Article

Eight millennia of continuity of a previously
unknownlineagein Argentina

https://doi.org/10.1038/s41586-025-09731-3
Received: 14 April 2025

Accepted: 9 October 2025

Published online: 05 November 2025

Javier Maravall-Lopez"**%, Josefina M. B. Motti*, Nicolas Pastor®®’, Maria Pia Tavella®,
Mariana Fabra®’?, Pilar Babot®'°, Mariano Bonomo", Silvia E. Cornero™,

Guillermo N. Lamenza®, Diego Catriel Leon'", Paula C. Miranda de Zela'®,

Gustavo G. Politis™", Sofia C. Angeletti'®'®, G. Roxana Cattaneo®”%, Mariana Dantas®’%,
Hilton Drube?®?, Lucia G. Gonzalez Baroni®'°, Salomén Hocsman®'°, Andrés D. Izeta®”%,
Reinaldo A. Moralejo", Verénica Aldazabal?, Diego M. Basso®, Cristina Bayon®,
Maria Guillermina Couso™%, Ulises D'’Andrea?, Paula Del Rio"?, German G. Figueroa’®,
Romina Frontini?*, Mariela Edith Gonzalez"”, Andrés G. Laguens®’, Jorge G. Martinez'°,
Pablo G. Messineo", Beatriz Nores?®, Daniel E. Olivera'>?, Gisela M. Sario®”2,

Analia Sbattella?®?°, Clara Scabuzzo®°, Aldana M. Tavarone®, Rodrigo Vecchi®,

Kim Callan®?, Ella Caughran®-*?, Oscar Estrada®®, Trudi Frost®"*?, Lora Iliev®"*?,
Aisling Kearns®, Jack Kellogg®*?, Kim-Louise Krettek®*, Ann Marie Lawson®-*?,
Matthew Mah3*'%2, Nihal Manijila®?2, Adam Micco®, Iris Patterson®%, Lijun Qiu®2,
Xavier Roca-Rada®*%¥’, Gregory Soos®"%2, Peter A. Webb®®, J. Noah Workman®'%,
Nadin Rohland®, Nick Patterson'?, losif Lazaridis"*', Lars Fehren-Schmitz®®3°,

Cosimo Posth®*4°, Bastien Llamas®*#%243, Swapan Mallick®*'*?, Dario A. Demarchi*’?,
Graciela S. Cabana®*, David Reich'3*%>4 & Rodrigo Nores®245

M Check for updates

The central Southern Cone of South America was one of the last regions of the globe
tobecome inhabited by people!, and remains under-represented in studies of ancient
DNA. Here we report genome-wide data from 238 ancient individuals spanning ten
millennia. The oldest, from the Pampas region and dating to 10,000 years before
present (BP), had distinct genetic affinity to Middle Holocene Southern Cone
individuals, showing that differentiation from the central Andes and central east Brazil
had begun by this time. Individuals dating to 4,600-150 BP primarily descended froma
previously unsampled deep lineage of which the earliest representative is an individual
datingto around 8,500 BP. This central Argentina lineage co-existed with two other
lineages during the Mid-Holocene and, within central Argentina, this ancestry
persisted for thousands of years with little evidence of inter-regional migration.
Central Argentina ancestry was involved in three distinct gene flows: it mixed into the
Pampas by 3,300 BP and seemingly became the main component there after 800 Bp,
with central Andes ancestry in northwest Argentina, and with tropical and subtropical
forest ancestry in the Gran Chaco. In northwest Argentina, there was anincreased rate
of close-kin unions by 1,000 Bp, paralleling the patternin the central Andes. Inthe
ParanaRiver region, a400 Bp individual with a Guarani archaeological association
clusters with Brazilian groups, consistent with Guarani presence by this time.

The peopling of South America likely followed both the Pacific and
Atlantic coasts"? Genetic differentiation is detectable in ancient
genomic data after 9,000 BP in at least three main clusters: central
Andes, tropical/subtropical forest or lowlands (including Amazonia),
and central Chile, Patagonia and Pampas>*. However, current sampling
has major gaps. We focus on the poorly sampled central Southern Cone
(CSC)—theterritory of central and northern Argentina comprising the
Andean mountainsin the west to the eastern fluvial plains and southern
grassland plains. The CSC has diverse biogeographical regions that we
divide for analysis into northwest Argentina (northern and southern
Puna, Prepuna and sub-Andean Valleys, including Belén, Aconquija,

Hualfinand Ambato); central Argentina (hills, including the southern
Pampean Hills of Cérdoba and San Luis provinces (collectively called
Cordoba Hills here), and plains, including the Laguna Mar Chiquita
region, east Cérdoba, and the Santiaguefa Plains); Gran Chaco (dry
and humid); the Parana River and the adjacent alluvial plains (Middle
Parana-SaladoRivers, upper deltaand lower delta); and Pampas (Cen-
tral Pampean Dunefields, southern Pampas (including Interserranaand
Pampas south) and south Salado River). We also studied an ancient indi-
vidual from Pantanal in present-day Paraguay (Fig. 1a). Our sampling
isinfluenced by the intensity of archaeological research and available
samples, providing more resolution in some regions than in others.

A list of affiliations appears at the end of the paper.
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Fig.1|Overview of geographical and temporalsampling. a, The geographical
distribution of newly reported (black edges) and selected previously published
(golden edges) early South American ancient individuals. The map was created
inRusing open-source data (Methods). b, The temporal distribution of newly

The CSChasbeeninhabited since the late Pleistocene, and archaeo-
logical research documents multiple influences from the central Andes
and the Lowlands®®. The earliest widely accepted site is Arroyo Seco 2
(14,000 BP; all dates throughout are calibrated), in the Pampas. From
the late Pleistocene and Early Holocene (13,000-8,200 BP), human
presence is well documented in the Pampas, the Puna in northwest
Argentina, and the Cérdoba Hillsin the central region’®. From 13,300 BP
to 11,200 BP, several sites from the Southern Cone are characterized
by fishtail projectile points, of which the wide distribution has been
interpreted as asignal of arapid migration across South America, paral-
leling inferences from ancient genomes®'*",

Humans expanded into a wider range of CSC environments in the
Middle Holocene (8,200-4,200 BP). Nevertheless, some areas, such
as the Gran Chaco, the central plains and the Parana River, show less
evidence of settlement in this period (Supplementary Information 1-6).
These changes occurred at a time of increased temperature known as
the Mid-Holocene Hypsithermal™; however, the consequences of those
environmental fluctuations varied across regions, which may help to
explain the uneven distribution of archaeological sites". Around
4,500 BP, there was a transition away from hunting and gathering as
the sole means of subsistence in the Puna and valleys of northwest
Argentina®.
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reported andselected published (below the dashed line) ancient individuals.
For each grouping, the number at theright end of the barindicates the sample
size, and the darkfill of the bar indicates the proportion with adirect
radiocarbondate.

Inthe Late Holocene (after 4,200 Bp), the CSC harboured communi-
ties thatranged from sedentary agropastoralistsin the northwest who
hunted, foraged and exchanged goods from several ecoregions over
long distances through llama caravans'®; semi-sedentary horticul-
turists in the Cérdoba Hills''® who, in the central plains and Parana
River, adapted to fluvial environments®2; and nomadic hunter-
gatherers in the Pampas and Gran Chaco? 2, Ethnographic records
document wide cultural variation in the CSC at the time of European
contact®?: Comechingones (Hénia and Kamiare) in the Cérdoba
Hills; Sanavirones in the Laguna Mar Chiquita area; Diaguitas speak-
ing Cacaninthe sub-Andean Valleys; Atacamas speaking Kunzain the
Puna; Tonocotés in the Santiagueia Plains; Lules in northwest San-
tiago del Estero; Chana-Timbu in the Middle Parana-Salado shores
and Parana Delta; Guarani groups speaking Tupi-Guarani languages
who probably arrived by around 700 BP in the Parana Lower Delta”;
Wichi speaking a Mataco-Mataguaya language in the southern Gran
Chaco; and, in the same area, Mocovies and Qom (Toba) speaking a
Guaycuri language. The introduction of horses and cattle brought
about profound changes in the economy and mobility of the Indig-
enous peoples of the Pampas and Patagonia®. Some scholars postulate
that the southern Pampas was previously inhabited by groups related
to Chon-speaking Patagonian Tehuelches®. In the northern Pampas,



Querandi groups were mobile hunter-gatherers whose linguistic
affiliation is unclear.

To characterize the genetic structure of the CSC in the Early Holo-
cene, and to test for gene flow and demographic differences across
subregions, we screened 344 bone or tooth samples from 310 individu-
alsupto10,000 BP. The Supplementary Information contains descrip-
tions of Supplementary Data 1-14 (online tables that provide details
ofthese samples and the analyses performed), as well as descriptions
of Supplementary Figs. 1-84, and text sections that present archaeo-
logical context (Supplementary Information1-7) and genetic analyses
(Supplementary Information 8-13).

