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What’s new in Version 2.0 
The main enhancement in this version is the ability to do a fine-mapping run to follow up a 
peak in a coarse scan. In addition to doing the fine-mapping run one can also run 
simulations in this mode. A number of small enhancements have been added as well, such as 
fast check for duplicates, support for PED files and some extra output. A number of small 
bugs have been fixed as well. Details of the various enhancements are given later in the 
documentation in Section 7. 

 
1. Overview of admixture mapping  
Admixture mapping is a method for localizing disease causing genetic variants that differ in 
frequency across populations. It is most advantageous to apply this approach to populations 
that have descended from a recent mix of two ancestral groups that have been 
geographically isolated for many tens of thousands of years: for example, African Americans 
have both West African and European American ancestry. The approach assumes that near 
a disease causing gene there will be enhanced ancestry from the population that has greater 
risk of getting the disease. Thus if one can calculate the ancestry along the genome for an 
admixed sample set, one could use that to identify disease causing gene variants.  The figure 
below shows a schematic of how a disease locus would appear in an admixture scan of 
patients and controls.  

 

Fig. 1: Schematic of how a disease locus will appear in an admixture scan.   

2. Algorithm overview  
a) Introduction  
In this section we will briefly discuss the algorithm, its limitations, 
applications and a comparison with other association studies.  

Our program estimates the ancestry along the genome of a sample population 
resulting from recent admixture between two ethnic groups. The program uses data 
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from individuals genotyped at a set of markers, where the markers chosen are 
preferably the ones that differ significantly in frequency between the two ancestral 
populations. Ideally the user should have genotype data both for admixed samples, 
and for the two parental groups. The approach and algorithm have been described in 
detail in a paper by Patterson et al.1 As emphasized in the paper, although controls 
are not required for screening of disease genes, including them can be useful, in 
particular for obtaining robust estimates of the marker frequencies in the ancestral  
populations, which is important for increasing the power of the analysis.  
 

The algorithm calculates a Bayesian-likelihood ratio test to scan for disease  
association anywhere in the genome. In this calculation, individual ancestry  
estimates along the genome are averaged across all the individuals to identify  
genomic regions where there is enhanced ancestry from one of the parental  
populations, indicating the presence of a disease gene nearby. The algorithm  
uses a Hidden Markov Model, where the ancestry state is “hidden” and is  
inferred based on the genotypes, and a model of how data is generated.  
 

The parameters of the model that are of interest are as described in the  
paper:  

 Mi: Average proportion of alleles inherited from population A (where  
admixture is being considered between populations A and B), for each 
individual i. This parameter is referred to as θ in the software package. 

 Mi

X 
: Proportion of ancestry A for the X chromosome, for each individual 

i, referred to as θ
i,X 

in the software package.  

 λi: Number of chromosomal exchanges per morgan between ancestral 
segments of the genome since the mixing event, for each individual i. This 
can be roughly identified with the number of generations since admixture. 

 λi

X
: Number of generations since admixture on X chromosome, for each 

individual i. 

 pj
A, pj

B frequency of the alleles in the parental populations for each marker 
j. 

 τ
A
, τ

B
: These parameters take into account the uncertainty in the marker  

allele frequencies due to sampling of a limited number of individuals from 
populations A and B. These also account for genetic dispersion between 
the ancestors of a mixed population, and their modern counterparts. 
 

 All of the above parameters are unknown, and are sampled using a Markov 
Chain Monte Carlo approach, following a “hierarchical Bayesian” 
framework to perform the calculation. In this approach the initial values 
are set as follows:  

 pj
A, pj

B are set to values estimated from genotype data for the parental 
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populations. For example in the paper by Smith et al 
2
.we calculated these 

using genotype data from modern West African and European samples. If 
the frequency estimates are not provided by the user, the program makes 
an estimate of these values from the admixed samples.  

 Mi: is set for each individual through the use of maximum-likelihood 
estimates based on treating all SNPs as unlinked. 

 λi: Is set to 6 for all samples in our case, based on empirical studies. 

ANCESTRYMAP starts sampling from the correct conditional distribution after a 
sufficient number of “burn-in” iterations. By running enough follow-on iterations 
one can explore the posterior distribution of the various parameters given the data, 
and obtain a statistic that appropriately takes into account the uncertainty in the 
unknown parameters.  The program minimizes the number of burn-in iterations that 
are required by using an expectation-maximization algorithm to pick initial values of 
the parameters that are relatively close to the true values.  

 
This algorithm calculates two separate statistics which can be used to identify disease 
genes. These are:  
1. Locus-genome statistic: Compares the percentage of ancestry derived 
from one of the parental populations at any locus with the average in the genome. 
This essentially compares for each point in the genome, the likelihood of being a 
disease locus versus being a locus unrelated to disease. Formally, this is given by for 
each individual i and each marker j as:  

 
where ψ

1 
and ψ

2
 are the increase in disease risk due to having 1 or 2 population A 

ancestry alleles, respectively, relative to having no population A ancestry allele.  γ
i,0
(j), 

γ
i,1
(j) and γ

i,2
(j) is the estimated probability for individual i, for having 0,1 or 2 

population A alleles at marker j. And, ηii,0 
= (1 – Mi)2, ηii,1 

= 2 Mi(1 - Mi) and ηii,2 
= Mi

2. 
 

To obtain a genome-wide score we will multiply L
ij
 over all the individuals, and then 

average it at equally spaced points genome-wide. A positive association can be 
declared if log base 10 (LOD) of the average is greater than 2.  For individual 
markers L

j 
is referred to as LGS in the output and the genome-wide score is referred 

to as “genome log factor”, for ex.: 
>> genome log-factor:     9.028 
 

2. Case-control statistic: Compares cases and controls at every point in the 
genome, looking for differences in the ancestry estimates. This calculates for each 
individual i and at every locus j in the genome, the difference between their expected 
number of population A ancestry alleles at a locus and the estimate from data:   
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µi(j) = 2 Mi– [ 2 γii,2(j) + γii,1(j) ] 

A t-statistic is calculated for a difference of µ(j) between cases and controls. Both of 
the above statistics are averaged over all the iterations. The advantages and 
disadvantages of using one statistic over the other are explained in detail in the 
paper.  

 
b) Limitations 
The program will currently work only for admixture between two populations, and is 
limited to considering markers that are bi-allelic. Our approach allows admixture 
mapping to be applied to the X chromosome, which has to be analyzed differently 
from the autosomes, however currently it does not support the Y chromosome, 
mitochondrial DNA, or the pseudoautosomal region of the X chromosome. The 
current implementation has parameters tuned for African American ethnicity for the 
sample population. If users of the program wish to study different admixed 
populations, please contact the author. It is important to note that one should 
exclude samples that have ancestry from only one population (Mi = 0 or 1), since 
they will show no crossover between segments of different ancestry.  

 
c) Applications of the program    
 Estimate ancestry along the genome for an individual  
 Find disease-causing genetic variants associated with ancestry  

 
d) Comparison to other mapping approaches and guidelines for 
optimal study design  
Admixture mapping has more power to detect genetic variants of weak effect—the 
type that are likely to be responsible for complex diseases—than linkage mapping, 
the classic approach of mapping in families that has been so successful for rare, 
Mendelian disease.  

Admixture mapping has a great advantage over linkage mapping because it is a type 
of association analysis, like whole-genome haplotype mapping or candidate gene 
analysis, and thus has much more power to detect risk variants of weak effect. 
However, it differs from other association mapping methods in two important 
respects, which have a major impact on study design. (1) It requires 100-1000-times 
fewer markers to carry out a whole-genome scan for association to disease, making a 
whole-genome scan practical with 1,000-3,000 markers. (2) Control samples are not 
strictly required for the study, since the proportion of ancestry at each locus is being 
compared to a genome-wide average to look for a deviation—the control is the rest 
of peoples’ genome. In general, we feel that as a matter of study design, it is far more 
important to have as large a case sample size as possible, with the size of control 
samples of secondary importance. For a detailed discussion on this topic please refer 
to the paper.  

Theoretical calculations demonstrate that in many cases, with a high-density map of  
markers admixture mapping study has statistical power similar to that of a whole-
genome haplotype or direct association study. And fewer samples are required than 
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for a linkage scan to achieve the same statistical power. The key, however is that 
admixture mapping works best for alleles which have high frequency differentiation 
across populations.  

The power calculations in the accompanying paper suggest that with 2000 samples 
and a high density map it should be theoretically possible to use this approach to 
detect disease loci where the relative risk due to an allele is as low as 1.5. We find that 
samples with population A ancestry between 10%-90% provide the most power for 
admixture mapping, and that the power is affected mildly by which population has a 
higher incidence.  

3. How to run the program  
This section describes how to run the program through the command line, and a 
description of the input parameter file needed to run it.  

a) Command-line arguments  

To run ANCESTRYMAP type on the command line: 

>>ancestrymap –pv paramfile or 
>>./ ancestrymap –pv paramfile 

p: is a compulsory option, and in this case we have to specify the parameter file 
paramfile.  
v: version number, this tells us which version of the program we are using. This 
number can be modified by the user in the file ancestrymap.c . To redirect the 
output to a file one would type on the command line: 

  
 

   

b) Description of the parameter file  
The format of this file is as follows:  

 

Note: All the parameter names should be in lowercase, and there should be no white 
space between parname and semicolon. The parameters which are compulsory are 
the names of the files that contain marker, individual and genotype data; and the risk 
model. Parameters which are of the type array should have their values space 
separated. A sample parameter file is included as part of the download, and a detailed 
description of the parameters is as follows:  

Parameter Name Data type Description Possible and 
Default values 

INPUT FILE NAMES 

>>./ancestrymap –pv paramfile > out.dat&   
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indivname 
(MANDATORY) 

 

String Individual data  

badsnpname String List of markers to 
delete from analysis 

 

genotypename 
(MANDATORY) 

String Genotype data for 
all the samples 

 

snpname 
(MANDATORY) 

String Marker data  

ANCESTRYMAP PARAMETERS 

risk 
(MANDATORY) 

 

Double array 
 

Risks for the 
various models 

Default: 2.0 

numiters 
 

Int Number of follow-
on iterations 

Positive integer >= 
0 

Default: 5 
numburn Int Number of burn-in 

iterations 
positive integer >= 

0 
Default: 1 

reestiter 
 

Int 
 

Controls number of 
iterations inside 
ancestrymap for 

allele freq sampling 
 

positive integer >= 
1 

Default: 1 

details 
 

Boolean If YES generate 
additional output 

NO, YES 
Default: NO 

tlreest 
 

Int Always set to YES, 
don't need it 

0,1 

noxdata 
 

Boolean If you have no X 
chromosome data 

or want to ignore it 

NO, YES 
Default: NO 

fakespacing 
 

Double The spacing 
between fake 

markers in Morgans 

positive > 0 
Default: 0.01 ( in 

Morgans) 
seed 

 
Int Random number 

needed for the run 
Positive integer 

checkit 
 

Boolean 
 

If YES runs lots of 
checks (mostly done 

initially) 

NO, YES 
Default: NO 

thxpars Double array of size 
3 

Sets the initial 
parameters for the 
prior distribution 

for θX 

Default: 
40.0  1.0  10.0 

thpars Double array of size 
2 

Sets the initial 
parameters for the 
prior distribution 

for θ. 

