
 - 1 -

ANCESTRYMAP SOFTWARE DOCUMENTATION

What’s New in Version 2.0 3

1. Overview of Admixture Mapping 3

2. Algorithm overview 3
a) Introduction 3
b) Limitations 6
c) Applications of the program 6
d) Comparison to other mapping approaches and guidelines for 6
 optimal study design

3. How to run the program 7
a) Command-line arguments 7
b) Description of the parameter file 7

4. Format of the input data files 11

5. Built-in data check 13

6. Interpreting and monitoring the output 17
a) Overview 17
b) Output Details 18
c) Output Files 22

7. Enhancements in the Version 2.0 24

8. Fine-Mapping Runs 25
a) Overview 25
b) Set up of Runs 27
c) Fine-mapping Output 28

9.0 Input File Formats and Conversion Program 30

10. Download & Installation 34
a) Download instructions for the program 34
b) Running the example files 36
c) Running the program with user data 38
d) Building your own executable from source code 39

11. Simulations 39

12. How to cite this program 40

13.Tutorial 40

 - 2 -

14. Description of the auxiliary package : getpars, cntmono 40
a) Cntmono Program 40
i) Overview 40
ii) How to run the program 40
b)Getpars Overview 42

15. Troubleshooting & Bugs 43

16. Bibliography 43

17. Contact Information 43

18. Appendix A: Expert use Parameters 43

19. Appendix B: Parameters new in Version 2.0 45

 - 3 -

What’s new in Version 2.0
The main enhancement in this version is the ability to do a fine-mapping run to follow up a
peak in a coarse scan. In addition to doing the fine-mapping run one can also run
simulations in this mode. A number of small enhancements have been added as well, such as
fast check for duplicates, support for PED files and some extra output. A number of small
bugs have been fixed as well. Details of the various enhancements are given later in the
documentation in Section 7.

1. Overview of admixture mapping
Admixture mapping is a method for localizing disease causing genetic variants that differ in
frequency across populations. It is most advantageous to apply this approach to populations
that have descended from a recent mix of two ancestral groups that have been
geographically isolated for many tens of thousands of years: for example, African Americans
have both West African and European American ancestry. The approach assumes that near
a disease causing gene there will be enhanced ancestry from the population that has greater
risk of getting the disease. Thus if one can calculate the ancestry along the genome for an
admixed sample set, one could use that to identify disease causing gene variants. The figure
below shows a schematic of how a disease locus would appear in an admixture scan of
patients and controls.

Fig. 1: Schematic of how a disease locus will appear in an admixture scan.

2. Algorithm overview
a) Introduction
In this section we will briefly discuss the algorithm, its limitations,
applications and a comparison with other association studies.

Our program estimates the ancestry along the genome of a sample population
resulting from recent admixture between two ethnic groups. The program uses data

 - 4 -

from individuals genotyped at a set of markers, where the markers chosen are
preferably the ones that differ significantly in frequency between the two ancestral
populations. Ideally the user should have genotype data both for admixed samples,
and for the two parental groups. The approach and algorithm have been described in
detail in a paper by Patterson et al.1 As emphasized in the paper, although controls
are not required for screening of disease genes, including them can be useful, in
particular for obtaining robust estimates of the marker frequencies in the ancestral
populations, which is important for increasing the power of the analysis.

The algorithm calculates a Bayesian-likelihood ratio test to scan for disease
association anywhere in the genome. In this calculation, individual ancestry
estimates along the genome are averaged across all the individuals to identify
genomic regions where there is enhanced ancestry from one of the parental
populations, indicating the presence of a disease gene nearby. The algorithm
uses a Hidden Markov Model, where the ancestry state is “hidden” and is
inferred based on the genotypes, and a model of how data is generated.

The parameters of the model that are of interest are as described in the
paper:

 Mi: Average proportion of alleles inherited from population A (where
admixture is being considered between populations A and B), for each
individual i. This parameter is referred to as θ in the software package.

 Mi

X
: Proportion of ancestry A for the X chromosome, for each individual

i, referred to as θ
i,X

in the software package.

 λi: Number of chromosomal exchanges per morgan between ancestral
segments of the genome since the mixing event, for each individual i. This
can be roughly identified with the number of generations since admixture.

 λi

X
: Number of generations since admixture on X chromosome, for each

individual i.

 pj
A, pj

B frequency of the alleles in the parental populations for each marker
j.

 τ
A
, τ

B
: These parameters take into account the uncertainty in the marker

allele frequencies due to sampling of a limited number of individuals from
populations A and B. These also account for genetic dispersion between
the ancestors of a mixed population, and their modern counterparts.

 All of the above parameters are unknown, and are sampled using a Markov
Chain Monte Carlo approach, following a “hierarchical Bayesian”
framework to perform the calculation. In this approach the initial values
are set as follows:

 pj
A, pj

B are set to values estimated from genotype data for the parental

 - 5 -

populations. For example in the paper by Smith et al
2
.we calculated these

using genotype data from modern West African and European samples. If
the frequency estimates are not provided by the user, the program makes
an estimate of these values from the admixed samples.

 Mi: is set for each individual through the use of maximum-likelihood
estimates based on treating all SNPs as unlinked.

 λi: Is set to 6 for all samples in our case, based on empirical studies.

ANCESTRYMAP starts sampling from the correct conditional distribution after a
sufficient number of “burn-in” iterations. By running enough follow-on iterations
one can explore the posterior distribution of the various parameters given the data,
and obtain a statistic that appropriately takes into account the uncertainty in the
unknown parameters. The program minimizes the number of burn-in iterations that
are required by using an expectation-maximization algorithm to pick initial values of
the parameters that are relatively close to the true values.

This algorithm calculates two separate statistics which can be used to identify disease
genes. These are:
1. Locus-genome statistic: Compares the percentage of ancestry derived
from one of the parental populations at any locus with the average in the genome.
This essentially compares for each point in the genome, the likelihood of being a
disease locus versus being a locus unrelated to disease. Formally, this is given by for
each individual i and each marker j as:

where ψ

1
and ψ

2
 are the increase in disease risk due to having 1 or 2 population A

ancestry alleles, respectively, relative to having no population A ancestry allele. γ
i,0
(j),

γ
i,1
(j) and γ

i,2
(j) is the estimated probability for individual i, for having 0,1 or 2

population A alleles at marker j. And, ηii,0
= (1 – Mi)2, ηii,1

= 2 Mi(1 - Mi) and ηii,2
= Mi

2.

To obtain a genome-wide score we will multiply L
ij
 over all the individuals, and then

average it at equally spaced points genome-wide. A positive association can be
declared if log base 10 (LOD) of the average is greater than 2. For individual
markers L

j
is referred to as LGS in the output and the genome-wide score is referred

to as “genome log factor”, for ex.:
>> genome log-factor: 9.028

2. Case-control statistic: Compares cases and controls at every point in the
genome, looking for differences in the ancestry estimates. This calculates for each
individual i and at every locus j in the genome, the difference between their expected
number of population A ancestry alleles at a locus and the estimate from data:

 - 6 -

µi(j) = 2 Mi– [2 γii,2(j) + γii,1(j)]

A t-statistic is calculated for a difference of µ(j) between cases and controls. Both of
the above statistics are averaged over all the iterations. The advantages and
disadvantages of using one statistic over the other are explained in detail in the
paper.

b) Limitations
The program will currently work only for admixture between two populations, and is
limited to considering markers that are bi-allelic. Our approach allows admixture
mapping to be applied to the X chromosome, which has to be analyzed differently
from the autosomes, however currently it does not support the Y chromosome,
mitochondrial DNA, or the pseudoautosomal region of the X chromosome. The
current implementation has parameters tuned for African American ethnicity for the
sample population. If users of the program wish to study different admixed
populations, please contact the author. It is important to note that one should
exclude samples that have ancestry from only one population (Mi = 0 or 1), since
they will show no crossover between segments of different ancestry.

c) Applications of the program
 Estimate ancestry along the genome for an individual
 Find disease-causing genetic variants associated with ancestry

d) Comparison to other mapping approaches and guidelines for
optimal study design
Admixture mapping has more power to detect genetic variants of weak effect—the
type that are likely to be responsible for complex diseases—than linkage mapping,
the classic approach of mapping in families that has been so successful for rare,
Mendelian disease.

Admixture mapping has a great advantage over linkage mapping because it is a type
of association analysis, like whole-genome haplotype mapping or candidate gene
analysis, and thus has much more power to detect risk variants of weak effect.
However, it differs from other association mapping methods in two important
respects, which have a major impact on study design. (1) It requires 100-1000-times
fewer markers to carry out a whole-genome scan for association to disease, making a
whole-genome scan practical with 1,000-3,000 markers. (2) Control samples are not
strictly required for the study, since the proportion of ancestry at each locus is being
compared to a genome-wide average to look for a deviation—the control is the rest
of peoples’ genome. In general, we feel that as a matter of study design, it is far more
important to have as large a case sample size as possible, with the size of control
samples of secondary importance. For a detailed discussion on this topic please refer
to the paper.

Theoretical calculations demonstrate that in many cases, with a high-density map of
markers admixture mapping study has statistical power similar to that of a whole-
genome haplotype or direct association study. And fewer samples are required than

 - 7 -

for a linkage scan to achieve the same statistical power. The key, however is that
admixture mapping works best for alleles which have high frequency differentiation
across populations.

The power calculations in the accompanying paper suggest that with 2000 samples
and a high density map it should be theoretically possible to use this approach to
detect disease loci where the relative risk due to an allele is as low as 1.5. We find that
samples with population A ancestry between 10%-90% provide the most power for
admixture mapping, and that the power is affected mildly by which population has a
higher incidence.