We enriched ancient DNA libraries for more than1.2 million targeted
single-nucleotide polymorphisms (SNPs), and added to this off-target
sites (not originally targeted by the enrichment protocol but com-
monly captured because of proximity to targeted SNPs) to arrive at
aset of roughly 2 million analysed SNPs (Methods). We obtained new
genome-wide data passing quality control from238 ancientindividu-
als (Fig. 1a,b), with a median of 659,011 SNPs covered at least once
(207 individuals with at least 50,000 SNPs covered; Supplementary
Datal). We co-analysed the newly reported individuals with previ-
ously reported data for 588 pre-European contact Native/Indigenous
Americans (Extended DataFig.1and Supplementary Datal) using the
curation provided by the Allen Ancient DNA Resource (Methods). We
defined ‘pre-European contact Native/Indigenous Americanindividu-
als’as those with a date point estimate (from direct radiocarbon dating
or archaeological context) before 600 BP. We also included SNP array
datafrom present-day Native Americans?, restricting to sitesintersect-
ing the 1240k’ set.

Distinctive genetic drift by 10,000 BP

To understand how the oldest individual, Argentina_Pampas_
LagunadelosPampas_10000BP (hereafter, LagunadelosPampas_
10000BP) relates to other Early/Middle Holocene South Americans,
we computed f,-statistics of the form (Supplementary Data 2):

Jf, (Outgroup, Popl, Pop2, Pop3), 60}

which should not deviate significantly from zero if Pop2 and Pop3
are atrue clade (descended without mixture from a common ances-
tral population) with respect to Popl. A violation of this test—for
which deviation from zero can be expressed as an approximately
normally distributed Z-score computed using a genomic block
jackknife—indicates a wrong phylogeny or a history that involves
gene flow among the tested lineages. These statistics reveal shared
drift among LagunadelosPampas_10000BP and Argentina_Central_
JesusMaria_8500BP (hereafter, JesusMaria_8500BP), the individuals
from southern Patagonia (5,100-7,300 BP) and those from the Argen-
tinian Pampas (7,700-6,800 BP), with respect to both early individuals
from the central-east of Brazil (10,400-6,800 BP) and the central Andes
(9,000-8,600 BP) (Fig. 2a).

All pairs of JesusMaria_8500BP, southern Patagonia (5,100-7,300 BP)
and Argentinian Pampas (7,700-6,800 BP) are symmetrically related to
LagunadelosPampas_10000BP, up to the limits of our resolution for sta-
tistics unaffected by biases due to using different sequencing technolo-
gies (Fig.2a, Supplementary Information 9 and Supplementary Data2).
The most plausible explanationis that LagunadelosPampas_10000BP
belonged to an ancestral Southern Cone population that split from
central east Brazil and central Andes groups by 10,000 BP and was
geographically in the CSC by that time before differentiating into
distinct components. Neither PefiasdelasTrampasl.1_ 8800BP, from
southern Puna in northwest Argentina, nor LosRieles_5100BP from
central Chile, showed affinity to LagunadelosPampas_10000BP, so
we could not make a definitive statement about their relationship to
thisindividual.

We evaluated the affinities of LagunadelosPampas_10000BP to
Anzick, a12,500 Bp individual from present-day Montana, USA, with
distinctive genetic affinities to early South Americans relative to later
ones". Chile_LosRieles_12000BP showed the strongest affinity (/7] < 4.1),
followed by weaker affinity with LagunadelosPampas_10000BP
(121<2.6) (Extended Data Fig. 2 and Supplementary Data 2). However,
as these three individuals were positioned together as a clade in an
outgroup-f;neighbour-joining tree (Supplementary Fig. 1), both proba-
bly harbouredadistinct Anzick-related genetic component. Affinity with
Anzickinearly South America, and the absence thereof, has been asso-
ciated with at least two independent migration waves and population
replacement™. However, the fact that LagunadelosPampas_10000BP
also exhibits excess allele sharing with later Southern Cone individu-
alswithout asignificant genetic affinity towards Anzick, suggests that
thisindividual may have been admixed between abasal Southern Cone
lineage and abasal Anzick-associated lineage, and these Anzick-related
lineages may therefore not have been completely replaced®.

We re-examined several other claims of complex relationships
between Central and South Americans, studying evidence of asym-
metrical relatedness to Mesoamerican-related populations among
late Middle Holocene individuals from central Chile and the central
Andes™° (Supplementary Data 2). Using qpAdm (Methods), we mod-
elled Chile_LosRieles_5100BP as a mixture of16.2 + 3.3% Mesoamerican
related and the rest Brazil_LapaDoSanto_9600BP related (Supple-
mentary Information 9 and Supplementary Data 3). However, while
asymmetrical relationships to Mesoamerican populations have been
interpreted asevidence of athird ancestry movementinto the subconti-
nent, inaddition to the differential affinity to Anzick", we cannot reject
asimple two-source model of diverse early South American populations
using qpWave (Methods) (P> 0.12) (Supplementary Data2). This sup-
portsthetheorythatasymmetrical relatedness to Anzick may be better
explained by amodel of structure onagradient than two independent
pulses?, with the structured populations differentially related not only
to Anzick but also to Mesoamericans.

Affinity between late central Andes individuals and ancient Cali-
fornians has beeninterpreted as evidence of afourth migration pulse
into South America®™ However, late central Andes individuals show
stronger genetic affinity to ancient Caribbean individuals than to
ancient Californians (Supplementary Data2) when compared to early
central Andes individuals (Z= 6). Recent research has documented
south-to-north migration in Central America®, and that California
attraction is detectable only when considering Californian popula-
tions with Mexican-related gene flow®. Thus, the late central Andes
signal is plausibly driven by interactions within South America and
back-migration spreading up to California.

Three deep lineages in the Mid-Holocene

We combined published data with three individuals dated to before
8,500 BP: LagunadelosPampas_10000BP (Pampas), Pefiasdelas-
Trampasl.1_8800BP (northwest Argentina) and JesusMaria_8500BP
(central Argentina) (Fig. 1a,b). Using f,-statistics, we identified four
possible clades of South American Early/Middle Holocene individu-
als: Brazil, central Andes, Pampas and Southern Patagonia®!2%30333+
(Fig. 2b and Supplementary Information 9).

We merged these putative cladesintocommon labels and combined
them with remaining individuals that were not identified as part of any
clade for automatic population history model exploration. We used the
finds_graphs function of ADMIXTOOLS2, which evaluates randomly
perturbed admixture graphs until the resulting graph cannot be made
to better fit the data. As this search gets trapped in local optima, we
performed100 independentiterations, each starting fromarandomly
initialized graph, to explore the diversity of equally well-fitting models.
We found no evidence that models involving admixture events fit the
data significantly better than ones without mixture (Supplementary
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Fig.2|Relationships among deep South Americanlineages. a, The affinities
of LagunadelosPampas_10000BP to Early/Middle Holocene South Americans
were quantified by f, statistics. The bars denote 95% confidence intervals (Cls)
(1.96 x s.e.m.) around the mean across genomic-block jackknife pseudoreplicates
(f,pointestimates). The only significantly non-zero statistics (top 6) indicate
excess allele sharing with Middle Holocene Southern Cone individuals, with
respecttobothearlyindividuals from the central east of Brazil (10,400-6,800 BP)
andthe central Andes (9,000-8,600 BP). At the same time, LagunadelosPampas_
10000BP appears symmetrically related to all three of Southern Cone groupings
up tothelimits of our resolution. The number of SNPs used for each testis shown

Information 9 and Supplementary Data 2), and we therefore examined
only the nine unique best-fitting models with no admixture (Supple-
mentary Data 2 and Supplementary Figs. 2-10; range of scores, 34.1-
43.3; worst residuals, 2.9-4.8). For all of these models, many internal
brancheshad adrift value of either O, indicating aninability to discern
the order of splits, or 1-2, indicating weak support for a branch.
Allnine modelsinclude aclade with PefiasdelasTrampas1.1_8800BP
and central Andes (9,000-8,600 BP), which also agrees with an
outgroup-f; tree (Supplementary Fig. 1). Eight of the nine support a
clade of Chile_LosRieles_5100BP and Middle Holocene Argentinian
Pampas (7,700-6,800 BP), with the exception of the worst-fitting one
(Supplementary Fig. 8). While none of these clades are rejected by
fi-statistics (Supplementary Data 2), the clades are also not confident,
owing to the low inferred drift ancestral to them. The placement of
LagunadelosPampas_10000BP was more ambiguous, appearing
as an isolated lineage (three models) or grouped with the central
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aboveeach pointestimatein thefigure. b, Distinctlineagesin South America by
the Middle Holocene. Clades were established using a combination of cladality
tests and automatic exploration of population history models. We represent
lineages for which we could not robustly favour a particular splitting orderasa
politomy. Newly reportedindividuals are showninbold, and thin evidence for
some cladesisindicated by star symbols. The square symbolindicates that we
detected affinity for Mesoamerican-related populations. We found noevidence
of mixture events fitting the datasignificantly better, although this couldbe a
reflection of low statistical power. LagunadelosPampas_10000BP isabsent from
thetree owingtoitsambiguous positions across well-fitting models.