Default: 
 1.0  5.0 
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lampars 
 

Double array of size 
2 

Sets the initial 
parameters for the 
prior distribution 

for λ. 

Default: 
1.0   0.1 

 

lamxpars 
 

Double array of size 
2 

Sets the initial 
parameters for the 
prior distribution 

for λX 

Default: 
1.0  0.1 

dotoysim 
 

Boolean If YES run 
simulations 

NO, YES 
Default: NO  

markersim 
 

Int This is the marker 
number of the  

disease allele, -1 
means none 

-1 or positive 
integer 

Default: -1 

simnumindivs 
 

Int Generate toy data 
with simnumindivs 

number, half will be 
cases, and half 

controls. Half are 
female and half are 

male 

Positive integer 
Default: -1 

risksim Double In simulation mode 
risk used to 

generate data 

Default: 1.0 

tauscal Double array Initial values of 
t(African) & 
t(European) 

Default: 100  100 
(Note this is a lower 

value than we 
expect, however we 

prefer to bias the 
initial value to be 

low) 
wrisk 

 
Double array Allows the model to 

have weights, which 
are normalized to 

sum to 1 

Default: 1.0 

lrisk 
 

Double In checkit mode: 
leave one marker 

out in turn and this 
is the risk that we 

use (in checkit mode: 
only one model risk 

is used). 

Default: -1.0 

controlrisk Double array Control risks for 
the various models 

Default: 1.0 

risk2 
 

Double array Risk for ethnic 
homozygotes for 
various models, 

controlrisk and risk2 

Default : -1.0 
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are optional, 
however they 

should be same 
number as risk if 
they are specified 

taulsdev 
 

Double Prior standard 
deviation for african 

& European t 
values 

Default: 0.5 

taulmean Double Prior mean for 
log10(t) for both 

African and 
European 

Default: 2.0 

allmale Boolean Used in simulation 
mode. If YES it 

specifies that all the 
simulated 

individuals should 
be men. Need to 

specify the 
parameter 

simnumindivs to 
make this parameter 

effective 

0,1 
Default: NO 

allcases 
 

Boolean If YES all the 
samples are cases 

NO, YES 
Default: NO 

usecontrols 
 

Boolean If NO controls are 
ignored 

NO, YES 
Default: YES 

pubfmodern 
 

Boolean Publish ancestral 
allele frequency 

estimates, if YES 
allows publication 
of modern allele 

frequencies 

NO, YES 
Default: NO 

OUTPUT FILE NAMES 
 (Note that the directory in which the output files are to be generated should exist, else 

the program will fail) 
trashdir 

 
String Used only in checkit 

mode: directory to 
store HMM output 

 

thetafilename String Ancestry 
information for all 

individuals 

 

output 
 

String Parameter values at 
every iteration 

 

pubxname String Debug file for a 
particular marker 

 

ethnicfilename String Average ethnicity  
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(/g) for each 
marker, averaged 

over all individuals 
and iterations 

snpoutfilename String Detailed marker 
information 

 

indoutfilename 
 

String Detailed individual 
information 

 

freqfilename 
 

String Allele frequency 
information for all 

markers 

 

lambdafilename 
 

String λ information for all 
individuals  

 

genotoyoutfilename String Genotype data 
generated in 

simulation mode 

 

indtoyoutfilename String Individual data 
generated in 

simulation mode 

 

 

 

The software makes it possible to test for several disease models simultaneously. If 
one is studying a disease for which there is an epidemiological reason to believe that 
there is higher genetic risk in population A, one might want to test several models 
for increased risk due to population A ancestry and, simultaneously test one model 
where population B ancestry confers greater risk. This is implemented by inputting 
the parameter risk as an array with values both greater and less than 1, for example: 
>>risk:      0.8  1.2  1.3  1.4  1.5  1.6 
 

4. Format of the input data files  
In this section we will discuss the format of the input files that are needed for the 
executable to run. The file names are specified in the parameter file used by the 
program. The data in all the input files should be white space separated or tab 
separated. 

 Marker file (snpname):  
This contains information about the markers being used for the analysis. The format 
and an example of the file is as follows: 

 
SNP_ID Chr Gen_ 

Pos 
Phys_ 
Pos 

PopA_ 
vart_cnt

PopA_ 
ref_cnt

PopB_ 
vart_cnt 

PopB_ 
ref_cnt

rs897634       1   0.031621   2618675 21 189 242     84 
rs905135    1 0.035690 2982467   35     71    281     19 
CV1944294  1        0.067986   4380773   42     64    277     21 
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Here Chr_Num is the chromosome number, Gen_Pos and Phys_Pos are genetic 
and physical positions. PopA_vart_cnt and PopA_ref_cnt are the variant and 
reference allele counts in the parental samples of population A, and the last two 
columns are these counts for the parental samples of the population type B. 

 
The genetic position can be in Morgans or centiMorgans, and valid values for 
chromosome_num range from 1 to 23, or 1 to 22 and X. The markers can be 
arranged in any order in this file, and don’t have to be sorted by chromosome 
number or any other field. Currently the algorithm does not support the Y 
chromosome, mitochondrial DNA, or the pseudoautosomal region of the X 
chromosome.  
 
One could alternatively use a file which has only the first four columns, that is, with 
no parental counts. This will probably lead to reasonable results, however with lower 
statistical power, and the user should be cautious about the results in this case. If the 
user has a marker file which has just the first four columns and a genotype file for 
the parental populations, one can generate the file in the above format using the 
program cntmono, which is described in detail in Section 11. Before using the output 
file created by cntmono as the input marker file for ancestrymap, remove from it the 
blank lines, lines with comments and, the header line. This file should only contain 
details about the markers, else ancestrymap will give a fatal error. 
 

 
 Badsnps file (badsnpname):  

This is a list of markers that one would like to exclude from the analysis. These could 
be markers that fail any of the tests described in Section 5 that are performed during 
the initial phases of running ANCESTRYMAP, by setting the checkit field to YES in 
the input parameter file. In addition, one should also exclude one of the pairs of 
markers which are in strong linkage disequilibrium with each other.  
 
SNP_ID 
rs578459 
CV2800274 
rs73494 
 

 Individual file (indivname):  
This has information about the individuals that we are going to use for analysis. 

 
Indiv_ID Gender Status 
I1  M       Control 
I2 M       Case 
I3 M          Ignore 

 
The gender field can be M (male), F (female) or U for samples with unknown 
gender. The status field can be Case, Control or Ignore, where the samples that have 
status set as Ignore are excluded from the analysis. One can use this field effectively 
without having to create a new individual file each time we want to analyze the same 
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sample set for a different hypothesis. For example if we have data from case and 
control samples for multiple diseases (ex. Multiple Sclerosis and Prostate Cancer), 
and say we want to analyze output from the ANCESTRYMAP only for MS. Then 
we might want to use the controls for both the diseases as controls, MS cases as 
cases, and set the Prostate Cancer cases as Ignore. Also, if during the course of 
analyzing a data set we realize that there is a problem with a particular sample (ex. 
contaminated DNA) we can set the Status field to Ignore and that would remove this 
sample from our analysis. 
 

 Genotype file (genotypename):  
This has the genotypes for all the individuals and markers that are listed in the above 
two files. 

 
SNP_ID Indiv_Id Vart_allele_cnt 
rs1865056          I1 0 
rs1865056        I2 1 
rs1865056        I3 0 

 
Note that there is a fatal error if one has markers and individuals mentioned in the 
genotype file, which have not been specified in the marker and individual files 
respectively. The possible values for the variant allele count are 0, 1, or 2. The variant 
allele count for men on the X-chromosome can be given only as 0 or 1, with 2 being 
an invalid value in this case. Missing data can be specified by -1, or not mentioned at 
all. An individual with a large amount of missing data will cause ANCESTRYMAP 
to behave badly, and it might be a good idea to ignore these individuals in the 
analysis, by setting their Status field to Ignore.  
 
The genotype file can be given as a zipped .gz file as well, which the program will 
unzip and use.  

 
5. Built-in data checks 

Next we shall focus on the built-in data checking programs. Like most other 
methods for whole genome scans, admixture analysis is very sensitive to data 
problems and the software incorporates a number of tools to check for the more 
common kinds of errors. The user is strongly advised to run these tests because our 
experience suggests that most data sets even when carefully curated contain some 
problems which can lead to spurious associations to disease. In order to run these 
checks on the data, you have to run the ANCESTRYMAP program with the checkit 
parameter set to YES in the parameter file. The description of these tests and their 
output is as follows: 

 
 Hetxcheck:  

Check to see if there are any heterozygous counts on the X chromosome for 
the male samples. The program will disregard heterozygous genotype value 
for male samples on the X chromosome, if there are any. The output from 
this check is as follows for all the markers: 
SNP_ID NUM_HET NUM_HOMOZY 
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>> hetxcheck             rs211644    0  310 
Here NUM_HET and NUM_HOMOZY are the number of heterozygous 
and homozygous counts respectively on the X chromosome for the male 
samples.  

 
 checkgeno  

Checks to see if there are any genotype values > 2, prints out a warning and 
ignores that genotype for the rest of the analysis.  
>>bad genotype: rs897634  1   4 
This test also outputs the total number of good and bad genotypes. Ex: 
>>Num good genotypes: 4711298  Num bad genotypes:  0 
 

 physcheck  
This is a check to find markers which are flipped with respect to their genetic 
and physical positions. The output is only for the set of two markers, where 
there has been a mix up of physical and genetic positions. This check gives a 
warning only, since we use genetic distance in the analysis, and not the 
physical distance.  
SNP1_Id   SNP2_Id   SNP1_Gen_Pos   SNP2_Gen_pos  
SNP1_Phys_Pos   SNP2_Phys_Pos 
>> physcheck           rs11231098             rs435582     0.628     0.649          
61996439     41813770 

 
 Hardy-Weinberg test:  

Performs the hardy-weinberg equilibrium test for each marker and prints out:  
SNP_Id   Chr_Num   SNP_Index   HW_score.  
>> hwcheck             rs897634   1    0    -1.526 

