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Haplotype-based inference of recent effec-
tive population size in modern and ancient
DNA samples

Romain Fournier 1, Zoi Tsangalidou1, David Reich 2,3,4,5,7 &
Pier Francesco Palamara 1,6,7

Individuals sharing recent ancestors are likely to co-inherit large identical-by-
descent (IBD) genomic regions. The distribution of these IBD segments in a
population may be used to reconstruct past demographic events such as
effective population size variation, but accurate IBD detection is difficult in
ancient DNA data and in underrepresented populations with limited reference
data. In this work, we introduce an accurate method for inferring effective
population size variation during the past ~2000 years in both modern and
ancient DNA data, called HapNe. HapNe infers recent population size fluc-
tuations using either IBD sharing (HapNe-IBD) or linkage disequilibrium
(HapNe-LD), which does not require phasing and can be computed in low
coverage data, including data sets with heterogeneous sampling times. HapNe
shows improved accuracy in a range of simulated demographic scenarios
compared to currently available methods for IBD-based and LD-based infer-
ence of recent effective population size, while requiring fewer computational
resources. We apply HapNe to several modern populations from the 1,000
Genomes Project, the UK Biobank, the Allen Ancient DNA Resource, and
recently published samples from IronAge Britain, detectingmultiple instances
of recent effective population size variation across these groups.

The increasing availability of high-quality genomic data for both
modern and ancient samples is creating exciting newopportunities for
data-driven investigation of key evolutionary parameters. Among
these, the effective size of a population plays an essential role in
population biology1. A population’s effective size is defined as the
number of individuals in an idealized evolutionary model2,3, and the
ability to infer it from genomic data has a wide range of applications,
including the study of past demographic events4,5 and cultural
practices6, the quantification of the effectiveness of natural selection1,7,
and the prediction of viability in conservation biology8.

Several statistical tools have been developed to reconstruct the
trajectory of effective population size from genomic data9, each

leveraging different genomic features and enabling the analysis of
different data types.Methods that rely on the site frequency spectrum
(SFS) of a sample10–13 avoid modeling recombination and are thus
scalable, but require high-quality sequencing data to estimate the SFS
and have been observed to be statistically inefficient14. Methods that
model both mutation and recombination processes15–19, on the other
hand, tend to scale to smaller sample sizes and require high-quality
genome sequencing data. Recent approaches enable simultaneous
modeling of recombination and allele frequencies in unphased
sequencing data18, or scaling to larger sample sizes for accurately
phased sequencing data20 and for unphased low-coverage data21,22.
Finally, several methods that focus on capturing the signature of
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recombination through the sharing of identical-by-descent (IBD)
haplotypes23–27 or linkage disequilibrium28–31(LD) have been developed.

Inference of recent population size fluctuations is particularly
appealing because it provides unique insights into demographic and
evolutionary processes that are specific to the analyzed population.
IBD-based methods have been used to infer recent demographic
history23–25,27 in SNP array and sequencing data. A key limitation of
these methods is that they rely on accurate detection of IBD
regions32–35. The performanceof these algorithmsdependson accurate
long-range computational phasing, which may be hard to obtain,
particularly in low-coverage ancientDNAdata.Whilebeing a less direct
measure of the signature of past recombination events, LD-based
summary statistics can be computed in unphased samples, including
SNP array and ancient DNA data. LD has been extensivelymodeled36–40

and applied to infer effective population size28–31,40,41. The most recent
methods for IBD- and LD-based inference, IBDNe27 and GONE31, enable
inference of population size fluctuations in time, without assuming a
strictly parametrized demographic model. This strategy, however,
poses additional challenges, due to the need to adequately regularize
the inferred models25,27 to avoid reporting spurious fluctuations, while
preserving manageable computational costs.

Here, we present a new method, called HapNe, that enables flex-
ible inferenceof recent effective population sizefluctuations using IBD
or LD summary statistics, and can be used to analyze both phased and
unphased SNP array or sequencing data, including low coverage or
ancient DNA data with heterogeneous sampling time. Using extensive
coalescent simulations, we show that HapNe accurately and efficiently
infers recent demographic history, while regularizing the model to
control for spurious oscillations in recent generations. We apply
HapNe to reconstruct recent demographic history in bothmodern and
ancient data, including populations from the 1000 Genomes Project
and different postcodes from the U.K. Biobank data set, where we
observed a bottleneck in the Late Middle Ages corresponding to the
period of the BlackDeath.We also analyze ancient individuals from the
Caribbean, Scandinavian Vikings, and individuals who lived in England
during the Iron Age, observing isolation and expansion events that are
consistent with past historical events, such as the transition from the
Archaic to the Ceramic periods in the Caribbean.

Results
Overview of the HapNe algorithm
The HapNe algorithm infers recent effective population size using
either IBD or LD data (see Methods and Supplementary Note for a
detailed description of the algorithm). We refer to these two approa-
ches as HapNe-IBD and HapNe-LD, respectively. HapNe-IBD uses IBD-
sharing information to compute summary statistics related to the
count of IBD segments of different lengths.

Briefly (see Supplementary Note for a detailed derivation, also see
refs. 23–25,27) this approach leverages the relationship between the
length and the age of IBD segments to infer the effective number of
individuals that lived in a population in the past. More in detail, two
individuals sharing a common ancestor may co-inherit IBD regions,
which tend to be larger when the shared ancestor is recent because
fewer recombination events occur in the genealogical lineages con-
necting these individuals. The distribution of the lengths of IBD seg-
ments thus provides information about the age of shared ancestors in
a population as well as the density of common ancestors across time,
which is proportional to effective population size. HapNe-IBD models
these relationships using a composite likelihood that links the
observed distribution of IBD segment lengths with a populations
effective size trajectory.

A limitation of IBD-based inference of effective population size
trajectories, however, is that it relies on accurate detection of IBD
segments. This typically requires phasing information and additional
modeling of haplotype sharing to differentiate between identical-by-

state (IBS) and truly IBD regions. Accurate phasing and haplotype
modeling may not be possible if the analyzed genomes are not of high
quality or not well represented in reference panels. HapNe-LD, on the
other hand, leverages summary statistics related to long-range LD
(Pearson correlation between sites). These long-range correlations
arise because the shared ancestors transmitting long IBD segments are
typically more recent than genomic variations that are found at high
frequency in the population, so that these ancestors are themselves
carriers of these variants. Therefore, long-range LD is driven by the
underlying presence of IBD segments, capturing demographic infor-
mation used in IBD-based inference. HapNe-LD relies on a composite
likelihood that models the expected distribution of IBD segment
lengths and the genomic correlations they induce. These LD statistics
are easy to compute and do not require genotypes to be either phased
or of high quality, enabling the analysis of past demographic events in
low coverage or aDNA data.