3. How to run the program
This section describes how to run the program through the command line, and a
description of the input parameter file needed to run it.

a) Command-line arguments

To run ANCESTRYMAP type on the command line:

>>ancestrymap –pv paramfile or
>>./ ancestrymap –pv paramfile

p: is a compulsory option, and in this case we have to specify the parameter file
paramfile.
v: version number, this tells us which version of the program we are using. This
number can be modified by the user in the file ancestrymap.c . To redirect the
output to a file one would type on the command line:

b) Description of the parameter file
The format of this file is as follows:

Note: All the parameter names should be in lowercase, and there should be no white
space between parname and semicolon. The parameters which are compulsory are
the names of the files that contain marker, individual and genotype data; and the risk
model. Parameters which are of the type array should have their values space
separated. A sample parameter file is included as part of the download, and a detailed
description of the parameters is as follows:

Parameter Name Data type Description Possible and
Default values

INPUT FILE NAMES

>>./ancestrymap –pv paramfile > out.dat&

 - 8 -

indivname
(MANDATORY)

String Individual data

badsnpname String List of markers to
delete from analysis

genotypename
(MANDATORY)

String Genotype data for
all the samples

snpname
(MANDATORY)

String Marker data

ANCESTRYMAP PARAMETERS

risk
(MANDATORY)

Double array

Risks for the
various models

Default: 2.0

numiters

Int Number of follow-
on iterations

Positive integer >=
0

Default: 5
numburn Int Number of burn-in

iterations
positive integer >=

0
Default: 1

reestiter

Int

Controls number of
iterations inside
ancestrymap for

allele freq sampling

positive integer >=
1

Default: 1

details

Boolean If YES generate
additional output

NO, YES
Default: NO

tlreest

Int Always set to YES,
don't need it

0,1

noxdata

Boolean If you have no X
chromosome data

or want to ignore it

NO, YES
Default: NO

fakespacing

Double The spacing
between fake

markers in Morgans

positive > 0
Default: 0.01 (in

Morgans)
seed

Int Random number

needed for the run
Positive integer

checkit

Boolean

If YES runs lots of
checks (mostly done

initially)

NO, YES
Default: NO

thxpars Double array of size
3

Sets the initial
parameters for the
prior distribution

for θX

Default:
40.0 1.0 10.0

thpars Double array of size
2

Sets the initial
parameters for the
prior distribution

for θ.

Default:
 1.0 5.0

 - 9 -

lampars

Double array of size
2

Sets the initial
parameters for the
prior distribution

for λ.

Default:
1.0 0.1

lamxpars

Double array of size
2

Sets the initial
parameters for the
prior distribution

for λX

Default:
1.0 0.1

dotoysim

Boolean If YES run
simulations

NO, YES
Default: NO

markersim

Int This is the marker
number of the

disease allele, -1
means none

-1 or positive
integer

Default: -1

simnumindivs

Int Generate toy data
with simnumindivs

number, half will be
cases, and half

controls. Half are
female and half are

male

Positive integer
Default: -1

risksim Double In simulation mode
risk used to

generate data

Default: 1.0

tauscal Double array Initial values of
t(African) &
t(European)

Default: 100 100
(Note this is a lower

value than we
expect, however we

prefer to bias the
initial value to be

low)
wrisk

Double array Allows the model to

have weights, which
are normalized to

sum to 1

Default: 1.0

lrisk

Double In checkit mode:
leave one marker

out in turn and this
is the risk that we

use (in checkit mode:
only one model risk

is used).

Default: -1.0

controlrisk Double array Control risks for
the various models

Default: 1.0

risk2

Double array Risk for ethnic
homozygotes for
various models,

controlrisk and risk2

Default : -1.0

 - 10 -

are optional,
however they

should be same
number as risk if
they are specified

taulsdev

Double Prior standard
deviation for african

& European t
values

Default: 0.5

taulmean Double Prior mean for
log10(t) for both

African and
European

Default: 2.0

allmale Boolean Used in simulation
mode. If YES it

specifies that all the
simulated

individuals should
be men. Need to

specify the
parameter

simnumindivs to
make this parameter

effective

0,1
Default: NO

allcases

Boolean If YES all the
samples are cases

NO, YES
Default: NO

usecontrols

Boolean If NO controls are
ignored

NO, YES
Default: YES

pubfmodern

Boolean Publish ancestral
allele frequency

estimates, if YES
allows publication
of modern allele

frequencies

NO, YES
Default: NO

OUTPUT FILE NAMES
 (Note that the directory in which the output files are to be generated should exist, else

the program will fail)
trashdir

String Used only in checkit

mode: directory to
store HMM output

thetafilename String Ancestry
information for all

individuals

output

String Parameter values at
every iteration

pubxname String Debug file for a
particular marker

ethnicfilename String Average ethnicity

 - 11 -

(/g) for each
marker, averaged

over all individuals
and iterations

snpoutfilename String Detailed marker
information

indoutfilename

String Detailed individual
information

freqfilename

String Allele frequency
information for all

markers

lambdafilename

String λ information for all
individuals

genotoyoutfilename String Genotype data
generated in

simulation mode

indtoyoutfilename String Individual data
generated in

simulation mode

The software makes it possible to test for several disease models simultaneously. If
one is studying a disease for which there is an epidemiological reason to believe that
there is higher genetic risk in population A, one might want to test several models
for increased risk due to population A ancestry and, simultaneously test one model
where population B ancestry confers greater risk. This is implemented by inputting
the parameter risk as an array with values both greater and less than 1, for example:
>>risk: 0.8 1.2 1.3 1.4 1.5 1.6

4. Format of the input data files
In this section we will discuss the format of the input files that are needed for the
executable to run. The file names are specified in the parameter file used by the
program. The data in all the input files should be white space separated or tab
separated.

 Marker file (snpname):
This contains information about the markers being used for the analysis. The format
and an example of the file is as follows:

SNP_ID Chr Gen_

Pos
Phys_
Pos

PopA_
vart_cnt

PopA_
ref_cnt

PopB_
vart_cnt

PopB_
ref_cnt

rs897634 1 0.031621 2618675 21 189 242 84
rs905135 1 0.035690 2982467 35 71 281 19
CV1944294 1 0.067986 4380773 42 64 277 21

 - 12 -

Here Chr_Num is the chromosome number, Gen_Pos and Phys_Pos are genetic
and physical positions. PopA_vart_cnt and PopA_ref_cnt are the variant and
reference allele counts in the parental samples of population A, and the last two
columns are these counts for the parental samples of the population type B.

The genetic position can be in Morgans or centiMorgans, and valid values for
chromosome_num range from 1 to 23, or 1 to 22 and X. The markers can be
arranged in any order in this file, and don’t have to be sorted by chromosome
number or any other field. Currently the algorithm does not support the Y
chromosome, mitochondrial DNA, or the pseudoautosomal region of the X
chromosome.

One could alternatively use a file which has only the first four columns, that is, with
no parental counts. This will probably lead to reasonable results, however with lower
statistical power, and the user should be cautious about the results in this case. If the
user has a marker file which has just the first four columns and a genotype file for
the parental populations, one can generate the file in the above format using the
program cntmono, which is described in detail in Section 11. Before using the output
file created by cntmono as the input marker file for ancestrymap, remove from it the
blank lines, lines with comments and, the header line. This file should only contain
details about the markers, else ancestrymap will give a fatal error.

 Badsnps file (badsnpname):

This is a list of markers that one would like to exclude from the analysis. These could
be markers that fail any of the tests described in Section 5 that are performed during
the initial phases of running ANCESTRYMAP, by setting the checkit field to YES in
the input parameter file. In addition, one should also exclude one of the pairs of
markers which are in strong linkage disequilibrium with each other.

SNP_ID
rs578459
CV2800274
rs73494

 Individual file (indivname):
This has information about the individuals that we are going to use for analysis.

Indiv_ID Gender Status
I1 M Control
I2 M Case
I3 M Ignore

The gender field can be M (male), F (female) or U for samples with unknown
gender. The status field can be Case, Control or Ignore, where the samples that have
status set as Ignore are excluded from the analysis. One can use this field effectively
without having to create a new individual file each time we want to analyze the same

 - 13 -

sample set for a different hypothesis. For example if we have data from case and
control samples for multiple diseases (ex. Multiple Sclerosis and Prostate Cancer),
and say we want to analyze output from the ANCESTRYMAP only for MS. Then
we might want to use the controls for both the diseases as controls, MS cases as
cases, and set the Prostate Cancer cases as Ignore. Also, if during the course of
analyzing a data set we realize that there is a problem with a particular sample (ex.
contaminated DNA) we can set the Status field to Ignore and that would remove this
sample from our analysis.

 Genotype file (genotypename):
This has the genotypes for all the individuals and markers that are listed in the above
two files.

SNP_ID Indiv_Id Vart_allele_cnt
rs1865056 I1 0
rs1865056 I2 1
rs1865056 I3 0

Note that there is a fatal error if one has markers and individuals mentioned in the
genotype file, which have not been specified in the marker and individual files
respectively. The possible values for the variant allele count are 0, 1, or 2. The variant
allele count for men on the X-chromosome can be given only as 0 or 1, with 2 being
an invalid value in this case. Missing data can be specified by -1, or not mentioned at
all. An individual with a large amount of missing data will cause ANCESTRYMAP
to behave badly, and it might be a good idea to ignore these individuals in the
analysis, by setting their Status field to Ignore.

The genotype file can be given as a zipped .gz file as well, which the program will
unzip and use.