 
A positive HW_score is indicative of too many heterozygous counts, and a 
negative score is indicative of too many homozygous counts. For markers 
that are highly differentiated in frequency, a deficit of heterozygotes is often 
observed in a population such as African Americans (this is called the 
Wahlund effect in population genetics). Thus a hwcheck result showing an 
excess of heterozygotes should be a greater cause for worry than one 
showing a deficit. One should look for outliers in this test. 

 
 checkdup  

This checks individuals to see if there are any duplicate individuals based on 
the amount of match between their genotypes. If there is more than a 75% 
match in the genotypes for two samples, this test prints out:  
>>##Num of genotypes matched: Num of genotypes mismatched 
>>##If the status of the two individuals does not match Status1: Status2 
>>dup? Indiv_1 Indiv_2  

   >>match: 1400 mismatch: 2 
>>status_1: Case status_2: Control 
The above example indicates that these two individuals are probably the 
same since their genotypes match exactly. Note that the test also prints out 
the status of the two individuals if they do not match.  
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However, the next example shows that even though there might be say 80% 
match between two individuals, they might not be duplicates since the 
number of genotypes compared is not very large. The user has to look at the 
results carefully and decide which pair of individuals are duplicates and which 
are not. The user should set their own cutoff of what defines a duplicate pair 
of individuals.  
>>dup? Indiv_2 Indiv_35  
>> match: 100 mismatch: 20 

 New in Version 2.0: fastdup parameter  
We allow for a very fast, but far from comprehensive check for duplicate 
samples. The basic algorithm chooses 15 markers and looks at genotypes on 
these 15 markers. Pairs of individuals with an exact match on the 15 markers 
are checked for near duplicates with a slow algorithm that counts matches 
and mismatches for every marker. We iterate this check fastydupnum times 
(default for fastdupnum:  10).This check is very fast and has a reasonable 
chance of finding duplicates, but can be defeated by missing genotypes, or 
genotype errors. To run this check set 
fastdup = YES 
dupmode:= YES 
for a careful check for duplicates with running time proportional to the 
square of the number of samples. The output for this check prints out the 
duplicate pair IDs, # matches, # mismatches, # valid genotypes for each 
individual in the pair, and then automatically “ignores” one of the samples. 
The user will have to set one of the samples to ‘Ignore’ in the sample file on 
their own. 
>>dup? Indiv_1 Indiv_2 

  >>match: 665 mismatch: 0   1450 1495 
>>dup.  Indiv_1 ignored 

 
 mapcheck:  

Compares ancestry estimates obtained for each marker by itself to that 
predicted by adjacent markers (leaving out the marker of interest). A 
discrepancy indicates a misspecification of a marker’s genomic position. A 
negative difference is not worrisome however a positive difference should be 
investigated more carefully, especially if it is higher than 3 or 4. Note that for 
this test it is more important to look for outliers than at absolute values 
alone.  
SNP_ID   SNP_Index  Ancestry Difference 
>> mapcheck             rs897634     0   -23.679 

  Here SNP_Index is the marker’s index number internal to the program.  
  

 freqcheck 
Freqcheck compares the estimated frequencies of an allele from the MCMC 
(Markov Chain Monte Carlo) with a max likelihood fit. S() is a likelihood 
ratio statistics, approximately chi-square with 1 d.o.f. if the frequencies look 
fine. This is really a check that the parental frequencies are plausible. S scores 
above 10 are highly dubious, above 20 indicate a problem .A common reason 
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for this error is due to an interchange of alleles ( flipped marker ). Same as in 
the case for mapcheck it is more important to look for outliers.   
SNP_ID   Chr_num   S(All)   S(Controls)   F(A)  F(E)   G(A)   G(E) 
>> freqcheck             rs897634     1     1.133     2.563     0.086     0.765       
0.062     0.847 
Here S(All) is on all the data, and S(Controls) is on controls only, as a very 
strong disease effect in cases can distort the true frequency. F(A), F(E) are 
estimated frequencies for the African and European parental samples using 
the MCMC, G(A), G(E) are the corresponding maximum likelihood fits. 
 

 leave1out:  
Removes the marker contributing the most to any association and assesses 
whether the signal of association persists. If it remains even after leaving out 
the best marker, it is less likely to be an artifact due to a single marker. This is 
a computationally expensive check to run, and needs a large amount of disk 
space and might crash if that is not available.  
>> scores for each fake 
>>    chrom               SNP_ID      base       min       max 
 >>   1   1             fake-1:0    -6.912    -7.063    -5.286 
 >>   3   1             fake-1:1    -6.965    -7.169    -5.389 
 >>   4   1             fake-1:2    -6.752    -7.050    -5.425 
Here base is the score that we get without using the leave1out algorithm, min 
and max are the minimum and maximum scores obtained after leaving one 
marker in turn. The max score is not relevant, however it is a cause of worry 
if the min score is very much lower than the base score. 
 
This test gives the following output as well for all the chromosomes: 
  >>chrom      base       min       max 
  >>best score (chrom)     1    16.761    14.245    16.875 
  >>best score (chrom)     2    -2.101    -2.829    -1.140 
  >>best score (chrom)     3    -3.416    -3.645    -1.207 
  >>best score (chrom)     4    -3.910    -4.308    -2.679 
  >>best score (chrom)     5    -1.444    -1.687    -0.438 
  
  >>best score (chrom)    22    -2.006    -6.231    -1.065 
  >>best score (chrom)    23     2.736    -4.751    17.266 
global score (leave1):    13.208 

 
 checkindiv 

New in Version 2.0 
This implements a crude check on whether an individual should be included in 
the scan, using the idea of estimating global ancestry (proportion of European 
ancestry for African-Americans). Given the variant allele frequency conditional 
on ancestry for marker k we can compute the probability distribution of 0, 1, 2 
variant alleles and hence a log-likelihood score L(k). We also can compute the 
mean and variance of L(k). Accumulating the statistic L(k) over all markers k we 
get a statistic whose mean and variance is known. Therefore we can compute a 
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Z-score, large negative scores (say < -6) should be discarded. In practice we also 
find large positive scores. These individuals usually have parents with very 
divergent ancestries, whose children therefore have, marker by marker ancestry 
close to the mean. We recommend that such individuals are also not used in the 
scan, though this is a minor issue as they will not contribute much to the 
admixture score. Here is some output from samples that we would not use in a 
scan. Note that the top 3 individuals have ancestry proportions near 50%. 
 
>>###             ID       P(E)    ---      Z-score 
>>checkindiv      Hi1     0.504   156.756    10.464 1328    888.585    0.669 
>>checkindiv      Hi2     0.514   143.433    10.451 1149    730.872    0.636 
>>checkindiv      Hi3     0.506   146.305    10.286 1225    824.703    0.673 
>>checkindiv      Lo1     0.360  -103.759    -6.970 1128   1604.437    1.422 
>>checkindiv      Lo2     0.364  -131.407    -9.242 1026   1639.528    1.598 

 
 
6. Interpreting and monitoring the output  

a) Overview  
In this section we will discuss the output generated by the ANCESTRYMAP 
program, and how to analyze it.  

At the end of a run the most important output generated by the ANCESTRYMAP 
program is the log-likelihood of the locus genome statistic (LOD) averaged over all 
the markers in the genome, referred to as the genome log-factor. As mentioned in 
the paper LOD > 2 is a significant score, and is a signal of positive disease 
association. At the end of the run one should check this value and also the τ values. 
If the τ values are small (<100) it is an indicator of problems: in particular that the 
ancestral population frequencies are not matching up well with the admixed 
population frequencies.  

In our experience of running this program one can observe a high score of 
association, due to many reasons that have nothing to do with a real association to 
disease. Thus, if a significant LOD value is observed the user should be extremely 
careful about interpreting the result and first perform the following checks:  
 Is the rise (or fall) in population A ancestry that is suggesting the presence 

of a disease gene seen in both cases and controls? If it is, this suggests an artifact 
affecting both cases and controls, rather than a real biological association to 
disease.  
 Does one observe a significant case control statistic score at the locus? 
 Have any markers within 10cM of the disease locus failed any of the data 

checks described in Section 5 ? If so, remove them from the analysis (add them to 
the badsnpname file) and rerun the program.  
 Remove the individual marker showing the strongest association to disease 

from the analysis by adding it to the badsnpname file and then rerun the program. 
The score should not be dependent on a single marker, but rather be supported by 
multiple independent markers.  
 In our experience, markers that are in linkage disequilibrium in the ancestral 
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populations (E.G. West Africans and European Americans), but are treated as 
independent for the admixture mapping study, can produce a false-positive 
association to disease. This is especially important because it is tempting to increase 
marker density, thereby the chance of markers being in linkage disequilibrium with 
each other in the ancestral populations, in precisely the regions that show most 
association to disease in preliminary scans. We therefore recommend testing for 
linkage disequilibrium in the ancestral population among the markers within 10cM 
of the disease locus, and discarding markers until no pairs of markers in the region 
are in linkage disequilibrium with each other (P<0.05). At markers showing 
association to disease, thin the markers so that none is within 200 kb of any of the 
others. Finally, rerun the analysis to assess if the association remains.  
 One should also perform a few more runs, increasing the number of burn 

in and follow on iterations by a factor of 10 to assess if the score is consistent. 

 
b) Output Details  
Next we will discuss the standard output in detail, which can be redirected to a file 
for easier viewing. There are a number of parameters that control the output. The 
most basic output generated is as follows (when no output parameters have been set) 
to the standard out, which can be redirected to a file for easier viewing.  

 Input parameter file name  

 Values of all the parameters specified in this file  

 Total genomic distance  

 Count of individuals, cases, controls and ignores used in the analysis; and 
also the number of real and fake markers  

 Score generated by the expectation maximization algorithm for each 
iteration. One should observe the score increasing with the number of 
iterations. Ex.:  

>>emsimple iter: 3 53989.104 
 

 Results of the Markov Chain Monte Carlo iterations, which include stimation 
of θ and λ . Note that the iteration number goes from 1 – numburn to 0 for 
the burn-in iterations and from 1 to numiters for the follow-on iterations. Also 
the score is zero for the burn-in iterations, since we calculate it only for the 
follow-on iterations.  
estglob theta: iteration_num, thp1, thp2, thxp1, thxp2, thxp0 
estglob lambda: iteration_num, lp1,lp2,lxp1,lxp2, average λ  
thp1, thp2 are the parameters for the prior distribution for θ, and thxp0, thxp1 
and thxp2 are the same for θ

X. 
Similarly, lp1, lp2 are the parameters 
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 Posterior estimates of the mean and standard deviations of θ, θ
X, 
λ, λ

X
, τ(Afr) 

and τ(Eur). The user should look at the values of τ (African) and τ 
(European) carefully, since they are an indicator of how well the ancestral 
models fit the data. It is worrisome if we see values to be less than 100.  