Argentina JesusMaria_8500BP (five models) or the Middle Holocene
Argentinian Pampas (7,700-6,800 BP) (one model), consistent with
its basal position in CSC diversity.

Our results indicate that the CSC harboured at least three deep
lineages: alineage represented by PefiasdelasTrampas1.1_8800BP
that appears cladal with the main ancestry component present in
the central Andes since 9,000 BP'"*; a lineage occupying the Pam-
pas in the Middle Holocene", whose earliest representatives are
ArroyoSeco2_7700BP; and a central Argentinalineage, whose earliest
sampledindividual is JesusMaria_8500BP (Fig. 2b and Supplementary
Information 9).

Ancestry landscape of the Late Holocene

We computed outgroup-f; statistics, measuring shared drift between
pairs of populations up to the split from a common ancestor; we use
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Fig.3|GeneticsubstructureinSouth America. MDS1 x MDS3 plot of an
outgroup-f;distance matrix of the form 1/f;(Popl, Pop2; Yoruba), where

Pop;, ie{l,2}isanewlyreported or previously published ancient American
context label from present-day Argentina, Chile, Brazil, Uruguay, Peru, Bolivia
or Paraguay. We found this more informative than plotting the first against the
second componentbecause, inthat case, Patagonian populations appeared

theinverse asameasure of genetic distance. Dimensionality-reduction
techniques such as multidimensional scaling (MDS), developed for
distance-based settings, are useful for visualizing affinities. Figure 3
showsthefirst and the third component of this MDS analysis (Supple-
mentary Fig.11), inwhichmost new samples form a cluster thatincludes
the oldest central Argentinian, JesusMaria_8500BP. The horizontal axis
differentiates central Andes (right) from central Argentina (left); and
the vertical axis differentiates southern Patagonia (top) from central
east Brazil (bottom). A neighbour-joining tree produces similar pat-
terns (Supplementary Fig. 1).

Late Holocene populations from the northwest are shifted toward
central Andes groups, hinting at admixture. In the neighbour-joining
tree, the 700-600 BpPindividuals from northern Punaand Prepunafall
inthe central Andes cluster, closest to Bolivian populations. Individuals
from the Gran Chaco and Paraguay Pantanal regions shift towards or
fall within the cluster of central east Brazilian populations, but not so
the 200 BP Gran Chacoindividual, who clusters with central Argentina.
A 400 Bp individual with a Guarani archaeological association from
the ParaniRiver regionalso appearsin this cluster, probably reflecting
the Guarani expansion?, but data are too sparse for ancestry compo-
nent modelling (Supplementary Data1). All of the remaining samples
clustered, withimperfect but consistent separation between Pampas,
northwest Argentina, Parand River and central Argentina individuals,
mirroring F, hierarchical clustering (Extended Data Fig. 3 and Sup-
plementary Fig.12).

To test for genetic affinities, we computed f,(Outgroup, P1; P2, P3),
where P2 represents early Middle Holocene South Americans, P3 rep-
resents groups from the study subregion, and P1represents other
ancient groups (Supplementary Data 4). The great majority of CSC
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MDS1

interspersed with Brazilian populations. Populations sampled in present-day
USA, Mexico, Belize, Venezuelaand the Caribbean were removed from the plot,
astheyappeared very distant to the newly reported populations (Supplementary
Fig.11). We caution against over-interpreting the position of the oldest
individuals, such as LosRieles_12000BP, who may simply lack much shared
driftwiththerest.

individuals show affinity to southern Patagonia, central Andes and Mid-
dle Holocene Pampas compared with central-east Brazil, implying that
Brazilis probably the deepest split (Supplementary Data4). Applying
afalse-discovery rate (FDR) for clade rejectionat FDR < 0.05 using the
Benjamini-Yekutiel procedure (Z;; Methods), we highlight six observa-
tions (Supplementary Data4 and Supplementary Information 11). First,
northernPunaand Prepunaindividuals shared alleles at an excess rate
with people of the central Andes (2.9 < Z;, < 5), and other northwest
Argentinagroups have evidence of admixture between central Argen-
tina and central Andes sources (Extended Data Table 1). Second, Late
Holocene individuals from central Argentina attract others from the
same region (3 < Zy, < 27.1) and are a clade with JesusMaria_8500BP,
except for excess sharing with Mexicans and ancient Californians
(3 <Zzy <3.6) in Argentina_Central_Hills_Calamuchita_4200BP and
later, but with no evidence for an increasing trend with time (Sup-
plementary Data 5). This points to a demographic process connect-
ing lower North America all the way to the CSC; although we do not
have sufficient sampling from 8,500-4,200 BP to identify the likely
sources, it is plausibly the same process that induced Mesoamerican
affinity in Chile_LosRieles_5100BP. Third, the Late Holocene individu-
als from the Parana River region shared drift with central Argentina
(3 < Zy,<16.3).Fourth, individuals from the Gran Chaco, including the
1,400 Bp individual from the El Cachapé complex, share alleles with
modern groups from the same region, such as Chané, Wichi, Guarani
or Toba (3 < Z;, < 6.9); the Paraguay Pantanal individual at 1,600 BP
shows a similar signal despite separation by more than 800 km, sup-
porting a‘Chaco-Pantanal’ archaeological connection®. Fifth, modern
Gran Chaco populations areadmixed between a central Argentina and
atropical/subtropical forest source (Extended Data Table 1). Sixth,
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Fig.4|Ancestry modelling and fine-scale structure within the CSC

reveal three distinct admixture processes. a, qJpAdm ancestry component
estimates for selected groupings. The bars denote the 95% Cls (1.96 x s.e.m.)
around the mean across genomic-block jackknife pseudoreplicates (point
estimates). The star symbolsindicate instancesin which a central-Argentina-
only model was also foundto fit the flagged grouping label. The square symbol
indicates aninstancein which a central-Andes-only model was also found to fit
the flaggedlabel (details are provided in Supplementary Information12).
Inferences for Gran Chaco and Pantanal were more ambiguous, owingto low
samplesizes and coverages. The number of individuals within each grouping is
shownwithin each horizontal barin the figure. b, Fine-scale genetic structure
incentral Argentina. MDS1 x MDS2 plot of a distance matrix of the form

1/f5(1,, I,; Yoruba), where ;i € {1, 2} is an individual from a context label
estimated to carry primarily central Argentina ancestry. This low-dimensional
decompositionrevealed two axes of variation, which canbeinterpreted,

individuals fromthe Pampas share drift both with others from the same
region (3 < Zy, <15.4) and with central Argentinacompared with the Mid-
dle Holocene Pampas (3 < Z, < 9.8), with direct evidence of admixture
inLate Holocene Pampas (Southern_2600BP and LagunaChica_1600BP)
(Extended Data Table 1).
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inlight of the gpAdm results (Fig. 4a), as resulting from admixture between
three poles of ancestry: central Argentina, central Andes and Middle Holocene
Pampas. Overall, we observe geographically driven clustering maintained over
thousands of years. ¢, qpAdm estimates of central Argentina ancestry in the
Pampasregionover time. The bars denote the 95% Cls (1.96 x s.e.m.) around the
mean across genomic-block jackknife pseudoreplicates (point estimates).

The 6,800 Bp datapoint corresponds to individuals from the LagunaChicasite,
whoappeartobeaclade withthe 7,700 BP Arroyo Seco individuals (Middle
Holocene Pampas). Central Argentinaancestry in the Pampasincreased
(two-sided P=0.0014 from a Z-test for a significant difference in central-
Argentina ancestry proportionsin SouthSaladoRiver_800BP with respect to
Southern_2600BP). This suggests multiple waves of admixture or continuous
gene flow from central Argentinainto the Pampas. The number of individuals
within each groupingis shown next to each point estimate in the figure.

To quantify admixture, we used qpAdm (Methods) (Fig. 4a and Sup-
plementary Data 6-12). We examined what groups were consistent with
being simple clades or two-way mixtures of the relevant deep South
Americanlineages (central Argentina, central Andes, Middle Holocene
Pampas and tropical/subtropical forest), cyclically assessing models



withrespecttothe other sources and more distant outgroups, and add-
ing complexity tofailing single-source modelsifneeded (Supplementary
Information 12). Admixture results were less informative, but shared
some broad patterns withthe qpAdm conclusions (details are provided
in Supplementary Information 13 and Supplementary Figs.13-17).

