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g P pgq P pg|Dq P pg|s“1q

p0,0,0,0q p1´pq4 p1´x1Aqp1´x1Bqp1´x2Aqp1´x2Bq p1´pq3

p0,1,0,0q pp1´pq3 p1´x1Aqx1Bp1´x2Aqp1´x2Bqq pp1´pq2

p1,0,1,0q p2p1´pq2 x1Ap1´x1Bqx2Ap1´x2Bq pp1´pq2

p1,1,1,0q p3p1´pq x1Ax1Bx2Ap1´x2Bq p2p1´pq

p0,0,0,1q pp1´pq3 p1´x1Aqp1´x1Bqp1´x2Aqx2B pp1´pq2

p0,1,0,1q p2p1´pq2 p1´x1Aqx1Bp1´x2Aqx2B p2p1´pq

p1,0,1,1q p3p1´pq x1Ap1´x1Bqx2Ax2B p2p1´pq

p1,1,1,1q p4 x1Ax1Bx2Ax2B p3

Table S1: List of ingredients for calculating emission probability for s“1

Supplementary Note 1 Emission Probabilities for IBD states

Here we compute the HMM emission probability P pD|sq for the first IBD state (s“1). Due
to symmetry, the emission probabilities for all other IBD states (s“2,3,4) can be calculated
analogously by simple rearrangement.

First, we consider all possible combinations of phased genotypes that are compatible
with s“1. The IBD state s“1 encodes haplotypes 1A,1B as being IBD, thus the alleles on
haplotype 1A,1B have to match and be both reference or alternative. A total of 2ˆ2ˆ2“8

genotype configurations are compatible with s“1. These eight configurations with their
corresponding P pgq,P pg|Dq,P pg|s“1q are listed in Tab. S1. The other eight configurations
are not possible, and we have P pg|s“1q“0 for those.

Therefore, summing over all possible genotype combinations gPt0,1uˆt0,1uˆt0,1uˆ

t0,1u, we obtain now:
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Supplementary Note 2 Simulating IBD segment Data

To test our method, we generated simulated genetic data with two key objectives in mind.
First, we want to have accurate ground-truth IBD segments with exactly defined bound-
aries. Second, we want to mimic errors and imputation uncertainties of typical aDNA
data, such as those caused by low coverage and postmortem damage.

Towards these two goals, we used the 1000 Genomes Phase 3 release [Consortium
et al., 2015] and applied a two-step simulation procedure that is sketched in Supplemen-
tary Fig.1. The first step establishes synthetic individuals with perfectly known diploid
phased genotypes and ground-truth IBD segments. The second step then adds the un-
certainties of imputing low-coverage aDNA data by matching imputation inaccuracies
that we established by imputing low-coverage versions of high-coverage aDNA data.
Throughout, we simulate data for 1240k bi-allelic SNP sites, which are the input to ancIBD.

In the first step, we simulated diploid genotypes by creating a mosaic of haplotypes
with the TSI group label (Tuscany, Italy) in the 1000 Genomes data following a previous
approach [Browning and Browning, 2011, Ralph and Coop, 2013]. We copied TSI haplo-
types in blocks of 0.25 cM length, where each block was chosen randomly from all TSI
samples. The motivation for this haplotype mosaic approach is that any background IBD
much longer than 0.25 cM that might exist between the 1000 Genomes TSI haplotypes is
most likely broken up, while fine-scale background LD patterns are mostly maintained.
We note that naturally recombining genomes similarly produce haplotype mosaics, only
with not as regularly spaced switch points. We then grouped pairs of mosaic haplotypes
into diploid genomes. To create ground-truth IBD blocks, we overwrote one of the haplo-
types of a pair of diploid samples with the matching haplotype of the other sample. The
start and end point of the overwrite was chosen randomly along the simulated chromo-
some, with the length of the overwrite matching specified IBD segment lengths. Using
this approach, we simulated IBD segments 4,8,12,16,20 cM long, each with 500 replicates
of pairs of diploid chromosomes 3.

In the second step, we added genotype probabilities and phasing errors to the mosaic
genomes with added IBD segments, aiming to mimic errors introduced in the imputation
process of empirical low-coverage aDNA data. Generally, imputation accuracy at SNPs
depends on allele frequencies, and homozygotes are better imputed than heterozygotes
[e.g. Hui et al., 2020, Sousa da Mota et al., 2023]. To estimate these complex dependencies,
we downsampled and imputed 52 high-coverage ancient samples (50 of them ą15x av-
erage coverage, and two ą10x, all double-stranded library and half-UDG treated, Supp
Table H) from AGDP (see data availability) to various target coverages. For each of those
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Supplementary Fig.1: Pipeline to simulate IBD segment data. We visualize our steps to simulate IBD segment data (see detailed
description in Supplementary Note 2). Starting from TSI (Tuscany) high-quality reference haplotypes in the 1000 Genome panel (A),
we created haplotype mosaics (B) as any long IBD segment is removed from those. We then copied over IBD segments of the target
length (C). We grouped two mosaic haplotypes to obtain diploid individuals but to simplify visualization here we do not depict the
second haplotype per individual. D: To create data typical for imputed low-coverage aDNA, we matched each genotype to a random
matching genotype in a panel of aDNA diploid genotypes called from high-coverage aDNA (either 1240k or WGS aDNA data). We
then downsampled the high-coverage aDNA panel to the target coverage, imputed genotype probabilities, and copied those back to
each match.