5. Built-in data checks

Next we shall focus on the built-in data checking programs. Like most other
methods for whole genome scans, admixture analysis is very sensitive to data
problems and the software incorporates a number of tools to check for the more
common kinds of errors. The user is strongly advised to run these tests because our
experience suggests that most data sets even when carefully curated contain some
problems which can lead to spurious associations to disease. In order to run these
checks on the data, you have to run the ANCESTRYMAP program with the checkit
parameter set to YES in the parameter file. The description of these tests and their
output is as follows:

 Hetxcheck:

Check to see if there are any heterozygous counts on the X chromosome for
the male samples. The program will disregard heterozygous genotype value
for male samples on the X chromosome, if there are any. The output from
this check is as follows for all the markers:
SNP_ID NUM_HET NUM_HOMOZY

 - 14 -

>> hetxcheck rs211644 0 310
Here NUM_HET and NUM_HOMOZY are the number of heterozygous
and homozygous counts respectively on the X chromosome for the male
samples.

 checkgeno

Checks to see if there are any genotype values > 2, prints out a warning and
ignores that genotype for the rest of the analysis.
>>bad genotype: rs897634 1 4
This test also outputs the total number of good and bad genotypes. Ex:
>>Num good genotypes: 4711298 Num bad genotypes: 0

 physcheck
This is a check to find markers which are flipped with respect to their genetic
and physical positions. The output is only for the set of two markers, where
there has been a mix up of physical and genetic positions. This check gives a
warning only, since we use genetic distance in the analysis, and not the
physical distance.
SNP1_Id SNP2_Id SNP1_Gen_Pos SNP2_Gen_pos
SNP1_Phys_Pos SNP2_Phys_Pos
>> physcheck rs11231098 rs435582 0.628 0.649
61996439 41813770

 Hardy-Weinberg test:

Performs the hardy-weinberg equilibrium test for each marker and prints out:
SNP_Id Chr_Num SNP_Index HW_score.
>> hwcheck rs897634 1 0 -1.526

A positive HW_score is indicative of too many heterozygous counts, and a
negative score is indicative of too many homozygous counts. For markers
that are highly differentiated in frequency, a deficit of heterozygotes is often
observed in a population such as African Americans (this is called the
Wahlund effect in population genetics). Thus a hwcheck result showing an
excess of heterozygotes should be a greater cause for worry than one
showing a deficit. One should look for outliers in this test.

 checkdup

This checks individuals to see if there are any duplicate individuals based on
the amount of match between their genotypes. If there is more than a 75%
match in the genotypes for two samples, this test prints out:
>>##Num of genotypes matched: Num of genotypes mismatched
>>##If the status of the two individuals does not match Status1: Status2
>>dup? Indiv_1 Indiv_2

 >>match: 1400 mismatch: 2
>>status_1: Case status_2: Control
The above example indicates that these two individuals are probably the
same since their genotypes match exactly. Note that the test also prints out
the status of the two individuals if they do not match.

 - 15 -

However, the next example shows that even though there might be say 80%
match between two individuals, they might not be duplicates since the
number of genotypes compared is not very large. The user has to look at the
results carefully and decide which pair of individuals are duplicates and which
are not. The user should set their own cutoff of what defines a duplicate pair
of individuals.
>>dup? Indiv_2 Indiv_35
>> match: 100 mismatch: 20

 New in Version 2.0: fastdup parameter
We allow for a very fast, but far from comprehensive check for duplicate
samples. The basic algorithm chooses 15 markers and looks at genotypes on
these 15 markers. Pairs of individuals with an exact match on the 15 markers
are checked for near duplicates with a slow algorithm that counts matches
and mismatches for every marker. We iterate this check fastydupnum times
(default for fastdupnum: 10).This check is very fast and has a reasonable
chance of finding duplicates, but can be defeated by missing genotypes, or
genotype errors. To run this check set
fastdup = YES
dupmode:= YES
for a careful check for duplicates with running time proportional to the
square of the number of samples. The output for this check prints out the
duplicate pair IDs, # matches, # mismatches, # valid genotypes for each
individual in the pair, and then automatically “ignores” one of the samples.
The user will have to set one of the samples to ‘Ignore’ in the sample file on
their own.
>>dup? Indiv_1 Indiv_2

 >>match: 665 mismatch: 0 1450 1495
>>dup. Indiv_1 ignored

 mapcheck:

Compares ancestry estimates obtained for each marker by itself to that
predicted by adjacent markers (leaving out the marker of interest). A
discrepancy indicates a misspecification of a marker’s genomic position. A
negative difference is not worrisome however a positive difference should be
investigated more carefully, especially if it is higher than 3 or 4. Note that for
this test it is more important to look for outliers than at absolute values
alone.
SNP_ID SNP_Index Ancestry Difference
>> mapcheck rs897634 0 -23.679

 Here SNP_Index is the marker’s index number internal to the program.

 freqcheck
Freqcheck compares the estimated frequencies of an allele from the MCMC
(Markov Chain Monte Carlo) with a max likelihood fit. S() is a likelihood
ratio statistics, approximately chi-square with 1 d.o.f. if the frequencies look
fine. This is really a check that the parental frequencies are plausible. S scores
above 10 are highly dubious, above 20 indicate a problem .A common reason

 - 16 -

for this error is due to an interchange of alleles (flipped marker). Same as in
the case for mapcheck it is more important to look for outliers.
SNP_ID Chr_num S(All) S(Controls) F(A) F(E) G(A) G(E)
>> freqcheck rs897634 1 1.133 2.563 0.086 0.765
0.062 0.847
Here S(All) is on all the data, and S(Controls) is on controls only, as a very
strong disease effect in cases can distort the true frequency. F(A), F(E) are
estimated frequencies for the African and European parental samples using
the MCMC, G(A), G(E) are the corresponding maximum likelihood fits.

 leave1out:
Removes the marker contributing the most to any association and assesses
whether the signal of association persists. If it remains even after leaving out
the best marker, it is less likely to be an artifact due to a single marker. This is
a computationally expensive check to run, and needs a large amount of disk
space and might crash if that is not available.
>> scores for each fake
>> chrom SNP_ID base min max
 >> 1 1 fake-1:0 -6.912 -7.063 -5.286
 >> 3 1 fake-1:1 -6.965 -7.169 -5.389
 >> 4 1 fake-1:2 -6.752 -7.050 -5.425
Here base is the score that we get without using the leave1out algorithm, min
and max are the minimum and maximum scores obtained after leaving one
marker in turn. The max score is not relevant, however it is a cause of worry
if the min score is very much lower than the base score.

This test gives the following output as well for all the chromosomes:
 >>chrom base min max
 >>best score (chrom) 1 16.761 14.245 16.875
 >>best score (chrom) 2 -2.101 -2.829 -1.140
 >>best score (chrom) 3 -3.416 -3.645 -1.207
 >>best score (chrom) 4 -3.910 -4.308 -2.679
 >>best score (chrom) 5 -1.444 -1.687 -0.438

 >>best score (chrom) 22 -2.006 -6.231 -1.065
 >>best score (chrom) 23 2.736 -4.751 17.266
global score (leave1): 13.208

 checkindiv

New in Version 2.0
This implements a crude check on whether an individual should be included in
the scan, using the idea of estimating global ancestry (proportion of European
ancestry for African-Americans). Given the variant allele frequency conditional
on ancestry for marker k we can compute the probability distribution of 0, 1, 2
variant alleles and hence a log-likelihood score L(k). We also can compute the
mean and variance of L(k). Accumulating the statistic L(k) over all markers k we
get a statistic whose mean and variance is known. Therefore we can compute a

 - 17 -

Z-score, large negative scores (say < -6) should be discarded. In practice we also
find large positive scores. These individuals usually have parents with very
divergent ancestries, whose children therefore have, marker by marker ancestry
close to the mean. We recommend that such individuals are also not used in the
scan, though this is a minor issue as they will not contribute much to the
admixture score. Here is some output from samples that we would not use in a
scan. Note that the top 3 individuals have ancestry proportions near 50%.

>>### ID P(E) --- Z-score
>>checkindiv Hi1 0.504 156.756 10.464 1328 888.585 0.669
>>checkindiv Hi2 0.514 143.433 10.451 1149 730.872 0.636
>>checkindiv Hi3 0.506 146.305 10.286 1225 824.703 0.673
>>checkindiv Lo1 0.360 -103.759 -6.970 1128 1604.437 1.422
>>checkindiv Lo2 0.364 -131.407 -9.242 1026 1639.528 1.598

6. Interpreting and monitoring the output

a) Overview
In this section we will discuss the output generated by the ANCESTRYMAP
program, and how to analyze it.

At the end of a run the most important output generated by the ANCESTRYMAP
program is the log-likelihood of the locus genome statistic (LOD) averaged over all
the markers in the genome, referred to as the genome log-factor. As mentioned in
the paper LOD > 2 is a significant score, and is a signal of positive disease
association. At the end of the run one should check this value and also the τ values.
If the τ values are small (<100) it is an indicator of problems: in particular that the
ancestral population frequencies are not matching up well with the admixed
population frequencies.

In our experience of running this program one can observe a high score of
association, due to many reasons that have nothing to do with a real association to
disease. Thus, if a significant LOD value is observed the user should be extremely
careful about interpreting the result and first perform the following checks:
 Is the rise (or fall) in population A ancestry that is suggesting the presence

of a disease gene seen in both cases and controls? If it is, this suggests an artifact
affecting both cases and controls, rather than a real biological association to
disease.
 Does one observe a significant case control statistic score at the locus?
 Have any markers within 10cM of the disease locus failed any of the data

checks described in Section 5 ? If so, remove them from the analysis (add them to
the badsnpname file) and rerun the program.
 Remove the individual marker showing the strongest association to disease

from the analysis by adding it to the badsnpname file and then rerun the program.
The score should not be dependent on a single marker, but rather be supported by
multiple independent markers.
 In our experience, markers that are in linkage disequilibrium in the ancestral

 - 18 -

populations (E.G. West Africans and European Americans), but are treated as
independent for the admixture mapping study, can produce a false-positive
association to disease. This is especially important because it is tempting to increase
marker density, thereby the chance of markers being in linkage disequilibrium with
each other in the ancestral populations, in precisely the regions that show most
association to disease in preliminary scans. We therefore recommend testing for
linkage disequilibrium in the ancestral population among the markers within 10cM
of the disease locus, and discarding markers until no pairs of markers in the region
are in linkage disequilibrium with each other (P<0.05). At markers showing
association to disease, thin the markers so that none is within 200 kb of any of the
others. Finally, rerun the analysis to assess if the association remains.
 One should also perform a few more runs, increasing the number of burn

in and follow on iterations by a factor of 10 to assess if the score is consistent.

b) Output Details
Next we will discuss the standard output in detail, which can be redirected to a file
for easier viewing. There are a number of parameters that control the output. The
most basic output generated is as follows (when no output parameters have been set)
to the standard out, which can be redirected to a file for easier viewing.