Fine structurein central Argentina

We compared the genetic affinity of selected Late Holocene central
Argentina populations from 4,200 to 150 BP with the earliest cen-
tral Argentina individual, JesusMaria_8500BP, with respect to other
Early and Middle Holocene South Americans. f,-statistics are posi-
tively skewed, showing excess allele sharing with JesusMaria_8500BP
(Extended Data Figs. 4-6 and Supplementary Figs. 18-24) (Z<5.54).
Most individuals from central Argentina were consistent with being
genetically homogeneous (Supplementary Fig. 81), suggesting conti-
nuity in central Argentina going back more than eight millennia, and
persisting until at least 150 BP. This extends previous findings based on
ancient mitochondrial DNA that detected deep, locally specific mtDNA
cladesin central Argentina®. When we analysed modernadmixed central
Argentinianindividuals*, we found the same pattern of f,-statistic skew
towards Late Holocene central Argentina individuals (Extended Data
Fig. 7; although Early/Middle Holocene comparisons were underpow-
ered, owing to the small overlap between the SNP sets; Supplementary
Figs. 25-70), suggesting that the ancestry component represented by
JesusMaria_8500BP is the main Native American lineage in the region
upto the present day. However, modernindividuals that previous work*
labelled as belonging to the ‘central western Argentina’ lineage (Calin-
gasta and Rio Grande) actually appear genetically closest to ancient
individuals from central Chile, Middle Holocene Pampas and South-
ern Patagonia (Supplementary Figs. 34 and 55), and are therefore not
reflectingthe deep lineage represented by JesusMaria_8500BP that we
characterize here.

Toobtainafine-grained picture of the evolution of the central Argen-
tinalineage, we computed an outgroup-f; distance matrix between all
pairs of individuals from groupings that were inferred to carry majority
central-Argentina-type ancestry (Fig. 4a). We find two axes of variation
inFig.4bresulting from admixture of the three ancestry poles central
Argentina, central Andes and Middle Holocene Pampas. The persistence
of these clines for thousands of years with no individuals clustering
outside their region suggests isolation by distance, undisrupted by
further pulses of cross-regional migration.

We also observed a separation between the Cérdoba Hills and the
central plains, where we have particularly dense sampling, indicating
geographical substructure even at this fine level as also seen in mito-
chondrial DNA¥, This is consistent with distinct material culture, diet,
physical activity and mortuary practices over the past two millennia
between groups thatinhabited the C6rdoba Hills and the Laguna Mar
Chiquitaregion®.

Interactions with central Argentina

People of northwest Argentina (northern Puna and Prepuna) in the
past millennium were genetically indistinguishable from central
Andes individuals. But other northwest groups showed a mostly
central Argentina background (Fig. 4a). Northern Puna individuals
shared more alleles with Late Holocene groups from Bolivia than
with PefiasdelasTrampasl.1_8800BP (Extended Data Fig. 8). Thus,
while central Andes ancestry in northwestern Argentina has a deep
history, interactions with the southern central Andes continued.
The northwest individual dated to 4,600 BP had suggestive, but not
unambiguous, evidence of admixture (Fig. 4a and Supplementary
Data 12), suggesting these interactions may have been in place by
this date. The evidence of central Argentina ancestry in the north-
west is paralleled by archaeological evidence linking peoples in

Puna, Sub-Andean Valleys and Santiagueiia Plains®® (Supplementary
Information 2 and 6). The male individual Northwest_SubandeanVal-
leys_Belen_EIShincaldeQuimivil_500BP, buried within anIncasite, had
artifactsindicating a potential central Andean origin, which were inter-
preted as evidence of relocationin hislifetime under the Mitmagkuna
Inca practice®. However, his genetic background is not significantly
different from that of other sub-Andean Valley individuals from the
same grouping (Supplementary Data13), so thereisin fact no genetic
evidence that this individual was a migrant.

Gran Chaco and Pantanal history could be explored only roughly
with our data owing to low sample sizes and poor data quality. How-
ever, f;-based analyses cluster them with Brazilian groups, so they are
unlikely to have had central-Argentina-type ancestry alone. For Gran
Chacoindividuals dating to 200 BP (HumidChaco_EIChancho_200BP,
clustering with central Argentina in an outgroup f;-tree) or later
(including present-day Toba and Wichi?), the only robust model sup-
ports amixture of central Argentinaand Amazonian-related sources
(Fig.4aand Extended Data Table 1a). Indeed, most ancient individuals
from the Gran Chaco showed significant affinity to modern counter-
parts, indicating some continuity over two millennia (Supplementary
Data4). The major exception was the Chané, who belong to the Arawak
linguistic family and are thought to have migrated more recently
to the Gran Chaco and mixed with Chiriguanos (from the Guarani
ethnolinguistic group), and had no evidence of central-Argentina-
type ancestry.

Individuals of the Parana River region showed affinity with central
Argentina in f,-statistics. In fact, most analyses were consistent with
theseindividuals’being simple clades with central Argentina, and fail-
ures of this clade test were plausibly due to dataartifacts (Supplemen-
tary Information 12, Supplementary Data4 and Supplementary Fig. 82).
This finding aligns with archaeological links between the Parana River
region, the Cérdoba Hills and the Laguna Mar Chiquita (central plains)
populationsin the Late Holocene”?*%; other archaeological evidence
links the Middle Parana-Salado Rivers and Santiaguefia plains*®*. Some
Parana River individuals were associated with the Goya-Malabrigo
archaeological complex, characterized by zoomorphic appendages
inpottery, earth mound constructionand ariverine horticulture sub-
sistence strategy*. It has been hypothesized that these traits are a
signal of Arawak ethnolinguistic groups spreading along eastern South
Americanrivers*. We explored this possibility by comparing the newly
reported data with the limited Arawak-related data currently available,
thatis, bothancient Arawak-associated people from the Ceramic-period
Caribbean and modernrepresentatives (Piapoco from northern South
Americaand the geographically closer Chané from Gran Chaco). Aswe
did not find any genetic signal of a specific affinity (Supplementary
Data13), our results do not provide evidence of a large-scale Arawak
migration. Arawak influence in the Parana River region could have
been mediated by a small number of individuals or by cultural trans-
mission*. Alternatively, alarge-scale migration could have occurred,
andthe absence of the Arawak signal in the Parana groups could reflect
incomplete representation of genomic diversity of Arawak-speaking
groups among available samples.

Pampasregionindividuals from around 6,800 BP do not show affinity
with the central Argentinalineage when compared to 7,700 BP Pampas
individuals from Arroyo Seco 2 (Supplementary Data 4). Thus, the
Arroyo Seco 2 lineage persisted in the region for at least a thousand
years without detected interaction with the neighbouring central
Argentinalineage. However, Late Holocene Pampas individuals can-
not be modelled as a simple clade with the Middle Holocene Pam-
pas or Middle Holocene central Argentina lineages (Extended Data
Table 1and Supplementary Fig. 80). By 3,300 BP, Pampas individuals
fit as a mixture of the Middle Holocene central Argentina (58 + 10%;
Fig.4c and Supplementary Data12) and Middle Holocene Pampas lin-
eages. Owing to limited sampling, we can place only a lower bound
on the beginning of this southward spread of central Argentinian
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ancestry at 3,300 BP; we attempted to estimate a date for this mixture
(Methods), butit was too noisy. Central Argentina ancestry in the Pam-
pasalso continued toincrease after 3,300 BP (Fig. 4c; P=0.0014 froma
Z-testinSouthSaladoRiver_800BP versus Southern_2600BP), probably
reflecting further gene flow from central Argentina into the Pampas.
A previous analysis of a1,600 BP sample from the Laguna Chica site*
found excess allele sharing between this individual and central Andes
populationsrelative to 6,800 BP Pampasindividuals from the samesite,
whichwas interpreted as evidence of central-Andes-related gene flow*
(Supplementary Information 12). However, this was a misinterpreta-
tion and, instead, these findings are driven by the then-unsampled
central-Argentina lineage. The migrations into the Pampas that we
detectare consistent with the observed differentiation between mito-
chondrial clades from Early/Middle** and Late* Holocene individuals.
Archaeological evidence indicates anincreasein population densityin
the Pampas around 3,500 BP*¢, along with the introduction of ceramics
and the bow and arrow?*. Nevertheless, other archaeological connec-
tions between these regions are sparse, including evidence of lithic
raw material from southern Pampas found in the south of Cérdoba
province", as well as copper necklace beads found in the Pampas?®,
potentially sourced from central Argentina.

Kinship and community sizes

We analysed the distribution of runs of homozygosity (ROH) in indi-
viduals with sufficient data using hapROH (Methods) and used these
distributions to estimate effective community sizes (N,) (Supplemen-
tary Data 14). Communities in central Argentina probably had sizes
comparable to those of the central Andes, and both larger than those
inthe Argentinian Northwest and the Parana River region. Individuals
from the Pampas showed the highest estimated effective population
size, plausibly inflated by the inferred history of admixture in that
region (Extended Data Table 2).

