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1 Supplementary Note

1.1 Derivation of the IBD and LD models

This note describes the models used to infer effective population size from IBD and LD summary

statistics. We first describe a link between the effective population size and the probability that

two sites are spanned by an IBD segment under the SMC’ model1, as well as computationally

tractable approximations used in several derivations. Related work on calculations presented

in this section may be found in2–11. We then provide details on how these models are used

to perform inference based on IBD and LD summary statistics. We conclude by describing

further details of the LD model related to low coverage data, time-heterogeneity, and population

structure induced LD.

1.1.1 Notation

We aim to infer the effective population size Ne(t) based on the genotype of s samples consisting

of m markers. For simplicity, we will assume that t is a continuous variable, with t = 1

corresponding to 1 generation. Note that Ne(t) refers to haploid individuals in the population.

AlthoughNe(t) is the quantity of interest, we will derive several expressions in terms of its inverse

γ(t) ≡ 1
Ne(t)

, the coalescent rate, as well as the cumulative coalescent rate Γ(t) ≡
t󰁕

0

γ(v)dv .

1.1.2 Survival function for a change of ancestor

Using the above notation, the distribution of the age of the most recent common ancestor

(TMRCA) of a pair of haplotypes under the coalescent12 may be expressed as:

f(t) = γ(t)e−Γ(t), (1)

which for a constant coalescent rate takes the form of an exponential waiting time f(t) = γe−γt,

leading to E[T ] = Ne.

Given the MRCA at site x, with TMRCA= t, we are interested in the genetic distance U

at which a change of ancestor is observed. This requires a recombination event, which occurs

at rate 2t (see e.g.13). When a recombination event happens, a new lineage is created at a time

V ∼ Uniform(0, t). This new lineage will not lead to a change of ancestor if it coalesces back to

the lineage from which it branched out between V and t. We refer to this kind of coalescent event
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as a “healing” event and denote its probability by ph(t). To derive an expression for ph(t), we

note that the coalescent rate of the new lineage is given by f2(t) = 2γ(t)e−2Γ(t), with a factor 2

appearing because the new lineage can coalesce with either of two original ones. Healing requires

the new lineage to coalesce between v and t, which happens with probability

t󰁕

v
f2(w)dw

1−
v󰁕

0

f2(w)dw
. It also

requires the new lineage to coalesce to the original lineage, which happens with probability 1
2 .

Together, these terms lead to the following expression, also derived in7:

ph(t) =
1

t

t󰁝

0

1

2

t󰁕
v
f2(w)dw

1−
v󰁕

0

f2(w)dw

dv

=
1

2
− e−2Γ(t)

2t

t󰁝

0

e2Γ(v)dv

(2)

For a constant demographic history with coalescent rate γ, this becomes:

ph(t) =

󰀕
1

2
+

e−2γt − 1

4γt

󰀖
, (3)

Thus, the waiting distance for a change of ancestor is exponentially distributed with rate 2t(1−

ph(t)) and its survival function is given by:

S(u|t) = e−2tu(1−ph(t)) (4)

We obtain S(u) by marginalizing the TMRCA,

S(u) =

∞󰁝

0

e−2tu(1−ph(t))f(t)dt (5)

For a constant population size, this expression becomes:

S(u | γ) = 2
1
2

󰀓
u
γ
−1

󰀔

e
− u

2γ

󰀕
−u

γ

󰀖− γ+u
2γ

󰀕
ΓEuler

󰀕
u+ γ

2γ
, 0

󰀖
− ΓEuler

󰀕
u+ γ

2γ
,− u

2γ

󰀖󰀖
, (6)

where ΓEuler denotes the incomplete Euler gamma function ΓEuler(z, a) =
∞󰁕
a
e−ttz−1dt. This

survival function, also derived in14, assumes an underlying SMC’ model1, but does not lead to a

closed-form solution when a piece-wise constant function γ(t) is utilized. To obtain a tractable
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expression, we introduce an approximation of the SMC’ model. Using a Taylor expansion, Eq. 4

may be written in the form:

S(u | t) = e−2t
󰀃
1−ph(t)

󰀄
u

= e−2tu

󰀣
1 +

∞󰁛

k=1

(ph(t)2tu)
k

k!

󰀤

= e−2tu

󰀳

󰁅󰁅󰁃1 +

∞󰁛

k=1

pkh(t)

u󰁕

0

(2t)kvk−1e−2tve2tvdv

(k − 1)!

󰀴

󰁆󰁆󰁄

= e−2ut +

∞󰁛

k=1

pkh(t)

u󰁝

0

ferl(v; 2t, k)e
−2t(u−v)dv,

(7)

where ferl(v; 2t, k) =
(2t)kvk−1e−2tv

(k−1)! is the probability density function of the sum of k exponential

random variables with rate 2t. In the last sum, k can be interpreted as the number of healing

events observed within a distance u. The SMC approximation, where each recombination event

leads to a change of ancestor15, is recovered by only considering the first term and discarding

the sum:

S0(u | t) = e−2tu. (8)

For a constant demographic history, the survival function becomes:

S0(u | γ) = γ

γ + 2u
. (9)

Note that this recovers the expression derived in 16 using a different approach. This approxima-

tion may become poor when working with small populations and short genetic distances. For

example, considering u = 1cM and γ = 1
1,000 leads to a relative error S(u)−S0(u)

S(u) ≈ 5%. Taking

into account a single recombination and healing event leads to increased accuracy (see e.g.3 for

a related approach). Using the above formulation, this amounts to considering the first term of

the sum. Under a constant demographic model, the survival function is given by:

S1(u | γ) =
γ
󰀃
3γ2 + 4u2 + 10γu

󰀄

(γ + 2u)2(3γ + 2u)
, (10)

which greatly reduces the relative error compared to the SMC approximation (e.g. ∼ 10× lower

using the previous example). This approach thus provides a good balance between accuracy
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and computational cost, as it allows multiple expressions to be computed analytically if γ(t) is

approximated by a piece-wise constant function.