HapNe-IBD and HapNe-LD both optimize a composite likelihood.
To ensure that themodel is appropriately regularized, HapNe utilizes a
prior on the effective population size Ne(t) that favors models with
minimal population size fluctuations. When the analyzed IBD or LD
data does not contain sufficient signal, this regularization mechanism
prevents inferring spurious variation inNe(t), whichmay be incorrectly
interpreted as past demographic events. The resulting approximate
posterior is optimized to compute a maximum-a-posteriori (MAP)
estimator of Ne(t) and bootstrap resampling is used to provide esti-
mates of uncertainty through approximate 95% confidence intervals.
Both methods automatically exclude genomic regions harboring
unusually large amounts of IBD or LD, whichmay be caused by natural
selection or the presence of structural variation rather than past
demographic events. In addition, HapNe-LD implements a test to
detect the presenceof possiblebiases due to thepresenceof strong LD
caused by population structure and can handle samples originating
fromdifferent time points. TheHapNeprogram is freely available as an
open-source software package (see Code Availability).

Performance on simulated modern data
We used extensive coalescent simulations to benchmark HapNe-IBD
and HapNe-LD against other recent methods for haplotype-based
inference of recent effective population size. To this end, we con-
sidered several demographic scenarios (Fig. 1a, dotted black lines),
including: a constant population size of Ne(t) = 20,000; an exponen-
tially expanding population with 200, 000 haploid individuals at t = 0
and 20,000 at t = 50 generations; an exponentially collapsing popu-
lation with 2000 living individuals at t =0 and 20,000 at t = 100; and a
population undergoing a strong bottleneck, evolving from 200,000
haploid individuals at t =0 to 2000 at t = 25, and then growing back to
20,000 at t = 50. For each of these populations, we simulated 256
diploid individuals.We generated realistic SNP-array data and used the
simulated ancestral recombination graph to extract ground truth IBD
segments longer than 1cM (see Methods).

We initially considered the performance of HapNe-IBD and
IBDNe33 in an idealized setting where ground truth IBD sharing infor-
mation is available (see Supplementary Fig. 1). In this scenario, HapNe-
IBD generally produced lower error than IBDNe, measured using the
root mean squared log-error (RMSLE) over the past 50 generations
(see Methods). HapNe-IBD produced stable estimates of effective
population size in the very recent past, whereas IBDNe tended to
output spurious oscillations, a caveat that was highlighted by the
authors33. We next inferred and analyzed LD summary statistics from
the simulated array data using HapNe-LD. Because the LD signal
reflects the presence of underlying IBD segments (see Supplementary
Note), analysis of ground truth IBD data may be seen as an upper
bound on the accuracy of HapNe-LD. We observed the RMSLE of
HapNe-LD applied to SNP array data to be close to that of HapNe-IBD
using ground truth IBD data, suggesting that HapNe-LD achieves close
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to optimal performance in these simulations, despite not utilizing
phasing information (see Supplementary Fig. 1b). We evaluated the
robustness of HapNe-LD under amisspecified recombinationmap and
did not observe strong biases in simulations involving noisy recom-
bination rate estimates(Supplementary Fig. 2), or when using different
genetic maps in real analyses (Supplementary Fig. 3). We also tested
the performance of GONE31, a recent LD-based method, and observed
larger RMSLE in the past 50 generations (see Fig. 1b). Due to its reg-
ularization procedure, HapNe-LD tended to infer smooth changes in
population size, whereas GONE inferred more rapid fluctuations (see
Fig. 1a). GONE did not produce bootstrap confidence intervals in these
simulations, due to an insufficient number of available SNPs (see
Methods).

We next considered amore realistic scenario for the application
of IBD-based methods (HapNe-IBD and IBDNe), where we inferred
IBD sharing from simulated SNP array data (assuming perfect
phasing, see Methods). We detected IBD sharing using the HapIBD
software35 (see Methods); similar results were obtained by using
other IBD detection methods, as well as input parameters for IBDNe
(see Supplementary Fig. 4, Methods). Fig. 1a shows the output of all
four methods on a data set of 256 diploid samples and results for
other sample sizes are summarized in Fig. 1b (also see Supplemen-
tary Figs. 5 and 6, as well as Supplementary Fig. 7 for simulations
involving larger sample sizes).

Inmost cases, the noise introduced by inferring IBD from the data
resulted in biases in the inferred effective population sizes; IBDNe
tended to underestimate recent effective population size, while
HapNe-IBD tended to overestimate ancestral population size (Sup-
plementary Fig. 5). We observed the error in IBD detection to be
dependent on several factors, including demographic history, the
length of the inferred segments, the software used, as well as the IBD
postprocessing strategy. (see Supplementary Fig. 8).

We finally benchmarked the computational speed of these
methods and observed HapNe-IBD and HapNe-LD to be more com-
putationally efficient than IBDNe and GONE (see Fig. 1c). Computing
LD scales only linearly with the number of analyzed samples, while
detecting pairwise IBD sharing requires computation that is quadratic
in the number of samples, making LD-based analyses more scalable.
Unlike IBDNe, which requires more time to fit larger samples, HapNe-
IBD only computes a fixed-size vector of the IBD segment lengths,
significantly reducing computational costs for larger samples. The
difference in computational timebetweenHapNe-IBD andHapNe-LD is
mainly driven by differences in the time required to compute IBD and
LD summary statistics.

We next assessed the robustness of HapNe to the presence of
haplotype phasing errors, genotyping errors, and population struc-
ture, which are often encountered in analyses of real data (see Meth-
ods). We observed HapNe-LD, which relies on unphased two-locus
statistics, to be more robust than HapNe-IBD to the presence of
phasing and genotyping errors. In these simulations, computational
phasing reduced the sensitivity of IBD detection, resulting in an
upward shift of the demographic models inferred by both HapNe-IBD
and IBDNe. HapNe-LD, on the other hand, remained unaffected
(Fig. 2a). We observed similar effects when genotyping errors were
included (Fig. 2b, c). HapNe-LD was robust to the presence of errors,
which however, caused IBD segments to break into smaller regions
that led HapNe-IBD to infer spurious oscillations (see Fig. 2b, c and
Supplementary Fig. 8). Finally, we investigated the impact of LD-
induced by admixture (admixture LD), simulating a scenario where a
population originating from a recent admixture event involving two
diverged ancestral groups (see Methods, Fig. 2d). HapNe-LD estimates
and removes the effects of cross-chromosome LD (see Methods),
which partially corrects for the presence of population structure
(Supplementary Fig. 9). This, however, does not fully account for
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Fig. 1 | Benchmarks in simulated modern populations. a Ne estimates obtained
from HapNe-IBD, IBDNe, HapNe-LD, and GONE on simulated SNP-array data (256
individuals) for four different demographic scenarios. The light and dark-shaded
areas correspond to 95% and 50% confidence intervals estimated using bootstrap
quantiles. b Accuracy of the different methods on the “Bottleneck" demographic