52 individuals, both WGS and a 1240k captured aDNA data are available, and we used
those separately to establish imputation inaccuracies for WGS and 1240k data, respec-
tively. First, we established ground-truth genotypes for each individual by imputing the
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original high-coverage WGS data after clipping 5 base pairs from both ends of aligned
sequencing reads to reduce aDNA damage. For various target coverages and for each of
the three possible genotypes (0/0, 0/1, 1/1) at each site, we then assembled a list of im-
puted genotypes and their associated genotype probabilities from the downsampled and
imputed data. We then simulated imputation error by setting the genotype and genotype
probability at each SNP of the mosaic genomes to those of a sample chosen randomly
from the aforementioned list of imputed ancient genomes with the same true genotype
and target coverage. In case a genotype is not found in any of the 52 high-coverage sam-
ples, we kept the true simulated genotype and set its associated genotype probability to
99%. We note that of all 77,652 biallelic 1240k markers on chromosome 3, 52,629 have all
three possible genotypes found in at least one of the 52 genomes, and 15,700 of them have
two of the three possible genotypes.

Finally, we introduced phasing errors by flipping the phase at intervals drawn from
an exponential distribution. To specify this distribution, we matched the average phased
block length estimated from downsampling a high-quality trio (I3388, I3950, I3949, whose
high-coverage WGS data were published in Wohns et al. [2022] and 1240k data in Narasimhan
et al. [2019]). Both WGS and 1240k BAM files of this trio set were downsampled to 2x, 1x,
0.75x, 0.5x, 0.25x, 0.1x and then imputed and phased with GLIMPSE as described in Sup-
plementary Note 5. We identified phase switches between 1240k SNPs using VCFtools
–diff-switch-error [Danecek et al., 2011]. The average phase block lengths for WGS and
1240k are summarized in Tab. S2.

Supplementary Note 2.1: Validation of Simulated IBD segment Data

Our approach effectively combines SNP genotype probabilities from a mixture of down-
sampled individuals. To validate whether our simulation procedure mimics empirical
downsampled and imputed aDNA data we ran two sets of experiments.

First, we compared the distribution of max(GP) (defined as the maximum among
the three posterior genotype probabilities of 0/0,0/1,1/1) between simulated individu-
als and that of downsampled and imputed empirical individuals. The overall fraction
of max(GP)ą0.99 among all imputed variants strongly correlates with coverage (Supple-
mentary Fig.5); indicating that the distribution of max(GP) is a good indicator of impu-
tation quality. Reassuringly, when comparing the cumulative distribution for simulated
and empirical downsampled aDNA data, the CDFs match well both for 1240k and WGS
data types (Supplementary Fig.2).

Second, we examined the number of SNPs being incorrectly imputed (i.e. the imputed
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Coverage WGS [cM] 1240k [cM]

2x 0.182 0.182
1x 0.257 0.125
0.75x 0.271 0.106
0.5x 0.271 0.0814
0.25x 0.220 0.0532
0.1x 0.127 0.0344

Table S2: Mean Phased Block Length for WGS and 1240k Data at Various Average Coverages. All lengths are map lengths measured
in centimorgan. Phase switch errors are inferred as described in Supplementary Note 2 by downsampling a high-coverage ancient
parent-offspring trio, using the high-coverage data as ground truth.

GT is different from the ground truth genotype). We computed the confusion matrix that
describes the frequency of 0/0,0/1,1/1 genotypes to be imputed as 0/0,0/1,1/1 on 1240k
SNPs on Chromosome 3 for both 1240k and WGS data types. Reassuringly, we found
that the matrix of simulated data is nearly identical to that of empirical downsampled
and imputed data (Supplementary Fig.3). This finding demonstrates that we introduce
genotype errors at rates matching those observed for typical empirical ancient DNA.

Lastly, we stress that the phasing switch error that we introduced into the simu-
lated data was the one we directly estimated from downsampled high-coverage trios
(see Tab. S2). Therefore, by design, the average length of correctly phased segments in
our simulated data matches those observed in low-coverage aDNA established when
compared to the gold standard of trio phasing the high-coverage versions.
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Supplementary Fig.2: Cumulative Distribution Function (CDF) of Maximum Genotype Posteriors at Each Loci. We compared the
CDF of maxGP between simulated data and empirical downsampled data at 1x and 0.5x coverage, for both 1240k and WGS data
types. The genotype probability is plotted on a phred-scale and capped at 40 (corresponding to 0.9999).
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Supplementary Fig.3: Confusion Matrix of Imputed Genotypes for WGS and 1240k Data. Confusion matrix showing the probability
of ground-truth genotype 0/0,0/1,1/1 being imputed as one of 0/0,0/1,1/1 at coverage 0.5x. We stratified results by SNP type
(transition vs. transversion SNPs). The first row shows the confusion matrix in simulated data while the second row shows that in
empirical downsampled aDNA data. The left panel depicts WGS data, and the right panel 1240k data.
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Supplementary Fig.4: IBD Calling Accuracy. Accuracy of IBD calling in simulated synthetic diploid samples with IBD segments
of length 4,8,12,16,20 cM. We simulated shotgun-like and 1240k-like data as described in Supplementary Note 2). We visualize false
positive, power, and general length bias for coverages from 2x down to 0.1x (rows). We indicate power to call segments of each
simulated length next to the respective gray vertical bars.
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Supplementary Note 3 Imputation Pipeline