 Input parameter file name

 Values of all the parameters specified in this file

 Total genomic distance

 Count of individuals, cases, controls and ignores used in the analysis; and
also the number of real and fake markers

 Score generated by the expectation maximization algorithm for each
iteration. One should observe the score increasing with the number of
iterations. Ex.:

>>emsimple iter: 3 53989.104

 Results of the Markov Chain Monte Carlo iterations, which include stimation
of θ and λ . Note that the iteration number goes from 1 – numburn to 0 for
the burn-in iterations and from 1 to numiters for the follow-on iterations. Also
the score is zero for the burn-in iterations, since we calculate it only for the
follow-on iterations.
estglob theta: iteration_num, thp1, thp2, thxp1, thxp2, thxp0
estglob lambda: iteration_num, lp1,lp2,lxp1,lxp2, average λ
thp1, thp2 are the parameters for the prior distribution for θ, and thxp0, thxp1
and thxp2 are the same for θ

X.
Similarly, lp1, lp2 are the parameters

 - 19 -

 Posterior estimates of the mean and standard deviations of θ, θ
X,
λ, λ

X
, τ(Afr)

and τ(Eur). The user should look at the values of τ (African) and τ
(European) carefully, since they are an indicator of how well the ancestral
models fit the data. It is worrisome if we see values to be less than 100.

 Genome-wide scores for all the models, ex.:

>> risk1 risk2 crisk score
>> model: 1.500 2.250 1.000 9.028

Here, risk1 and risk2 are the increase in risk corresponding to have one or
two population A ancestry alleles (as opposed to having none), and crisk is
the corresponding control risk.

 Lag and correlations For a number of sample statistics we compute
 correlation coefficient at small "lags". If the statistic at iteration i is S(i) we

compute for 1 <= lag <= 10 (default) the correlation between S(i) and
S(i+lag). Large values indicate that the MCMC is not mixing very well. We
publish this for:

o llike: a statistic of no intrinsic interest but mixes poorly.
o log10fac: Log_10 Bayes factor (genome wide)
o factor: Bayes factor = 10^log10fac
o log tauscal: log (t(0)) the t value for population 0.

 In our experience ii), iii) are the most important statistics which mix

 Scores for each chromosome:

Chr_Num LGS_MAX CCS_MAX CCS_MIN LGS_LOCAL. LGS_MAX is
the maximum locus genome statistic score obtained on the chromosome,
CCS_MAX and CCS_MIN are the maximum and minimum case-control
statistic scores, and LGS_LOCAL is the log likelihood of the locus genome
statistic score calculated by averaging over all the markers on that
chromosome. All of these scores are averaged over all the individuals and all
the iterations. Here is an

 - 20 -

As one can clearly see from the above example, the LGS_MAX and
CCS_MAX scores are the highest for chromosome number 4.

 Bestscores: The maximum genome-wide score for the locus-genome statistic,
and the maximum and minimum genome-wide scores for the case-control
statistic.

 Genome-log-factor: log-likelihood of the locus genome statistic averaged

The genome log factor is the most important output of ANCESTRYMAP
and should be the first number that the user looks at.

Next we will discuss the output when the parameter details = YES in the
parameter file. In this situation the following additional output is written to
the screen:

 Details about all the chromosomes Chr_Num First_snp Last_snp
Gen_dist. Here Chr_Num is the chromosome number, First_snp and
Last_snp are the indices of the first and last markers on the chromosome
and Gen_dist

 - 21 -

 For each markov chain monte carlo iteration print out, in the following
format: The format of the output which begins with bigiter is as follows:
bigiter iter ylike LOD sc. tau(A) tau(E) thetaave lambdaave
xtave(M) xlave(M) xtave(F) xlave(F)
ylike is the slowly mixing statistic of little intrinsic interest described in
the above mentioned supplementary note. xtave(M) and xtave(F) are the
average θ on X chromosme for males and females respectively, xlave(M)
and xlave(F) are the average λ on X chromosome for males and females

 θ/M and λ values for all individuals:
Indiv_Index Indiv_ID Gender tmean tsdev txmean txsdev
lmean lsdev lxmean lxsdev.
Here Indiv_Index is the individual’s internal index number, tmean and

txmean are the average θ and θ
X
, tsdev and txsdev are the standard deviation

for θ and θ
X
. lmean and lxmean are the average λ and λ

X
, lsdev and lxsdev are

the standard deviation for λ and λ
X
.

 Allele frequency estimates with standard error:
SNP_Index SNP_Id Chr_Num amean asdev bmean bsdev.
Here SNP_Index is the internal snp index, amean and bmean are the average
reference allele frequency in population A and B; and asdev and

 Scores for each marker:
SNP_Index SNP_Id Chr_Num Phys_Pos Gen_Pos LGS CCS.

Phys_Pos is the physical position, Gen_Pos is the genetic position, LGS is
the locus genome statistic score and CCS is the case-control statistic

For a more detailed discussion on output details in various scenarios
please refer to the online documentation Output Details section.

 - 22 -

c) Output Files
Next we will discuss the format of the output files, which can be specified in the
parameter file. For an explanation of the format of these files click here.

 indoutfilename specifies the following information for all the samples analyzed:
o Indiv_Id
o Gender
o Status
o Num_valid_genotypes

 snpoutfilename specifies the following information for all the markers analyzed:

o Snp_Id
o Chromosome_num
o Genetic_pos
o Physical_pos
o Pop_A_variant_allele_count
o Pop_A_ref_allele_count
o Pop_B_variant_allele_count
o Pop_B_ref_allele_count
o Case_genotype_count
o Control_genotype_count

 thetafilename specifies the following information for all the analyzed samples:

o Indiv_index
o Indiv_id
o θ_true: “true” value of θ or M, printed only in the simulation mode
o θ_ mean: population A ancestry for the autosomes averaged over all the

iterations for a particular individual
o θ _sdev: standard deviation of θ_ mean
o θX_true: “true” values of θX or MX, printed only in the simulation mode
o θX_mean: population A ancestry for the X chromosome averaged over all

the iterations for a particular individual
o θX_sdev: standard deviation of θX_mean
o Status

 lambdafilename specifies the following information for all the analyzed

samples:
o Indiv_index
o Indiv_Id
o λ_true: “true” value of λ, printed only in the simulation mode
o λ_ mean: λ for the autosomes averaged over all the iterations for a

particular individual
o λ_sdev: standard deviation associated with λ_ mean
o λX_true: “true” value of λX , printed only in the simulation mode
o λX_mean: λ for the X chromosome averaged over all the iterations for a

particular individual
o λX_sdev: standard deviation associated with λX_mean

 - 23 -

 freqfilename specifies the following information for all the markers analyzed:
o SNP_Index: index internal to the program for the snp
o SNP_ID
o chromosome_num
o atrue: “true” reference allele frequency in population A, valid only in

simulation mode
o anaive: naïve frequency of the reference allele in population A using the

ancestral genotype data
o amean: calculated frequency of the reference allele in population A

averaged over all the iterations
o asdev: standard deviation associated with amean
o btrue: “true” reference allele frequency in population B, valid only in

simulation mode
o bnaive: naïve frequency of the reference allele in population B using the

ancestral genotype data
o bmean: calculated frequency of the reference allele in population B

averaged over all the iterations
o bsdev: standard deviation associated with bmean

 ethnicfilename specifies the following information for all the markers:

o SNP_Index
o chromosome_num
o SNP_ID
o Avg_ethnicity: Average θ or M over all iterations, and over all individuals

at a particular marker.

 pubxfile: Contains ancestry estimates for either a single marker or individual
depending on the usage. In either case it outputs the probability of having 0, 1 or
2 PopB chromosomes in the columns G[0],G[1] and G[2].

 localoutfilename: contains the scores for all the markers:

o SNP_Index
o Chromosome_Num
o Physical_Pos
o Genetic_Pos
o Log Genome Score
o Case Control Score
o G(Case) : Average ancestry for all cases at that marker
o G(control) : Average ancestry for all controls at that marker
o rpower: Information content

 output: This is the output file which has the following information for all the

Markov chain monte carlo iterations:
o Iteration_Num
o θ_mean
o θx_mean
o θ_corr

 - 24 -

o λ_mean
o λx_mean
o λ_corr
o τ(popA)
o τ(popB)
o log score
o log score averaged over iterations

Note that if this file name is not specified in the parameter file, we write the above to
the standard output.

The following two files are written to when we run the program in the simulation
mode:
 Genotoyoutfilename: specifies genotype data for all the markers and simulated

individuals in simulation mode:
o SNP_ID
o Indiv_ID
o Vart_allele_count

 Indtoyoutfilename: specifies the following information for the simulated

individuals in simulation mode:
o Indiv_ID
o Gender
o Population

If the program is run with checkit = YES, then the results of the data check programs
mentioned in Section 5 are directed to the standard output.

As detailed in the paper we feel that 100 burn-in iterations and 200 follow on iterations
should be sufficient for most analysis. These are the number of suggested iterations for most
exploratory runs, and user can increase these numbers in order to confirm the results. One
can plot the genome-wide-score as a function of iteration number, to see how well the score
converges.

7. Enhancements in the Version 2.0

The main enhancement in this version is the ability to do a fine-mapping run to follow
up a peak in a coarse scan. In addition to doing the fine-mapping run one can also run
simulations in this mode. A number of small enhancements have been added as well,
such as fast check for duplicates, support for PED files and some extra output. A
number of small bugs have been fixed as well.

In detail the main enhancements are as follows:

1) A new program baseprog allows the user to run the parameter file to make sure the

input files are valid, but does not do the MCMC calculation. See the example

 - 25 -

parameter file parbaseprog which is part of the download. To run the program type
on the command line:
 >> baseprog –p parbaseprog or
>>./baseprog –p parbaseprog
p: is a compulsory option, and in this case we have to specify the parameter file
parbaseprog.
To redirect the output in a file one would type on the command line:
>>./baseprog –pv parbaseprog > outbaseprog.dat&

2) Fine-mapping run capability including simulations. A detailed write up is included in
the next section.

3) Fast duplicate check: This is a quick check looking for duplicates in the dataset,
which is particularly useful in cases where we have a large number of samples, some
of which maybe duplicates. One can do this check by setting the parameter fastdup =
YES in the parameter file.

4) Checkindiv check: This is a check for discarding individuals from the run, automatic
in checkit mode.

5) One can use the physical position information to calculate or reset the genetic
position, useful for cases where user doesn’t have the genetic positions. This is
implemented using the parameter usephyspos.