model as a functionof sample size. cTotal running time for eachmethod (including
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error bars representing 1.96 × s.e.m.
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admixture LD, which decays with genetic distance and can lead LD-
based methods to infer a spurious bottleneck around the time of the
admixture event (Supplementary Fig. 10). We observed the strength of
this bottleneck to be proportional to the degree of differentiation
between the ancestral populations. The inferred models, however,
were not substantially biased for admixture events involving popula-
tions with a fixation index (Fst) below 0.02 (Supplementary Fig. 11),
roughly corresponding to the highest Fst observed between European
populations (0.023 between Southern Italy and Finland Kuusamo), but
lower than Fst observed across other groups (e.g., 0.192 between
Yoruba and Japan)42.We, therefore, caution thatHapNe-LD resultsmay
be biased in analyses of populations that experienced recent admix-
ture events involving groups for which high Fst values are observed.

Overall, HapNe-IBD and HapNe-LD provided improved accuracy
and substantially reduced computational times compared to existing
methodologies. Although IBD-based inference of effective population
sizes is potentially more accurate than LD-based analysis, the need to
accurately detect IBD sharing is likely to introduce substantial biases in
the inferred population sizes. HapNe-LD’s performance was observed
to be close to that of IBD-based methods applied to ground truth IBD
data andmay be applied in the analysis of large sample sizes, providing
several practical advantages over IBD-basedmethods in the analysis of
real data sets.

Performance on simulated aDNA data
HapNe-LD does not require phased or high coverage data, making it
especially suitable for the analysis of effective population sizes of
ancient populations, where phase determination can be poor.

However, analyses of aDNA data suffer from several limitations. First,
analyses based on aDNA data sets tend to contain fewer samples
sequenced at relatively low coverage compared with modern panels.
Furthermore, different sequencing strategies balancing sample size
and coverage might lead to different performances in effective popu-
lation size inferences. Finally, individuals sampled at a site are unlikely
to have lived at the same time, with a few notable exceptions43,44. If not
modeled, this source of time heterogeneity may lead to biased effec-
tive size estimates. We set out to test HapNe-LD’s robustness to these
sources of confounding. We first created synthetic aDNA samples by
generating pseudo-haploid individuals with different levels of miss-
ingness m, mimicking the effects of reduced sequencing coverage C,
with m ≈ e−C (see Methods). We tested the relative impact of the simu-
lated sample size s and coverage on HapNe-LD’s inference accuracy
(see Fig. 3a and Supplementary Fig. 12 for additional demographic
scenarios). As expected, RMSLE decreases when more samples are
available and when coverage increases (see Fig. 3b and Supplementary
Fig. 13).We then testedwhether HapNe-LDwould perform better when
analyzing a larger number of low-coverage samples rather than a
smaller number of high-coverage samples. To this end, we performed
simulations where the overall number of sequencing reads is kept
approximately constant, while the number of analyzed samples and
their coverage are varied (see Fig. 3c and Supplementary Fig. 13). We
considered an analysis involving 256 individuals and observed that
reducing coverage from 30× to 1.4× had no significant impact on the
performance while requiring only about 5% of the reads. Using an
equivalent number of reads to perform high coverage (30×) sequen-
cing would only allow sequencing 16 individuals, resulting in
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significantly higher RMSLE. These results suggest that sequencing at a
coveragehigher than 1–2×doesnot lead to significant improvements in
HapNe-LD’s performance, and that HapNe-LD is more accurate when a
larger number of individuals is sequenced at lower coverage compared
to settings in which a smaller number of high coverage samples is
analyzed, because more independent IBD segments are present in the
latter case. At low sample sizes (s < 10), only demographic histories
with a strong contraction in the recent past yielded enough signal for
HapNe to infer fluctuations in our experiments (see Supplementary
Fig. 14). We also examined the impact of imputing aDNA using a
modern reference panel (see Methods). In these experiments, HapNe-
LD obtained improved accuracy of the inferred demographic history,
despite a relatively high error rate of 2.9% in the imputed aDNA gen-
otypes (see Supplementary Fig. 15). This suggests that genotype
imputation of aDNA samples may be a viable route to improve demo-
graphic inference, although additional care may be required to con-
sider and address potential biases introduced by imputation. In these
experiments, we observed that imputation induces a significant level of
cross-chromosome LD, which will be flagged in HapNe’s output.

Lastly, we considered potential biases arising due to hetero-
geneous sampling times of the analyzed aDNA individuals. We used
analytical modeling (see Methods and Supplementary Note) to con-
firm that, if not accounted for, heterogeneous sampling times lead to
biased recent effective population size estimates. We performed
simulations of aDNA samples originating from heterogeneous time
locations under a constant demographic history, uniformly drawing
the time offset of each sample between 0 and ΔT generations in the
past (see Methods). In this setting, we observed that using GONE to
infer effective population size leads to the spurious inference of a
recent population expansion, consistent with analytical predictions
under unmodeled time heterogeneity (see Fig. 3d). The HapNe-LD
algorithm allows utilizing prior knowledge of sampling times (e.g.,
from radiocarbon dating or archeological context) in the form of a
user-provided time interval for each analyzed individual (see Meth-
ods). Using simulations, we verified that this approach effectively
removes recent biases due to time heterogeneity.

Inference of recent effective population sizes in the UK Biobank
and 1000 Genomes Project data sets
We used HapNe-IBD and HapNe-LD to analyze recent effective popu-
lation size variation using genotype data from the UK Biobank data set

(see Methods). Accurate inference of recent demographic events
requires a combination of large sample sizes and small effective
population sizes, whichmake it possible to estimate recent coalescent
rates. In this case, large recent effective population sizes generally
present across the UK are balanced by the large sample sizes available
in the UK Biobank data set. In order to mitigate the impact of admix-
ture LD, we focused on the larger group of samples with self-reported
white British ancestry, and only considered unrelated individuals to
avoid biasing demographic inference in recent generations. We
grouped individuals based on the postcode of their self-reported
birthplace and report analyses for three of these postcodes (see
Fig. 4a, Methods). We also used FastSMC to detect IBD segments
within each of these postcodes. Regions with unusually high LD or IBD
sharing were excluded using HapNe’s filter (Supplementary Figs. 16
and 17).