In our downsampling experiments, we imputed aDNA with GLIMPSE following stan-
dard settings, as previously described in Waldman et al. [2022]: We first generated geno-
type probabilities using bcftools mpileup (v1.10.2) [Li, 2011] (with -q 30 -Q 30 filtering to
use only high-quality aligned reads and bases). To generate the genotype likelihood VCF
file as input for GLIMPSE, we used the following command:

b c f t o o l s mpileup − f ${REFGEN} −−ignore −RG − I −E \
−a ’FORMAT/DP ’ −T ${VCF} −r $ch −q 30 −Q 30 ${BAM} −Ou | \
b c f t o o l s c a l l −Aim −C a l l e l e s −T ${TSV} −Oz −o ${OUT}

Here, REFGEN refers to the human reference genome fasta file (here: build GRCh37/hg19),
and the VCF and TSV files are generated from the 1000Genome Phase 3 reference panel,
following the steps outlined in GLIMPSE tutorial (step 3.1 in https://odelaneau.

github.io/GLIMPSE/glimpse1/tutorial_hg19.html). We note that, even for 1240k
data, this genotype likelihood calling should also be performed on all 1000Genome bi-
allelic SNPs as nearby SNPs also markedly improve the imputation accuracy of 1240k
SNPs (Supplementary Fig.5). All code used for imputation is available at https://
github.com/hyl317/IBDBenchmark.git. A total of 78,397,683 SNPs are used dur-
ing imputation (only bi-allelic SNP sites from 1000 Genome are imputed). The 1240k SNP
set consists of 1,100,313 SNPs after quality control and is widely used in aDNA studies.
We note that it is a strict subset of the 1000G bi-allelic SNPs.

For the empirical applications of ancIBD described in this article, we started from
the processed .bam files underlying the public Allen Ancient DNA Resource (AADR)
[Mallick et al., 2023]. We generally recommend that the input .bam files are processed
using standard aDNA processing, such as removing PCR duplicates, trimming of ter-
minal base pairs to remove aDNA damage, and checking for contamination - see com-
monly used aDNA pipeline practices in Eager https://nf-co.re/eager, Yates et al.
[2021]. We then imputed all autosomal bi-allelic SNPs 1000 Genomes Phase 3 release
using GLIMPSE (v1.1.1), using its default parameters and following the recommended
steps as described in the official GLIMPSE tutorial https://odelaneau.github.io/
GLIMPSE/glimpse1/tutorial_hg19.html.

https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_hg19.html
https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_hg19.html
https://github.com/hyl317/IBDBenchmark.git
https://github.com/hyl317/IBDBenchmark.git
https://nf-co.re/eager
https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_hg19.html
https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_hg19.html
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Supplementary Fig.5: Imputation Quality reported by GLIMPSE plotted against Coverage on 1240K SNPs. The two scatter plots
visualize the imputation quality versus coverage for various ancient individuals. Each dot represents one individual. The x-axis marks
the fraction of 1240K SNPs that are covered at least once by a sequencing read. The y-axis marks the fraction of 1240K SNPs where
the highest imputed diploid genotype probability (GP field) is greater than 0.99, as provided by GLIMPSE. Note that imputation, as
throughout, uses sequence data from all bi-allelic 1000G SNPs. We color-code individuals by their data type: 1240K and Twist capture,
as well as shotgun sequencing data. We did this analysis for a typical long chromosome (chromosome 3, left plot) and a typical short
chromosome (chromosome 20, right plot). Note that WGS data outperforms capture data of the same coverage - as shotgun data has
also a large number of reads off-target that are evidently useful for imputation on 1240K SNPs.

Supplementary Note 4 Setting Allele Frequencies for ancIBD

To identify IBD with ancIBD, one has to specify allele frequencies in its emission model.
Throughout this work, we used the allele frequencies of the 1000 Reference panel, which
is output by GLIMPSE imputed data in the field INFO/RAF of the output VCF and is
automatically transferred to the hdf5 file that is used as input to ancIBD. However, we
note that ancIBD allows the user to specify other allele frequencies, and we provide the
user a function to integrate allele frequencies into the hdf5 file (lift af df), and also an
option to calculate the allele frequency of the imputed sample that is saved into the field
AF SAMPLE (which then can be used when running ancIBD). Moreover, users can also
specify the allele frequency via a separate file when running ancIBD on the command
line.