1.1.3 IBD model

We aim to model the number of IBD segments of particular lengths shared between pairs of

individuals from a population. We denote the probability density function of the length of an

IBD segment by fseg(l|γ(t)), dropping the γ(t) term for clarity. We first consider the length of

an IBD segment spanning a given site x along the genome. The probability density function for

the length of such a segment, fsite(l), is related to fseg(l) through the following relation2:

fsite(l) =
lfseg(l)

∞󰁕

0

lfseg(l)dl

=
l

E[L]
fseg(l),

(11)

where E[L] represents the expected length of a randomly selected IBD segment. The TMRCA

of the two haplotypes at site x is distributed according to f(t). Conditioned on a TMRCA t, the

length of the IBD segments spanning x is the sum of the distances to the next change of ancestor

on either side of the site. By allowing at most one healing event within the IBD segment as

described above, the density takes the form:

fsite(l|t) ≈ (1− ph(t))
2ferl(l; 2t, 2) + 2ph(t)(1− ph(t))

2ferl(l; 2t, 3)

≈ (1− 2ph(t))ferl(l; 2t, 2) + 2ph(t)ferl(l; 2t, 3) +O(p2h(t)),

(12)

where the first term accounts for the case of no healing events and the second term allows for

one recombination event. Marginalizing t, we obtain:

fseg(l) =
E[L]
l

∞󰁝

0

fsite(l|t)γ(t)e−Γ(t)dt. (13)

For a constant demographic history, this becomes:

fseg(l|γ) =
12γ2

󰀃
3γ4 + 8l4 + 52γl3 + 90γ2l2 + 51γ3l

󰀄

(γ + 2l)4(3γ + 2l)3
(14)
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Neglecting the probability of healing leads to the SMC approximation for a constant demographic

history:

fSMC
seg (l|γ) = 4γ2

(γ + 2l)3
. (15)

Conditioned on the total number of IBD segments Ns shared in a region, the expected count

of IBD segments within a length bin delimited by ui and ui+1 is Ns

ui+1󰁕
ui

fseg(l)dl. Furthermore,

E[Ns] =
Lc
E[L] , with Lc denoting the genomic length of the current region. Thus, the expected

value of the number of segments within the ith bin Yi is given by:

E[Yi] = Lc

ui+1󰁝

ui

∞󰁝

0

fsite(l|t)
l

γ(t)e−Γ(t)dtdl. (16)

Note that we neglect issues due to finite size chromosomes, which we found to have a negligible

effect. For a constant demographic history, this quantity becomes:

E[Yi] = Lc
2γ2(8u2 + 6uγ − 3γ2)

(2u+ γ)3(2u+ 3γ)2

󰀏󰀏󰀏󰀏
ui

ui+1

(17)

Supplementary Equation 16 provides the first moment of the distribution of Yi. Note that the

approximation introduced in Supplementary Equation. 10 allows to compute this expression

analytically when the demographic model γ(t) is a piece-wise constant function. Previous ex-

pressions derived under the full SMC’, on the other hand, required the use of special functions

or numerical integration7.

Poisson distributions provide a natural way of describing “count data” such as Yi. However,

when using the Poisson model, we encountered bin-dependent overdispersion, particularly for

smaller bins, where IBD segments originate from older coalescence events that likely involve

multiple samples. We thus used a quasi-likelihood approach17, adding a dispersion parameter

φi:

f(y;µi) = e
y log µi−µi

φi
−log y!

, (18)

where µi = E[Yi] and the Poisson mass function is recovered for φi = 1. The dispersion param-

eters φi are set so that the variance of the deviance residuals is 1.
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1.1.4 LD model

Rather than relying on the direct observation of IBD data, HapNe-LD leverages long-range

correlations that are induced by shared segments, which may be detected using unphased data.

To describe the LD model used by HapNe, we begin by noting that alleles found at high frequency

in a sample are typically older than ancestors transmitting large IBD segments (also see Section

1.2.1 for calculations related to the age of IBD segments). This implies that high frequency

mutations found on long IBD segments are also likely to be carried by the shared ancestor

transmitting the segment. We restrict our analysis to sites with MAF > 0.25. Given one such

high frequency site x, we assume that the haplotypes of two individuals i and j spanned by a

large (> 0.5 cM) IBD segment satisfy

E[XiXj |IBD] = E[X2], (19)

and that the same haplotypes will be independent if not spanned by an IBD segment, i.e.

E[XiXj |¬IBD] = E[X]2. (20)

The presence of IBD segments therefore leads to correlation in the observed genotypes, which

HapNe-LD aims to leverage for the inference of effective population size variation. The input

for HapNe-LD is a set of unphased genotypes G̃x,i = X̃i,1 + X̃1,2, where i ∈ {1, ..., s} denote

individuals in the panel, and x ∈ {1, ...,M} denote sites. X̃i,1 and X̃i,2 represent the (hidden)

haplotypes of sample i at site x, with X̃i,1 ∼ Bernoulli(px) where px is the population’s allele

frequency at site x. For simplicity, we consider standardized input data:

Xi =
X̃i − p̂x󰁳
p̂x(1− p̂x)

, Gi,x ≡ G̃i,x − 2p̂x󰁳
2p̂x(1− p̂x)

,

where p̂x ≡ 1
s

s󰁓
i=1

X̃i is the estimator of the allele frequency at site x, which is assumed to remain

constant in the recent past.
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HapNe-LD leverages the LD between all pairs of sites (x, y), measured as:

LDx,y =

s󰁓
i=1

s󰁓
j=i+1

Gi,xGj,xGi,yGj,y

󰀃
s
2

󰀄

=

󰀃 s󰁓
i=1

Gi,xGi,y

󰀄2 −
s󰁓

i=1

󰀃
Gi,xGi,y

󰀄2

s(s− 1)
,

(21)

where s is the number of individuals in the dataset. Note that the correlations between all pairs

present in the panel can be computed in O(s), whereas the detection of IBD segments requires

O(s2).

