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Population stratification refers to differences in allele
frequencies between cases and controls due to systematic
differences in ancestry rather than association of genes with
disease. It has been proposed that false positive associations
due to stratification can be controlled by genotyping a few
dozen unlinked genetic markers. To assess stratification
empirically, we analyzed data from 11 case-control and case-
cohort association studies. We did not detect statistically
significant evidence for stratification but did observe that
assessments based on a few dozen markers lack power to rule
out moderate levels of stratification that could cause false
positive associations in studies designed to detect modest
genetic risk factors. After increasing the number of markers
and samples in a case-cohort study (the design most immune to
stratification), we found that stratification was in fact present.
Our results suggest that modest amounts of stratification can
exist even in well designed studies.

There has been much debate1–4 but limited data5–7 about the impact of
population stratification on case-control association studies. Systematic
differences in the ancestry of cases and controls are one source of false
positive associations8,9, but the fraction of published associations that is
attributable to stratification is unknown10. It has been argued that the
effects of stratification can be eliminated simply by carefully matching
cases and controls according to self-reported ancestry and geographical
origin2. Recently, empirical methods to detect stratification based on
genotypes at unlinked markers have been described11. The largest appli-
cation of such methods involved genotyping 44 unlinked markers in

four case-control studies5. Stratification was detected in one study,
although the signal was no longer apparent after more stringent match-
ing of cases and controls based on the birthplaces of the individuals’
grandparents. This has been interpreted as evidence that stratification
may be less of a concern than originally anticipated.

We assessed stratification empirically by analyzing data from 24–48
unlinked single-nucleotide polymorphisms (SNPs) in 11 association
studies spanning a range of disease states and self-reported ancestries
and three different epidemiological designs. These studies included
seven ongoing studies in our laboratory and reanalysis of data from
the four studies previously reported5. We assessed stratification first by
testing for statistically significant evidence of differentiation between
cases and controls using the method of Pritchard and Rosenberg11 and
second by estimating the magnitude of stratification consistent with
the data using Genomic Control12,13.

None of the 11 studies showed significant evidence of stratification
after correcting for multiple hypothesis testing, consistent with previ-
ous studies5,6 (Table 1). Comparing cases and controls from different
studies with the same self-reported ancestry (European American), we
found no significant evidence of stratification in nine pairwise com-
parisons using 33–43 SNPs (Supplementary Table 1 online).

We next applied the method of Genomic Control12,13 to estimate
quantitatively the amount of stratification consistent with the data for
each of the 11 studies. Genomic Control is conceptually simple: the
method examines the distribution of association statistics (χ2)
between unlinked genetic variants typed in cases and controls. The
statistic at a candidate allele being tested for association can then be
compared with the genome-wide distribution of statistics for markers
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Table 1  Assessment of population stratification in 11 epidemiological studies

Estimate of λ Estimate of λ
Significance projected to projected to

Source SNPs used of stratification 100 cases per 1,000 cases per
of Self-declared to assess based on 100 controls 1,000 controls

Study Disease controls ancestry Cases Controls stratification ref. 11 (upper bound on λ) (upper bound on λ)

1 Hypertension Matched controls African American 236 236 24 P < 0.19 1.11 (<1.81) 2.1 (<9.1)

2 Matched controls European American 500 500 32 P < 0.16 1.05 (<1.31) 1.5 (<4.1)

3 Type II diabetes Matched controls European American 500 355 32 P < 0.66 1 (<1.20) 1 (<3.0)

4 Matched controls Polish 500 500 32 P < 0.72 1 (<1.16) 1 (<2.6)

5 Prostate cancer Cohort African American 90 69 48 P < 0.75 1 (<1.73) 1 (<8.3)

6 Cohort European American 110 97 42 P < 0.08 1.3 (<2.4) 4.0 (<15.0)

7 Cohort Hispanic American 142 124 40 P < 0.84 1 (<1.42) 1 (<5.2)

8 Cohort Japanese American 121 106 33 P < 0.97 1 (<1.43) 1 (<5.3)

9 Coronary artery GeneQuesta European American 83 80 37 P < 0.67 1 (<1.9) 1 (<10.0)

10 Bipolar disorder GeneQuesta European American 93 80 34 P < 0.23 1.18 (<2.54) 2.8 (<16.4))

11 Schizophrenia Matched controls Portuguese 149 152 46 P < 0.21 1.1 (<1.72) 2 (<8.2)

Follow-up for study 5 (prostate cancer in African Americans) with more SNPs and samples
Excluding samples who claim