The dependency of ancIBD on allele frequency settings is expected to be relatively
minor, as allele frequencies of common SNPs are relatively similar, even on continental
levels (see e.g. [Biddanda et al., 2020], also Supplementary Fig.6). To test this intuition,
we ran ancIBD on the whole empirical dataset using the allele frequencies of the imputed
Eurasian data (consisting only of ancient DNA samples from Eurasia) - calculated when
using SNPs from imputed individuals only where the maximum genotype probability
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was bigger than 0.99. Reassuringly, we find that the IBD calls on the empirical dataset
correlate closely (see Supplementary Fig.6). Generally, we recommend using the allele
frequencies of the 1000G reference panel, as these are calculated from a sufficient set of
samples and have been tested well throughout this work.

Supplementary Fig.6: ancIBD calls on empirical dataset when using different allele frequencies. We ran ancIBD on the whole
empirical dataset consisting of 11,404 ancient genomes, using either allele frequencies from the 1000G reference panel or calculated on
the full imputed data (see scatter plot left that compares those two allele frequencies for each SNP). Using the called IBD segments of
the two large ancIBD runs, we visualize a comparison of the sum per pair of all IBD longer than 12 cM (middle), as well as the sum
of all IBD 8-12 cM long (right), each dot corresponds to one pair of individuals and all sums refer to values in cM. We also depict the
Pearson product-moment correlation (Pearson’s R, see text labels upper left).

Supplementary Note 5 Downsampling Empirical aDNA Data

To assess the performance of ancIBD on realistic aDNA data, we downsampled high-
coverage („20x) empirical human ancient DNA data. To obtain ground truth IBD seg-
ments to compare to, we used four WGS samples associated with the Afanasievo culture:
I2105 (23.0X, 3300-2500 BCE, Ukraine, [Mathieson et al., 2018]); I3950 (25.8x, 2879-2632
calBCE, Russia, [Narasimhan et al., 2019]); I5273 (22.4x, 3011-2885 calBCE, [Narasimhan
et al., 2019]) and I5279 (28.4x, 3011-2897 calBCE, Russia, [Narasimhan et al., 2019]).

To establish ground-truth diploid genotypes for those four samples, we computed
genotype likelihoods from the high-coverage BAM files using bcftools and then applied
GLIMPSE to impute diploid genotypes. We then filtered to transversion sites and called
IBD segments with IBIS [Seidman et al., 2020]. This algorithm takes as input unphased
diploid genotypes and utilizes the fact that in the absence of genotyping error, two sam-
ples cannot be homozygous for two different alleles (”opposing homozygotes”) within
an IBD region as the two samples have one of their haplotypes identical. This signal es-
tablishes a necessary condition for IBD, and the absence of opposing homozygotes over
a long genomic region constitutes distinct evidence for IBD. The reason we chose IBIS to
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establish ground truth IBD segments is that very few high-coverage trio samples are avail-
able for aDNA and computational phasing with 1000 Genomes reference panel produces
relatively high switch error rates (Tab. S2, [Sousa da Mota et al., 2023]). After restricting
to transversion biallelic sites and applying a posterior GP ą99% and MAF ą1% (minor
allele frequency) filters, we obtained 3,756,564 sites for IBD screening. IBIS identified a
total of 157 IBD segments longer than 4 cM among the six pairs of the four samples. We
visually inspected those detected IBD segments to confirm that they are depleted of op-
posing homozygotes and removed 23 of them that contained regions with very low SNP
density, typically segments located over centromeres or on chromosome ends. We used
the resulting 134 segments as ground-truth IBD blocks for benchmarks discussed in the
following.

For the four Afanasievo samples, both WGS and 1240k capture data are available.
We downsampled the WGS BAM files to 2x, 1x, 0.75x, 0.5x, 0.25x and 0.1x coverage and
the 1240k BAM files to 2x, 1x, 0.75x and 0.5x, each with 50 replicates. We applied the
same bcftools+GLIMPSE imputation pipeline as described in Supplementary Note 3 and
then ran ancIBD using its default parameters. We computed the precision and recall of
ancIBD at various length bins and coverages when compared to the ground-truth IBD set
described above. Similarly, we also screened the downsampled data with IBIS, using the
same 1240k SNP set. Within a given map length bins of [5cM, 6cM), [6cM, 8cM), [8cM,
12cM), and ą12cM, we calculated precision as the fraction of all inferred IBD segments
that have at least 50% of their length covered by any true segment of any size and recall
as the fraction of the total length of all true IBD segments that are at least 50% covered by
inferred IBD segments of any size. Our results are summarized in Supplementary Fig.7.

Most notably, we found that for the same coverage, WGS data substantially outper-
forms 1240k data. Particularly, we found that 0.25x WGS data yields similar IBD calling
accuracy as 1-2x 1240k data, both for ancIBD and IBIS.