HapNe-LD aggregates these observations according to the genetic distance separating the

sites x and y by computing:

R2
i =

󰁓
x,y

LDx,yIbi(δ(x, y))

󰁓
x,y

Ibi(δ (x, y))
, (22)

where δ(x, y) denotes the genetic distance in cM between the sites x and y, Ibi is the indicator

function for the interval bi, and bi = (0.5 + 0.5i, 1 + 0.5i), i ∈ {0, 1, ...18}.

We now aim to relate these correlation statistics to the effective population size. The first

moment of R2
b is given by:

E[R2
b ] = E[Gi,xGj,xGi,yGj,y]

=
󰁛

α,β,γ,δ∈{1,2}

1

4
E[Xi,αXj,βYi,γYj,δ].

(23)

We can group the 16 terms of the sum into different categories, according to the number of

distinct haplotypes involved in each of these terms. In particular, the 4 terms where α = γ and

β = δ involve two distinct haplotypes, i.e. haplotype α for individual i and β for individual j.

For these 4 terms, we can use supplementary equations 10, 19, and 20 to write:

E[Xi,1Xj,1Yi,1Yj,1] = E[Xi,1Xj,1Yi,1Yj,1|IBD(x, y)]S1(u) + E[Xi,1Xj,1Yi,1Yj,1|¬IBD(x, y)](1− S1(u))

= (E[X2Y 2]− E[XY ]2)S1(u) + E[XY ]2

= S1(u),

(24)
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where u denotes the distance between the two sites x and y. Note that we neglect issues due to

finite sample sizes and population structure, which are addressed later. With this assumption,

we have E[X2Y 2] = E[X2]E[Y 2] = 1 and E[XY ] = 0.

The 12 other terms of the sum of Supplementary Equation 23 involve either 3 or 4 haplotypes.

For example, a term with α ∕= γ and β = δ involves both haplotypes for individual i and

haplotype β for individual j. In these cases, correlations induced by IBD require at least two

pairs of haplotypes to be shared IBD, leading to O(S2
1(u)) contributions, which we neglect.

Together, these expressions enable obtaining the first moment of R2
b . If bin b is delimited by

ui and uj , we have:

E[R2
b ] = µb =

1

uj − ui

uj󰁝

ui

S1(u)du. (25)

To complete the model, we assume that

R2
b ∼ N (µb,σ

2
b ) (26)

and estimate σ2
b using R2

b,r estimates obtained across chromosome arms.

1.1.5 Correcting for finite sample size

Working with finite sample sizes induces correlations in the data which, if not accounted for,

lead to bias in the inferred effective population size. These correlations arise as a result of the

use of an empirical allele frequency p̂x instead of the unknown px. As a first step to debias

the estimator of R2, we consider the ratio of the expected values as an approximation to the

expected value of the ratio, which has been shown to be a good approximation for common

alleles18:

E[XiXj ] ≈
E[(X̃i − p̂x)(X̃j − p̂x)]

E[p̂x(1− p̂x)]
(27)

Let sx denote the number of haplotypes observed at site x, i.e. twice the number of individuals

in modern datasets or the number of individuals in pseudo-haploid aDNA data. We can rewrite
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the numerator as:

E

󰀥󰀓
X̃i −

1

sx

sx󰁛

k=1

X̃k

󰀔󰀓
X̃j −

1

sx

sx󰁛

k=1

X̃k

󰀔󰀦

= E[X̃iX̃j ]−
2

sx
E[X̃2

i ]−
2

sx
E[X̃i

󰁛

k ∕=i

X̃k] + E[(
sx󰁛

k=1

X̃k)
2]

=
−px(1− px)

sx

(28)

Similarly, the denominator is given by:

E[p̂x(1− p̂x)] =
sx − 1

sx
px(1− px) (29)

It follows that:

E[XiXj ] =
−1

sx − 1
∕= 0 (30)

When working with low coverage data, sx becomes a random quantity, Sx, as some individ-

uals are not genotyped at site x. Because computing LD between x and y requires that at least

two individuals are sequenced at both sites, Sx and Sy are not independent for the (x, y) pairs

considered when computing LD. We therefore average realizations of 1
(Sx−1)(Sy−1) over pairs of

sites (x, y) to compute an estimate β̂ for the following quantity in Supplementary Equation 24:

E[XiXjYiYj |¬IBD] = E[
1

(Sx − 1)(Sy − 1)
] ≡ β, (31)

which is also relevant for the detection of population structure, as discussed later. We use the

same pairs (x, y) to similarly obtain an estimate α̂ for the quantity

E[X2Y 2|IBD] ≈ E[
(S2

x − Sx + 2)(S2
y − Sy + 2)

(S2
x − 3Sx + 2)(S2

y − 3Sy + 2)
] ≡ α, (32)

and use these terms to obtain a corrected estimate for R2
b

R̂2
b = (α̂− β̂)S1(u; γ(t)) + 4β̂. (33)

Note that the factor 4 is due to the O(S1(u)
2) terms in Supplementary Equation 23 that also
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cause finite-sample size correlations.

1.1.6 Correcting for time heterogeneity

Ancient DNA samples in a data set often originate from different time points. Due to the

uncertainty in obtaining precise time estimates, their origins are often reported as a time range.

Time heterogeneity across the set of analyzed samples causes a reduction in LD, due to the

effects of recombination on the underlying haplotypes. If not modeled, this leads to an upwards

bias in the estimated effective population size. HapNe-LD implements a correction to prevent

these biases using the reported sample ages, which are obtained via radio-carbon dating or using

the archeological context.

Consider two individuals i and j sampled at times Ti and Tj . Assume, without loss of

generality, that Ti > Tj and define ∆T ≡ Ti − Tj > 0. Following the lineage of individual j

at a site x, we denote by k the ancestor living at generation Ti. The LD between individuals i

and k, both of them living at generation Ti, can be computed using Supplementary Equation 7

by replacing γ(t) with γo(t) = γ(t + Ti). The LD between individuals i and j is obtained by

multiplying the LD between individuals i and k by the probability that the haplotype is not

broken by a recombination event when transmitted from k to j, which decays exponentially with

rate ∆T . Under the SMC approximation, this probability is given by e−∆Tu. In practice, Ti

and Tj are not known exactly but provided as a range. If the density functions of Ti and Tj are

available, both times can be marginalized in the above calculations of LD. HapNe supports used-

provided time intervals for each sample and assumes that the true time is uniformly distributed

within these intervals.