 
 Genome-wide scores for all the models, ex.:   

>> risk1      risk2     crisk    score 
>> model: 1.500  2.250    1.000   9.028 

                      
Here, risk1 and risk2 are the increase in risk corresponding to have one or 
two population A ancestry alleles (as opposed to having none), and crisk is 
the corresponding control risk.  

 Lag and correlations For a number of sample statistics we compute 
      correlation coefficient at small "lags". If the statistic at iteration i is S(i) we   

compute  for 1 <= lag <= 10 (default) the correlation between S(i) and        
S(i+lag). Large values indicate that the MCMC is not mixing very well. We 
publish this for:  

o llike: a statistic of no intrinsic interest but mixes poorly.  
o log10fac: Log_10 Bayes factor (genome wide)  
o factor: Bayes factor = 10^log10fac  
o log tauscal: log (t(0)) the t value for population 0.  

 
           In our experience ii), iii) are the most important statistics which mix  

 

 
 Scores for each chromosome:   

Chr_Num LGS_MAX CCS_MAX CCS_MIN LGS_LOCAL. LGS_MAX is 
the maximum locus genome statistic score obtained on the chromosome, 
CCS_MAX and CCS_MIN are the maximum and minimum case-control 
statistic scores, and LGS_LOCAL is the log likelihood of the locus genome 
statistic score calculated by averaging over all the markers on that 
chromosome. All of these scores are averaged over all the individuals and all 
the iterations.  Here is an  
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As one can clearly see from the above example, the LGS_MAX and 
CCS_MAX scores are the highest for chromosome number 4.  

 Bestscores: The maximum genome-wide score for the locus-genome statistic, 
and the maximum and minimum genome-wide scores for the case-control 
statistic.  

 

 Genome-log-factor: log-likelihood of the locus genome statistic averaged  

 
The genome log factor is the most important output of ANCESTRYMAP 
and should be the first number that the user looks at.  

Next we will discuss the output when the parameter details = YES in the 
parameter file. In this situation the following additional output is written to 
the screen:  

 Details about all the chromosomes Chr_Num First_snp Last_snp 
Gen_dist. Here Chr_Num is the chromosome number, First_snp and 
Last_snp are the indices of the first and last markers on the chromosome 
and Gen_dist 
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 For each markov chain monte carlo iteration print out, in the following 
format: The format of the output which begins with bigiter is as follows: 
bigiter iter ylike LOD sc. tau(A) tau(E) thetaave lambdaave 
xtave(M) xlave(M)  xtave(F) xlave(F)  
ylike is the slowly mixing statistic of little intrinsic interest described in 
the above mentioned supplementary note. xtave(M) and xtave(F) are the 
average θ on X chromosme for males and females respectively, xlave(M) 
and xlave(F) are the average λ on X chromosome for males and females  

 

       θ/M and λ values for all individuals:  
Indiv_Index  Indiv_ID Gender tmean tsdev txmean txsdev 
lmean lsdev lxmean lxsdev.  
Here Indiv_Index is the individual’s internal index number, tmean and 

txmean are the average θ and θ
X
, tsdev and txsdev are the standard deviation 

for θ and θ
X
. lmean and lxmean are the average λ and λ

X
, lsdev and lxsdev are 

the standard deviation for  λ and λ
X
.  

 

 Allele frequency estimates with standard error:  
SNP_Index SNP_Id Chr_Num amean asdev bmean bsdev.  
Here SNP_Index is the internal snp index, amean and bmean are the average 
reference allele frequency in population A and B; and asdev and  

 

 Scores for each marker:  
SNP_Index SNP_Id Chr_Num Phys_Pos Gen_Pos  LGS CCS.  

Phys_Pos is the physical position, Gen_Pos is the genetic position, LGS is  
the locus genome statistic score and CCS is the case-control statistic  

   

For a more detailed discussion on output details in various scenarios 
please refer to the online documentation Output Details section.  
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c) Output Files  
Next we will discuss the format of the output files, which can be specified in the 
parameter file. For an explanation of the format of these files click here. 

 indoutfilename specifies the following information for all the samples analyzed: 
o Indiv_Id 
o Gender 
o Status 
o Num_valid_genotypes 

 
 snpoutfilename specifies the following information for all the markers analyzed:    

o Snp_Id 
o Chromosome_num  
o Genetic_pos 
o Physical_pos 
o Pop_A_variant_allele_count 
o Pop_A_ref_allele_count 
o Pop_B_variant_allele_count 
o Pop_B_ref_allele_count 
o Case_genotype_count 
o Control_genotype_count 

  
 thetafilename specifies the following information for all the analyzed samples:  

o Indiv_index 
o Indiv_id 
o θ_true: “true” value of θ or M, printed only in the simulation mode 
o θ_ mean: population A ancestry for the autosomes averaged over all the 

iterations for a particular individual 
o θ _sdev: standard deviation of θ_ mean 
o θX_true: “true” values of θX or MX,  printed only in the simulation mode  
o θX_mean: population A ancestry for the X chromosome averaged over all 

the iterations for a particular individual 
o θX_sdev: standard deviation of θX_mean 
o Status 

 
 lambdafilename specifies the following information for all the analyzed 

samples:  
o Indiv_index 
o Indiv_Id 
o λ_true: “true” value of λ, printed only in the simulation mode 
o λ_ mean: λ for the autosomes averaged over all the iterations for a 

particular individual 
o λ_sdev: standard deviation associated with λ_ mean 
o λX_true: “true” value of λX , printed only in the simulation mode 
o λX_mean: λ for the X chromosome averaged over all the iterations for a 

particular individual 
o λX_sdev: standard deviation associated with λX_mean 
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 freqfilename specifies the following information for all the markers analyzed:  
o SNP_Index: index internal to the program for the snp 
o SNP_ID 
o chromosome_num 
o atrue: “true” reference allele frequency in population A, valid only in 

simulation mode 
o anaive: naïve frequency of the reference allele in population A using the 

ancestral genotype data 
o amean: calculated frequency of the reference allele in population A 

averaged over all the iterations 
o asdev: standard deviation associated with amean 
o btrue: “true” reference allele frequency in population B, valid only in 

simulation mode 
o bnaive: naïve frequency of the reference allele in population B using the 

ancestral genotype data  
o bmean: calculated frequency of the reference allele in population B 

averaged over all the iterations 
o bsdev: standard deviation associated with bmean 

 
 ethnicfilename specifies the following information for all the markers: 

o SNP_Index 
o chromosome_num 
o SNP_ID 
o Avg_ethnicity: Average θ or M over all iterations, and over all individuals 

at a particular marker.  
 

 pubxfile: Contains ancestry estimates for either a single marker or individual 
depending on the usage. In either case it outputs the probability of having 0, 1 or 
2 PopB chromosomes in the columns G[0],G[1] and G[2].  

 
 localoutfilename: contains the scores for all the markers: 

o SNP_Index 
o Chromosome_Num 
o Physical_Pos 
o Genetic_Pos 
o Log Genome Score 
o Case Control Score 
o G(Case) : Average ancestry for all cases at that marker 
o G(control) : Average ancestry for all controls at that marker 
o rpower: Information content 

 
 output: This is the output file which has the following information for all the 

Markov chain monte carlo iterations: 
o Iteration_Num 
o θ_mean 
o θx_mean 
o θ_corr 
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o  λ_mean  
o λx_mean  
o λ_corr  
o τ(popA)  
o τ(popB)  
o log score 
o log score averaged over iterations 

Note that if this file name is not specified in the parameter file, we write the above to 
the standard output. 
 
The following two files are written to when we run the program in the simulation 
mode: 
 Genotoyoutfilename: specifies genotype data for all the markers and simulated 

individuals in simulation mode: 
o SNP_ID 
o Indiv_ID 
o Vart_allele_count 

  
 Indtoyoutfilename: specifies the following information for the simulated 

individuals in simulation mode: 
o Indiv_ID 
o Gender 
o Population 

 

If the program is run with checkit = YES, then the results of the data check programs 
mentioned in Section 5 are directed to the standard output.  

As detailed in the paper we feel that 100 burn-in iterations and 200 follow on iterations 
should be sufficient for most analysis. These are the number of suggested iterations for most 
exploratory runs, and user can increase these numbers in order to confirm the results. One 
can plot the genome-wide-score as a function of iteration number, to see how well the score 
converges.    

7. Enhancements in the Version 2.0 

The main enhancement in this version is the ability to do a fine-mapping run to follow 
up a peak in a coarse scan. In addition to doing the fine-mapping run one can also run 
simulations in this mode. A number of small enhancements have been added as well, 
such as fast check for duplicates, support for PED files and some extra output. A 
number of small bugs have been fixed as well.  
 
In detail the main enhancements are as follows: 

 
1)  A new program baseprog allows the user to run the parameter file to make sure the 

input files are valid, but does not do the MCMC calculation. See the example 
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parameter file parbaseprog which is part of the download. To run the program type 
on the command line: 
 >> baseprog –p parbaseprog or  
>>./baseprog –p parbaseprog 
p:  is a compulsory option, and in this case we have to specify the parameter file 
parbaseprog. 
To redirect the output in a file one would type on the command line: 
>>./baseprog –pv parbaseprog > outbaseprog.dat& 

2)   Fine-mapping run capability including simulations. A detailed write up is included in  
the next section. 

3) Fast duplicate check:  This is a quick check looking for duplicates in the dataset,  
which is particularly useful in cases where we have a large number of samples, some 
of which maybe duplicates. One can do this check by setting the parameter fastdup = 
YES in the parameter file. 

4) Checkindiv check: This is a check for discarding individuals from the run, automatic 
in checkit mode. 

5) One can use the physical position information to calculate or reset the genetic 
position, useful for cases where user doesn’t have the genetic positions. This is 
implemented using the parameter usephyspos. 

6) There is a new pack mode which supported using the parameter packmode. By default 
the program sets this to YES, if number of genotypes is greater than a certain 
number. The user should set this parameter to YES if memory requirement seem 
large. 

7) User can specify the high and low boundary values for log scores, through the 
parameters hiclip and loclip. 

8) PED file support, look at the documentation included. 
9) One can print ancestry estimates for a particular SNP or Sample using the 

parameters: pubxindname, pubx, pubxa and markername. For ex. If user wants to 
dump gammas for a particular individual with internal individual index 2904 into a 
file called gammaoutfile, one would specify the following parameters:  

 pubxname: gammaoutfile 
                  pubx: 2904 -1   

To dump gammas for a particular marker: 
pubxname: gammaoutfile 
markername: fake-1:1672 
Ex. gamma output files for individual and marker. 