Effective size trajectories inferred from these regions in the UK all
exhibit a bottleneck event during the Late Middle Ages, which roughly
corresponds to the period of the Black Death (Fig. 3a, vertical dashed
line). The inferred population size for individuals from the Llandudno
postcode has a significantly smaller effective population size com-
pared to the ones inferred for Glasgow and Edinburgh. Such a smaller
effective size offers a stronger source of recent demographic signal,
allowing to perform inference using a smaller sample size (s = 2089 for
Llandudno, s = 14,724 for Glasgow, and s = 9981 for Edinburgh). In
contrast, detecting the more subtle contraction to a larger minimum
bottleneck size in Glasgow required a substantially larger sample size,
as highlighted when we downsampled data from this postcode to
2000 individuals (see Supplementary Fig. 18). In this experiment, the
bottleneck was only apparent in the output of HapNe-IBD, suggesting
that LD-based analysis may lead to comparably lower statistical effi-
ciency in cases where high-quality IBD signal is available. Demographic
models inferred by HapNe-IBD and HapNe-LD are broadly consistent,
although HapNe-IBD tends to report a larger effective population size,
with a significant shift towards more recent times. These observations
are compatible with the presence of underlying IBD segments that are
undetected or broken into smaller segments, due to the presence of
phasing or genotyping errors in the data.

We next applied HapNe-IBD and HapNe-LD to data from the 1000
Genomes Project (1 kGP,46). Unlike the UK Biobank, most 1 kGP groups
contain a small number of samples, which originate from large popu-
lations. Furthermore, several groups represented in the 1 kGP data set
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are known to have undergone recent admixture46. As shown in simu-
lations, HapNe-LD is not suited for the analysis of groupswith a history
of recent admixture involving groups with large Fst and we, therefore,
only retained a subset of populations for subsequent analysis (see
Methods).We next usedHapNe-LD to compute LD for eachpopulation
and estimated recent IBD sharing using theHapIBD algorithm followed
by a post-processing step to merge detected segments (see Methods).
We then inferred recent effective population sizes using the HapNe-LD
and HapNe-IBD methods and reported results for the five populations
with no significant levels of CCLD and for which both methods found
sufficient signal to infer demographic variation.

Figure 4b shows results for three populations meeting these
criteria. Results for the other populations retained for this analysis
are shown in Supplementary Fig. 19, which also includes results
obtained using IBDNe. IBD-based inference consistently resulted in
larger inferred effective population sizes compared to LD-based
inference. As observed in simulations, this is likely caused by
reduced sensitivity in the detection of IBD segments in real data, due
to the presence of phasing and genotyping errors. This effect was
more pronounced in 1kGP compared to the UK Biobank data set,
where a larger sample size leads to higher accuracy in phasing and
IBD detection. HapNe-LD infers a bottleneck at 1000 CE for the FIN
population, consistent with previous reports27,31,47. This demo-
graphic event is inferred to have an earlier onset using IBD data,
likely also a result of noisy IBD detection. Both HapNe methods
suggest a recent expansion for the individuals from the Kinh
population in Ho Chi Minh City, Vietnam (KHV) and for the Yoruba
population in Ibadan, Nigeria (YRI). Some biases observed in our
simulations are also present in the inferred demographic histories of
other populations. These include population collapses in the
demographic history inferred for populations with significant levels

of CCLD and known recent admixture between diverged ancestral
groups (Supplementary Fig. 20).

Overall, these results suggest that HapNe-LD and HapNe-IBD
provide similar results when large samples and high-quality IBD data
are available and suggest guidelines for the application of these tools.
HapNe-LD provides more robust results than HapNe-IBD in data sets
where phasing and IBD detection accuracy are reduced, at the cost of
slightly reduced statistical efficiency, particularlywhen the presenceof
population structure requires the estimating cross-chromosome LD
(see Supplementary Note). LD induced by recent admixture involving
populations with large Fst can lead to the inference of spurious
population reductions in the recent past (see Supplementary Fig. 20).

Inference of recent demographic history in ancient populations
We applied the HapNe-LD method to aDNA sampled from four dif-
ferent sites for which large cohorts from similar time strata were
available (see Methods and Supplementary Tables 1–8). We excluded
individuals for whichknownclose relativeswere present in the data set
(see Methods), which would otherwise lead to a smaller inferred
effective population size. It is still possible that undetected distant
relationships remain present in these groups; if present, our analyses
interpret these more distant relationships as reflecting demographic
phenomena, rather than sample ascertainment. We first analyzed a
group of recently published individuals excavated in Pocklington,
Yorkshire, UK48 (see Fig. 5a). The archeological context suggests that
this group belongs to the Arras culture, which is distinctive relative to
other Iron Age cultures in the UK but shows similarities with con-
temporary cultures in the Paris Basin and Ardennes/Champagne
regions of France. These individuals were found to be unusually highly
drifted fromnearby groups, although their F-statistics do not highlight
significantly divergent admixture histories. This suggests that these
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Fig. 4 | HapNe-IBD andHapNe-LDestimates of recent effective population sizes
in modern populations. a Inference results for three postcodes: Glasgow (G),
s = 14,724; Edinburgh (EH), s = 9981; and Llandudno (LL), s = 2089 from the UK
Biobank data set. The vertical dashed line corresponds to the estimated date of the
BlackDeath in theUK (1348, ref. 45). HapNe results are converted to years assuming
29 years per generation. The shaded gray area depicts how the placement of the

Black Death would shift with respect to the inferred demographic models if values
between 23 and 35 years per generationwere assumed.b Inference results for three
populations (Finnish, European, FIN, s = 99; Kinh in Ho Chi Minh City, Vietnam,
South Asian, KHV, s = 99; Yoruba in Ibadan, Nigeria, African, YRI, s = 108) from the
1000 Genomes Project. The light and dark-shaded areas correspond to 95% and
50% confidence intervals estimated using bootstrap quantiles.
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groups share common origins but may have been isolated for some
time or that they originated from a later migration event48. This
hypothesis is compatible with the effective population sizes we
observed when running HapNe on 24 individuals from the Arras cul-
ture, which we compared with 49 individuals from South England
(Supplementary Tables 2–4). Because the Arras are sampled from a
smaller geographic region compared to the samples from South Eng-
land, we also considered a subset of 14 individuals from South England
sampled from a similarly localized region in Hampshire.