1.1.7 Population Structure

Population structure causes correlation due to differences in allele frequencies across diverged

populations. This correlation may lead to biases in the inferred demographic models. We

use Supplementary Equation 31 to detect the presence of population structure and partially

correct for it. For each pair of distinct chromosomes i and j, we compute the average difference

between both sides of Supplementary Equation 31 and use a two-sided t-test to verify that

they do not significantly deviate from 0. To mitigate the effects of population structure, we

estimate E[XiXjYiYj |¬IBD] by averaging realizations of XiXjYiYj for loci located on different

chromosomes, and used this value as an estimate of β in Supplementary Equation 33. Note that,
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because all pairs of chromosomes are used to compute the t-test, the samples are not strictly

independent, making this approach slightly conservative. An alternative approach consists in

only considering disjunct pairs of chromosomes, which however leads to higher variance in the

estimates for β.

As shown in Supplementary Figure 9, this approach, implemented in HapNe-LD, leads to

unbiased results in our simulations, whereas other methods that do not consider LD induced

by structure lead to a downward bias in the estimated effective population size. Note, however,

that this approach does not correct for admixture LD, which decays with the genetic distance

(see Supplementary Figure 10).

1.1.8 Effective population size in multi-population models

We used the backward-in-time Markov chain introduced in19 to convert coalescence rates for

the multi-population models into effective sizes for an equivalent single-population model. In

particular, given a demographic model involving multiple populations, we used a Markov chain

to compute the probability that two lineages coalesce at generation t, conditioned on not having

coalesced up to generation t − 1, and took the inverse of this probability to be the effective

population size for an equivalent single-population model.

1.1.9 Link between Fst and tsplit in the simulations with admixture

In the Methods section, the simulated models involving admixture events are described in terms

of two parameters, tsplit, and tadm. tsplit corresponds to the time, in generations, at which an

ancestral population of size Ne splits into two isolated populations A and B of constant size

Ne/2, while tadm is the time at which a new population is created from these two isolated

populations. When discussing these simulations in the Results section, we report the value of

Fst between populations A and B in these simulated models, which is linked to tsplit by the

expression:

Fst = 1−
2
󰀃
1 + e−2∆tγ

󰀄

(1 + e−2∆tγ) + 2γ∆t + 2
(34)

where ∆t ≡ tsplit − tadm > 0 is the isolation time, in generations. This follows from the

relationship between Fst and the ratio between the expected coalescent time for two haplotypes

sampled from the same population Tw and the expected coalescent time for a pair of haplotypes
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sampled in the combined populations Tall
20:

Fst = 1− Tw

Tall
, (35)

Defining the coalescent rate in the ancestral population as γ ≡ 1
Ne

, the expected coalescent time

for lineages sampled from the same population is given by:

Tw =

∆t󰁝

0

t2γe−2γtdt+

∞󰁝

∆T

tγe−2∆tγ−(t−∆t)γdt

=
1 + e−2∆tγ

2γ

(36)

Because both populations equally contribute to the admixture event, we have Tall = 0.5 (Tw + Tacross),

where Tacross is the expected coalescent time for lineages sampled from different populations.

Since there is no migration between populations A and B and the ancestral population has size

Ne, the expected coalescent time for lineages sampled across populations is:

Tacross = ∆t +Ne, (37)

leading to Supplementary Equation 34.

1.2 Additional details on the inference procedure

We provide additional details on the use of quantiles of the IBD segment age distribution to

discretize the time intervals and on the regularized loss function minimized by HapNe to infer

Ne(t).

1.2.1 Parameterization of Ne(t)

HapNe aims to infer the demographic model given by Ne(t). We parameterize this function by

assuming it to be piece-wise exponential, with parameters described by a vector, θ. More in

detail, we divide the time axis into M consecutive intervals and for each interval i assume that

Ne(t) varies according to a constant exponential rate λi. We set λM = 0, implying that the

population size remains constant from the last predicted time to infinity. Ne(t) is thus fully

determined by a set of M values θ = {N0, {λi}i=1...M−1}. This parametrization is motivated

by the fact that changes from one generation to the other are proportional to the size of the
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population, and has been shown to help addressing issues with identifiability in a related con-

text21,22.

Time intervals are automatically selected so that each of them contains the same expected num-

ber of IBD segments (as also done in e.g.23). Let fage(t|l > umin) denote the probability density

function of the age of IBD segments whose length satisfies l > umin. We define time intervals

so that they coincide with quantiles of this density, which we compute using

fage(t|l > umin) =

∞󰁕
umin

fage(t|l)fseg(l)dl

1− Fseg(umin)
, (38)

where fseg(u) in defined in Supplementary Equation 13 and Fseg(u) =
u󰁕

0

fseg(l)dl. To derive

fage(t|l), we note that it represents the TMRCA of a randomly selected site spanned by an IBD

segment of length l. Using Bayes’ rule and the SMC approximation,

fage(t|l) =
fsite(l|t)f(t)

fsite(l)

=
(2t)2le−2tlγ(t)e−Γ(t)

∞󰁕

0

(2t)2le−2tlγ(t)e−Γ(t)dt

.
(39)

For a constant coalescent rate γ, this becomes

fage(t|l) =
1

2
t2(2l + γ)3e−(γ+2l)t

fage(t|l > u) = t(2u+ γ)2e−(γ+2u)t,

(40)

i.e. an Erlang-3 and Erlang-2 distribution, respectively (also see6,9). Because time intervals

depend on Ne(t), HapNe iteratively tunes them at each iteration using the current population

size estimates.