The cumulative length of ROH segments longer than 20 cM primarily
reflects increased parental relatedness, and enabled us to detect sig-
nificant differences among study regions (Kruskal-Wallis, P= 0.009).
To identify which region pairs were driving this result, we performed
a Conover test—a nonparametric method that compares rank differ-
ences between groups—applying an FDR correction at 0.05 to adjust
resulting Pvalues (Supplementary Fig. 76). A higher rate of close-kin
unions was detected in the Argentinian Northwest than in central
Argentina (P < 0.01) and Pampas (P < 0.03), suggesting differences
in mating practices despite close proximity (Extended Data Fig. 9).
Given the genetic and cultural connections with the central Andes
(Supplementary Information 2), this may reflect asimilar phenomenon
towhat has beenreported in that region after the decline of Wari and
Tiwanaku societies (1,000 BP)*%. This was interpreted as the origin or
widespread adoption of the ayllu system—a social and political unit
bound together by rules of kinship affiliation and reciprocity, with
preference of within-group marriage to facilitate cooperation and keep
resources withinthe community. Although the aylluis not documented
innorthwest Argentina archaeologically or ethnographically, our find-
ings pointing toacommon pattern of close-kin marriage reinforces the
evidence of arelated process.

In the central region, where we had a large sample size, we tested
for an association between time and the cumulative length of ROH
between4and 12 cM, whichreflects background relatedness and thus
isinformative of community sizes. We found no evidence of popula-
tion size growth in the past two and a half millennia (Extended Data
Fig. 10).

Discussion

Our finding that 210,000 BP Southern Cone individual shared more
alleles with Middle Holocene individuals from the same region than
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with individuals from central Andes or central eastern Brazil places a
lower bound on genetic divergence of Southern Cone people.

We also identify a previously unsampled deep lineage in central
Argentina that possessed distinctive genetic drift by 8,500 BP and
persisted as the main ancestry component throughout our time tran-
sect. This overall genetic homogeneity co-existed with the language
diversity observed in the region by the sixteenth century, suggesting
that these languages probably developed largely in situ and are not
associated with deep genetic structure. This cautions against simplistic
extrapolations regarding the mechanisms underlying linguistic and
genetic differentiation*’. We found that the central Argentina lineage
isgeographically structured along two clines, one reflecting admixture
with central-Andes-like ancestry and the other with Middle Holocene
Pampas-like ancestry. Individuals clustered with geographically proxi-
mate groups, regardless of date, suggesting limited gene flow among
communities.

Inthe Pampas, this deep central Argentinalineage expanded south-
wards, where it admixed, beginning by at least 3,300 BP, with the dis-
tinct Middle Holocene genetic component in that region™, eventually
becoming the dominant ancestry in the Pampas during the last mil-
lennium. There is a gap in available data from the Pampas between
6,800 BP and 3,300 BP, and more densely sampled time series would
enable aricher characterization of this process.

In northwest Argentina, we document a long-standing presence of
central-Andes-type ancestry, atleast by around 9,000 BpP, and evidence
of genetic connectivity between the central Argentina and central
Andes lineages potentially as early as 4,600 BP.

We infer an admixture event in the Gran Chaco region involving
atropical/subtropical-forest-like source and the central Argentina
lineage. This is consistent with archaeological evidence of increased
population movementsinto the Gran Chaco since about 800 BP*. In the
ParanaRiver Lower Delta, a400 Bpindividual with a Guarani-associated
archaeological context clustered with populations from Brazil, aregion
with the largest density of Guaranisites”. We found no evidence of aspe-
cificaffinity between modern and ancient published Arawak-associated
individuals from the Caribbean, north of South America and the Gran
Chaco, and the Parana Delta groups and, therefore, although there is
archaeological support for alocal adoption of Arawak cultural traits,
we were not able to detect a significant migration with our data.

We find a higher rate of close-kin unions in northwest Argentina
thanincentral Argentina, potentially reflecting adoptionin northwest
Argentina of what in the central Andes was the ayllu social system—a
kinship-based organizational structure.

Alimitationinourstudy is sparse sampling of the Mid-to-Early Holo-
cene, and of the Pampas, Gran Chaco and Pantanal regions. However,
the genetic structure revealed here provides a basis for correlation to
archaeology, and enriches our understanding of an important world
region.
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Methods

Genetic data

We produced 504 ancient DNA libraries from 344 distinct skeletal sam-
ples (Supplementary Data1). We used in-solution enrichment for over
1.2 million targeted SNPs, a standard set of genetic markers widely used
inancient DNA studies®**, to gather genome-wide data that met stand-
ard criteria for ancient DNA authenticity from 238 unique individuals
(Supplementary Data 1). To maximize usable information for genetic
analysis, we expanded this targeted SNP set with off-target sites (sites
notoriginally targeted by the enrichment protocol but commonly cap-
tured because of close physical proximity) to arrive at approximately
2 million SNPs described previously**. Individuals were assigned to
groups using archaeological, geographical and chronological criteria.
The 238individuals from the CSC were grouped into six biogeographi-
calregions of Argentina and one from the Pantanal region of Paraguay
asdescribed in the main text, which we further subdivided for analysis
as described in Supplementary Information 1-7. Each individual was
assigned to one of the mainregions and subregions on the basis of their
geographical origin. Individuals from the same subregion were further
grouped according to chronological criteria. In afew cases, individuals
from the same region and time period were separated into different
groupsonthebasis of distinct cultural or archaeological characteristics
(for example, Inca and Guarani).

The newly reported individuals were co-analysed with genetic data
from 588 ancient pre-European contact American individuals>'2°-34+557
(Extended DataFig.1and Supplementary Datal), with the data curated
as described in the Allen Ancient DNA Resource”, a publicly available
collection of ancient human genome-wide data. For co-analysis pur-
poses, we defined ‘pre-European contact Americanindividuals’as those
having a mean date (either a direct radiocarbon date or a contextual
date from archaeological evidence) before 600 BP. We also included
in the analysis previously generated SNP array data from present-
day Native American groups?, restricted to the sites intersecting the
1240k SNP set>2, No statistical methods were used to pre-determine
sample ssize.

Direct accelerator mass spectrometry *C bone dates and
calibration

We report 35 new direct accelerator mass spectrometry *C dates
obtained from specialized laboratories at Pennsylvania State Univer-
sity (PSUAMS) (n =13) and the University of Georgia (UGAMS) (n = 22),
which we combined with 98 previously reported **C dates from studies
of the newly individuals (Supplementary Data 1). We also integrated
archaeological context information to provide information on chro-
nology (Supplementary Information 1-7). Moreover, we made use of
398 previously reported *C dates for the previously published ancient
Americanindividuals whose genetic data we used for co-analysis (Sup-
plementary Data1). All calibrated *C ages were calculated using OxCal
(v.4.4)" with the Southern Hemisphere terrestrial (IntCal20)” cali-
bration curves. The marine reservoir effect was not considered, as all
individuals analysed in this study had a terrestrial-based subsistence.
Calibrated dates are reported in Supplementary Data 1 and Supple-
mentary Information 1-6 as 95.4% Cl calibrated radiocarbon ages in
BCE-CE format. We also report the date mean in BP, in years before
1950 ck (calculated as the OxCal mu for a direct radiocarbon date, or
as the average of the range for a contextual date), as well as the date
s.d.in BP (OxCal sigma for a direct radiocarbon date, or the s.d. of the
uniform distribution between the two bounds for a contextual date).
Individual dates listed under individual IDs correspond to the date
mean in BP (years before 1950 CE), rounded to the nearest hundred,
except for theindividual Argentina Central Plains SouthCordoba Bar-
rioAlberdiRioCuarto150BP. Grouping dates listed under group ID are
expressed as the average of the individual date meansin B (years before
1950 cE) of the group members, also rounded to the nearest hundred.

Ancient DNA laboratory work

Tooth or bone powder was prepared in dedicated clean rooms at Har-
vard Medical School by processing 228 samples corresponding to
201individuals, and at the University of Tennessee, Knoxville (UTK),
using a freezer mill for 108 samples from individual remains. Further
wet-laboratory processing for all these samples was conducted at Har-
vard Medical School. Eight samples from sixindividuals (including two
independent duplicates of individuals powdered at UTK) were analysed
at the Australian Centre for Ancient DNA (ACAD). Moreover, for one
sample, bone powder was prepared in dedicated clean rooms at Univer-
sity of Tibingen (UT) by abrasing the outer layer of the temporal bone
surface before sampling the cochleafromthe internal acoustic meatus.
Around 50 mg of bone powder was generated using an electric dentist
drill. DNA was extracted from powdered samples using amethod opti-
mized for retaining small DNA fragments’® %%, The DNA was converted
into sequenceable form using double-stranded or single-stranded
library preparation protocols, typically pretreated with uracil-DNA
glycosylase (UDG) to minimize cytosine-to-thymine errors commonin
ancient DNA®# except for DNA processed at UT, which was converted
into sequenceable form using single-stranded, double-indexed library
preparation protocols with no UDG treatment®, generating multi-
ple libraries from the same extract. For all double-stranded libraries
(except for four prepared at the University of California Santa Cruz),
we replaced MinElute columns for reaction clean-ups with magnetic
silicabeads and Qiagen buffer PB. We then used SPRIbeads instead of
MinElute columns for PCR cleanup at the end of library preparation3*%,
except for libraries prepared at the University of California Santa Cruz.
Forlibraries prepared at UT, nuclear in-solution capture was performed
directly, foregoing shotgun sequencing.