For long IBD segments (ą12cM) that are of particular interest for detecting relatives,
ancIBD achieves both high precision and recall (ą90%) for all coverages tested here. Er-
rors for segments in these length ranges remain negligible for most downstream analy-
ses. We find that IBIS has substantially reduced power to identify IBD at lower coverages
(ă0.25x for WGS and ă1x for 1240k), despite maintaining a consistently high precision
over all coverages. For intermediate range segments (8-12cM), IBIS maintains relatively
high precision (ą90%) at all coverages tested while having reduced power at low cover-
ages. ancIBD maintains high recall („80%) at all coverages while having less than 80%
precision at 0.5x for 1240k data. Overall, our results demonstrate that ancIBD yield accu-
rate IBD calling („90% or higher precision) at ą0.25x WGS and ą1x 1240k data.
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Supplementary Fig.7: Precision and recall of ancIBD and IBIS at various length bins and coverages. We applied both methods
with their default settings to genotype data imputed after downsampling to various coverages. For each coverage, we report the
average precision and recall of each length bin across 50 independent replicates. The error bar represents ˘SE of the estimated
precision and recall. Each row represents a length bin and each column represents one input data type (either WGS data or 1240k
data). Note that the y-axis ranges are different for different rows.
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Supplementary Fig.8: Comparing precision and recall of ancIBD when using 1240k and 1000G MAF5 SNP sets. We applied ancIBD
to either 1240k SNP and 1000G SNP filtered by minor allele frequency 5%. For 1KG MAF5 SNPs, we increased the parameter snp cm
to 800 to account for the higher density of SNPs in this larger SNP set. For each coverage, we report the average precision and recall
of each length bin across 50 independent replicates. The error bar represents ˘SE of the estimated precision and recall.
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Our results indicate that for studies using shorter IBD segments (6-8 cM), which are
often a main signal for demographic inference, greater care should be taken as false pos-
itive rates and false negatives are not trivial anymore. The default SNP density filtered
(as described in the method section of the main article) reduces the ancIBD’s recall for
these shorter segments („65-70%). To improve the performance of ancIBD, we designed
genomic masks that filter IBD in regions prone to false positive IBD segments due to low
SNP density (Supplementary Fig.9). To identify regions with excessive IBD sharing, we
computed the average IBD sharing rate (ą6cM) among 10,156 Eurasian ancient individu-
als (same set as in Fig. 3) in genomic windows of size 0.5 cM. We then designated regions
to be masked as those whose sharing rate exceeds three standard deviations from the
genome-wide average IBD sharing. The start and end point of each masked region was
determined by the first windows (on the left and right) whose sharing rate equals or falls
below the genome-wide average. With the mask applied, the precision of ancIBD with-
out SNP density filtering remains as high as the one without mask and with SNP density
filtering; however, we observe a substantial boost in power within the unmasked region
to greater than 90% (Supplementary Fig.10).

We note that the precision of ancIBD reported in those downsampling experiments
should be interpreted as being conservative because we likely underestimate precision
in our downsampling experiments for the following two reasons. First, our benchmarks
indicate that IBIS prioritizes precision over recall, especially for shorter segments, as re-
ported previously (Seidman et al. [2020], Fig. 3 and Fig. S4 therein). Thus, IBIS might
miss some true IBD segments in the high-coverage data that are called by ancIBD in the
downsampled data. Second, we visually screened all the detected IBD segments and as
ground truth only retained those that are depleted of opposing homozygotes without
major gaps, which might effectively remove some true IBD segments.

To assess whether some IBD inferred by ancIBD are missing in the ground truth data
set, we computed the rate of ”opposing homozygotes” for each detected segment using
the genotypes called from the high-coverage BAM files. We define the rate of opposing
homozygotes as the percentage of sites where two samples carry homozygotes for dif-
ferent alleles out of all sites where both samples carry homozygotes. We included only
transversion sites with minor allele frequency ą10% in the 1000G reference panel in this
calculation so that the probability of being homozygote for both reference and alterna-
tive alleles is non-negligible. We then plotted this rate of opposing homozygotes against
a segment’s Positive Predictive Value (PPV), defined as the fraction of a called segment
covered by any segments in the ground-truth set. We found many segments with low
PPV that have rates of opposing homozygotes similarly low as segments with very high
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Supplementary Fig.9: IBD Sharing Rates along the genome. Average genome-wide IBD sharing rate on the 22 autosomes plotted
for all the 1240k target sites. We indicate regions with excessive sharing of IBD that are excluded when using our mask (gray areas).
The average sharing rate was computed from the IBD inferred between 10,156 ancient individuals described in the main manuscript.

PPV (Supplementary Fig.11, Supplementary Fig.12, Supplementary Fig.13, Supplemen-
tary Fig.14). This observation indicates that in the ground-truth set least parts of true IBD
segments are missed, which would decrease the precision of ancIBD. That said, it is hard
to determine whether these segments of exceptionally low opposing homozygote rates
are fully true IBD segments. Thus we chose to be conservative in our tests.