Note that a slightly more accurate closed-form solution under a constant population size can

be obtained by allowing a single recombination event to heal, replacing fsite in Eq. 39 with the

expression of Eq. 12, leading to:

fage(t|l) =
t(γ + 2l)4(3γ + 2l)3e−2lt−3γt

󰀃
e2γt(lt(2γt− 1) + 1) + lt− 1

󰀄

8γ (3γ4 + 8l4 + 52γl3 + 90γ2l2 + 51γ3l)
(41)
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1.2.2 Loss function

We aim to find the best set of parameters θ based on correlated observations Y = {yr,b}, where

yr,b represents LD or IBD summary statistics computed for the bth bin of the rth independent

genomic region. Due to the presence of correlations in the data, rather than using standard

likelihood calculations we work with the approximated power likelihood

p(Y |θ) =
󰁜

r,b

fb(yr,b; θ)
c, (42)

where 0 ≤ c ≤ 1 is a hyperparameter and fb is the probability mass or density function derived

in supplementary equations 18 and 26. Minimizing Eq. 42 for θ is an ill-defined problem, for

which small changes in the input data might lead to significant changes in the inferred parameter

θ̂ (also see e.g.4). To improve convergence and restrict the parameter space we thus impose the

following prior on the {λ} coefficients of the piece-wise exponential function Ne(t):

pNe({λi}) ∝ e−

M−1󰁓

i=1
∆ti

󰁵
(λ2i+1)

2σ2 , (43)

where ∆ti denotes the length of the ith time interval and λi the growth rate in the same interval,

and σ2 is a hyperparameter, which we discuss in more detail below.

The terms in the numerator of Supplementary Equation 43 may be rewritten as

∆ti

󰁴
(λ2

i + 1) =

󰁵
| log Ni+1

Ni
|2 +∆t2i , (44)

highlighting the relationship between this quantity and the arc length of logNe (t) between t = 0

and tM .

Hence, this prior favors simple demographic models, such as constant population size or

a single exponential growth. We found this choice of prior to be more effective than other

approaches, such as using an L1 or L2 penalty on the coefficients λ.

Combining these expressions leads to the following posterior:

log p(θ|Y ) ≈ c
󰁛

r,b

log fb(yr,b; θ) +

M󰁛

i=1

log pNe({λi; 0,σ
2}) + Z, (45)

where Z is a normalizing constant.
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We aim to find the MAP of θ:

θ̂ = argmax
θ

c
󰁛

r,b

log fb(yr,b; θ)−
M󰁛

i=1

󰁴
λ2
i + 1∆ti

2σ2

= c

󰀵

󰀷argmax
θ

󰁛

r,b

log fb(yr,b; θ)−
M󰁛

i=1

󰁴
λ2
i + 1∆ti

2cσ2

󰀶

󰀸

= argmax
θ

󰁛

r,b

log fb(yr,b; θ)−
M󰁛

i=1

󰁴
λ2
i + 1∆ti

2cσ2

(46)

This requires tuning a single hyperparameter κ = cσ2, using the approach described in the next

section.

1.2.3 Numerical optimization

We used SciPy’s implementation of the L-BFGS-B optimiser24 to minimize Supplementary Equa-

tion 46. Each minimization step is run 5 times using different starting points. The solution

yielding the smallest loss is kept.

1.3 Model selection

HapNe performs a grid-search over different values of the hyperparameter κ, ranging from a

strong regularization κ0 = 10−5 to an almost unregularized model with parameter κmax =

100. For each of these parameters, HapNe infers the MAP θ̂(κ) by optimizing Supplementary

Equation 46, as well as the associated pseudo-likelihood lκ =
󰁓
r,b

log fb(yr,b; θ̂(κ)). HapNe then

computes the “pseudo-deviance” D(κ) = 2(log lκmax − log lκ). The smallest value of κ satisfying

D(κ) < τ is selected as the best hyperparameter. Since the parameter c handling correlations

between bins is neglected when computing the “pseudo-deviance”, we cannot use asymptotic

theories about the distribution of D to fix the value of τ in a principled way. Instead, we

fixed the thresholds τ for both HapNe-LD and HapNe-IBD by training them using three sets of

simulations that used different demographic models than the ones presented in this work.
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1.4 Supplementary Figures

Supplementary Figure 1. Accuracy of HapNe-IBD and IBDNe using ground truth
IBD sharing information, and HapNe-LD using inferred LD. (a) Simulated demographic
models (dotted black lines), predictions based on ground truth IBD sharing for both HapNe-IBD
(red) and IBDNe (green), and HapNe-LD results based on simulated SNP-array data (blue). (b)
Error as a function of sample size for corresponding demographic models in (a), measured as
the RMSLE over the first 50 generations (see Methods). HapNe-IBD and IBDNe were run using
ground truth IBD sharing information. Error bars correspond to 1.96× SE computed using 10
independent simulations.
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Supplementary Figure 2. Effect of a misspecified genetic map on the inferred popula-
tion sizes. The left panel shows results obtained based on a genome-wide analysis of 256 diploid
samples simulated using a GrCH37 genetic map. The central panel illustrates results obtained
using the same simulated files, but after adding noise to the recombination map provided in
input to HapNe. For each recombination rate value in the map, we added noise drawn from a
normal distribution with 0 mean and a standard deviation of 10% (central panel) or 20% (right
panel) of the true value.
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Supplementary Figure 3. Inference of Finnish effective population size in the 1000
Genomes Project under different genetic maps. In each panel, the result reported in
Figure 4 of the main text (original) is displayed together with the inferred demography when
another genetic map is used (misspecified). Genetic maps are described in Hinch et al25.
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Supplementary Figure 4. Impact of IBD detection on the accuracy of IBDNe and
HapNe-IBD. RMSLE as a function of sample size for IBDNe and HapNe-IBD. True IBD refers
to the IBD segments obtained from the ARGON simulator. The IBD segments obtained using
HapIBD and RefinedIBD were post-processed using the procedure described in the Methods
section. We ran IBDNe with its default parameters (default) and with a set of parameters
optimized for simulated data (gmin=1, see Methods).
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Supplementary Figure 5. Effect of sample size variation (panels a-e) across several
demographic models (columns). HapNe-IBD was run using IBD segments detected by
FastSMC and IBDNe using segments detected by HapIBD. LD methods were run using their
standard pipeline. The y-axis is truncated for readability in simulations that resulted in very
large values.
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Supplementary Figure 6. Inference accuracy as a function of sample size. Accuracy was
measured using RMSLE over the first 50 generations for each simulated demographic history
and sample size (see Methods). IBD segments for HapNe-IBD and IBDNe were computed using
FastSMC and HapIBD, respectively. Error bars correspond to 1.96 × SE computed using 10
independent simulations.