We enriched the libraries for sequences overlapping mtDNA®¢ and
approximately 1.24 million nuclear targets together (1240k+) through
two rounds of enrichment® 3, except for the four libraries from the Uni-
versity of California Santa Cruz, for which the mtDNA (1round) and 1240k
(2 rounds) enrichments were performed independently. For anumber
ofllibraries, including the eight from ACAD, we used the Twist 1.4M cap-
turekit>*¥ instead of the 1240k enrichment, which gives more uniform
coverage and targets a larger set of SNPs. For some of the samples, we
prepared two libraries simultaneously, and multiplexed theminto one
capture reaction; double-stranded libraries were captured for asingle
round, while single-stranded libraries were captured for two consecu-
tive rounds. The unenriched (shotgun) and enriched (mtDNA, 1240k,
1240k+, Twistl.4M) products of double-stranded libraries were indexed
and sequenced on the lllumina NextSeq500 instrument for 2 x 76 cycles
and 2 x 7 cycles, respectively, or on the lllumina HiSeq X10 or NovaSeq
instrumentusing2 x 101 cyclesand 2 x 7 cycles, respectively, except for
thedata prepared at UT, which were sequenced on the NovaSeq platform
for2 x121cyclesand 2 x 8 cycles, respectively. Single-stranded libraries
anddouble-stranded libraries prepared at ACAD were already indexed at
theend of library preparation and were sequenced on either the lllumina
HiSeq X10 or NovaSeq instrument for 2 x 101 and 2 x 8 cycles. For the
single-stranded libraries, we used a custom sequencing read 1 primer
CL72.Wesequenced the nuclear capture products for about 20 million
reads per library (on average 30-40 million reads per captured library
inthe case of data prepared at UT), and also for typically hundreds of
thousands of reads for the unenriched/shotgun library.

Computational processing of sequence data

We merged paired reads overlapping by at least 15 nucleotides (allowing
one mismatch) using custom code that concurrently trims adapters
(https://github.com/DReichLab/ADNA-Tools), selecting the highest
quality base for each nucleotide in the overlap. Non-merging read pairs
were discarded. The resulting merged sequences were then mapped
to the human genome reference sequence (GRCh37 from the 1000
Genomes Project®® using the samse command of the Burrows-Wheeler
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aligner® (v.0.7.15). Duplicate sequences were marked with Picard (com-
mand MarkDuplicates) (v.2.17.10; http://broadinstitute.github.io/
picard/). For variant calling, we used a pseudohaploid approach, rep-
resenting each SNPwith asingle allele representative. We first estimated
error rates empirically (assuming that sites monomorphic in 1000
Genomes data® are in fact monomorphic). We stratified these error
rate estimates by library type, SNP bases (variant and reference), read
position, strand, mapping quality and base quality, with the base posi-
tionsmore than10 bases fromthe 5’ or 3’ end being considered central
and merged. These error rates are determined from the sample BAM,
which makes our procedure adaptive. If we simply thresholded on the
estimated error, thiswould introduce bias. For example, ata (C, T) SNP,
the estimated error £(C, T) for C>T may be very different from E£(T, C)
for T>C. Instead, we use a symmetric function S and, for example, at
a(C, T) SNP, we calculate S = max{£(C, T), E(T, C)}. We threshold S with
a parametric value (0.02) and bases with S below threshold go into a
pileup of reliable bases. Finally, arandom base in the pileup is selected.
The actual error achieved is smaller than the threshold which is an
upper bound ontheerror of each potential base that contributes to the
pileup. For analysis, we used the SNP set that includes off-target sites
apart from the standard 1240k sites and was described previously**.

Contamination estimation

We evaluated the authenticity of ancient DNA by measuring the damage
rate in the first nucleotide, and we flagged individuals as potentially
contaminated if the cytosine-to-thymine substitution rate was less
than3%in UDG-treated libraries and less than10% in non-UDG-treated
libraries. Contamination evidence based on mtDNA polymorphism
was determined using contamMix®*°, while hapConX®' and ANGSD*?
were used to assess contamination evidence based on X-chromosome
polymorphism in males (Supplementary Data 1). These individuals
were excluded from analysis, but we report their data. Moreover, we
excluded, but still reported, individuals from analysis who were not
genetically homogeneous with ancient pre-European contact Native
Americans as assessed by either f,-statistics or qpAdm (Supplementary
Information 8 and Supplementary Datal).

Kinship analyses

We analysed all pairs of individuals to test for evidence of close bio-
logical relatedness. In particular, we examined allnon-CpG autosomal
sites and calculated the mean mismatch rate at all SNPs covered by at
least one sequence in both individuals. We compared this to the rate
of difference between the two chromosomes within each individual,
assuming that they were not closely related®°. Individuals inferred to
have a second-degree or closer relationship with someone else in the
dataset (Supplementary Datal) were excluded from analyses, usually
keeping theindividual with higher-coverage data (details are provided
in Supplementary Information1.2).

[, statistics and outgroup f;-distance matrices

To computef; andf, statistics, we used the qp3pop and qpDstat pack-
agesin ADMIXTOOLS? (v.7.0.2). Whenindicated, owing to an extremely
large number of tests, we corrected f,-statistic Z-scores at FDR < 0.05
using the Benjamini-Yekutieli procedure® (Z,,) using a custom script
available at GitHub (https://github.com/javiermaravall/aDNA_CSC/).
Using the outgroupmode: YES parameter, we computed outgroup-f;
statistics of the formf;(Pop 1, Pop 2; Yoruba) or f;(Ind1,Ind 2; Yoruba). As
these quantities measure shared drift with respect to the outgroup up
tothesplitof Pop1land Pop 2 (ref.95), or of Ind1and Ind 2, their inverses
can be appropriately used to construct a pairwise genetic-distance
matrix. We used these matrices to compute neighbour-joining trees
using the ape R package (v5.8)%, rooting them at USA_Ancient_
Beringian.SG. To obtain a low-dimensional representation of these
objects, we applied MDS to the matrices using the function cmdscale
from the R stats package (v.3.6.2)°7%,

Automatic exploration of population history models

To automatically explore the space of population history models
(admixturegraphs), we used the Rlibrary ADMIXTOOLS2 (refs. 99,100)
(v.2.0.0). To extract data, we used function extract f2 setting
maxmiss = 0.15. This kept 329,279 SNPs, 293,834 of which were poly-
morphicamongthestudied groups. Although the recommended value
ofthis parameter is O for automatic population-history model explora-
tion, lower values of allowed missingness resulted in too small numbers
of SNPs retained (<30,000). We launched 100 independent iterations
ofthe function find graphs, for each of n = 0, 1admixture events, which
starts from a given set of populations and explores admixture graphs
until the resulting graph cannot be made to better fit the data. As this
search canget trappedinlocal optima, the execution of alarge number
of independent iterations, each starting from a randomly initialized
admixture graph, enables better characterization of the set of opti-
mally fitting graphs. For each n and each iteration, we recorded the
hash (unique topology identifier), score (a measure of fit) and worst
residual (Zscore for the largest deviation between observedf, statistics
and the value predicted by the model). For each n, we gathered all final
modelswithaunique hash, and aggregated these across values of n. This
resultedinaset of 52 unique models (Supplementary Data2). Tounder-
stand whether some elements of this set better fit the data than others,
we tested, for each pair of models, whether the scores were significantly
different. To this end, we used the functions qpgraph resample multi
and compare fits, which perform this test using acombination of hold-
ing out dataand SNP block bootstrap resampling, to account for both
differences in model complexity and potential differences in scores
duetochancealone. Asthese testsindicated no evidence forinvoking a
higher number of admixture events (Supplementary Data 2), we chose
not to explore models with anumber of admixture events greater than 1.

Computation of F, values

To compute F,, between pairs of groupings, we used smartpca'
(v.18711), with the flags inbreed: YES, fstonly: YES, fstverbose: YES. We
restricted to groupings for which atleast 5,000 SNPs were used for all
pairwise computations. We computed acomplete hierarchical cluster-
ing tree with the package linkage from the scipy library'°*'®® (v.1.16.0).