Supplementary Note 6 Performance of ancIBD when us-

ing all common 1000 Genome SNPs

We explored whether using all common variants in the 1000 Genome variant sets can im-
prove the performance of ancIBD. We filtered to 1000 Genome SNPs with minor allele
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Supplementary Fig.10: Precision and recall of ancIBD and IBIS for various IBD length bins and depths of coverage. We applied
ancIBD using the genomic masks (shown in Supplementary Fig.9) and without SNP density filtering. The error bar represents ˘SE of
the estimated precision and recall. All other settings are as in Supplementary Fig.7. For each coverage, we report the average precision
and recall of each length bin across 50 independent replicates. The error bar represents ˘SE of the estimated precision and recall.
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frequency (MAF) greater than 5 percent and adjusted the parameter “snp cm” (minimum
SNP density per cM within IBD segments) from the default 220 to 800 because there are
about six times more 1000G SNPs with MAFą5% than 1240k SNPs. We tested this ex-
panded SNP set both on WGS and on 1240K aDNA data. For WGS aDNA data using
1000G SNPs with MAFą5% resulted in slightly improved performance for shorter IBD
segments (6-8cM) while for long segments (ą12cM) the precision and recall remain al-
most identical (Supplementary Fig.8). For 1240k aDNA data using 1000G SNPs with
MAFą5% gave mixed results (Supplementary Fig.8). In particular, for longer segments
(ą8 cm), we observe a marked reduction in recall compared to when using 1240K SNPs.

As the benefits of utilizing all imputed common variants in 1000G SNPs are limited
to WGS data and generally small, we recommend that ancIBD is run on data filtered to
the 1240k SNP set after imputation. This has the practical benefit of increasing the co-
analyzability of 1240k and WGS data, by having a single standard pipeline that can be
applied to both kinds of data and also mixes thereof. However, we note that ancIBD can
be run on any SNP set that is provided as input data, users can in principle choose and
experiment with other SNP sets.

Supplementary Note 7 Estimating False Positive Rates with

Downsampled Empirical Data

False positive IBD segments are particularly problematic for many downstream analyses
such as demographic inference; therefore, it is important to establish for which coverage
and IBD length cutoffs the false positive rate is tolerable for a particular application. To es-
timate false positive rates from empirical data, we selected 13 ancient individuals (I4893,
I4596, I1583, I2978, I5838, I1507, I2861, I2520, I3758, I5077, I0708, I5233, I3123) from AGDP
(see Data Availability and Supp. Tab. 1F) that have both high-coverage WGS and 1240k
aDNA data available. All samples are chosen to be from Western Eurasia so that their
imputation quality is expected to be relatively homogeneous and the estimated false pos-
itive rates are not driven by a subset of them being poorly imputed. We determined the
ground-truth diploid genotypes on chromosome 3 as described in Supplementary Note 5
and then used IBIS to confirm that these samples share no IBD with each other. We further
verified the absence of IBD sharing by plotting opposing homozygous along chromosome
3 for visual inspection. Therefore, all inferred IBD segments from the downsampled data
are false positives.

For WGS data, we downsampled to 0.1x, 0.25x, 0.5x, and 0.75x. For 1240k data, we
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Supplementary Fig.11: Rate of Opposing Homozygotes for called segments in length bin 5-6cM.

downsampled to 1x, 2x, and 3x (for 3x downsampling, we excluded samples I5233 and
I5077 due to insufficient coverage of the original 1240k BAM file). For each target cover-
age, we created 50 independent replicates and the estimated average false positive rates
are visualized in Fig. 2b.

As in Supplementary Note 5, we found that WGS data outperforms 1240k aDNA data
of the same coverage. We also note that, depending on different applications, the cover-
age cutoff for ancIBD is different. For example, for detecting biological relatives using
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Supplementary Fig.12: Rate of Opposing Homozygotes for called segments in length bin 6-8cM.

IBD segments longer than 12cM, a more lenient coverage requirement can be employed
(0.25x for WGS data and 1x for 1240k data). For demographic inference, one must take
into account the signal-to-noise ratio; therefore, the IBD length and coverage cutoff are de-
pendent on the effective population size of the study population and should be decided
on a case-by-case basis. In Fig. 2b we plotted expected IBD sharing for constant popula-
tions with different effective population sizes to aid such comparison. To calculate this
expected sharing, we use established formulas for expected IBD in panmictic populations
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Supplementary Fig.13: Rate of Opposing Homozygotes for called segments in length bin 8-12cM.

of constant size (see e.g. [Ringbauer et al., 2021, Fernandes et al., 2021]).
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Supplementary Fig.14: Rate of Opposing Homozygotes for called segments in length bin ě12cM.
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Supplementary Note 8 Simulating IBD-sharing of biolog-

ical relatives using PED-SIM

To gain insight into the number and length distribution of IBD blocks given various de-
grees of close biological relatedness, one can calculate the expected numbers of blocks
falling into certain length classes [Ringbauer et al., 2021, see e.g.]. While these calcula-
tions accurately predict the expected IBD sharing, they do not address the natural bi-
ological variance around the expectation. Moreover, they rely on the assumption that
recombination can be modeled as a Poisson process (i.e. measuring genomic distances in
Morgan) and do not incorporate the biological process of recombination interference (i.e.
recombination events are less clustered than expected) as well as sex-specific recombina-
tion maps (in humans, the average cross-over rate in females is about 1.6 times higher
than in males, with substantial fine-scale variation [Bhérer et al., 2017]). Previous experi-
ments revealed that for relatives beyond the second degree, these model violations have
only little impact; however, these processes can significantly influence patterns of IBD
segment sharing for close relatives [Caballero et al., 2019].