Supplementary Figure 7. Inference results at larger sample sizes. Results on HapNe-LD
(left) and HapNe-IBD (right) for simulated data sets up to s = 4, 000 individuals. IBD segments
were detected using HapIBD, using perfectly phased synthetic data.
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Supplementary Figure 8. Evaluation of IBD detection accuracy in simulated data.
Evaluation of IBD detection accuracy in simulated data. (a) The relative error between the true
and inferred number of IBD segments is shown for different IBD segment lengths, using three
IBD detection methods, FastSMC, HapIBD, and RefinedIBD (see Methods). The results were
obtained using 256 simulated phased diploid genotypes for different demographic histories. (b)
The same analysis was performed for the constant demographic history, using computationally
phased data based on 256 diploid individuals with increasing levels of genotyping error. Solid
lines, labeled as Merged, correspond to post-processed outputs for which segments predicted to
be broken due to phasing or genotyping error are merged (see Methods). Dashed lines correspond
to the raw output of the IBD detection methods.
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Supplementary Figure 9. Impact of population structure on inference results. (a)
The output of HapNe-LD, HapNe-IBD, GONE, and IBDNe based on 100 samples evenly split
between two separated populations with an Fst of 0.1. (b) Root mean square log-error (RMSLE)
for increasing values of Fst between the two populations. From left to right, the vertical lines
correspond to the estimated value of Fst between representative pairs of human populations from
the HapMap Project and other European cohorts26: CHB and JPT (0.007), Finland Kuusamo
and Southern Italy (0.023), CEU and CHB (0.11), and JPT and YRI (0.192). HapNe-IBD and
IBDNe were run on IBD segments detected using HapIBD (see Methods). Dashed black lines
correspond to the inverse of the coalescent rate (see Supplementary Note, Section 1.1.8).
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Supplementary Figure 10. Impact of admixture on inference results. The plots show the
output of HapNe-LD, HapNe-IBD, GONE, and IBDNe based on 100 samples from a population
originating from an admixture event 25 generations before present (see demographic model
in Figure 2d of the main text). The Fst between the two ancestral populations involved in
admixture is shown for each row. HapNe-IBD and IBDNe were run on IBD segments detected
using HapIBD (see Methods). Dashed black lines correspond to the inverse of the coalescent
rate (see Supplementary Note, Section 1.1.8).
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Supplementary Figure 11. Effect of Fst between ancestral populations on HapNe infer-
ence results in scenarios involving admixture Root mean square log-error (RMSLE) for
a population originating from an admixture event (see demographic model in Figure 2d of the
main text) 5 generations before present (first row) and 25 generations before present (second
row). The RMSLE is plotted against the value of the Fst between the ancestral populations at
the time of the admixture. From left to right, the vertical lines correspond to the estimated
value of Fst between representative pairs of human populations from the HapMap Project and
other European cohorts26: CHB and JPT (0.007), Finland Kuusamo and Southern Italy (0.023),
CEU and CHB (0.11), and JPT and YRI (0.192).

9



Supplementary Figure 12. Effect of coverage and sample size. (a) Output of HapNe-LD on
simulated aDNA for 256 individuals, with m = 0 (C ≈ 30) and m = 0.25 (C ≈ 1.4). (b) Output
of HapNe-LD on simulated aDNA for 16 individuals with m = 0 (C ≈ 30) and 256 individuals
with m = 0.75 (C ≈ 0.3).
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Supplementary Figure 13. Accuracy of HapNe-LD as a function of sample size and
coverage. (a) RMSLE for HapNe-LD as a function of sample size for three different levels
of coverage (line color) and different demographic models (column). The different levels of
coverage, 30×, 1.4× and 0.7×, approximately correspond to m = 0, m = 0.25 and m = 0.5,
respectively (see Methods). (b) Comparison of the RMSLE while keeping the number of samples
constant (s = 256) and decreasing coverage (blue line), compared to the RMSLE obtained while
keeping the coverage constant at 30×, while decreasing the sample size.
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Supplementary Figure 14. HapNe-LD inference with low sample sizes. (a) Output of
HapNe-LD on simulated aDNA for 5 (a) and 10 (b) individuals.

Supplementary Figure 15. HapNe-LD analysis of imputed synthetic ancient samples.
We simulated 32 ancient individuals genotyped with a coverage of 1x, which we imputed using
a reference panel of 200 diploid individuals (see Methods). (a) Imputation quality, measured as
the r2 of true and imputed genotypes at heterozygous sites for different minor allele frequencies.
Imputed loci with MAF larger than 25% had a genotyping error rate of 2.9%.(b) Inference based
on ground truth genotypes of the 32 individuals (Sequencing), aDNA-like pseudo-diploid data
(Not imputed), and imputed data (Imputed). Confidence intervals for the aDNA-like analysis
are omitted to improve readability.
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Supplementary Figure 16. Filtering of high LD regions. The LD at different distances u (in
Morgans, M) was computed by randomly selecting individuals from the UK Biobank. Unusually
elevated LD was observed in the HLA region on Chromosome 6 (blue line) and on Chromosome
8 (orange line), corresponding to a known large inversion polymorphism.

Supplementary Figure 17. LD of SNPs in regions excluded from the GBR population
in the 1kgp analysis. The average LD of each SNP with loci located at a genetic distance of
2cM is shown for two regions excluded from the analysis by the HapNe filter. Unusually elevated
LD was observed in the HLA region on Chromosome 6 (left) and on a known large inversion
polymorphism in Chromosome 8 (right).