10) We now print out information content for a SNP, this is the rpower column in the 
output file.  

11)  The user can print out the scores for all the markers in a file, to use this functionality 
the user will need to specify the parameter localoutfilename. 

12)  New parameters with this release are given in the accompanying table. 
13)  MAC Release: Experimental version not as well tested is available for download. 

 
8. Fine-Mapping Runs 

a) Overview 
After carrying out an admixture scan, (say with the methods we have implemented in 
ANCESTRYMAP and described in [2]), it is essential to follow up in areas of the 
genome that have promising association scores. As the admixture peaks will be wide, 
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containing perhaps 100 genes, the real biological pay-off  will come from fine-
mapping that is in identifying the actual variant in the region that causes disease risk. 
We sketch out a strategy for doing this in the very same samples initially used for 
admixture disease gene localization.  
 
The strategy for fine-mapping follow-up is to genotype a large number of SNPs 
(more than 1,000) across the peak of admixture association, at a resolution of one 
every few thousand base pairs. In an analysis using African-American data, the goal is 
to identify a SNP that is in strong LD with the disease-causing variant in the African 
and/or European ancestral populations. This LD will be inherited in African 
Americans, and will permit the accurate localization of the disease gene to within a 
few tens of kilobases.  

 
To be more specific, we note that in our published paper on admixture mapping 
methods [2], we introduced a log factor score for a given risk model, and locus. We 
review this scoring method for African Americans, which have experienced a history 
of admixture between European and African populations, though the methods are of 
course quite general. Assume for the moment that all model parameters, such as the 
average amount of European ancestry of each individual, and the allele frequencies 
of all markers in the parental populations are known exactly. Next, we assume a risk 
model, and locus, so that if an individual has a chromosomes of European ancestry 
at that locus, then the risk factor is ψ(a) = P (D|a)/P (D|0), where P (D) denotes the 
probability of disease. (Our notation allows European ancestry to be protective as 
well as more risky, so that ψ(a) < 1 if a > 0.) In [2] we showed that the log-factor L(i) 
for individual i, for our causal hypothesis against the null hypothesis that ψ(a) = 1 for 
each a is:  

  
 

Here γ(a, i) is the probability that individual i has a European chromosomes at the 
locus, given all our observations, and θi (a) is the average ancestry for the individual. 
The overall log-factor for all the samples is then just the sum of the log-factors over 
all individuals.  

 
We now show that we can extend our methods to form a score suitable for fine-
scanning. In the above theory, if ancestry at a locus is known, then the alleles at the 
locus are irrelevant to disease risk. But this will not be the case if the marker is in LD 
with a risk allele, except in the extreme case that the allele is a perfect surrogate for 
ancestry. (In African Americans only one such example is known: the ‘Duffy’ null 
allele [1].)  

 
Generalizing the above theory, we introduce a risk function ψ(a,b) for an individual 
with a European chromosomes and b variant alleles. Then we can generalize 
equation (1) in this case to:  
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where b is the number of variant alleles actually carried and B(c|a) is the conditional 
probability of c variant alleles given a European chromosomes. It is easy to check 
that if the risk function ψ(a,c) is independent of c, then (2) reduces to (1) as it should. 
In practice ψ(a,c) is unknown to us. We next discuss the values of which values of ψ 
to try. As an ansatz, set  

ψ(a,b) = eaλ ebµ 

where we will now choose λ,µ. Fix µ for the moment and assume that the ancestry 
risk for one copy of a population 2 allele is r, and that r is known, or at least tightly 
estimated. In practice we are fine-mapping after an coarse scan ‘hit’ from 
ANCESTRYMAP so this is not unreasonable. Now it is easy to check that  

 
so that  

 
Setting µ = 0, yields the model in which only the ancestry is relevant, and not the 
genotype. Given this easy theory, we can now readily compute a logfactor F(µ) for a 
given hypothesis for the value of µ, against a null hypothesis that µ = 0. We in 
practice set µ on a mesh spaced uniformly on a log-scale and then factor-average. 
The strategy is then to see if a substantially larger Bayes factor can be found by 
allowing µ to be non-zero, indicating an additional effect of the SNP above and 
beyond the admixture association.  

 
Suppose then that we have N mesh points both for µ,λ(µ) and if (λk, µk ) are the k-th 
λ, µ pairs we choose on the mesh, and F (k) is the Bayes factor we obtain for the k-th 
such pair, a natural score for the fine-mapped locus is 

 

This is a 
likelihood ratio for the hypothesis that one of our mesh points is correct, against the 
null where µ = 0; that is, there is no contribution of the allele above and beyond the 
admixture association. 

 

 
b) Setup of Runs 

Once you have successfully run the coarse scan and obtain a peak local log factor > 
4 consistently, one can then proceed to “bombard” the region with more SNPs for 
the same samples in order to find a causal allele. Once you have the genotype data 
for that you can proceed to use the fine-mapping part of the software, which will 
give the extra allelic risk on top of ancestry risk. In order to do this properly, one 
must make sure NOT to include the fine-mapping SNPs in the main coarse scan run. 
An easy way of doing this is to include the fine-mapping SNPs in the badsnp file. 
The reason for this is that usually one would have chosen a number of SNPs very 
close to each other on the same chromosome. These markers are usually in linkage 
disequilibrium with each other, and as already discussed in Section  , SNPs in LD can 
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lead to false positive scores. After doing the coarse scan, identify the peak region and 
then start a few runs around the peak region using the fine-mapping parameter file.   

 
It is important that a fine mapping SNP is not in LD with a framework SNP in the 
parental populations. It is a little complicated to achieve this, we do it by making a 
series of runs in which we fine map over say a megabase region with no framework 
SNP in the region or very close by. We provide an annotated Perl script mkfine, and 
an accompanying template parameter file which the user should be able to modify 
for his/her requirements. The script mkfine has a number of parameters which the 
user will need to set depending on their individual scan. It is important to read the 
script carefully before starting to use it. The script can be looked at in detail in the 
bin/ directory, and the accompanying template parameter file parfine.templ is also in 
this directory. 

 
Once you have set the various parameters in the 2 files, you can just run the script 
mkfine by typing on the command line: 
>> perl mkfine 

 
This should start the various ANCESTRYMAP runs in the fine-mapping mode, 
once all the runs are over you can take a look at the output files to see if there is 
anything interesting. 

 
c) Fine-Mapping Output 

In this section we will discuss in detail the output generated to standard output, in 
the case where details = NO, checkit = NO; with finite number of burn-in and follow-
on iterations. This output can be redirected to a file for easier viewing.  

  
 Input parameter file name  

 
 Values of all the parameters specified in this file 

 
 Total genomic distance 

 
 Count of individuals, cases, controls and ignores used in the analysis; and also the 

number of real and fake markers 
 

 Score generated by the expectation maximization algorithm for each iteration. 
One should observe the score increasing with the number of iterations.  

 
 Results of the Markov Chain Monte Carlo iterations, which include estimation of 
θ and λ. Note that the iteration number goes from 1 – numburn to 0 for the burn-
in iterations and from 1 to numiters for the follow-on iterations. Also the score is 
zero for the burn-in iterations, since we calculate it only for the follow-on 
iterations. The format of the output is as follows: 
estglob theta   iter   a1   b1   a2   b2   c2 
estglob lambda   iter   p1    lambda1   p2   lambda2   lambdave 
These are "global parameters" (affect every individual).  See supplementary note 
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2 of the Patterson et. al. 2004 paper for definitions.  
lambdaave is the average λ across individuals. 

 
 Posterior estimates for the mean and standard deviation of θ, θX, λ, λX and τ(Afr), 

τ(Eur). The user should look at the value of τ(African) and τ(European) 
carefully, since they are an indicator of how well the ancestral models fit the data. 
It is worrisome if we see these value to be less than 100. 

 
 Genome-wide scores for all the models 

 
 Theta and Lambda estimates with standard error for all the samples 

 
 Allele frequency estimates with standard error for all the markers 

 
  Here Mu is the genotype risk, and lambda is the allelic risk. For a single copy of a 
chromosome with local ancestry a and b variant alleles the risk is taken to be exp(a 
lambda) exp(b mu). In the table shown below, given Mu, lambda is chosen so that 
the ancestry risk if the allele is unknown is that specified by the risk parameter of the 
(coarse scan) model, for example the risk here is 1.5 (see Overview section).  The 
LogScore column (clipped, so the score will not be below 0) is a LOD score for the 
fine-mapping model against the model where genotype does not correspond to risk.  
Note that a positive LogScore is a hint of a causal allele. The reader, as a check on 
understanding, should note that if mu = 1, then the score must be 0 also as is true in 
the tableau below (row 15). 

 
 lmbayes is a Bayes factor averaging over all fine mapping markers in the run. This 
really needs adjusting by a prior for whether there is a causal marker in the region. 

 
### Iteration_Num         Mu  Log_Score Caltd_Lambda 
lmdetails   0     0.333    -8.000       0.811 
lmdetails   1     0.359    -8.000       0.839 
lmdetails   2     0.386    -8.000       0.868 
lmdetails   3     0.415    -8.000       0.900 
lmdetails   4     0.447    -8.000       0.934 
lmdetails   5     0.481    -8.000       0.970 
lmdetails   6     0.517    -8.000       1.009 
lmdetails   7     0.557    -8.000       1.050 
lmdetails   8     0.599    -7.924       1.094 
lmdetails   9     0.644    -6.300       1.141 
lmdetails  10     0.693    -4.327       1.192 
lmdetails  11     0.746    -2.758       1.246 
lmdetails  12     0.803    -1.576       1.304 
lmdetails  13     0.864    -0.746       1.365 
lmdetails  14     0.929    -0.229       1.430 
lmdetails  15     1.000     0.000       1.500 
lmdetails  16     1.076    -0.057       1.574 
lmdetails  17     1.158    -0.412       1.653 
lmdetails  18     1.246    -1.075       1.737 
lmdetails  19     1.340    -2.058       1.826 
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lmdetails  20     1.442    -3.369       1.920 
lmdetails  21     1.552    -5.009       2.020 
lmdetails  22     1.670    -6.941       2.126 
lmdetails  23     1.797    -7.978       2.238 
lmdetails  24     1.933    -8.000       2.356 
lmdetails  25     2.080    -8.000       2.481 
lmdetails  26     2.238    -8.000       2.612 
lmdetails  27     2.408    -8.000       2.750 
lmdetails  28     2.591    -8.000       2.895 
lmdetails  29     2.788    -8.000       3.048 
lmdetails  30     3.000    -8.000       3.207 
###lmscore: Fine-mapping score in addition to the Admix_Score 
  ##SNP_ID    LMScore    Chr_Num   Phys_Pos Admix_Score 
lmscore:      rs11890727    -0.992  2       114383724    14.382 
##lmscbest : Best lmscore in the run 
lmscbest:    -0.992 
##lmbayes: Bayes factor, averaging over all fine mapping markers in the run 
lmbayes:     -0.992 

 
 

 Lag and correlations 
For a number of sample statistics we compute a correlation coefficient at small 
"lags". If the statistic at iteration i is S(i) we compute  for 1 <= lag <= 10 
(default) the correlation between S(i) and S(i+lag). Large values indicate that the 
MCMC is not mixing very well. 
We publish this for:  

o llike:  a statistic of no intrinsic interest but mixes poorly.      
o log10fac:  Log_10 Bayes factor (genome wide) 
o factor: Bayes factor = 10^log10fac 
o log tauscal: log (t(0)) the t value for population 0. 