For these reasons, we utilized the software ped-sim (v1.0.6) to simulate shared IBD
segments between relatives [Caballero et al., 2019]. For each degree up to sixth-degree re-
latedness, we simulated 100 pairs of individuals each, using the sex-specific genomic map
of [Bhérer et al., 2017], and simulating all autosomes with the recombination interference
model [Campbell et al., 2015] incorporated into PED-SIM.

To compare with the IBD segment distribution in empirical ancient relatives, we ap-
plied the same IBD segment filter that we applied to post-process ancIBD output, i.e. we
merged adjacent IBD segments, such as occurring when there is a switch between IBD1
and IBD2 states that are output as separate segments in ped-sim, into a single contigu-
ous one and we removed IBD segments that have a density of 1240k SNP less than 220
per centimorgan. We note that the latter filter removes chromosomes 19 and 22 in case
they are completely in IBD (e.g. in parent-offspring). One remaining caveat is that the
sex-specific map of Bhérer et al. [2017]) used for ped-sim simulations sums up to 3346.3
cm (when sex-averaged), while the deCODE map [Kong et al., 2010] used for empirical
IBD calls sums up to a total length of 3537.0 cm. However, we believe that the benefit
of running simulations with a sex-specific map justifies this slight mismatch of total map
lengths.

We visualize the simulated IBD sharing in Fig. 3b. We note that we simulated both
ancestral relationships (e.g. parents and grandparents) and also relationships via full sibs
(e.g. full sibs themselves or uncle/aunts). These two relationship types can have differ-
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ent distributions of IBD lengths for the same degree of relatedness because the number
of meiosis in relationships via full sibs is elevated by one while the number of shared
haplotype ancestors is four instead of two.

Supplementary Note 9 Identifying relatives using pair-wise

mismatch rates (PMR)

To compare IBD segment sharing in aDNA data to conventional methods to detect rela-
tives, we calculated a relatedness estimate based on the pair-wise mismatch rate (PMR)
that we describe below. This measure of a genome-wide average of allele-sharing is
widely used in aDNA studies and underlies common methods to detect relatives in aDNA
[Lipatov et al., 2015, Monroy Kuhn et al., 2018, e.g.].

We computed pairwise mismatch rates by randomly sampling one read for each indi-
vidual at 1240k autosomal SNPs. For normalization, we estimated relatedness coefficients
r as described in Kennett et al. [2017]:

r“1´
x´b

b
, (1)

where x denotes the pairwise mismatch rate for that pair and b is the expected mis-
match rate for two genetically identical individuals from the same population.

For each pair of individuals, we estimated b as the mean of the two intra-individual
mismatch rates of each of the two individuals in the pair, which we computed by ran-
domly sampling two reads at each position. To account for consanguinity (i.e. closely
related parents), we corrected intra-individual mismatch rates by multiplying with a cor-
rection factor 1´fROH, where fROH denotes the fraction of an individual genome in ROH
longer than 8 centimorgan. To estimate this fraction, we call ROH using the method
hapROH using default parameters [Ringbauer et al., 2021].

Finally, we annotated up to third-degree relatives based on the inferred PMR-based re-
latedness estimates r (see Supplementary Fig.15). As cutoffs between the four states (un-
related, third, second, and first-degree relatives) we used the theoretical halfway bound-
aries of (0.09375, 0.18375, 0.375) between expected values of r (0, 0.125, 0.25, 0.5). More-
over, we filtered all pairs with relatedness estimates ą0.75, which are indicating genetic
duplicates.

We visualize the inferred PMR-based relatedness for all pairs of individuals with at
least 500 cm of IBD segments longer than 12 cm in Supplementary Fig.15. We note that
the few outliers are enriched for pairs of individuals with substantially different ances-
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try, for which the approach of taking intra-individual diversity as a baseline for between
individual diversity is evidently biased. This issue is a general problem of PMR-based
methods, which can be overcome with IBD-segment-based analysis.
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Supplementary Fig.15: Inferred PMR-based relatedness for empirical aDNA dataset. We calculated PMR-based relatedness based
on Eq. 1 for all 2,089 pairs of ancient individuals where ancIBD identified at least 500 cm of IBD segments longer than 12 cm. We
visualize the expected values for first, second, and third-degree relatives (0.5, 0.25, and 0.125, vertical lines), as well as the cutoffs
halfway between expected values for various degrees of relatives (dotted vertical lines).
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Supplementary Note 10 Comparison with other methods to

detect IBD segments

In this section, we compare ancIBD’s performance with other IBD callers designed for
modern DNA data. To our knowledge, no dedicated IBD caller has been developed to be
applied to human ancient DNA previously; however, the same fundamental principles
of detecting IBD segments apply as for modern DNA data. Thus, methods designed for
modern DNA data might extend to imputed low-coverage aDNA data.