Testing cladality and sources of ancestry using qpWave and
qpAdm

Determining whether pairs of populations (A,B) and (C,D) form clades
can be reframed as evaluating whether a single gene flow event
separated the pairs (f,(A,B,C,D) = 0) or multiple events occurred
(fs(A,B,C,D) # 0). The gpWave method estimates the minimum number
of gene flow events between two groups, L and R (sizes n, and ng). It
usesf, statistics f4(L;, L;; R, R,) to quantify shared genetic drift within
LandR.IfLandRformdistinct clades, all f, statistics should be zero. It
uses f, statistics of the form == . "R°2 forming a matrix X. The
rank of Xindicates the minimum number of gene flow events; a higher
rank suggests more events. Practically, Xis an (n, — 1) x (ny — 1) matrix
of f,(L,, L; R, R) statistics. If ng > n;, the maximumrank is n, - 1, imply-
ingatleast n, —1gene flow events. Pvalues are derived from a x> distri-
butionbased onlog-likelihood differences between models. Full details
areavailable in the original publication®. qpAdm extends this concept
to assess the genetic make-up of an additional population T, by com-
paring gene flow eventsin L and RwiththoseinLU TandR.IfLU T
and RshowmoreeventsthanLandR, T has gene flow withRand can-
not be modelled solely from L. If both models yield the same rank,
T can be modelled from L, allowing estimation of contributions
from L to T°%. For qpWave computations, we used ADMIXTOOLS®?
(v.7.0.2), setting the allsnps: YES. For gpAdm computations, we used
ADMIXTOOLS2 (refs.99,100) (v.2.0.0), setting allsnps=TRUE. To quan-
tify a Mesoamerican contribution into Chile_LosRieles_5100BP,
we performed an inverse variance-weighted meta-analysis across
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passing models witha Mesoamerican-related source (Supplementary
Data 3). Dates of admixture events were estimated using DATES'**
(v.210), but were too noisy.

ADMIXTURE clustering analysis

We used the ADMIXTURE'®% (v.1.23) software package to perform
an unsupervised assessment of genetic structure among the newly
reported individuals, including ancient (Supplementary Data 1) and
modern® Native Americans for reference. The Karitiana and Surui
groupswere excluded, to avoid biases that can arise through the pres-
ence of highly drifted populations'”. Input data was prepared using
PLINK (v.1.9)'8, We used the maf 0.01 parameter to remove SNPs with
minor allele frequency below 0.01. To prune out genetic markers in
strong linkage disequilibrium (LD), we applied the indep-pairwise
parameter with the following options: a pairwise r* threshold of 0.4,
awindow size of 200 variants and a step size of 25 variants. For each
value K=1, ...,12 of the number of source populations, we ran four
random-seed replicates.

Analyses of ROH

To callROH longer than 4 cMin ancient individuals, we used hapROH'®
(v.0.64). We used the 1000 Genomes Project haplotype panel®, which
includes 5,008 global haplotypes, as our reference panel. We restricted
analysis to individuals for whom at least 400,000 SNPs were covered
withrespect to the 1240k SNP set. As this methodology was calibrated
for the 1240k SNP set, not including off-target sites, we downsampled
tothe 1240k SNP set for this analysis. All analyses were conducted using
the default settings of hapROH. To estimate effective population sizes
for study subregions (N,) from ROH distributions, we restricted to
individuals with a mean date up to 3,000 BP and with a cumulative
sum of ROH segments longer than 20 cM below 50 (to avoid biases
duetoinbreeding) and used the function MLEROH Ne() from hapROH
(Supplementary Data 14). To test for significant differences among
study subregions in the ROH distributions of segments above 20 cM
(informative of recent instances of close parental relatedness) we used
the Python library SciPy v.1.13.1 (refs. 102,103) to perform a Kruskal-
Wallis test (function kruskal()) using the cumulative length of segments
inthatlengthrange for eachindividual, which we followed up on witha
Conover test for each pair of subregions, performed using the Python
library scikit-posthocs"°v.0.9.0, and correcting Pvalues at FDR < 0.05
(function posthoc_conover() with the parameter p_adjust="fdr_bh’). To
test for a significant association between ROH segments in the range
4-12 cM (which areinformative of the levels of background relatedness
and thus of effective population sizes) and time in the central Argentina
region, we regressed the cumulative sum of segments in that length
range on mean date, for central Argentinaindividuals withamean date
below 2,500 BP, using the SciPy library'®v.1.13.1 (function linregress()).

Map plotting

Figure 1awas generated in R™v.4.3.2 using the open-source packages
dplyr'?v.1.1.4, ggforce™v.0.4.2, ggnewscale™v.0.4.10, ggplot2 (ref. 115)
v.3.4.4, ggspatial’®v.1.1.9, ggstar'’ v.1.0.4, ggrepel*®v.0.9.5, paletteer™
v.1.3, raster?°v.3.6-26, rnaturalearth™v.1.0.1, sf"?>'2v.1.0-15, tidyterra
v.0.5.2 (ref.124) and terra® v.1.7-71, using Natural Earth (https:/www.
naturalearthdata.com), GADM (https://gadm.org) and Portal de Infor-
macion Hidrica de Cérdoba-APRHI (https://portal-aprhi.opendata.
arcgis.com/) data.

Ethics statement

This study adhered to ethical guidelines for working with human
remains drafted both by a diverse and international group of anthro-
pological and paleogenetic scholars' and the Argentine Association
of Biological Anthropology'”, treating these deceased individuals
with respect and using minimally destructive analyses techniques.
Our research program involving ancient human remains received

approval from the Ethics Committee of the CEMIC (Comité de Etica
enlInvestigacion, Centro de Educacion Médicae Investigaciones Clini-
cas ‘Norberto Quirno’). Skeletal samples were exported with authori-
zation from the institutions safeguarding them (such as provincial
and national museums, universities), obtaining proper permits from
each province (for example, Agencia Cérdoba Cultura) and the Argen-
tina government (Instituto Nacional de Antropologia y Pensamiento
Latinoamericano and Customs). In instances in which Indigenous
communities were associated with these individuals, analyses were
conducted in engagement with these communities (that is, ref. 128,
primarily facilitated through interactions between archaeologists and
the communities). Inthe particular case of samples from the Cérdoba
province, we secured endorsement and support for this research from
the Consejo de Comunidades de Pueblos Indigenas de la Provincia de
Cordoba, Argentina (Council of Communities of Indigenous Peoples
of the Province of Cérdoba). As part of our ongoing commitment to
responsible and ethical research practices, we summarized the main
results of our analysesinasimplified, bulleted text in Spanish describ-
ingregional-level population history inferences (Supplementary Infor-
mation 7), and shared it with Indigenous communities (when present
or identified), rural localities, regional Indigenous councils (such as
the mentioned Consejo de Comunidades de Pueblos Indigenas de la
Provincia de Cérdoba) and other stakeholders, including museum
directorsand curators, landowners and local authorities. We received
positive and constructive feedback from them, including comments
regarding how the genetic insights could be integrated with their tra-
ditional knowledge about their history.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Genotype datafor newly reportedindividualsincluded inmain analyses
fromthis study canbe obtained from the Harvard Dataverse repository
(https://doi.org/10.7910/DVN/UQVPJQ). The aligned sequences for all
individuals are available through the European Nucleotide Archive
(PRJEB97713). Previously published data used in our analyses are
available as follows: genetic data for modern individuals from Native
American groups?are available for non-profit research on population
history under an interinstitutional data access agreement with the
Universidad de Antioquia, Colombia (queries regarding data access
should be sent to a.ruizlin@ucl.ac.uk); genetic data for previously
published ancient individuals are available at the Allen Ancient DNA
Resource (https://doi.org/10.7910/DVN/FFIDCW); 1000 Genomes hap-
lotype reference panel (http://ftp.1000genomes.ebi.ac.uk/voll/ftp/
release/20130502/), human reference genome hg19 (https://www.ncbi.
nlm.nih.gov/datasets/genome/GCF_000001405.13/); dataused for map
plotting are available at Natural Earth (https://www.naturalearthdata.
com), GADM (https://gadm.org) and Portal de Informaciéon Hidricade
Cordoba-APRHI (https://portal-aprhi.opendata.arcgis.com/). Other
newly reported data, such as radiocarbon dates and archaeological
contextinformation, areincludedinthis Article and its Supplementary
Information.

Code availability

Custom scripts and accompanying materials for the appropriate results
sections are available at GitHub (https://github.com/javiermaravall/
aDNA_CSC/).
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Extended DataFig. 2| Affinities of Anzick to Early/Middle Holocene South (pointestimate). The number of SNPs used for each test is shown above each
Americans quantified by f, statistics. Bars denote 95% confidence intervals pointestimateinthe figure.
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Extended DataFig. 3 | F treeforselected groupings. Complete hierarchical-clustering tree from F,, distances, restricted to populations for which at least 5000
SNPs were used for all pairwise computations. Colours represent automatically-inferred clusters.