6) There is a new pack mode which supported using the parameter packmode. By default
the program sets this to YES, if number of genotypes is greater than a certain
number. The user should set this parameter to YES if memory requirement seem
large.

7) User can specify the high and low boundary values for log scores, through the
parameters hiclip and loclip.

8) PED file support, look at the documentation included.
9) One can print ancestry estimates for a particular SNP or Sample using the

parameters: pubxindname, pubx, pubxa and markername. For ex. If user wants to
dump gammas for a particular individual with internal individual index 2904 into a
file called gammaoutfile, one would specify the following parameters:

 pubxname: gammaoutfile
 pubx: 2904 -1

To dump gammas for a particular marker:
pubxname: gammaoutfile
markername: fake-1:1672
Ex. gamma output files for individual and marker.

10) We now print out information content for a SNP, this is the rpower column in the
output file.

11) The user can print out the scores for all the markers in a file, to use this functionality
the user will need to specify the parameter localoutfilename.

12) New parameters with this release are given in the accompanying table.
13) MAC Release: Experimental version not as well tested is available for download.

8. Fine-Mapping Runs

a) Overview
After carrying out an admixture scan, (say with the methods we have implemented in
ANCESTRYMAP and described in [2]), it is essential to follow up in areas of the
genome that have promising association scores. As the admixture peaks will be wide,

 - 26 -

containing perhaps 100 genes, the real biological pay-off will come from fine-
mapping that is in identifying the actual variant in the region that causes disease risk.
We sketch out a strategy for doing this in the very same samples initially used for
admixture disease gene localization.

The strategy for fine-mapping follow-up is to genotype a large number of SNPs
(more than 1,000) across the peak of admixture association, at a resolution of one
every few thousand base pairs. In an analysis using African-American data, the goal is
to identify a SNP that is in strong LD with the disease-causing variant in the African
and/or European ancestral populations. This LD will be inherited in African
Americans, and will permit the accurate localization of the disease gene to within a
few tens of kilobases.

To be more specific, we note that in our published paper on admixture mapping
methods [2], we introduced a log factor score for a given risk model, and locus. We
review this scoring method for African Americans, which have experienced a history
of admixture between European and African populations, though the methods are of
course quite general. Assume for the moment that all model parameters, such as the
average amount of European ancestry of each individual, and the allele frequencies
of all markers in the parental populations are known exactly. Next, we assume a risk
model, and locus, so that if an individual has a chromosomes of European ancestry
at that locus, then the risk factor is ψ(a) = P (D|a)/P (D|0), where P (D) denotes the
probability of disease. (Our notation allows European ancestry to be protective as
well as more risky, so that ψ(a) < 1 if a > 0.) In [2] we showed that the log-factor L(i)
for individual i, for our causal hypothesis against the null hypothesis that ψ(a) = 1 for
each a is:

Here γ(a, i) is the probability that individual i has a European chromosomes at the
locus, given all our observations, and θi (a) is the average ancestry for the individual.
The overall log-factor for all the samples is then just the sum of the log-factors over
all individuals.

We now show that we can extend our methods to form a score suitable for fine-
scanning. In the above theory, if ancestry at a locus is known, then the alleles at the
locus are irrelevant to disease risk. But this will not be the case if the marker is in LD
with a risk allele, except in the extreme case that the allele is a perfect surrogate for
ancestry. (In African Americans only one such example is known: the ‘Duffy’ null
allele [1].)

Generalizing the above theory, we introduce a risk function ψ(a,b) for an individual
with a European chromosomes and b variant alleles. Then we can generalize
equation (1) in this case to:

 - 27 -

where b is the number of variant alleles actually carried and B(c|a) is the conditional
probability of c variant alleles given a European chromosomes. It is easy to check
that if the risk function ψ(a,c) is independent of c, then (2) reduces to (1) as it should.
In practice ψ(a,c) is unknown to us. We next discuss the values of which values of ψ
to try. As an ansatz, set

ψ(a,b) = eaλ ebµ

where we will now choose λ,µ. Fix µ for the moment and assume that the ancestry
risk for one copy of a population 2 allele is r, and that r is known, or at least tightly
estimated. In practice we are fine-mapping after an coarse scan ‘hit’ from
ANCESTRYMAP so this is not unreasonable. Now it is easy to check that

so that

Setting µ = 0, yields the model in which only the ancestry is relevant, and not the
genotype. Given this easy theory, we can now readily compute a logfactor F(µ) for a
given hypothesis for the value of µ, against a null hypothesis that µ = 0. We in
practice set µ on a mesh spaced uniformly on a log-scale and then factor-average.
The strategy is then to see if a substantially larger Bayes factor can be found by
allowing µ to be non-zero, indicating an additional effect of the SNP above and
beyond the admixture association.

Suppose then that we have N mesh points both for µ,λ(µ) and if (λk, µk) are the k-th
λ, µ pairs we choose on the mesh, and F (k) is the Bayes factor we obtain for the k-th
such pair, a natural score for the fine-mapped locus is

This is a
likelihood ratio for the hypothesis that one of our mesh points is correct, against the
null where µ = 0; that is, there is no contribution of the allele above and beyond the
admixture association.

b) Setup of Runs

Once you have successfully run the coarse scan and obtain a peak local log factor >
4 consistently, one can then proceed to “bombard” the region with more SNPs for
the same samples in order to find a causal allele. Once you have the genotype data
for that you can proceed to use the fine-mapping part of the software, which will
give the extra allelic risk on top of ancestry risk. In order to do this properly, one
must make sure NOT to include the fine-mapping SNPs in the main coarse scan run.
An easy way of doing this is to include the fine-mapping SNPs in the badsnp file.
The reason for this is that usually one would have chosen a number of SNPs very
close to each other on the same chromosome. These markers are usually in linkage
disequilibrium with each other, and as already discussed in Section , SNPs in LD can

 - 28 -

lead to false positive scores. After doing the coarse scan, identify the peak region and
then start a few runs around the peak region using the fine-mapping parameter file.

It is important that a fine mapping SNP is not in LD with a framework SNP in the
parental populations. It is a little complicated to achieve this, we do it by making a
series of runs in which we fine map over say a megabase region with no framework
SNP in the region or very close by. We provide an annotated Perl script mkfine, and
an accompanying template parameter file which the user should be able to modify
for his/her requirements. The script mkfine has a number of parameters which the
user will need to set depending on their individual scan. It is important to read the
script carefully before starting to use it. The script can be looked at in detail in the
bin/ directory, and the accompanying template parameter file parfine.templ is also in
this directory.

Once you have set the various parameters in the 2 files, you can just run the script
mkfine by typing on the command line:
>> perl mkfine

This should start the various ANCESTRYMAP runs in the fine-mapping mode,
once all the runs are over you can take a look at the output files to see if there is
anything interesting.

c) Fine-Mapping Output

In this section we will discuss in detail the output generated to standard output, in
the case where details = NO, checkit = NO; with finite number of burn-in and follow-
on iterations. This output can be redirected to a file for easier viewing.

 Input parameter file name

 Values of all the parameters specified in this file

 Total genomic distance

 Count of individuals, cases, controls and ignores used in the analysis; and also the

number of real and fake markers

 Score generated by the expectation maximization algorithm for each iteration.
One should observe the score increasing with the number of iterations.

 Results of the Markov Chain Monte Carlo iterations, which include estimation of
θ and λ. Note that the iteration number goes from 1 – numburn to 0 for the burn-
in iterations and from 1 to numiters for the follow-on iterations. Also the score is
zero for the burn-in iterations, since we calculate it only for the follow-on
iterations. The format of the output is as follows:
estglob theta iter a1 b1 a2 b2 c2
estglob lambda iter p1 lambda1 p2 lambda2 lambdave
These are "global parameters" (affect every individual). See supplementary note

 - 29 -

2 of the Patterson et. al. 2004 paper for definitions.
lambdaave is the average λ across individuals.

 Posterior estimates for the mean and standard deviation of θ, θX, λ, λX and τ(Afr),

τ(Eur). The user should look at the value of τ(African) and τ(European)
carefully, since they are an indicator of how well the ancestral models fit the data.
It is worrisome if we see these value to be less than 100.

 Genome-wide scores for all the models

 Theta and Lambda estimates with standard error for all the samples

 Allele frequency estimates with standard error for all the markers

 Here Mu is the genotype risk, and lambda is the allelic risk. For a single copy of a
chromosome with local ancestry a and b variant alleles the risk is taken to be exp(a
lambda) exp(b mu). In the table shown below, given Mu, lambda is chosen so that
the ancestry risk if the allele is unknown is that specified by the risk parameter of the
(coarse scan) model, for example the risk here is 1.5 (see Overview section). The
LogScore column (clipped, so the score will not be below 0) is a LOD score for the
fine-mapping model against the model where genotype does not correspond to risk.
Note that a positive LogScore is a hint of a causal allele. The reader, as a check on
understanding, should note that if mu = 1, then the score must be 0 also as is true in
the tableau below (row 15).

 lmbayes is a Bayes factor averaging over all fine mapping markers in the run. This
really needs adjusting by a prior for whether there is a causal marker in the region.