Both the Arras and the Hampshire groups displayed a significant
recent population contraction, probably reflecting geographic locali-
zation. However, the demographic model inferred for the Hampshire
samples grows back to the population size inferred for South England,
whereas the size observed for the Arras samples remains smaller. This
difference in population sizes is consistent with the recent observation
of high genetic drift between the Arras and other groups in these
regions, possibly reflecting isolation or distinct origins48. Cross-
chromosome LD for these groups was found to be negligible, sug-
gesting that the observed demographic signature is not due to popu-
lation structure (see Supplementary Table 1), although recent
admixture might create a similar collapse (see Supplementary Fig. 11).
The small population size of the Arras group might also explain why
this population was found to be unusually highly drifted from nearby
groups. The recent effective population size inferred for individuals in
the South of England was compatible with population size estimates
obtained for modern UK Biobank individuals, although confidence

intervals were large over the first 1000 years due to a reduced sam-
ple size.

We next analyzed 22 genetically similar individuals from the Vik-
ing Age buried inNorway, together with 28 individuals from the south-
east Swedish island of Gotland43 (Fig. 5b and Supplementary Tables 5
and 6). Norwegian and Swedish Vikings have been observed to have a
slightly smaller proportion of ancestry from Neolithic farmers from
Anatolia compared to Vikings from Gotland. On the other hand, Vik-
ings from Gotland have a relatively higher estimated fraction of
ancestry shared with Bronze Age individuals from the Baltic region.
Despite these differences, the demographic histories inferred by
HapNe-LD for the recent past of these individuals substantiallyoverlap,
and both trajectories show a significant expansion during the iron age
(−500 to 800 CE).

Finally, we focused on 71 unrelated individuals from the Car-
ibbean, first analyzed in ref. 49 (n = 62) and ref. 50 (n = 9) spanning
~1149 to ~1440 CE (Supplementary Tables 7 and 8). For these samples,
HapNe-LD infers a weak sign of a bottleneck occurring around 1 CE,
followed by a significant expansion, as shown in Fig. 5c (blue line). This
patternmay reflect the transition from the Archaic to Ceramic context
about 2500–2300 years ago (Fig. 5a, gray area), which has been asso-
ciated with migration events in the region49. We also extracted and
separately analyzed a subgroup of individuals from South-East
Dominican sites (Fig. 5c, red). These individuals are part of a sub-
clade previously identified in ref. 49. The population size inferred for
this group matches that of the broader Caribbean group in the deep
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Fig. 5 | HapNe-LD estimates of recent effective population sizes in ancient
populations. a Analysis of 49 Middle to Late Iron Age individuals from South
England, compared to a subset of 14 individuals from Hampshire, and to 24 indi-
viduals related to the Arras culture near Yorkshire. b Inference based on 22 Viking
samples found in modern Norway (blue) and 28 found in Gotland, a Swedish island
(red). c Effective population size inference based on 71 unrelated individuals from
theCaribbeanCeramic clade and 18 from theDominican South-East coast subclade.
The dark-gray shaded area corresponds to the estimated date for the transition

from the Archaic to Ceramic culture in the region. The light and dark-colored
shaded areas correspond to 95% and 50% confidence intervals estimated using
bootstrap quantiles. The light gray-shaded area depicts how the placement of this
transition would shift with respect to the inferred demographic models if values
between 25 and 35 years per generation were assumed. The dots on the maps
represent the location of the samples. The figurewasmadewith Natural Earth. Free
vector and raster map data @ naturalearthdata.com.
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past, consistent with common origins, but shows a distinctive sign of
contraction in the more recent past. LD induced by population struc-
ture is detectable in these individuals, which may partially explain the
observed contraction (Supplementary Table 1). Nevertheless, the sizes
inferred by HapNe-LD in the recent past roughly match those inferred
using runs of homozygosity51, supporting the possibility of a popula-
tion contraction starting after the transition from the Archaic to the
Ceramic period49. As in the case of the Arras and Southern England
individuals, these demographic patterns may also be due to isolation
by distance, where samples originating from different islands result in
a larger effective size when considered together.

Discussion
We developed an algorithm, called HapNe, that leverages the count of
IBD segments of different lengths (HapNe-IBD) or long-range LD
(HapNe-LD) to infer recent effective population size fluctuations in
modern or ancient DNA data. HapNe-IBD and HapNe-LD implement a
number of preprocessing steps, as well as tests to verify that sufficient
recent demographic signal is present in the data and to detect the
presence of admixture LD. Bothmethodsminimize a power-likelihood
based on an analytic link between observed summary statistics and the
effective population size and use regularization to avoid producing
spurious oscillations. We used extensive simulation to show that both
HapNe methods were more accurate and computationally faster than
available algorithms for IBD-based and LD-based inference of recent
demographic history, producing lower error and fewer spurious
oscillations. These simulations also showed that while HapNe-LD does
not require high-quality or phased data and scales better with sample
size, its performance can be close to that of IBD-based methods
applied to ground truth IBD information. Finally, we applied HapNe to
severalmodern and aDNAdata sets, detecting evidence for recent past
demographic events across these populations. These include popula-
tion size contractions corresponding to the period of the Black Death
in different regions of the UK, as well as bottleneck and expansion
events in 1000 Genome Project populations. In aDNA data, these
analyses provided evidence for divergence and isolation events, aswell
as shared demographic histories in subgroups from several ancient
populations with diverse geographic and temporal origins.

Our analyses suggest that LD-based inference of recent demo-
graphic variation provides a route to circumenting biases that may
arise in IBD-based demographic inference. Although the spectrum of
shared IBD haplotypes is an effective source of information for ana-
lyses of past demographic events, accurately estimating IBD sharing is
complicated in low coverage and aDNA data and may lead to biased
results. Thismay also be the case in modern populations when limited
data availability prevents accurate phase estimation. Although sum-
mary statistics of LD rely on less direct observation of historical
recombination events, they may be effectively computed in unphased
and low-coverage data sets. This enables analyzing recent demo-
graphic events in samples from poorly represented populations and,
coupled withmodeling of heterogeneous sampling time, in aDNA data
sets. Performing both IBD-based and LD-based analyses may offer
validation for an inferred demographicmodel and allow testing for the
presence of biases in either approach. An additional source of poten-
tial bias in methods for demographic inference is linked to the need to
make assumptions about the type of demographic model being
inferred. In this context, approaches that avoid relying on a predefined
set of models provide more flexibility, but require further tuning
strategies to balance the desired sensitivity to past demographic
events with the need to prevent the inference of spurious fluctuations.
Our work suggests that the use of self-tuning regularization mechan-
isms helps mitigate the risk of spurious inferred fluctuations. Finally,
our analyses highlight the importance of accurately preprocessing
both IBD and LD signals before performing demographic inference, as
results may vary significantly if unfiltered data is utilized. Key

preprocessing steps include testing for the presence of admixture LD
and systematically filtering out regions of the genome that harbor
unusually high IBD sharing or LD (see e.g., Supplementary Fig. 16).
These may be due to natural selection or the presence of structural
variation and lead to biases in analyses of demographic history and
selection if not accounted for.