IBDseq

IBDseq [Browning and Browning, 2013] is designed for whole genome sequencing data.
It computes the likelihood ratio of IBD and non-IBD for each biallelic marker and then
sums them to find long stretches of IBD regions. For applying IBDseq to imputed data,
we filtered imputed variants to MAF ą1% and imputation INFO score ą0.8 (the same
filtering as performed in Allentoft et al. [2022]). We merged the four ancient samples
with 503 diploid samples from the 1000 Genome Project labeled as belonging to the su-
per population EUR because IBDseq relies on population allele frequencies estimated
from input samples. We found that for long segments (ą12cM) and high coverage, both
ancIBD and IBDseq perform equally well. In addition, compared with ancIBD, IBDseq
has higher power in detecting intermediate segments (8-12cM) at higher coverage. How-
ever, IBDseq’s precision quickly drops below an acceptable level for low coverages that
are typical for most aDNA data (Supplementary Fig.16), especially for 1240k data. Ad-
ditionally, we also tried to filter imputed variants further to only keep transversion sites
to mitigate the effect of aDNA damage, however, we found that this filtering has only
negligible effects on IBDseq’s precision and recall (Supplementary Fig.17).

GERMLINE and GERMLINE 2

Both GERMLINE [Gusev et al., 2009] and GERMLINE 2 [Nait Saada et al., 2020] rely on
accurate phasing as they take a seed-and-extend approach to search for identical hap-
lotypes between two samples. For GERMLINE, we used the same SNP filtering as
for IBDseq described above. We attempted to tune default parameters to accommo-
date the noisy nature of imputed aDNA data (e.g, turn on the ’-g extend’ option rec-
ommended for noisy data, allowing up to 10 mismatch homozygous and heterozygous
markers per slice); however, we could not identify any setting that enabled GERMLINE
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Supplementary Fig.16: Precision and recall of ancIBD and IBDseq at various length bins and coverages. We applied IBDseq as
described above and compared its precision and recall with ancIBD at various coverages and IBD length bins. For each coverage,
we report the average precision and recall of each length bin across 50 independent replicates. The error bar represents ˘SE of the
estimated precision and recall.
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Supplementary Fig.17: Precision and recall of IBDseq with and without filtering transition SNPs. For each coverage, we report
the average precision and recall of each length bin across 50 independent replicates. The error bar represents ˘SE of the estimated
precision and recall.



29

or GERMLINE 2 to detect any IBD segments among the test samples. Having effectively
zero power is most likely due to the relatively high switch error rates in aDNA data im-
puted with modern reference panels (Tab. S2), which is an order of magnitude higher than
what is attained for modern DNA phased with biobank scale reference panel [Sousa da
Mota et al., 2023, Rubinacci et al., 2021].

hapIBD

Similar to GERMLINE, hapIBD [Zhou et al., 2020] requires phased genotypes. We used
the same SNP filtering as for IBDseq and adjusted hapIBD’s default parameters to allow
more mismatches (min-seed=0.1, min-extend=0.05, max-gap=500000, where the default
values for the three parameters are 2.0, 1.0, 1000, respectively). Despite those attempts,
hapIBD’s power remains very low and the detected segments tend to be highly frag-
mented (Supplementary Fig.18), making it generally not applicable for imputed aDNA
data.



30

0.2

0.4

0.6

0.8

2x1x0.75x
0.5x

0.25x

0.1x

5-6 cM

2x
1x
0.75x

0.5x
0.25x
0.1x

ancIBD
hapIBD

2x

1x

0.75x

0.5x

0.2

0.4

0.6

0.8

1.0 2x1x0.75x0.5x
0.25x

0.1x

6-8 cM 2x

1x

0.75x

0.5x

0.2

0.4

0.6

0.8

1.0 2x1x0.75x0.5x0.25x

0.1x

8-12 cM 2x
1x

0.75x

0.5x

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 2x1x0.75x0.5x0.25x

0.1x>12 cM

0.2 0.4 0.6 0.8 1.0

2x1x
0.75x

0.5x

Recall

Pr
ec

isi
on

WGS data 1240k data

Supplementary Fig.18: Precision and recall of hapIBD at various length bins and coverages. We applied hapIBD as described
above at various coverages. For each coverage, we report the average precision and recall of each length bin across 50 independent
replicates. The error bar represents ˘SE of the estimated precision and recall.
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Supplementary Note 11 Other Supplementary Figures
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Supplementary Fig.19: Relationship between number of sites covered by ě 1 reads and average coverage depth on 1240k SNP
sites. The plot shows the average coverage depth and the number of sites covered for 1240k samples from AADR (release v54.1). The
recommended coverage cutoff (1x) is indicated by a black vertical dashed line. Only samples with less than 2.5x coverage are depicted.
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Supplementary Fig.20: Validity of approximating diploid genotype probabilities as the product of haplotype probabilities. As
described in the main text, we approximate P pg|Dq as the product of the four probabilities of each of the haplotypes (1A, 1B) and
(2A, 2B) being reference or alternative. Here we check the validity of this approximation by plotting p2 against x1Ax1B , where p2 is
the GLIMPSE-estimated genotype probability of being homozygous alternative alleles. The data points come from all the variants on
chr1 in the 1000 Genome reference panel. The figure shows the result of I2105 downsampled to 1x. The coefficient of determination
(calculated from sklearn.metrics.r2 score) is indicated in the upper left corner.
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