown under each point estimate) using parametric bootstrap by resampling the 

segment counts per bin (STAR Methods; Data S1, section 12). 

In models (A) and (B), we inferred the demographic parameters based on modern IBD sharing. In (A), 

we inferred the bottleneck duration (𝑑) from the data, while in (B), we fixed it to 1. In the modern 
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ROH model (C), we estimated the model parameters based on ROH segments inferred in modern AJ. 

In the consanguinity model (D), we fixed all parameters that were inferred in model (A), and used 

ROH segments in the EAJ genomes to infer 𝛼, the proportion of EAJ individuals whose parents were 

first cousins. In the narrower bottleneck model (E), we fixed 𝑇𝑏 from model (A), and inferred the 

population sizes 𝑁𝑎  and 𝑁𝑏 based on ROH segments in EAJ. We then fixed 𝑁𝑎  and 𝑁𝑏 to their 

inferred values, and inferred 𝑑 and 𝑁𝑐  using modern IBD. In the longer bottleneck model (F), we 

fixed 𝑁𝑎  and 𝑁𝑏 from model (A), and inferred 𝑇𝑏 based on ROH in EAJ. As in (E), we then inferred 𝑑 

and 𝑁𝑐  using the modern IBD data. In the joint likelihood model (G), we inferred the demographic 

parameters based on both ancient and modern data. Finally, in the two-population model (H), we 

inferred all parameters based on both ancient and modern data, including 𝑓, the proportion of 

modern AJ lineages that descend from the EAJ-like population. For complete details, see STAR 

Methods and Data S1, section 12. 

 