We outline several limitations and directions of future develop-
ment for this work. First, HapNe-LD assumes that the LD signal
observed in the data is solely due to past population size fluctuations.
In some instances, residual admixture LD can be present in the data
after filtering, causing a spurious contraction in the recent past and
creating the need to carefully interpret models that resemble this type
of signature. In general, a contraction in the recent past might be due
to a decrease in the census size of the population, isolation, or an
artifact of recent admixture. Similarly, HapNe-IBD currently only relies
on the observed spectrum of IBD sharing, which may be biased due to
inaccurate IBD detection. Future work may allow explicit modeling of
type-1 and type-2 errors in IBD detection, mitigating biases in the
inferred demographic models. Since the HapNe-LD and HapNe-IBD
methods are subject to different sources of bias, their output can be
compared to check the validity of their output. Second, while reg-
ularization helps prevent the inference of spurious demographic
fluctuation, it leads to favoring constant and exponential demographic
histories that lack fluctuations if these are not supported by the data.
When interpreting demographic models inferred by HapNe, it is
important to note that an inferred constant growth rate may reflect
insufficient evidence for past demographic variation (see e.g., Sup-
plementary Fig. 18), which causes the model to be more strongly
regularized. For the same reason, when the data contain limited
demographic information, HapNe may produce tight bootstrap con-
fidence intervals for demographic histories that are closer to constant
population size. These should also not be interpreted as strong evi-
dence for a constant size, but as a lackof evidence forpastfluctuations.
Third, we note that both LD-based and IBD-based analyses rely on
preprocessing steps to filter out genomic regions that may otherwise
lead to biases. These excluded regions harbor unusually high or low
density of LD or IBD signal, whichmay be caused by non-demographic
factors such as natural selection or the underlying presence of struc-
tural variation52 (see Supplementary Fig. 17). HapNe-LD andHapNe-IBD
automatically detect and remove these genomic regions. This is cur-
rently achieved by dropping entire chromosome arms but a less con-
servative and likely more computationally intensive approach may be
devised. Fourth, HapNe-LD currently corrects for time heterogeneity
by marginalizing out the time difference between the samples inclu-
ded in the analysis. Future extensions may allow HapNe to increase
inference accuracy by correcting the LD for each pair of samples
separately.

Finally, HapNe-LD makes several model simplifications, including
the assumption that the analyzed samples come from a single popu-
lation. A promising direction for future work is to extend HapNe to
allow it to explicitly account for multiple populations and infer coa-
lescent rates across groups, improving the analysis of more complex
demographic models such as those involving isolation by distance,
divergence, and admixture. Similarly, HapNe-LD is currently focused
on the inference of recent demographic history, but may be extended
to the analysis of deeper time scales by modeling variation in allele
frequencies, which are currently assumed to be constant in time.
Despite these limitations, we expect that the HapNe framework
developed in this work will offer valuable insights into past demo-
graphic events in both modern and ancient DNA data.

Methods
Simulated genetic data
We used the ARGON simulator53 (version 0.1.160415) to generate syn-
thetic genotypes and ground truth IBD data for modern and ancient
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populations. Simulations with time heterogeneity were performed
using msprime54 (version 1.1.1). We simulated genomes of 36.23 Mor-
gans, split into 39 independent regions corresponding to human
chromosome arms. We used a mutation rate of μ = 1.65 × 10−8 and a
recombination rate of ρ = 1 × 10−8 per generation per base pair, except
in experimentswhere humangeneticmapswereused. To simulate SNP
data, we then downsampled sequencing data to match the genotype
density and allele frequency spectrum observed using Chromosome 2
of the UK Biobank data set, using 50 evenly spaced MAF bins. We
generated unphased diploid individuals by randomly pairing simu-
lated haplotypes. Ancient data was generated using a similar proce-
dure, downsampling to 1240k SNP array densities. We also added two
additional steps to simulate low-coverage data. We first transformed
the data into pseudo-haploid individuals by randomly sampling one
haplotype at each site.We then set each site asmissingwithprobability
m, related to a simulated coverage parameter C through the relation-
ship m ≈ e−C, further described below.

In the simulations that incorporate admixture, we employed a
demographic history starting with an ancestral population of size
Ne = 10, 000which splits into two populations, A and B, at time t = tsplit.
Populations A and B then evolve independently, each with an effective
population size of Ne = 5000. At time t = tadm, the two populations
merge into a single population, with an equal contribution. The newly
created population has a size of Ne = 10, 000. It then experiences one
of four scenarios (Supplementary Fig. 11). In one scenario, the popu-
lation remains constant until t =0. In the other scenarios, the popula-
tion undergoes an exponential expansion with Ne = 100, 000 at t =0,
an exponential collapse with Ne = 1000 at t =0, or a bottleneck with Ne

exponentially decaying to 1, 000 at t = tadm/2 before exponentially
growing back to 10, 000 at t =0. For convenience, we report the value
of Fst instead of tsplit when discussing the results; the link between
these two quantities is found described in Supplementary Note
Section 1.1.9.

Simulation of missingness and coverage
We simulated low coverage data by discarding a proportion m of the
SNPs of each individual, but often report results referring to corre-
sponding sequencing coverage parameters. To this end, we assumed a
simple model where a genome of length G is sequenced using N reads
of length L. Using this notation, the probability that a randomly
selected site along the genome is not spanned by a read is:

m= 1� L
G

� �N

= 1� C
N

� �N

≈ e�C ,

ð1Þ

where C � NL
G represents the coverage parameter.

This relation can also be used to obtain a link betweenm and the
number of reads:

N = � s
logðmÞ

z
, ð2Þ

where z = � logð1� L
GÞ>0 and s is the number of sampled individuals

with missingness m.