X Y

171571
Brazil_CentralEast_6800-104008P | [ Central_Hills_SierrasChicas_JesusMaria_85008P
173,632

Pampas_6800-77008P [ ) [ Central_Hills_SierrasChicas_JesusMaria_85008P

175.446
Peru_CentralAndes_8600-9000BP | [ ] [ Central_Hills_SierrasChicas_JesusMaria_85008P

176,952
SouthemPatagonia_5100-73008P o [ Central_Hills_SierrasChicas_JesusMaria_8500BP

142,307
Pampas_C: Dunefields_L pas_100008P | [ Central_Hills_SierrasChicas_JesusMaria_8500BP
161,866
Chile_LosRieles_51008P ] ® [ Central_Hills_SierrasChicas_JesusMaria_8500BP
18,969
Northwest_SouthemPuna_Antofagasta_PefiasdelasTrampas1.1_88008P ] [ Central_Hills_SierrasChicas_JesusMaria_8500BP
T T T T T T T
-0002  -0.001 0.000 0.001 0.002 0.003 0004

f4(Yoruba, Central_Hills_Calamuchita_4200BP; X, Y)
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Extended DataFig. 5| Affinities of arepresentative400BP Central Argentina  genomic-blockjackknife pseudoreplicates (point estimate). The number of
population to Early/Middle Holocene South Americans quantified by f, SNPs used for each testis shown above each point estimate in the figure.
statistics. Bars are 95% confidence intervals (1.96 x SE) around the mean across
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Extended DataFig. 6 | Affinities ofarepresentative150BP Central Argentina  genomic-blockjackknife pseudoreplicates (point estimate). The number of
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Extended DataFig. 9 | Differencesin thedistribution of cumulativelength
of ROH segments greater than 20 cM for Southern Cone groupings up to
3000BP. Horizontal red lines denote median values (log scale), with boxes
showingtheinterquartile range (IQR) and bars showing 1.5x IQR Pairwise
group comparisons were performed using a Conover’s test (two-sided), with
correction for multiple comparisons (Benjamini-Hochberg) at FDR = 0.05.
Corrected p-values for a difference between Northwest Argentinaand Central
Argentina (p=0.00739), and between Northwest Argentinaand Argentina
Pampas (p =0.0274), were significant at a = 0.05 (see Supplementary Fig. 76 for
details). The number of individuals within each groupingis shown below each
Xaxislabelinthefigure.
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Extended DataFig.10|No evidence of populationsize growth or decline
in Central Argentinain thelast two and a halfmillennia. Linear regression
of cumulative length of ROH between 4 and 12 cM on date (mean BP), for
individuals from Argentina Central at high enough coverage to call ROH
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mean linear regression fit. There isno evidence of asignificant association
(p=0.238fromatwo-sided t-test on the slope coefficient being zero).



Article

Extended Data Table 1| Selected f,-statistics revealing three instances of gene flow between Central Argentina and
neighbouring regions

Late Holocene Pampas populations cannot be related with Central Argentina and Middle Holocene Pampas populations via a simple tree.
B Similar evidence of admixture between the Central Argentina and the Central Andes lineages in Northwest Argentina.
Similar evidence of admixture between the Central Argentina lineage and a Tropical and Subtropical Forests source in the Gran Chaco region.

Outgroup Pop_1 Pop_2 Pop_3 z n_SNPs
Yoruba Argentina_Pampas_6800-7700BP Argentina_Central Plains M i iagoDelEstero_400BP | Argentina_Pampas_CentralPampeanDunefields_1600BP 4.65
Yoruba Argentina_Central_Plains_MesopotamiaSantiagoDelEstero_400BP | Argentina_Pampas_6800-7700BP Argentina_Pampas_CentralPampeanDunefields_1600BP 7.053 | 898597
Yoruba Argentina_Central_JesusMaria_8500BP Argentina_Pampas_6800-7700BP Argentina_Pampas_Southern_2600BP 2.613 | 446224
Yoruba Argentina_Pampas_6800-7700BP Argentina_Central_JesusMaria_8500BP Argentina_Pampas_Southern_2600BP I 446224

Yoruba Karitiana Argentina_Central Plains_MesopotamiaSantiagoDelEstero_400BP | Wichi 2.315 | 315637
Yoruba _ Argentina_Central_Plains_Mesopotami iagoDelEstero_400BP | Karitiana Wichi 2.728 | 315637
Yoruba Piapoco Argentina_Central_JesusMaria_8500BP Toba 3.273 | 131781
Yoruba Argentina_Central_JesusMaria_8500BP Piapoco Toba 3.428 | 131781

Plains_MiddleSaladoRiver_SantiagodelEstero_4008B is a late Central Argentina population that is a clade with Central_JesusMaria_8500BP and contains tens of well-covered individuals,
increasing power for f,-statistic computations. Toba and Wichi are modern populations from the Gran Chaco. Karitiana and Piapoco are modern populations from the Northwest Brazilian Amazon
and Eastern Colombia, whose ancestry is characteristic of Tropical and Subtropical Forests Native American peoples®*. Blue statistics show that Late Holocene Pampas populations cannot be
related with Central Argentina and Middle Holocene Pampas via a simple tree, indicating gene flow between these two lineages. Red statistics show similar patterns for Northwest Argentina
context labels in the case of the Central Argentina and Central Andes lineages. Green statistics show similar patterns for modern Gran Chaco populations for Central Argentina and the Forest
and Subtropical Forests ancestry components.




Extended Data Table 2 | hapROH estimates of effective population size (Ne) by region, rounded to the nearest integer

Group N, point estimate | Lower bound of 95% CI | Upper bound of 95% CI | n
Argentina_Central 707 650 762 40.0
Argentina _Northwest 438 374 514 6.5
Argentina_Pampas 1100 828 1501 4.5
Argentina_ParanaRiver | 518 406 678 3.0
Brazil _Coastal 245 217 278 6.5
CentralAndes 789 683 919 13.0
SouthernPatagonia 174 147 208 2.5

Estimates are obtained by fitting the distribution of runs of homozygosity of individuals from each region with a mean date not older than 3000BP. The estimates indicate that the communities
in the Central region of Argentina likely had similar sizes as in the Central Andes, and likely higher than those in the Argentinian Northwest or the Parana River region. The individuals from the
Pampas had the largest effective population size, likely reflecting admixture.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
Study description DNA samples newly-obtained from ancient human remains were co-analyzed with previously-published data from ancient and

modern individuals. Using genome-wide SNP genotypes, researchers calculated population genetic statistics that primarily examine
allele-sharing patterns to explore historical relationships among populations.

Research sample We generated new genome-wide data from 238 not previously reported ancient individuals.

Sampling strategy We produced 504 ancient DNA libraries from 341 distinct skeletal samples. We used in-solution enrichment for over 1.2 million
targeted single nucleotide polymorphisms (SNPs), a standard set of genetic markers widely used in ancient DNA studies and
commonly referred to as the “1240k SNP set”, to gather genome-wide data that met standard criteria for ancient DNA authenticity
from 238 unique individuals.

Data collection DNA from the ancient remains was extracted, sequenced, and processed into SNV genotype calls.

Timing and spatial scale  Ancient individuals lived from 10,000 yBP to 150 yBP in present-day Central and Northern Argentina, and Paraguay.

Data exclusions 103 samples did not produce data of high-enough quality to analyze, either because of low coverage or because of evidence of
contamination.

Reproducibility All attempts to reproduce were successful.
Randomization No randomization was possible due to the nature of the study, a reconstruction of past events that cannot be repeated.
Blinding No blinding to dates or geographical origin was possible, due to the criticality of this information for analysis.
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Materials & experimental systems Methods
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Palaeontology and Archaeology

Specimen provenance All of the skeletal remains examined in this study were sourced from museum collections or other archaeological archives. We only
analyzed the samples after receiving permission from the custodians and the relevant local authorities.

Specimen deposition The skeletal samples are under the stewardship of the appropriate co-authors or museum collections., and may be accessed by their
skeletal code listed in Extended Data Table 0.2.

Dating methods We report 35 new radiocarbon dates obtained using standard techniques.
|z| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight This study adhered to ethical guidelines for working with human remains drafted both by a diverse and
international group of anthropological and paleogenetic scholars (Alpaslan-Roodenberg, S. et al. 2021, Ethics of DNA research on
human remains: five globally applicable guidelines. Nature) and the Argentine Association of Biological Anthropology (Aranda, C.,
Barrientos, G. & Del Papa, M. C. 2014 Cddigo deontolfiogico para el estudio, conservacién y gestion de restos humanos de
poblaciones del pasado. Revista argentina de antropologia bioldgica) treating these deceased individuals with respect and using
minimally-destructive analyses techniques. Our research program involving ancient human remains received approval from the Ethics
Committee of the CEMIC (Comité de Etica en Investigacion, Centro de Educacion Médica e Investigaciones Clinicas ‘Norberto
Quirno’). Skeletal samples were exported with authorization from the institutions safeguarding them (provincial and national
museums, universities, etc.), obtaining proper permits from each province (e.g., Agencia Cédoba Cultura), and the Argentina
government (Instituto Nacional de Antropologia y Pensamiento Latinoamericano). In instances where indigenous communities were
associated with these individuals, analyses were conducted in engagement with these communities (Salceda, S. A., Desantolo, B. &
Plischuk, M. Espacio de reflexion: el por qué y para quién de la investigacion bioantropoldgica. Revista argentina de antropologia
bioldgica 17, 1-6 (2015).), primarily facilitated through interactions between archaeologists and the communities. In the particular
case of samples from the Cérdoba province, we secured endorsement and support for this research from the Consejo de
Comunidades de Pueblos Indigenas de la Provincia de Cérdoba, Argentina (Council of Communities of Indigenous Peoples of the
Province of Cérdoba).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o ) )
Authentication Describe-any-atthentication-procedures for-each-seed-stock used-or novel-genotype-generated. Describe-any-experiments used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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