Iteration_Num Mu Log_Score Caltd_Lambda
lmdetails 0 0.333 -8.000 0.811
lmdetails 1 0.359 -8.000 0.839
lmdetails 2 0.386 -8.000 0.868
lmdetails 3 0.415 -8.000 0.900
lmdetails 4 0.447 -8.000 0.934
lmdetails 5 0.481 -8.000 0.970
lmdetails 6 0.517 -8.000 1.009
lmdetails 7 0.557 -8.000 1.050
lmdetails 8 0.599 -7.924 1.094
lmdetails 9 0.644 -6.300 1.141
lmdetails 10 0.693 -4.327 1.192
lmdetails 11 0.746 -2.758 1.246
lmdetails 12 0.803 -1.576 1.304
lmdetails 13 0.864 -0.746 1.365
lmdetails 14 0.929 -0.229 1.430
lmdetails 15 1.000 0.000 1.500
lmdetails 16 1.076 -0.057 1.574
lmdetails 17 1.158 -0.412 1.653
lmdetails 18 1.246 -1.075 1.737
lmdetails 19 1.340 -2.058 1.826

 - 30 -

lmdetails 20 1.442 -3.369 1.920
lmdetails 21 1.552 -5.009 2.020
lmdetails 22 1.670 -6.941 2.126
lmdetails 23 1.797 -7.978 2.238
lmdetails 24 1.933 -8.000 2.356
lmdetails 25 2.080 -8.000 2.481
lmdetails 26 2.238 -8.000 2.612
lmdetails 27 2.408 -8.000 2.750
lmdetails 28 2.591 -8.000 2.895
lmdetails 29 2.788 -8.000 3.048
lmdetails 30 3.000 -8.000 3.207
###lmscore: Fine-mapping score in addition to the Admix_Score
 ##SNP_ID LMScore Chr_Num Phys_Pos Admix_Score
lmscore: rs11890727 -0.992 2 114383724 14.382
##lmscbest : Best lmscore in the run
lmscbest: -0.992
##lmbayes: Bayes factor, averaging over all fine mapping markers in the run
lmbayes: -0.992

 Lag and correlations
For a number of sample statistics we compute a correlation coefficient at small
"lags". If the statistic at iteration i is S(i) we compute for 1 <= lag <= 10
(default) the correlation between S(i) and S(i+lag). Large values indicate that the
MCMC is not mixing very well.
We publish this for:

o llike: a statistic of no intrinsic interest but mixes poorly.
o log10fac: Log_10 Bayes factor (genome wide)
o factor: Bayes factor = 10^log10fac
o log tauscal: log (t(0)) the t value for population 0.

In our experience ii), iii) are the most important statistics which mix well, iv)
mixes less well and i) mixes quite poorly.

 Scores for each chromosome

As one can clearly see from the below example, the LGS_MAX and CCS_MAX
scores are the highest for chromosome number 3.

 Bestscores: The maximum genome-wide score for the locus-genome statistic,

and the maximum and minimum genome-wide scores for the case-control
statistic.

 Genome-log-factor: log-likelihood of the locus genome statistic averaged over all

the markers in the genome. The genome-log factor is the most important
number that is produced by the program and should be the first number that the
user looks at.

9.0 Input File Formats and Conversion Program

 - 31 -

This file contains documentation of the program convertf, which converts between the
5 different file formats we support. Note that "file format" simultaneously refers to the
formats of three distinct files:
 genotype file: contains genotype data for each individual at each SNP
 snp file: contains information about each SNP
 indiv file: contains information about each individual

Below, we document all 5 formats:
 ANCESTRYMAP
 EIGENSTRAT
 PED
 PACKEDPED
 PACKEDANCESTRYMAP

and we explain how to use convertf to get from one format to another. Note all the
example files are in the directory:

ANCESTRYMAP Format:
 genotype file: see example.ancestrymapgeno
 snp file: see example.snp
 indiv file: see example.ind

The genotype file contains 1 line per valid genotype, and has 3 columns:

SNP_ID Sample_ID Number of Variant Alleles (0,1 or
2)

 Missing genotypes are encoded by the absence of an entry in the genotype file.

 The snp file contains 1 line per SNP. There are 4 columns:

SNP_ID Chromosome_Num Genetic_Position Physical_Position
Use 23 for X chromosome. The genetic position can be in Morgans or
centiMorgans, and the physical position is in bases.
The indiv file contains 1 line per individual, and has 3 columns:

Sample_ID Gender Status
The gender column can be M(male), F(female) or U (unknown). The status column
might refer to Case or Control status, or might be a population group label. If this
entry is set to "Ignore", then that individual and all genotype data from that
individual will be removed from the data set in all convertf output. The name
"ANCESTRYMAP format" is used for historical reasons only. This software is
completely independent of our 2004 ANCESTRYMAP software.

EIGENSTRAT Format: Used by EIGENSTRAT (both in the 07/23/06 release and in the
current release).

 genotype file: see example.eigenstratgeno
 snp file: see example.snp (same as above)
 indiv file: see example.ind (same as above)

The genotype file contains 1 line per SNP. Each line contains 1 character per individual:

 0 means zero copies of reference allele.

 - 32 -

 1 means one copy of reference allele.
 2 means two copies of reference allele.
 9 means missing data.

The program ind2pheno.perl in this directory will convert from example.ind to the
example.pheno file needed by the EIGENSTRAT software. To run this script type on
the command line:
>> ./ind2pheno.perl example.ind example.pheno

PED Format:

 genotype file: see example.ped *** file name MUST end in .ped ***
 snp file: see example.pedsnp *** file name MUST end in .pedsnp *** convertf

also supports .map suffix for this input file name
 indiv file: see example.pedind *** file name MUST end in .pedind ***and

Conversion between various formats
convertf also supports the full .ped file (example.ped) for this input file

Note that, mandatory suffix names enable our software to recognize this file format.
The indiv file contains the first 7 columns of the genotype file (see below).
The genotype file is 1 line per individual. Each line contains 7 columns of
information about the individual, plus two genotype columns for each SNP in the
order the SNPs are specified in the snp file.

 The first 7 columns are:
 1st column is family ID.
 2nd column is sample ID.
 3rd and 4th column are sample IDs of parents.
 5th column is gender (male is 1, female is 2)
 6th column is case/control status (1 is control, 2 is case) OR quantitative trait

value OR population group label.
 7th column (this column is optional) is always set to 1.

convertf does not support pedigree information, so 1st, 3rd, 4th columns are
ignored in convertf input and set to arbitrary values in convertf output. In the two
genotype columns for each SNP, missing data is represented by 0.
The snp file contains 1 line per SNP. There are 4 columns:
Chromosome_Num SNP_ID Genetic_Position Physical_Position
Use X for X chromosome. The genetic position is in Morgans, and the physical

 position is in bases.
The indiv file contains the first 7 columns of the genotype file.
The PED format is used by the PLINK package of Shaun Purcell. See
http://pngu.mgh.harvard.edu/~purcell/plink/.

PACKEDPED Format:

 genotype file: see example.bed *** file name MUST end in .bed ***
 snp file: see example.pedsnp *** file name MUST end in .pedsnp ***
 convertf also supports .map suffix for this input file name
 indiv file: see example.pedind *** file name MUST end in .pedind ***

 - 33 -

 convertf also supports a .ped file (example.ped) for this input file

Note that, mandatory suffix names enable our software to recognize this file format.
example.bed is a packed binary file (2 bits per genotype).
The PACKEDPED format is used by the PLINK package of Shaun Purcell. See
http://pngu.mgh.harvard.edu/~purcell/plink/.
For input in PACKEDPED format, snp file MUST be in genomewide order.
For input in PACKEDPED format, genotype file MUST be in SNP-major order
(the PLINK default: see PLINK documentation for details.)

PACKEDANCESTRYMAP Format:

 genotype file: see example.packedancestrymapgeno
 snp file: see example.snp (same as above)
 indiv file: see example.ind (same as above)

Note that, example.packedancestrymapgeno is a packed binary file (2 bits per
genotype).

DOCUMENTATION OF convertf program:

To run this program type on the command line:
>> /bin/convertf -p parfile

We illustrate how parfile works via a toy example: (see example.perl in this directory)
par.ANCESTRYMAP.EIGENSTRAT converts ANCESTRYMAP to
EIGENSTRAT format
par.EIGENSTRAT.PED converts EIGENSTRAT to PED format
par.PED.EIGENSTRAT converts PED to EIGENSTRAT format
par.PED.PACKEDPED converts PED to PACKEDPED format
par.PACKEDPED.PACKEDANCESTRYMAP converts PACKEDPED to
PACKEDANCESTRYMAP
par.PACKEDANCESTRYMAP.ANCESTRYMAP converts
PACKEDANCESTRYMAP to ANCESTRYMAP

Note that the choice of which allele is the reference allele may be arbitrary and thus
converting to a new format and back again may change the choice of reference allele.

DESCRIPTION OF EACH PARAMETER in parfile for convertf:

Parameter Name Data type Description Possible and
Default values

genotypename String input genotype file

snpname String input snp file

outputformat String Can be one of the following:
ANCESTRYMAP,
EIGENSTRAT, PED,

 - 34 -

PACKEDPED or
PACKEDANCESTRYMAP

genotypeoutname String output genotype file
snpoutname String output snp file
indivoutname String output indiv file

OPTIONAL PARAMETERS
familynames String Only relevant if input format

is PED or PACKEDPED.

noxdata Boolean If set to YES, all SNPs on X
chromosome are removed
from the data set.

nomalexhet Boolean If set to YES, any het
genotypes on X chr for
males are changed to missing
data

badsnpname String Specifies a list of SNPs
which should be removed
from the data set

outputgroup Boolean Only relevant if
outputformat is PED or
PACKEDPED

NO

 familynames : If set to YES, then family ID will be concatenated to sample ID. This

supports different individuals with different family ID but same sample ID. The
convertf default for this parameter is YES.

 noxdata: The convertf default for this parameter is NO.
 nomalexhet: The convertf default for this parameter is NO.
 badsnpname: Same format as example.snp. Cannot be used if input is in

PACKEDPED or PACKEDANCESTRYMAP format.
 outputgroup: This parameter specifies what the 6th column of information about

each individual should be in the output. If outputgroup is set to NO (the default),
the 6th column will be set to 1 for each Control and 2 for each Case, as specified in
the input indiv file. [Individuals specified with some other label, such as a population
group label, will be assumed to be controls and the 6th column will be set to 1.] If
outputgroup is set to YES, the 6th column will be set to the exact label specified in
the input indiv file. [This functionality preserves population group labels.]

10. Download & Installation
a) Download instructions for the program

Follow these steps to download and install ANCESTRYMAP on your computer:
1. Go to http://genepath.med.harvard.edu/~reich
2. Click on: Download for UNIX or Linux or MAC for the source code
3. Make sure to rename the downloaded file to ancestrymap.tar.gz, since the

download process sometimes renames it otherwise.