 
In our experience ii), iii) are the most important statistics which mix well, iv) 
mixes less well and i) mixes quite poorly.  

 
 Scores for each chromosome  

As one can clearly see from the below example, the LGS_MAX and CCS_MAX 
scores are the highest for chromosome number 3. 

 
 Bestscores: The maximum genome-wide score for the locus-genome statistic, 

and the maximum and minimum genome-wide scores for the case-control 
statistic. 

 
 Genome-log-factor: log-likelihood of the locus genome statistic averaged over all 

the markers in the genome. The genome-log factor is the most important 
number that is produced by the program and should be the first number that the 
user looks at. 

 
9.0 Input File Formats and Conversion Program  
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This file contains documentation of the program convertf, which converts between the 
5 different file formats we support.  Note that "file format" simultaneously refers to the 
formats of three distinct files: 
 genotype file: contains genotype data for each individual at each SNP 
 snp file:      contains information about each SNP  
 indiv file:    contains information about each individual  

 
Below, we document all 5 formats: 
 ANCESTRYMAP 
 EIGENSTRAT 
 PED  
 PACKEDPED  
 PACKEDANCESTRYMAP  

and we explain how to use convertf to get from one format to another. Note all the 
example files are in the directory:  

 
ANCESTRYMAP Format: 
 genotype file: see example.ancestrymapgeno 
 snp file:      see example.snp 
 indiv file:    see example.ind 

 
The genotype file contains 1 line per valid genotype, and has 3 columns: 

SNP_ID Sample_ID Number of Variant Alleles (0,1 or 
2) 

    Missing genotypes are encoded by the absence of an entry in the genotype file. 
 
    The snp file contains 1 line per SNP.  There are 4 columns: 

SNP_ID Chromosome_Num Genetic_Position Physical_Position 
Use 23 for X chromosome. The genetic position can be in Morgans or 
centiMorgans, and the physical position is in bases. 
The indiv file contains 1 line per individual, and has 3 columns: 

Sample_ID Gender Status 
The gender column can be M(male), F(female) or U (unknown). The status column 
might refer to Case or Control status, or might be a population group label.  If this 
entry is set to "Ignore", then that individual and all genotype data from that 
individual will be removed from the data set in all convertf output. The name 
"ANCESTRYMAP format" is used for historical reasons only.  This software is 
completely independent of our 2004 ANCESTRYMAP software. 

   
EIGENSTRAT Format: Used by EIGENSTRAT (both in the 07/23/06 release and in the 
current release).  

 genotype file: see example.eigenstratgeno 
 snp file:      see example.snp (same as above) 
 indiv file:    see example.ind (same as above) 

 
The genotype file contains 1 line per SNP. Each line contains 1 character per individual: 

   0 means zero copies of reference allele. 



 - 32 - 

  1 means one copy of reference allele. 
   2 means two copies of reference allele. 
   9 means missing data. 
 

The program ind2pheno.perl in this directory will convert from example.ind to the 
example.pheno file needed by the EIGENSTRAT software. To run this script type on 
the command line: 
>> ./ind2pheno.perl example.ind example.pheno 

 
PED Format:  

 genotype file: see example.ped    *** file name MUST end in .ped *** 
 snp file:      see example.pedsnp *** file name MUST end in .pedsnp *** convertf 

also supports .map suffix for this input file name 
 indiv file:    see example.pedind *** file name MUST end in .pedind ***and 

Conversion between various formats 
convertf also supports the full .ped file (example.ped) for this input file 

 
Note that, mandatory suffix names enable our software to recognize this file format. 
The indiv file contains the first 7 columns of the genotype file (see below). 
The genotype file is 1 line per individual.  Each line contains 7 columns of 
information about the individual, plus two genotype columns for each SNP in the 
order the SNPs are specified in the snp file.   

  The first 7 columns are: 
 1st column is family ID.  
 2nd column is sample ID. 
 3rd and 4th column are sample IDs of parents. 
 5th column is gender (male is 1, female is 2) 
 6th column is case/control status (1 is control, 2 is case) OR quantitative trait 

value OR population group label. 
 7th column (this column is optional) is always set to 1.   

 
convertf does not support pedigree information, so 1st, 3rd, 4th columns are 
ignored in convertf input and set to arbitrary values in convertf output. In the two 
genotype columns for each SNP, missing data is represented by 0.  
The snp file contains 1 line per SNP.  There are 4 columns: 
Chromosome_Num SNP_ID Genetic_Position Physical_Position 
Use X for X chromosome. The genetic position is in Morgans, and the physical

 position is in bases. 
The indiv file contains the first 7 columns of the genotype file. 
The PED format is used by the PLINK package of Shaun Purcell. See 
http://pngu.mgh.harvard.edu/~purcell/plink/. 

 
PACKEDPED Format:  

 genotype file: see example.bed    *** file name MUST end in .bed *** 
 snp file:      see example.pedsnp *** file name MUST end in .pedsnp *** 
 convertf also supports .map suffix for this input file name 
 indiv file:    see example.pedind *** file name MUST end in .pedind *** 
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  convertf also supports a .ped file (example.ped) for this input file 
 

Note that, mandatory suffix names enable our software to recognize this file format. 
example.bed is a packed binary file (2 bits per genotype). 
The PACKEDPED format is used by the PLINK package of Shaun Purcell. See 
http://pngu.mgh.harvard.edu/~purcell/plink/. 
For input in PACKEDPED format, snp file MUST be in genomewide order. 
For input in PACKEDPED format, genotype file MUST be in SNP-major order 
(the PLINK default: see PLINK documentation for details.) 

 
PACKEDANCESTRYMAP Format: 

 genotype file: see example.packedancestrymapgeno 
 snp file:      see example.snp (same as above) 
 indiv file:    see example.ind (same as above) 

Note that, example.packedancestrymapgeno is a packed binary file (2 bits per 
genotype). 

 
 
DOCUMENTATION OF convertf program: 

To run this program type on the command line: 
>> /bin/convertf -p parfile 

 
We illustrate how parfile works via a toy example: (see example.perl in this directory) 
par.ANCESTRYMAP.EIGENSTRAT   converts ANCESTRYMAP to 
EIGENSTRAT format 
par.EIGENSTRAT.PED                converts EIGENSTRAT to PED format 
par.PED.EIGENSTRAT                converts PED to EIGENSTRAT format 
par.PED.PACKEDPED                 converts PED to PACKEDPED format 
par.PACKEDPED.PACKEDANCESTRYMAP   converts PACKEDPED to 
PACKEDANCESTRYMAP  
par.PACKEDANCESTRYMAP.ANCESTRYMAP converts 
PACKEDANCESTRYMAP to ANCESTRYMAP 

 
Note that the choice of which allele is the reference allele may be arbitrary and thus 
converting to a new format and back again may change the choice of reference allele. 

 
DESCRIPTION OF EACH PARAMETER in parfile for convertf: 
 

Parameter Name Data type Description Possible and 
Default values 

genotypename String input genotype file 
 

 

snpname String input snp file 
 

 

outputformat String Can be one of the following: 
ANCESTRYMAP,  
EIGENSTRAT, PED, 
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PACKEDPED or 
PACKEDANCESTRYMAP 

genotypeoutname String output genotype file  
snpoutname String output snp file  
indivoutname String output indiv file 

 
 

OPTIONAL PARAMETERS 
familynames String Only relevant if input format 

is PED or PACKEDPED. 
 

noxdata Boolean If set to YES, all SNPs on X 
chromosome are removed 
from the data set. 

 

nomalexhet Boolean If set to YES, any het 
genotypes on X chr for 
males are changed to missing 
data 

 

badsnpname String Specifies a list of SNPs 
which should be removed 
from the data set 

 

outputgroup Boolean Only relevant if 
outputformat is PED or 
PACKEDPED 

NO 

 
 familynames : If set to YES, then family ID will be concatenated to sample ID. This 

supports different individuals with different family ID but same sample ID.  The 
convertf default for this parameter is YES. 

 noxdata: The convertf default for this parameter is NO. 
 nomalexhet: The convertf default for this parameter is NO. 
 badsnpname: Same format as example.snp.  Cannot be used if input is in 

PACKEDPED or PACKEDANCESTRYMAP format. 
 outputgroup: This parameter specifies what the 6th column of information about 

each individual should be in the output. If outputgroup is set to NO (the default), 
the 6th column will be set to 1 for each Control and 2 for each Case, as specified in 
the input indiv file. [Individuals specified with some other label, such as a population 
group label, will be assumed to be controls and the 6th column will be set to 1.] If 
outputgroup is set to YES, the 6th column will be set to the exact label specified in 
the input indiv file. [This functionality preserves population group labels.] 