Supplementary Figure 18. Downsampling analysis for the Glasgow postcode in the UK
Biobank. Effective population size inferred using unrelated individuals with self-reported white
British ancestry whose birth location is in the Glasgow (G) postcode area. The numbers above
each plot correspond to the sample size used in each analysis.
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Supplementary Figure 19. Results for the five populations of the 1,000 Genomes Project
meeting filtering criteria and not flagged by HapNe-LD. Populations (sample sizes)
include BEB (s = 86), FIN (s = 99), JPT (s = 104), KHV (s = 99), and YRI (s = 108).
IBD segments used as input of HapNe-IBD and IBDNe were detected using HapIBD and post-
processed to merge adjacent segments (see Methods). The y-axis was truncated from 1063, the
upper confidence interval of IBDNe for the JPT population at t = 0, to 2× 108 for readability.
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Supplementary Figure 20. Results for the populations of the 1,000 Genomes Project
flagged by HapNe-LD. In this setting, the output of HapNe-LD may be biased. Populations
(sample sizes) include ACB (s = 96), ASW (s = 61), CDX (s = 93), CEU (s = 99), CHB
(s = 103), CHS (s = 105), CLM (s = 94), ESN (s = 99), GBR (s = 91), GIH (s = 103), GWD
(s = 113), IBD (s = 107), ITU (s = 102), LWK (s = 99), MSL (s = 85), MXL (s = 64), PEL
(s = 85), PJL (s = 96), PUR (s = 104), STU (s = 102), and TSI (s = 107). IBD segments used
as input to HapNe-IBD and IBDNe were detected using HapIBD and post-processed to merge
adjacent segments (see Methods). The y-axis was truncated from 1055, the upper confidence
interval of IBDNe for the CHB population at t = 0, to 2× 108 for readability.15



1.5 Supplementary Tables

Population s Avg. Cov. Date From (bp) Date to (bp) − log10 pval
Arras in Pocklington 24 2.94 2175 2202 0.54
Hampshire MIA(-LIA) 14 1.98 2114 2225 0.08
South England MIA(-LIA) 49 2.88 2022 2227 1.00
Viking Norway 22 1.50 950 1100 1.51
Viking Gotland 28 1.45 975 975 3.52
Caribbean Ceramic 71 2.74 510 801 inf
Dominican SE coast Ceramic 18 3.08 849 1150 inf

Supplementary Table 1. Further information on populations analyzed in Figure 4 of
the main text.
Sample size s, average coverage, estimated age of the most recent and distant samples (given
in years before 1950), and approximate p-value for the CCLD test for each analyzed ancient
population. The approximate p-value was computed using a two-sided t-test for the observed
CCLD being centered at the value expected from the sample size and coverage. Note that, due to
dependencies across pairs of regions, this is an approximate p-value, making this a conservative
filtering criterion.

Master ID Publication Group ID Source

I5505 PattersonNature202227 England EastYorkshire MIA LIA Publication

I12414 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12413 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12415 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12411 PattersonNature2022 England EastYorkshire MIA LIA Publication

I11034 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13759 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14104 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14101 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14099 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13753 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13756 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13757 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13754 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13760 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14107 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13755 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5510 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14103 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5506 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14105 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5508 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14102 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5511 PattersonNature2022 England EastYorkshire MIA LIA Publication

Supplementary Table 2. Samples used in the Arras analysis Genotypes were downloaded
from published supplementary materials.
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Master ID Publication Group ID Source

I17262 PattersonNature2022 England MIA LIA Publication

I20987 PattersonNature2022 England MIA LIA Publication

I20985 PattersonNature2022 England MIA LIA Publication

I20983 PattersonNature2022 England MIA LIA Publication

I20986 PattersonNature2022 England MIA LIA Publication

I20982 PattersonNature2022 England MIA LIA Publication

I20984 PattersonNature2022 England MIA LIA Publication

I17261 PattersonNature2022 England MIA Publication

I17263 PattersonNature2022 England MIA LIA Publication

I20989 PattersonNature2022 England MIA LIA Publication

I20990 PattersonNature2022 England MIA Publication

I17267 PattersonNature2022 England MIA LIA Publication

I20988 PattersonNature2022 England MIA LIA Publication

I17264 PattersonNature2022 England MIA LIA Publication

Supplementary Table 3. Samples used in the Hampshire analysis Genotypes were down-
loaded from published supplementary materials.

Master ID Publication Group ID Source

I11145 PattersonNature202227 England LIA Publication

I19869 PattersonNature2022 England LIA daughter.I19870 Publication

I16458 PattersonNature2022 England MIA LIA Publication

I16457 PattersonNature2022 England MIA LIA Publication

I16450 PattersonNature2022 England MIA LIA Publication

I17017 PattersonNature2022 England LIA highEEF Publication

I21308 PattersonNature2022 England MIA LIA Publication

I11142 PattersonNature2022 England LIA Publication

I27379 PattersonNature2022 England LIA Publication

I21311 PattersonNature2022 England MIA LIA Publication

I16601 PattersonNature2022 England MIA LIA Publication

I11992 PattersonNature2022 England MIA LIA Publication

I21312 PattersonNature2022 England MIA LIA Publication

I17263 PattersonNature2022 England MIA LIA Publication

I21310 PattersonNature2022 England MIA LIA Publication

I11991 PattersonNature2022 England MIA LIA Publication

I21307 PattersonNature2022 England MIA LIA Publication

I13726 PattersonNature2022 England MIA LIA Publication

I11143 PattersonNature2022 England MIA LIA Publication

I21309 PattersonNature2022 England MIA LIA Publication

I21313 PattersonNature2022 England MIA LIA Publication

I20989 PattersonNature2022 England MIA LIA Publication

I17262 PattersonNature2022 England MIA LIA Publication

I20987 PattersonNature2022 England MIA LIA Publication

I20985 PattersonNature2022 England MIA LIA Publication
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I20983 PattersonNature2022 England MIA LIA Publication