 - 35 -

4. Decompress the file using gzip –d ancestrymap.tar.gz, and you should now see
ancestrymap.tar

5. Unarchive this file using tar –xvf ancestrymap.tar. This will create a directory
called ancestrymap, and the following directory structure under it:

examplesfiles/
src/
bin/
README file

In the examplefiles directory we have the following files:

 Parmeter Files:
 paramfile: In the format of parameter file for ancestrymap, with

additional parameters that are new in Version 2.0
 parmono: In the format of parameter file for cntmono
 param0, param1, param2: Parameter files for ancestrymap, discussed

later in this section
 parsim: Parameter file for ancestrymap when running simulations
 parsim2d: Parameter file for ancestrymap when running fine-mapping

simulations
 paramped: Parameter file for ancestrymap when using PED files
 par:8001-par:8009 : Parameter files for fine-mapping runs as

generated by running the script mkfine.
 Example files as used by convertf executable, look at the relevant

documentation for details
Input Data Files:

 indiv.dat: individual input file for ancestrymap
 indiv1.dat : Individual file for ancestrymap with one samples set to

Ignore
 geno.dat: genotype input file for ancestrymap
 snpcnts: marker input file for ancestrymap
 badsnps: input file for ancestrymap with markers that need to be

removed from the analysis
 snps: marker input file for cntmono or ancestrymap
 aflist, eurlist: Ancestry files for cntmono

The genotype and individual files in this directory were generated by running
simulations, and the marker files correspond to data reported in the Smith et
al paper.
Output Files:

 out2.dat Output file generated by running ancestrymap using paramfile
 out0.dat: Output file generated by running ancestrymap using param0
 out1.dat: Output file generated by running ancestrymap using param1
 outsim2d.dat : Output file generated by running ancestrymap using

parsim2d
 admckout.dat: Ouput file generated by running admcheck on out1.dat
 indjunk: Output file with detailed individual data created by running

ancestrymap using param0

 - 36 -

 snpjunk: Output file with detailed marker data created by running
ancestrymap using param0

 Fine-mapping Run Output Files:
1. badlist1, framelist1: Output files generated by mkfine script
2. badlist:8001-badlist:8009: Bad marker files generated by

mkfine for each fine-mapping run
3. xx:8001-xx:8009: Output file for each fine-mapping run

 outfiles/: This is a directory which contains the output files
mentioned in Section 6, and ancestry estimates for various markers
considered in the fine-mapping run (gams:8001-gams:8009).

bin/ has the following executables:

 cntmono
 ancestrymap
 baseprog
 admcheck: A perl script which is used to extract the top “bad” markers
 mkfine: A perl script which is used to kick-off the fine-mapping runs
 parfine.temp : A accompanying template parameter file needed by the

mkfine script
 addcol, uniqit: Helper perl scripts needed by mkfine

src/ has the C source code for making the ancestrymap, cntmono, baseprog, convertf
executables, the library nicklib.a and a makefile called Makefile. The makefile
can be used to make just the individual executables, or just the library or all
together. This also has the following directories:

 smartinclude/ has header files which are needed by the source code,
users should not delete these files to ensure proper compilation of
the code.

 smarttables/ is needed by the source code.
 nicksrc/: nicklib source code

b) Running the example files

There are a number of parameter and corresponding output files in the examplefiles/
directory. We recommend the user going through the following steps with these files
before running their own data on ANCESTRYMAP.

 First step makes sure that the input files are in the right format. In this step we

look at the parameter file parbaseprog and it’s corresponding output file
outbaseprog.dat. To run this type on the command line in the examples
directory:

If there is any problem with any of the input files, one will see an appropriate
message in the output file.

 Next step performs a couple of data checks. In this step we look at the

parameter file param0, and its corresponding output file out0.dat. The key

>> ./ancestrymap –p parbaseprog > outbaseprog.dat&

 - 37 -

parameter values in this file are numburn = 0, numiters= 0, checkit = YES and details
= YES.

To run this parameter file type on the command line in the examples directory:
>> ./ancestrymap –p param0 > outp0&

Compare the output files out0.dat (in the examples directory) and outp0 to make sure
that you can understand the output generated. Note that the use of the random
number generator makes it impossible for the results to be exactly the same for two
runs unless the parameter seed has the same value.

Next, look at the output file indjunk generated by this run. From this file one can
extract a list of individuals with very small number of genotypes by sorting it by the
Num_valid_genotypes column. We will set the Status field to Ignore for some of
these individuals in a copy of the original individual file called indiv1.dat file, since a
lot of missing data will cause ANCESTRYMAP to behave badly. Also, one should
discard markers which have low parental genotype counts by looking at the file
snpjunk which can be done by looking at the fields PopA_vart, PopA_ref,
PopB_vart and PopB_ref in this file. The discarded markers can be put in the
“badsnpname” file. Next look at the output file out0.dat, where the checkdup and
fastdup programs have flagged a number of duplicate individuals. We shall set the
Status field to Ignore for one of these pair of individuals in the indiv1.dat file as well.

Thus the key focus in this step is to ensure that ANCESTRYMAP can successfully
process the input files, and the identification of individuals which are duplicates or
have very few genotypes, and markers with low parental genotype counts.

 The next step involves running a lot of data checking programs. In this step we

will look at the parameter file param1, and its corresponding output file out1.dat.
The key parameter values in this file are numburn = 5, numiters = 5, checkit = YES
and details = YES. This corresponds to having very few burn-in or follow-on
iterations and sets up ANCESTRYMAP in the mode to run the various data
checking programs.

To run this parameter file type on the command line in the examples directory:

>>./ancestrymap –p param1 > outp1&

Compare the output files out1.dat (in the examples directory) and outp1 to make sure
you can understand the various output sections. Note that the use of the random
number generator makes it impossible for the output to be exactly the same for two
runs unless the parameter seed has the same value.

Note that in the output file there are results from a large number of data checking
programs. To extract the top markers that have failed the various checks run the perl
script admcheck by typing on the command line:
>>admcheck out1.dat > ancsycheck.dat&
Compare the file ancsycheck.dat with the file admchkout.dat in the examples
directory.

 - 38 -

Here is an example of the output generated by admcheck and pointers on how to
extract the bad markers.

From the ancsycheck.dat file we will pick the markers that are outliers for the various
checks, and will add them to our badsnpname file which will allow the software to
ignore these markers for the rest of the analysis. In addition, the user must also add
to this file one of the pairs of markers which are in strong linkage disequilibrium
with each other. It is necessary to remove these markers since otherwise one will see
spurious results. Note that since we don’t really have any bad markers, the badsnps
file in the examples directory is just a sample file.

 Next we will look at the parameter file param2, and its corresponding output file

out2.dat. This file corresponds to having 50 burn-in and 100 follow-on iterations,
with checkit = NO, details = YES and uses the badsnps file that we created in the
previous step.

To do this type on the command line in the examples directory:
>> ./ancestrymap –p paramfile > outf&

Compare the output files outf and out2.dat to make sure you can understand the
output generated. Note that the use of the random number generator makes it
impossible for the results to be exactly the same for two runs unless the parameter
seed has the same value. The important things to focus on in this run are the τ(Afr)
and τ(Eur) values, scores for the various chromosomes and the genome log factor
value.

In addition to the standard output, this parameter file will also create a number of
output files in the outfiles directory. These files are as follows, and have been
discussed in detail in the documentation.

 act.out
 freq.out
 snp.out
 theta.out
 lambda.out
 ethinc.out
 ind.out

c) Running the program with user data

To run the executable with user specific data, create the input files in the format
specified in Section 4 (also see sample files in the examples/ directory). Then follow
these steps:

1. Make sure that the program can read all the input files successfully, by typing on

the command line:
>> ./ancestrymap –p parbprog. > outbaseprog.dat

Here parbprog should be made using the file parbaseprog as a sample.

 - 39 -

2. Run ancestrymap using the parameter file param0 as a sample file.

>> ./ancestrymap –p parc0. > out0.dat
Here parc0 should be made using the file param0 as a sample, and corresponds to
setting checkit, details = YES, and numburn, numiters = 0. From the file
corresponding to the parameter indoutfilename, get a list of individuals which have
very few genotypes and set their Status field to Ignore in the individual file. From
the file corresponding to the parameter snpoutfilename get a list of markers which
have low parental genotype counts, and put them in the file corresponding to the
parameter badsnpname. Next from the output file generated by this run extract the
pair of duplicate individuals (if any), and set the Status field to Ignore in the
individual file for one of the pair of individuals.

3. Run ancestrymap using the parameter file param1 as a sample file. This forces

various data checking algorithms mentioned in Section 5 to run, and corresponds
to checkit, details = YES, and numburn, numiters = 5.
>> ./ancestrymap –p parc1 > out.dat.

4. To extract the top markers which have failed the various tests run:

>> admcheck out.dat.
admcheck extracts a list of the top 10 markers with the highest scores for hwcheck,
mapcheck and freqcheck ; and individuals with highest and lowest scores for
checkindiv (See Section 5). From this list the user should choose the markers to
add to their “badsnps” file, using the guidelines offered in the documentation,
and the example output. One should also include one of the pair of markers that
are in linkage disequilibrium with each other in the badsnps file. Also, one should
set the Status field to Ignore in the individual file for individuals which fail the
checkindiv test, using the guidelines in Section 5.

5. Run ancestrymap using the parameter file paramfile as an example, using a larger

number of both burn-in and follow-on iterations and with checkit = NO. Make
sure to include the badsnps file in parameter file, to ensure that the software does
not include them in the analysis any more.

d) Building your own executable from source code

 The first step is to go to the /ancestrymap/src/ directory.
 Next type on the command line:

>> make all
 This will make the library nicklib.a and the executables baseprog, convertf and

ancestrymap

11. Simulations
In order to perform simulations one must set dotoysim = YES. Some of the other
parameters that can be set are casecontrol, markersim, risksim, simnumindivs. Default and

 - 40 -

possible values for these parameters are discussed in Section 3. An example
simulation parameter file is included in the examples directory and is called parsim.
One can perform simulations under a variety of scenarios, as outlined in the paper.
One also perform simulations in the fine-mapping mode, some of the parameters
that can be set are sim2dvals and sim2d_caseonly.