 
10. Download & Installation  
a) Download instructions for the program  

Follow these steps to download and install ANCESTRYMAP on your computer: 
1. Go to http://genepath.med.harvard.edu/~reich 
2. Click on: Download for UNIX or Linux or MAC for the source code 
3. Make sure to rename the downloaded file to ancestrymap.tar.gz, since the 

download process sometimes renames it otherwise. 
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4. Decompress the file using gzip –d ancestrymap.tar.gz, and you should now see 
ancestrymap.tar 

5. Unarchive this file using tar –xvf ancestrymap.tar. This will create a directory 
called ancestrymap, and the following directory structure under it: 

examplesfiles/ 
src/ 
bin/ 
README file 

 
In the examplefiles directory we have the following files: 

  Parmeter Files: 
 paramfile: In the format of parameter file for ancestrymap, with 

additional parameters that are new in Version 2.0  
 parmono: In the format of parameter file for cntmono 
 param0, param1, param2: Parameter files for ancestrymap, discussed 

later in this section 
 parsim: Parameter file for ancestrymap when running simulations 
 parsim2d: Parameter file for ancestrymap when running fine-mapping 

simulations 
 paramped: Parameter file for ancestrymap when using PED files 
 par:8001-par:8009 : Parameter files for fine-mapping runs as 

generated by running the script mkfine. 
 Example files as used by convertf  executable, look at the relevant 

documentation for details 
Input Data Files: 

 indiv.dat: individual input file for ancestrymap 
 indiv1.dat : Individual file for ancestrymap with one samples set to 

Ignore  
 geno.dat: genotype input file  for ancestrymap 
 snpcnts: marker input file for ancestrymap 
 badsnps: input file for ancestrymap with markers that need to be 

removed from the analysis 
 snps: marker input file for cntmono or ancestrymap 
 aflist, eurlist: Ancestry files for cntmono 

The genotype and individual files in this directory were generated by running 
simulations, and the marker files correspond to data reported in the Smith et 
al paper. 
Output Files: 

 out2.dat Output file generated by running ancestrymap using paramfile 
 out0.dat: Output file generated by running ancestrymap using param0 
 out1.dat: Output file generated by running ancestrymap using param1 
 outsim2d.dat : Output file generated by running ancestrymap using 

parsim2d 
 admckout.dat: Ouput file generated by running admcheck on out1.dat 
 indjunk: Output file with detailed individual data created by running 

ancestrymap using param0 
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 snpjunk: Output file with detailed marker data created by running 
ancestrymap using param0 

 Fine-mapping Run Output Files: 
1. badlist1, framelist1: Output files generated by mkfine script 
2. badlist:8001-badlist:8009: Bad marker files generated by 

mkfine for each fine-mapping run 
3. xx:8001-xx:8009: Output file for each fine-mapping run 

 outfiles/: This is a directory which contains the output files 
mentioned in Section 6, and ancestry estimates for various markers 
considered in the fine-mapping run (gams:8001-gams:8009). 

 
bin/  has the following executables:  

 cntmono 
 ancestrymap 
 baseprog 
 admcheck: A perl script which is used to extract the top “bad” markers  
 mkfine: A perl script which is used to kick-off the fine-mapping runs 
 parfine.temp : A accompanying template parameter file needed by the 

mkfine script 
 addcol, uniqit: Helper perl scripts needed by mkfine 

 
src/  has the C source code for making the ancestrymap, cntmono, baseprog, convertf  
executables, the library nicklib.a and a makefile called Makefile. The makefile 
can be used to make just the individual executables, or just the library or all 
together. This also has the following directories: 

 smartinclude/ has header files which are needed by the source code, 
users should not delete these files to ensure proper compilation of 
the code. 

 smarttables/ is needed by the source code. 
 nicksrc/: nicklib source code  

 
b) Running the example files  

There are a number of parameter and corresponding output files in the examplefiles/ 
directory. We recommend the user going through the following steps with these files 
before running their own data on ANCESTRYMAP.  

 
 First step makes sure that the input files are in the right format. In this step we 

look at the parameter file parbaseprog and it’s corresponding output file 
outbaseprog.dat. To run this type on the command line in the examples 
directory: 
 

 
If there is any problem with any of the input files, one will see an appropriate 
message in the output file. 
 
 Next step performs a couple of data checks. In this step we look at the 

parameter file param0, and its corresponding output file out0.dat. The key 

>> ./ancestrymap –p parbaseprog > outbaseprog.dat& 
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parameter values in this file are numburn = 0, numiters= 0, checkit = YES and details 
= YES. 

To run this parameter file type on the command line in the examples directory: 
>> ./ancestrymap –p param0 > outp0& 

   
Compare the output files out0.dat (in the examples directory) and outp0 to make sure 
that you can understand the output generated. Note that the use of the random 
number generator makes it impossible for the results to be exactly the same for two 
runs unless the parameter seed has the same value.  
 
Next, look at the output file indjunk generated by this run. From this file one can 
extract a list of individuals with very small number of genotypes by sorting it by the 
Num_valid_genotypes column. We will set the Status field to Ignore for some of 
these individuals in a copy of the original individual file called indiv1.dat file, since a 
lot of missing data will cause ANCESTRYMAP to behave badly. Also, one should 
discard markers which have low parental genotype counts by looking at the file 
snpjunk which can be done by looking at the fields PopA_vart, PopA_ref, 
PopB_vart and PopB_ref in this file. The discarded markers can be put in the 
“badsnpname” file. Next look at the output file out0.dat, where the checkdup and 
fastdup programs have flagged a number of duplicate individuals. We shall set the 
Status field to Ignore for one of these pair of individuals in the indiv1.dat file as well.  
 
Thus the key focus in this step is to ensure that ANCESTRYMAP can successfully 
process the input files, and the identification of individuals which are duplicates or 
have very few genotypes, and markers with low parental genotype counts. 

 
  The next step involves running a lot of data checking programs. In this step we 

will look at the parameter file param1, and its corresponding output file out1.dat. 
The key parameter values in this file are numburn = 5, numiters = 5, checkit = YES 
and details = YES. This corresponds to having very few burn-in or follow-on 
iterations and sets up ANCESTRYMAP in the mode to run the various data 
checking programs. 

 
To run this parameter file type on the command line in the examples directory: 

>>./ancestrymap –p param1 > outp1& 
 
Compare the output files out1.dat (in the examples directory) and outp1 to make sure 
you can understand the various output sections. Note that the use of the random 
number generator makes it impossible for the output to be exactly the same for two 
runs unless the parameter seed has the same value.  

 
Note that in the output file there are results from a large number of data checking 
programs. To extract the top markers that have failed the various checks run the perl 
script admcheck by typing on the command line: 
>>admcheck out1.dat > ancsycheck.dat& 
Compare the file ancsycheck.dat with the file admchkout.dat in the examples 
directory. 
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Here is an example of the output generated by admcheck and pointers on how to 
extract the bad markers. 
 
From the ancsycheck.dat file we will pick the markers that are outliers for the various 
checks, and will add them to our badsnpname file which will allow the software to 
ignore these markers for the rest of the analysis. In addition, the user must also add 
to this file one of the pairs of markers which are in strong linkage disequilibrium 
with each other. It is necessary to remove these markers since otherwise one will see 
spurious results. Note that since we don’t really have any bad markers, the badsnps 
file in the examples directory is just a sample file. 

 
 Next we will look at the parameter file param2, and its corresponding output file 

out2.dat. This file corresponds to having 50 burn-in and 100 follow-on iterations, 
with checkit = NO, details = YES and uses the badsnps file that we created in the 
previous step.  

 
To do this type on the command line in the examples directory: 
>> ./ancestrymap –p paramfile > outf& 

 
Compare the output files outf and out2.dat to make sure you can understand the 
output generated. Note that the use of the random number generator makes it 
impossible for the results to be exactly the same for two runs unless the parameter 
seed has the same value. The important things to focus on in this run are the τ(Afr) 
and τ(Eur) values, scores for the various chromosomes and the genome log factor 
value. 
 
In addition to the standard output, this parameter file will also create a number of 
output files in the outfiles directory. These files are as follows, and have been 
discussed in detail in the documentation. 

 act.out 
 freq.out 
 snp.out 
 theta.out 
 lambda.out 
 ethinc.out 
 ind.out 

 
 
c) Running the program with user data  

To run the executable with user specific data, create the input files in the format 
specified in Section 4 (also see sample files in the examples/ directory). Then follow 
these steps: 
 
1. Make sure that the program can read all the input files successfully, by typing on 

the command line:  
>> ./ancestrymap –p parbprog. > outbaseprog.dat 

Here parbprog should be made using the file parbaseprog as a sample. 
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2. Run ancestrymap using the parameter file param0 as a sample file.  

>> ./ancestrymap –p parc0. > out0.dat 
Here parc0 should be made using the file param0 as a sample, and corresponds to 
setting checkit, details = YES, and numburn, numiters = 0. From the file 
corresponding to the parameter indoutfilename, get a list of individuals which have 
very few genotypes and set their Status field to Ignore in the individual file. From 
the file corresponding to the parameter snpoutfilename get a list of markers which 
have low parental genotype counts, and put them in the file corresponding to the 
parameter badsnpname. Next from the output file generated by this run extract the 
pair of duplicate individuals (if any), and set the Status field to Ignore in the 
individual file for one of the pair of individuals.  

 
3. Run ancestrymap using the parameter file param1 as a sample file. This forces 

various data checking algorithms mentioned in Section 5 to run, and corresponds 
to checkit, details = YES, and numburn, numiters = 5. 
>> ./ancestrymap –p parc1 > out.dat.  

 
4. To extract the top markers which have failed the various tests run:  

>> admcheck out.dat.  
admcheck extracts a list of the top 10 markers with the highest scores for hwcheck, 
mapcheck and freqcheck ; and individuals with highest and lowest scores for 
checkindiv (See Section 5). From this list the user should choose the markers to 
add to their “badsnps” file, using the guidelines offered in the documentation, 
and the example output. One should also include one of the pair of markers that 
are in linkage disequilibrium with each other in the badsnps file. Also, one should 
set the Status field to Ignore in the individual file for individuals which fail the 
checkindiv test, using the guidelines in Section 5. 

 
5. Run ancestrymap using the parameter file paramfile as an example, using a larger 

number of both burn-in and follow-on iterations and with checkit = NO. Make 
sure to include the badsnps file in parameter file, to ensure that the software does 
not include them in the analysis any more.  

 
d) Building your own executable from source code  

 The first step is to go to the /ancestrymap/src/ directory. 
 Next type on the command line: 

>> make all 
 This will make the library nicklib.a and the executables baseprog, convertf and 

ancestrymap 
 
 

11. Simulations  
In order to perform simulations one must set dotoysim = YES. Some of the other 
parameters that can be set are casecontrol, markersim, risksim, simnumindivs. Default and 
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possible values for these parameters are discussed in Section 3. An example 
simulation parameter file is included in the examples directory and is called parsim. 
One can perform simulations under a variety of scenarios, as outlined in the paper. 
One also perform simulations in the fine-mapping mode, some of the parameters 
that can be set are sim2dvals and sim2d_caseonly. 