I20986 PattersonNature2022 England MIA LIA Publication

I20982 PattersonNature2022 England MIA LIA Publication

I20984 PattersonNature2022 England MIA LIA Publication

I19657 PattersonNature2022 England MIA LIA Publication

I19855 PattersonNature2022 England MIA LIA Publication

I19854 PattersonNature2022 England MIA LIA Publication

I11993 PattersonNature2022 England MIA LIA Publication

I11994 PattersonNature2022 England MIA LIA Publication

I12792 PattersonNature2022 England MIA LIA mother.I12793 Publication

I20990 PattersonNature2022 England MIA Publication

I19912 PattersonNature2022 England MIA Publication

I13680 PattersonNature2022 England MIA Publication

I17261 PattersonNature2022 England MIA Publication

I14863 PattersonNature2022 England MIA Publication

I17267 PattersonNature2022 England MIA LIA Publication

I20988 PattersonNature2022 England MIA LIA Publication

I17264 PattersonNature2022 England MIA LIA Publication

I14866 PattersonNature2022 England MIA Publication

I17016 PattersonNature2022 England MIA Publication

I14859 PattersonNature2022 England MIA Publication

I17015 PattersonNature2022 England MIA Publication

I19909 PattersonNature2022 England MIA Publication

I17014 PattersonNature2022 England MIA Publication

Supplementary Table 4. Samples used in the South England MIA-LIA analysis Geno-
types were downloaded from published supplementary materials.

Master ID Publication Group ID Source

VK387 MargaryanWillerslevNature202028 Norway Viking.SG V5029

VK414 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK530 MargaryanWillerslevNature2020 Norway Viking o2.SG V50

VK386 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK389 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK393 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK394 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK422 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK515 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK516 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK520 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK524 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK415 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK420 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK448 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK547 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK518 MargaryanWillerslevNature2020 Norway Viking o1.SG V50
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VK392 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK417 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK525 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK526 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK548 MargaryanWillerslevNature2020 Norway Viking.SG V50

Supplementary Table 5. Samples used in the Norway Viking analysis. Genotypes were
downloaded from V50 of the Allen ancient data resource.29

Master ID Publication Group ID Source

VK58 MargaryanWillerslevNature202028 Sweden Viking.SG V5029

VK429 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK433 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK455 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK456 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK56 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK64 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK60 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK432 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK460 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK461 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK463 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK434 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK431 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK475 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK468 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK50 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK479 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK474 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK478 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK473 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK477 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK53 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK51 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK232 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK48 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK454 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK452 MargaryanWillerslevNature2020 Sweden Viking.SG V50

Supplementary Table 6. Samples used in the Gotland Viking analysis. Genotypes were
downloaded from V50 of the Allen ancient data resource.29

Master ID Publication Group ID Source

I15109 FernandesSirakNature202030 Dominican Atajadizo Ceramic V5029

I15108 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

CDE003 NagelePosthScience202031 Cuba CuevaEsqueletos Ceramic V50
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I15667 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I13206 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I15667 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I17901 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I15962 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I15962 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I17908 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13207 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I17900 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

ELM001 NagelePosthScience2020 Cuba ElMorrillo Ceramic V50

I13199 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I15972 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I14992 FernandesSirakNature2020 Dominican LosMuertos Ceramic V50

I17907 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I14883 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14880 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14880 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I14881 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I15668 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I13201 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I7970 FernandesSirakNature2020 Dominican LaUnion Ceramic V50

I13195 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I14923 FernandesSirakNature2020 Bahamas AbacoIsl Ceramic V50

I15107 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I7969 FernandesSirakNature2020 Dominican LaUnion Ceramic V50

I15111 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13738 FernandesSirakNature2020 Bahamas LongIsl Ceramic published V50

I13739 FernandesSirakNature2020 Bahamas LongIsl Ceramic published V50

I14991 FernandesSirakNature2020 Dominican LomaPerenal Ceramic V50

I15591 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I7971 FernandesSirakNature2020 Dominican LaUnion Ceramic V50

I14882 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14882 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I15973 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I8118 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

LAV010 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I13208 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I17902 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13560 FernandesSirakNature2020 Bahamas SouthAndros Ceramic published V50

PDI008 NagelePosthScience2020 PuertoRico PasodelIndio Ceramic V50

LAV003 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I15082 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50
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I16175 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I13196 FernandesSirakNature2020 Dominican JuanDolio Ceramic father.or.son.I23524 V50

LAV002 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I8549 FernandesSirakNature2020 Dominican Andres Ceramic V50

I13192 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I16176 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I14990 FernandesSirakNature2020 Dominican EdilioCruz Ceramic V50

I13323 FernandesSirakNature2020 PuertoRico SantaElena Ceramic V50

I15112 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I15106 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I14994 FernandesSirakNature2020 Dominican LosCorniel Ceramic V50

I15105 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13190 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

LAV006 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

LAV004 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I13318 FernandesSirakNature2020 Bahamas CrookedIsl Ceramic V50

I13321 FernandesSirakNature2020 Bahamas EleutheraIsl Ceramic V50

I13319 FernandesSirakNature2020 Bahamas CrookedIsl Ceramic V50

I13737 FernandesSirakNature2020 Bahamas LongIsl Ceramic V50

I13189 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I15966 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I18300 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

PDI011 NagelePosthScience2020 PuertoRico PasodelIndio Ceramic V50

Supplementary Table 7. Samples used in the Caribbean Ceramic analysis. Genotypes
were downloaded from V50 of the Allen ancient data resource.29

Master ID Publication Group ID Source

I8547 FernandesSirakNature2020 Dominican Andres Ceramic V50

I15975 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15081 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15592 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15672 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15968 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I16519 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15978 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15969 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I20527 FernandesSirakNature2020 Dominican ElSoco Ceramic.SG V50

I20527 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I15976 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15682 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I12347 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12344 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12350 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12341 FernandesSirakNature2020 Dominican ElSoco Ceramic V50
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I8121 FernandesSirakNature2020 Dominican ElSoco Ceramic published V50

Supplementary Table 8. Samples used in the South East Coast Dominican Republic
Ceramic analysis. Genotypes were downloaded from V50 of the Allen ancient data resource.29
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