12. How to cite this program

To cite this program refer to it as ANCESTRYMAP, and give the reference to the
accompanying paper by Patterson et al paper.1

13. Tutorial
Go to the website http://genepath.med.harvard.edu/~reich/Tutorial.htm
for an online tutorial.

14. Description of the auxiliary package : getpars, cntmono

a) Cntmono Program

i) Overview
In this section we will discuss the auxiliary software cntmono included with
ANCESTRYMAP. This program takes as input, files with genotype data, and
corresponding individual and marker data for the modern counterparts of the
ancestral parental population subgroups and creates an output file which has the
counts for the reference and variant alleles for these populations. This can in turn be
used by the ancestrymap program as its input marker/ snp file. For a short tutorial on
how to run this program click here.

ii) How to run the program
The command line arguments for cntmono are p (parameter file) which is mandatory,
V (version number) and v (verbose mode), same as for ancestrymap. To run this type
on the commandline:
>> cntmono –p parcmono or ./cntmono –p parcmono

Use the file parmono in the examples/ directory as a sample file to create parcmono.
This file has names for the following files:
 Genotype Data: String: genotypename

SNP_ID INDIV_ID Vart_allele_cnt

rs112 I1 1
rs113 I2 0
rs114 I3 2

 Marker Data: String: snpname

 - 41 -

SNP_ID Chr_Num Gen_Pos Phys_Pos

rs112 1 0.3455676 114556

rs113 2 0.566879 1400898

 Individual Data: String: indivname

INDIV_ID Gender Status
I1 F CEPH
I2 M BOTSWANA
I3 M GHANA

The value in the Status field is that of the ethnicity of the sample. This can be as
varied as the examples shown above, or as narrow as AFRICAN, EUROPEAN,
ASIAN, etc.

 Population A subgroup data: String: aglistname

This contains a list of ethnicities that are classified as population A subtype

Ethnicity
Beni
Botswana

 Population B subgroup data: String: eglistname

This contains a list of ethnicities that are classified as population B subtype

Ethnicity
CEPH
Italy

 Output Data: String: output

The output file has the following columns
o SNP_ID
o Chromosome number
o Genetic position
o Physical position
o Population A reference allele count
o Population A variant allele count
o Population B reference allele count
o Population B variant allele count
o Number of valid genotypes

 - 42 -

Before using the output file generated by cntmono as the input marker file for
ancestrymap, remove from it the blank lines, lines with comments and, the header line.
This file should only contain details about the markers, else ancestrymap will give a
fatal error.

b) Getpars Overview
In this section we will discuss another auxiliary package getpars. This is a simple
package for inputting parameters by keyword. It is crucial to reading and
interpreting the parameter file, and to storing the various parameters specified in it.
The package uses a "handle" (object) to store parameter information, and provides a
simple string replacement facility. Parameters may appear in any order in the
parameter file. Multiple parameter files can be dealt with, though the need for this
would be unusual.

We will briefly outline the various functions that are part of this package:
1. phandle *openpars(char *fname) : Opens handle, and must be called before all other
routines.Sample call: ph = openpars(myparameterfilename) ; In all of the following
parameter setting routines, if the parameter is not present, the variable to receive the
value will not be changed. Thus default values should be set before the call.

2. int getstring(phandle *pp, char *parname, char **kret) ;
Sample call: getstring(ph, "inputfilename:", &inputfilename) ;
Return value: positive integer if parname is found (and therefore kret is set) else
negative integer. This is the same for all the analogous routines discussed below.

3. int getint(phandle *pp, char *parname, int *kret) : Sets an integer value. YES or NO
values can be interpreted as 1, 0 respectively. This is convenient for setting boolean
switches using "c" ints.
Sample call: getint(ph, "iterations:", &iterations) ;

4. int getints(phandle *pp, char *parname, int *aint, int nint) : Sets nint integer values into
array aint. The values can be separated by white space or ':'.

5. int getintss(phandle *pp, char *parname, int *aint, int *xint) : Sets variable number of
integer values into aint. Number set is returned in xint.

6. void *closepars(phandle *pp) : This is a destructor,and is called when parameter
cracking is complete. All memory associated with ph is freed.

7. void dostrsub(phandle *pp) : We use the convention to insist that parameter names are
lower case alphanumeric, and contain no upper case parameters. Now upper case
"parameters" can be used for string replacement.
Example: parameter file mypars contains:
HOME: /home/harvey01/nickp
DIR: HOME/datadir
datafile: DIR/mydata
The following code fragment would be appropriate:
ph = openpars("mypars") ;

 - 43 -

dostrsub(ph) ;
getstring(ph, "datafile"; &datafilename) ;
closepars(ph) ;

8. void writepars(phandle *pp) : writes a copy of the parameter file (after string
replacement if dostrsub has been called) to standard out.

15. Troubleshooting & Bugs

16. Bibliography

i.Patterson et al (2004) Methods for High-Density Admixture Mapping of Disease
Genes Am. J. Hum Genet. 74: 979-1000
ii.Smith et al. (2004) A High-Density Admixture Map for Disease Gene Discovery
in African Americans Am J Hum Genet 74: 1001-1013

17. Contact Information
Nick Patterson: nickp@broad.mit.edu (617 252 7043)
David Reich reich@broad.mit.edu (617 432 6548)
Arti Tandon atandon@broad.mit.edu (617 432 5348). This is the person
responsible for maintaining the website, and should be the one contacted in
case of any issues with the software.

18. Appendix A: Expert use Parameters
Here is a table of the parameters that are for expert use only

Name Type Description Possible and
Default
values

unknowngender

String Unknown gender set
to value

U

twomodels

Int The two models A
and B are defined
with model A as the
first twomodel
number of risk values,
and the rest being
model B, scores are
produced for each
SNP for both models
A & B, and genome
wide stats and
comparisons are
made. The initial
motivation was to do
a kind of case-control

Positive
integer
Default: 0

 - 44 -

analysis with model A
risk greater than 1 just
for cases, and model
B with same risk for
both cases and
controls

theta2mode Boolean If YES, allows the θ
value to be different
on the two
chromosomes. Used
in cases where mother
and father have very
different ancestries.

0,1
Default: 0

lambda2mode

Boolean If YES, allows the λ
value to be different
on the two
chromosomes. Used
when mother and
father have very
different ancestries.

0,1
Default: 0

keeptrashfiles

Boolean Keep the α, β and g
values from the last
iteration

0,1
Default: 0

numlagprint Int Auto correlation
statistics upto
numlagprint

Positive
integer >= 0
Default: 10

markerpub

Int Used in debugging Default: -1

allele_scale_fac Double Multiply allele counts
by the scale factor

Default: -1

nopopsmode

Int If YES, uses the initial
frequency estimate to
be the modern
frequency counts, and
then these modern
frequency counts are
not used

0,1
Default: 0

muval Double Used in bridge
sampler

Default: 0

a1 Double Used in simulation
mode

psi1

Double Used in simulation
mode

p1

Double Used in simulation
mode

B1 Double Used in simulation
mode

 - 45 -

19. Appendix B: Parameters new in Version 2.0

Parameter Name Data type Description Possible and
Default values

leave1mode Boolean: In checkit mode,
leaves 1 marker at a
time and gives the

score

NO

dupmode Boolean In checkit mode,
runs duplicate

check on all indivs

NO

fastdup

Boolean In checkit mode,
runs fast duplicate
check on all indivs.
This parameter is

automatically set to
YES, in checkit

mode

YES

usephyspos Boolean Calculates and
resets the genetic
positions based on
physical positions,
particularly useful
when you don’t
have genetic map

NO

dumpgammas Boolean Dump gammas for
all markers and
indivs in binary

format (will need
another program to

print in ASCII
format: Alkes)

NO

gammafiles String This is the set of
files which are

created when using
dumpgammas

NULL

emiter Integer This is the initial
EM algorithm to

initialize the MCMC

30

alldata Boolean Used in simulation
mode, make

simulated data for
all the markers, if
NO it keeps the

NO

 - 46 -

missing data intact
lmmodel Boolean Used to run fine-

mapping. This
assumes ancestry
risk is specified by
risk model, actually

1D model

NO

lmchrom Integer The chromosome
on which you run

fine-mapping

lmnumx Integer Number of points
in allele risk mesh

 Positive values > 1,
default: 30

lmmax Integer Max value for the
mesh, with number

of mesh points
being lmnumx

3.0

lmthresh Double If fine-mapping log
score is below
lmthresh, don’t

print details of fine-
mapping runs

-10.0 (This is to get
all the markers)

lmdetails Boolean Detailed output YES
lmlobase Integer Physical position

low end for fine-
mapping

lmhibase Integer Physical position
high end for fine-

mapping

pubxindname String Name of a
individual for which

we want to print
some output

pubx Integer Array The first
component is the
internal individual
ID for whom you

want to output
gammas

pubxa Integer Array List of individual
IDs for which we

want to output
gamma?

markername String This is used to
publish the gammas

as well as in
simulation mode if
markersim is not

specified

NULL

 - 47 -

sim2dvals Double Array of
size 4

Specifies ancestry
and allelic risk for

fine-mapping
simulations

Sim2dvals[0]: Afr
freq

Sim2dvals[1]:
Caucasian freq
Sim2dvals[2]: λ
Sim2dvals[3] : µ

sim2d_caseonly Boolean 2D simulation
where we only

consider the case
genotypes?

NO

familynames Boolean Used with PED file,
if we have unique
Indiv Ids set this
parameter to NO,

else to YES

indivoutname String Output file for
individual

information

snpoutname String Output file for
marker information

genotypeoutname String Output file for
genotype data

localoutfilename String Output file with all
the detailed

information for
markers

mincasenum Integer Removes cases
which have below a
certain threshold #
of genotypes, used
in conjunction with

the file
badpairsname

1

casecontrol Integer Array Number of cases
and controls, used
in simulation mode

hiclip Double Allows LOD scores
to be upto a

maximum of hiclip.
Use if scores appear

to be saturating

Default: 15.0

loclip Double Default: -20.0
packmode Integer This packs the

genotype data. To
be used if one has a
memory extensive

job

Default: NO

 - 48 -

1
 Patterson et al (2004) Methods for High-Density Admixture Mapping of Disease Genes Am. J. Hum

Genet. 74: 979-1000

2
 Smith et al. (2004) A High-Density Admixture Map for Disease Gene Discovery in African Americans

Am J Hum Genet 74 : 1001-1013