 
12. How to cite this program  

To cite this program refer to it as ANCESTRYMAP, and give the reference to the 
accompanying paper by Patterson et al paper.1  

13. Tutorial  
Go to the website http://genepath.med.harvard.edu/~reich/Tutorial.htm  
for an online tutorial.  

14. Description of the auxiliary package : getpars, cntmono  

a) Cntmono Program  

i) Overview  
In this section we will discuss the auxiliary software cntmono included with 
ANCESTRYMAP. This program takes as input, files with genotype data, and 
corresponding individual and marker data for the modern counterparts of the 
ancestral parental population subgroups and creates an output file which has the 
counts for the reference and variant alleles for these populations. This can in turn be 
used by the ancestrymap program as its input marker/ snp file. For a short tutorial on 
how to run this program click here. 

 
ii) How to run the program 
The command line arguments for cntmono are p (parameter file) which is mandatory, 
V (version number) and v (verbose mode), same as for ancestrymap. To run this type 
on the commandline: 
>> cntmono –p parcmono or ./cntmono –p parcmono 
 
Use the file parmono in the examples/ directory as a sample file to create parcmono. 
This file has names for the following files: 
 Genotype Data: String: genotypename 

 
SNP_ID INDIV_ID Vart_allele_cnt 

rs112 I1 1 
rs113 I2 0 
rs114 I3 2 

  
 

 Marker Data: String: snpname 
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SNP_ID Chr_Num Gen_Pos Phys_Pos 

rs112 1 0.3455676 114556 
 

rs113 2 0.566879 1400898 

 
 

 Individual Data: String: indivname 
 
INDIV_ID Gender Status 
I1 F CEPH 
I2 M BOTSWANA 
I3 M GHANA 

 
The value in the Status field is that of the ethnicity of the sample. This can be as 
varied as the examples shown above, or as narrow as AFRICAN, EUROPEAN, 
ASIAN, etc. 

 
 Population A subgroup data: String: aglistname 

This contains a list of ethnicities that are classified as population A subtype 
 

Ethnicity 
Beni 
Botswana 

 
 Population B subgroup data: String: eglistname 

This contains a list of ethnicities that are classified as population B subtype 
 

Ethnicity 
CEPH 
Italy 

 
 Output Data: String: output  

The output file has the following columns 
o SNP_ID 
o Chromosome number 
o Genetic position 
o Physical position 
o Population A reference allele count 
o Population A variant allele count 
o Population B reference allele count 
o Population B variant allele count 
o Number of valid genotypes 
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Before using the output file generated by cntmono as the input marker file for 
ancestrymap, remove from it the blank lines, lines with comments and, the header line. 
This file should only contain details about the markers, else ancestrymap will give a 
fatal error. 

 
b) Getpars Overview 
In this section we will discuss another auxiliary package getpars. This is a simple 
package for inputting parameters by keyword.  It is crucial to reading and 
interpreting the parameter file, and to storing the various parameters specified in it. 
The package uses a "handle" (object) to store parameter information, and provides a 
simple string replacement facility. Parameters may appear in any order in the 
parameter file. Multiple parameter files can be dealt with, though the need for this 
would be unusual.  

  
We will briefly outline the various functions that are part of this package:    
1.  phandle *openpars(char *fname) : Opens handle, and must be called before all other 
routines.Sample call:  ph = openpars(myparameterfilename) ; In all of the following 
parameter setting routines, if the parameter is not present, the variable to receive the 
value will not be changed. Thus default values should be set before the call.   
 
2. int getstring(phandle *pp, char *parname, char **kret)  ;  
Sample call: getstring(ph, "inputfilename:", &inputfilename) ;  
Return value: positive integer if parname is found (and therefore kret is set) else 
negative integer. This is the same for all the analogous routines discussed below.  

  
3. int getint(phandle *pp, char *parname, int *kret) : Sets an integer value. YES or NO 
values can be interpreted as 1, 0 respectively. This is convenient for setting boolean 
switches using "c" ints.  
Sample call: getint(ph, "iterations:", &iterations) ;  

  
4. int getints(phandle *pp, char *parname, int *aint, int nint) : Sets nint integer values into  
array aint.  The values can be separated by white space or ':'.  

  
5. int getintss(phandle *pp, char *parname, int *aint, int *xint) : Sets variable number of 
integer values into aint.  Number set is returned in xint.  

 
6. void *closepars(phandle  *pp) : This is a destructor,and is called when parameter 
cracking is complete. All memory associated with ph is freed.  

 
7. void dostrsub(phandle *pp) : We use the convention to insist that parameter names are  
lower case alphanumeric, and contain no upper case parameters.  Now upper case 
"parameters" can be used for string replacement. 
Example: parameter file mypars contains:    
HOME:  /home/harvey01/nickp   
DIR:  HOME/datadir  
datafile:  DIR/mydata 
The following code fragment would be appropriate:   
ph = openpars("mypars") ;  
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dostrsub(ph) ;  
getstring(ph, "datafile"; &datafilename) ;  
closepars(ph) ;  

  
8.  void writepars(phandle *pp)  : writes a copy of the parameter file (after string 
replacement if dostrsub has been called) to standard out. 

 
15. Troubleshooting & Bugs  
 
16. Bibliography  

i.Patterson et al (2004) Methods for High-Density Admixture Mapping of Disease 
Genes Am. J. Hum Genet. 74: 979-1000  
ii.Smith et al. (2004) A High-Density Admixture Map for Disease Gene Discovery 
in African Americans Am J Hum Genet 74: 1001-1013  

17. Contact Information  
Nick Patterson: nickp@broad.mit.edu (617 252 7043)  
David Reich reich@broad.mit.edu (617 432 6548)  
Arti Tandon atandon@broad.mit.edu (617 432 5348). This is the person  
responsible for maintaining the website, and should be the one contacted in  
case of any issues with the software.  
 

18. Appendix A: Expert use Parameters  
Here is a table of the parameters that are for expert use only  

Name Type Description Possible and 
Default 
values 

unknowngender 
 

String Unknown gender set 
to value 

U 

twomodels  
 

Int The two models A 
and B are defined 
with model A as the 
first twomodel 
number of risk values, 
and the rest being 
model B, scores are 
produced for each 
SNP for both models 
A & B, and genome 
wide stats and 
comparisons are 
made. The initial 
motivation was to do 
a kind of case-control 

Positive 
integer 
Default: 0 
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analysis with model A 
risk greater than 1 just 
for cases, and model 
B with same risk for 
both cases and 
controls  

theta2mode Boolean If YES, allows the θ 
value to be different 
on the two 
chromosomes. Used 
in cases where mother 
and father have very 
different ancestries. 

0,1 
Default: 0 
 

lambda2mode  
 

Boolean If YES, allows the λ 
value to be different 
on the two 
chromosomes. Used 
when mother and 
father have very 
different ancestries. 

0,1 
Default: 0 

keeptrashfiles 
 

Boolean Keep the α, β and g 
values from the last 
iteration 

0,1 
Default: 0 

numlagprint  Int Auto correlation 
statistics upto 
numlagprint 

Positive 
integer >= 0 
Default: 10 

markerpub  
 

Int Used in debugging Default: -1 

allele_scale_fac Double Multiply allele counts 
by the scale factor   

Default: -1 

nopopsmode 
 

Int If YES, uses the initial 
frequency estimate  to 
be the modern 
frequency counts, and 
then these modern 
frequency counts are 
not used 

0,1 
Default: 0 

muval Double Used in bridge 
sampler 

Default: 0 

a1 Double Used in simulation 
mode 

 

psi1  
 

Double Used in simulation 
mode 

 

p1  
 

Double Used in simulation 
mode 

 

B1 Double Used in simulation 
mode 
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19. Appendix B: Parameters new in Version 2.0 
 

Parameter Name Data type Description Possible and 
Default values 

leave1mode Boolean:  In checkit mode, 
leaves 1 marker at a 
time and gives the 

score 

NO 

dupmode Boolean In checkit mode, 
runs duplicate 

check on all indivs 

NO 

fastdup 
 

Boolean In checkit mode, 
runs fast duplicate 
check on all indivs. 
This parameter is 

automatically set to 
YES, in checkit 

mode 

YES 

usephyspos Boolean Calculates and 
resets the genetic 
positions based on 
physical positions, 
particularly useful 
when you don’t 
have genetic map 

NO 

dumpgammas Boolean Dump gammas for 
all markers and 
indivs in binary 

format (will need 
another program to 

print in ASCII 
format: Alkes) 

NO 

gammafiles String This is the set of 
files which are 

created when using 
dumpgammas 

NULL 

emiter Integer This is the initial 
EM algorithm to 

initialize the MCMC 

30 

alldata Boolean Used in simulation 
mode, make 

simulated data for 
all the markers, if 
NO it keeps the 

NO 
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missing data intact 
lmmodel Boolean Used to run fine-

mapping. This 
assumes ancestry 
risk is specified by 
risk model, actually 

1D model 

NO 

lmchrom Integer The chromosome 
on which you run 

fine-mapping  

 

lmnumx Integer Number of points 
in allele risk mesh 

 Positive values > 1, 
default: 30 

lmmax Integer Max value for the 
mesh, with number 

of mesh points 
being lmnumx 

3.0 

lmthresh Double If fine-mapping log 
score is below 
lmthresh, don’t 

print details of fine-
mapping runs 

-10.0 (This is to get 
all the markers) 

lmdetails Boolean Detailed output YES 
lmlobase Integer Physical position 

low end for fine-
mapping 

 

lmhibase Integer Physical position 
high end for fine-

mapping 

 

pubxindname String Name of a 
individual for which 

we want to print 
some output 

 

pubx Integer Array The first 
component is the 
internal individual 
ID for whom you 

want to output 
gammas 

 

pubxa Integer Array List of individual 
IDs for which we 

want to output 
gamma? 

 

markername String This is used to 
publish the gammas 

as well as in 
simulation mode if 
markersim is not 

specified 

NULL 
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sim2dvals Double Array of 
size 4 

Specifies ancestry 
and allelic risk for 

fine-mapping 
simulations 

Sim2dvals[0]: Afr 
freq 

Sim2dvals[1]: 
Caucasian freq 
Sim2dvals[2]: λ 
Sim2dvals[3] : µ 

sim2d_caseonly Boolean 2D simulation 
where we only 

consider the case 
genotypes? 

NO 

familynames Boolean Used with PED file, 
if we have unique 
Indiv Ids set this 
parameter to NO, 

else to YES 

 

indivoutname String Output file for 
individual 

information 

 

snpoutname String Output file for 
marker information 

 

genotypeoutname String Output file for 
genotype data 

 

localoutfilename String Output file with all 
the detailed 

information for 
markers 

 

mincasenum Integer Removes cases 
which have below a 
certain threshold # 
of genotypes, used 
in conjunction with 

the file 
badpairsname  

1 
 
 

casecontrol Integer Array Number of cases 
and controls, used 
in simulation mode 

 
 
 

hiclip Double Allows LOD scores 
to be upto a 

maximum of hiclip. 
Use if scores appear 

to be saturating  

Default: 15.0 

loclip Double  Default: -20.0 
packmode Integer This packs the 

genotype data. To 
be used if one has a 
memory extensive 

job 

Default: NO 
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