Imputation of simulated ancient data
To simulate imputed aDNA data, we simulated 32 ancient samples
from 30 generations before present as well as 200modern individuals,
using msprime54 (v 1.1.1). These individuals were sampled from a
demographic model with an ancestral population size of 20,000
haploid individuals, which undergoes an exponential expansion

starting at 80 generations before present. The expansion makes the
population reach 2,000,000 individuals at generation 30, after which
it maintains a constant size until present day. We downsampled the
simulated 32 ancient individuals to match 1240k SNP array mutation
and allele frequency densities.We simulated short reads (150bp) at the
target coverageon the array SNPs. These readswerewritten toSAMfile
format and compressed into BAM file format using samtools (version
1.13). We further simulated a reference fasta file using msprime refer-
ence allele at all polymorphic positions and then aligned the reads to
the reference sequence and called genotype likelihoods using
BCFtools (version 1.15.1). We then used GLIMPSE (version 1.1.1) to
impute the ancient data, leveraging the called genotype likelihoods,
using the 200 modern simulated samples as a reference panel,
assuming perfect phasing and 0 genotyping error. This imputation
process results in a genotype call being made for every variant that is
polymorphic in the reference panel or the ancient samples. We
reported imputation r2, the squared correlations between the imputed
allele dosage and the ground-truth sequencing data for the ancient
samples across the polymorphic variants (Supplementary Fig. 15).
Imputation quality at coverage of 1×was above 90% for SNPswithMAF
above 25%, used in our analyses.

Computation of LD
We consider a panel of s individuals, M sites and genotypes
~Gi,x ∼ Binð2,pxÞ for individual i at site xwithminor allele frequency px.

We first standardize the genotypes by computing Gi,x =
~Gi,x�2p̂xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂x ð1�p̂x Þ

p ,

where p̂x is the estimated allele frequency. The LD between two sites x
and y is computed as the R2 statistic:

R2
x,y =

Ps
i= 1Gi,xGi,y

� �2
� Ps

i = 1G
2
i,xG

2
i,y

� �
sðs � 1Þ :

ð3Þ

The computation of this statistic scales linearly with the number
of samples (OðsÞ). Note that this estimator is biased due to the useof p̂x

instead of the unknown allele frequency px during the normalization
step. We describe a procedure used at runtime to debias these esti-
mates in the Supplementary Note. The LD of pseudo-diploid
individuals is computed using the same approach,
with 1

2
~Gi,x ∼ Binð1,pxÞ.

Detection of IBD segments
We used FastSMC34 (version 1.2), HapIBD35 and RefinedIBD33 (version
17jan20) to detect IBD segments in simulated and real data analyses.
HapIBD and RefinedIBDwere used with recommended parameters for
SNP-array data (default parameters). We ran FastSMC using para-
meters min m = 0.5 (minimum cM length) and t = 100 (IBD time
threshold). Decoding quantities were generated based on 30 samples
using a European demographic history. FastSMC was run using mul-
tiple jobs, so that each job considers atmost 100 haploid samples. The
IBD segments inferredbyHapIBDandRefinedIBDwerepost-processed
using the merge-ibd-segments tool (see URLs), using the default
parameters. We observed that this post-processing step improves the
accuracy of the inferred IBD segment length distribution when geno-
typing and sequencing errors are present in the data. In these sce-
narios, FastSMC may break segments into shorter regions based on
their estimated posterior probability. However, a post-processing tool
to merge these fragmented regions and improve the accuracy of seg-
ment length estimates is not available for FastSMC, soweusedHapIBD
andRefinedIBD formost analyses, except for the use of FastSMC in the
analysis of the UK Biobank data34, which is accurately phased.
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HapNe-IBD and HapNe-LD algorithms
We developed two algorithms to infer recent effective population size
fluctuationsNe(t) froma set of s samples, calledHapNe-IBDandHapNe-
LD. Both approaches take summary statistics {Yi,b} as input and max-
imize a pseudo-posterior function for Ne(t). The input data set {Yi,b} is
split into 39 genomic regions corresponding to chromosome arms
indexed by i, using 0.5 cM long bins indexed by b.

HapNe-IBD takes as input a list of IBD segments of length
N ∼Oðs2Þ. Input data {Yi,b} corresponds to the count of IBD segments in
region i whose length lies in bin b. Bins start at 2cM and end at the
largest detected IBD segment. We assume that each of these counts is
the realization of a Poisson random variable, with demographic-
dependent mean parameter μb NeðtÞ

� �
Li, where Li is the length of the

ith region (μb NeðtÞ
� �

is described in the Supplementary Note). To
handle overdispersion, we used a quasi-likelihood approach to com-
pute a weight parameter ϕ2

b that multiplies the variance in each bin.
HapNe-LD uses average R2 statistics as input data {Yi,b}. This input

is computed inOðsmÞ, wherem is the total number of loci.We assumed
that these observations are realizations of a Normal random variable,
with a distance-dependent mean parameter μb NeðtÞ

� �
(see Supple-

mentary Note for a detailed description of μb NeðtÞ
� �

). The variance
parameters ϕ2

b were estimated using the usual variance estimator
within each bin.

Give a set of IBD or LD observations {Yi,b} for the ith genomic
region and bth bin, HapNe aims to maximize P(Ne(t)∣{Yi,b}) under the
following assumptions. First, Ne(t) is a piece-wise exponential function
from t =0 to t = tmax generations, and remains constant afterwards. In
all our analyses,weused tmax = 125 generations. The lengths of the time
intervals are iteratively tuned so that each time interval contains
the same number of expected ancestors of IBD segments (see Sup-
plementary Note). Second, we assume that there exists a prior on the
effective population size pNe

ðθÞ, where θ represents the set of para-
meters definingNe(t). A discussion about the choiceof this prior canbe
found in the Supplementary Note. Third, we assume that the total
likelihood P({Yi,b}∣Ne) can be approximated by a power likelihood55,56

and be written as PðfY i,bgÞ=
Q

i,bPðY i,bÞc. If we assume that bins on
different chromosomes are not correlated, the exponent c captures
the correlations between the bins of a region. When there is no cor-
relation in the data, c = 1 recovers the true likelihood, whereas if all
bins are fully correlated, setting c= 1

nbins
leads to the likelihood of a

single observation. We discuss how this hyperparameter is auto-
matically tuned using a heuristic model selection rule in the
Supplementary Note.

Once the time intervals and the value of the regularization para-
meter are fixed, HapNe assesses the uncertainty of the prediction by
performing 100 bootstrap iterations. For each iteration, HapNe sam-
ples chromosome arms with replacement to create new input data,
and estimates the effective population size. The 2.5th, 25th, 75th, and
97.5th percentiles are reported at each generation to obtain 50% and
95% confidence intervals.

Comparisons to other methods
To perform method comparisons, we simulated genotypes based on
the demographic models shown in Fig. 1 and used the methodology
described above to compute summary statistics. We ran HapNe-IBD,
HapNe-LD, IBDNe (version 23Apr20.ae9), and GONE (retrieved Jun 22,
2021). We used default parameters for all methods, except for IBDNe
where we set gmin=1 in simulated data, as recently recommended57.
The simulated SNP array data did not contain enough sites to perform
the SNP bootstrapping strategy used by GONE to produce confidence
intervals in sequencing data. All computations were run on an Intel
Skylake 2.6 GHz architecture on the Oxford Biomedical Research
Computing cluster.

We reported the root mean squared log-error (RMSLE) over the
first 50 generations as a measure of accuracy. If Ne(t) and N̂eðtÞ denote

the true and predicted demographic models, the accuracy is defined
as:

RMSLE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
50

X50
ti = 1

log N̂eðtiÞ
� �

� log NeðtiÞ
� �� �2

vuut ð4Þ

We performed ten independent sets of simulations and com-
puted error bars reported in each plot as 1.96 × s.e.m.

Filtering of high IBD and LD regions
To mitigate the impact of natural selection and structural variation,
HapNe applies a filtering algorithm to exclude chromosome armswith
unusual amounts of IBD sharing or LD. For LD data, parameters of a
normal distribution are computed for each bin using the median and
quantiles of the observed data. We used this quantile-based approach
instead of moment-based estimators so that the inference is robust in
the presence of the outlier regions we aim to filter out. Then, each
genomic region is discarded using the following two heuristic rules.
First, the deviation between the observed LD in the region and the
median must be within 6 standard deviations. Second, the observed
valuesmust cross themedian at least once, i.e., a regioncannot have all
its observations above or below the median. The IBD data is filtered
using a similar approach. For each region, the mean of the Poisson
distribution and the dispersion factors are computed for each bin
using all others regions. The region is discarded if the sum of its
squared deviance residuals is in the upper or lower α-quantile of the
underlying χ2 distribution, with α = 10−12. The procedure is performed a
second time, without considering the discarded regions, to prevent
outliers to impact the final result.

LD-based test for population structure
Population structure creates long-range LD between unlinked pair of
sites. HapNe allows testing for LD due to population structure by
computing cross-chromosome LD (CCLD). In the absence of CCLD, we
expect the correlations between two sites x and y located on different
chromosomes tobeonly due tofinite sample sizes (see Supplementary
Note):

E Gi,xGi,yGj,xGj,y �
4

ðNx � 1ÞðNy � 1Þ

" #
=0, ð5Þ

whereNx and Ny are the number of observed haplotypes on sites x and
y, respectively. Because the LD is only computed between pairs of sites
containing at least two overlapping observations, Nx and Ny are not
independent variables. HapNe-LD computes the empirical mean of Eq.
(5) for each pair of chromosomes and then performs a t-test to check
for deviation from the 0-mean hypothesis.

Time heterogeneity in the set of analyzed samples
Most aDNA data sets contain samples originating from different time
points, with an estimated date range spanningmany generations when
the archeological context is used to date the samples. We thus
extended HapNe-LD to account for time heterogeneity and uncer-
tainty. The user can provide a date range for each sample. This infor-
mation is used by HapNe to compute the density of the ages of a
randomly selected pair of individuals. This density is then used to
marginalize out the age of the oldest sample and the generation gap
between the two individuals under the SMC approximation, resulting
in an unbiased estimator of the effective population size (see
Supplementary Note).

Inference of demographic history in the UK Biobank
We analyzed the subset of 305,784 unrelated samples with self-
reported White British ancestry, corresponding to the individuals
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reported in ref. 58 that did not withdraw from the study and whose
birth location can be assigned to a postcode in the U.K. (13,995 were
removed because of this last condition). We focused on 727,103 gen-
otyped autosomal variants, which we phased using Beagle 5.159. We
then grouped the individuals based on their self-reported birth loca-
tion, labeling each of them with the first 1 or 2 letters of their corre-
sponding postcode. We randomly picked postcodes with different
sample sizes to infer population sizes. LD computations and IBD
detection steps were performed using the procedure described above,
using genetic maps corresponding to the GRCh37 genome build.

Inference of Demographic history in the 1000 Genomes Project
We downloaded the N = 2504 high-coverage sequenced samples from
the 1000 Genomes Project data set60. The samples were grouped
according to 26 population labels. For the IBD detection step, we
downsampled the sequenced data to match the density of SNP array
variants found in theUKBiobank, using the proceduredescribed above.
IBD segments were inferred using HapIBD and merged using the post-
processing tool described above. HapNe-LD only utilized variants with
MAF>0.25, as in previous analyses (see Supplementary Note). Popula-
tionsflagged as having unusual cross-chromosomeLDorno signalwere
excluded from the analysis (Supplementary Fig. 20). Genetic maps
corresponding to theGRCh38 genomebuildwere used for this analysis.

Inference of demographic history in ancient data
We downloaded version 50.0 of the Allen Ancient DNA Resource
(AADR) dataset61,62. For each analysis, we started by removing related
individuals reported in the annotation files present in the dataset. For
each family, the individual with the highest coverage was kept. Infor-
mation about sample ages was also extracted from the annotation file
and used as input for HapNe-LD. To ensure high data quality, we fil-
tered the datasets to include only variants and individuals with a
missing data rate m of less than 80%, corresponding to a coverage of
approximately 0.22×. Specific information about each population is
present in Supplementary Tables 1–8.

Software
We used ARGON53 (version 0.1.160415) andmsprime54 (version 1.1.1) to
simulate synthetic data. We used Plink 1.963 and Plink 2.064 to pre-
process genetic files. We used FastSMC34 (version 1.2), HapIBD35

(version 1.0, 23Apr20.f1a), andRefinedIBD33 (version 17jan20) todetect
IBD segments in simulated and real data analyses. We used IBDNe27

(version 23Apr20.ae9), and GONE31 (retrieved on Jun 22, 2021) to infer
effective population sizes. Data processing and plotting were per-
formed using Numpy (1.23.4)65, Pandas (1.5.1)66, SciPy (1.9.3)67, Numba
(0.56.3)68, Matplotlib (3.4.3)69, Seaborn (0.12.2)70, and Geopandas
(0.12.2)71.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data sets used for this study can be accessed using the following
links. The data sets simulated for this study are available at https://doi.
org/10.5281/zenodo.10024899. UK Biobank data can be accessed by
approved researchers through http://www.ukbiobank.ac.uk/. Other
data sets can be downloaded from the following URLs: genetic maps
https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/
20110106_recombination_hotspots/, 1000 Genomes Project phase
three60https://www.internationalgenome.org/data/and the Allen
Ancient DNA Resource61https://reich.hms.harvard.edu/allen-ancient-
dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-
dna-data(Supplementary Tables 1–8).

Code availability
The HapNe software package is freely available at https://palamaralab.
github.io/software/hapne.
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