Cases and controlsb All samples analyzed some non-African ancestry

90 cases, 69 controls (no AIMs included) P < 0.75 (48 SNPs)

469 cases, 268 controls (no AIMs included) P < 0.04 (114 SNPs) P < 0.03 (114 SNPs)

469 cases, 268 controls (AIMs included) P < 0.01 (210 SNPs) P < 0.005 (210 SNPs)

474 cases, 476 controls (AIMs included)c P < 0.0001 (211 SNPs) P < 0.000001 (211 SNPs)

Follow-up for study 6 (prostate cancer in European Americans) with more SNPs and samples
Cases and controls All samples analyzed

110 cases, 97 controls P < 0.08 (42 SNPs)

391 cases, 456 controls P < 0.10 (79 SNPs)

aNo controls were collected along with cases. To assess the effect of matching cases to controls based only on self-reported ancestry, we used a set of controls obtained by the GeneQuest
coronary artery disease study by random-digit-dialing in Atlanta, Georgia, USA. bAIMs refers to markers chosen to have very different frequencies between Africans and Europeans7,15.
cOne more SNP was analyzed for the larger sample because it met the criteria for inclusion in the study.

that are probably unrelated to disease to assess whether the candidate
allele stands out. In the absence of stratification, association between
unlinked genetic variants and disease should follow a χ2 distribution
with 1 degree of freedom12,13. In the presence of stratification, the dis-
tribution of association statistics should be inflated by a value termed
λ, which becomes larger with increasing of sample size (Fig. 1).

We estimated stratification for each of the 11 data sets and report
the inflation of association statistics that would be expected in a study
of 1,000 cases and 1,000 controls, called λ1000. (It is simple to extrap-
olate from λ1000 to the inflation factor due to stratification for any
sample size12.) Consistent with the fact that the 11 data sets showed
no significant evidence for stratification, the confidence intervals for
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Figure 1 The effect of stratification on association studies. (a) Stratification inflates χ2 association statistics by a factor λ, which changes depending on the
sample size. Scenario 1 corresponds to gross stratification; scenarios 2 and 3 correspond to the range of stratification estimated in the African American prostate
cancer study; and scenario 4 corresponds to no stratification. (b) Comparison of the nominal P values with those corrected for stratification shows that
stratification that is difficult to detect in a study of hundreds of cases and controls can cause many false positive signals in a study of thousands of samples.
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λ1000 overlapped 1 in every study. Nevertheless, we found that the
confidence intervals were sufficiently broad that substantial levels of
stratification could not be excluded. For example, the 95th percentile
upper bound on λ1000 in the studies averaged 7.9 (Table 1 and Fig. 2).

We increased power to detect stratification by increasing the number
of SNPs and samples examined in one of the 11 studies that initially
showed no significance evidence for stratification, the African American
prostate cancer study (P < 0.75). For the follow-up, we approximately
quadrupled the number of markers and increased the sample size by a
factor of 5–6 (474 prostate cancer cases and 476 cohort controls). The
new markers consisted of a collection of missense SNPs, which we
treated as being in the same class as the noncoding SNPs, because,
within the limits of our resolution (Table 2), they showed the same levels
of population differentiation (with sufficient power, such differences
can probably be detected14). The new markers also included a second
set of SNPs chosen for their large allele frequency differences between
west Africans and Europeans15, which makes them particularly power-
ful for detecting stratification16.

In this expanded data set we found significant evidence of stratifica-
tion (P < 0.0001). When we restricted the analysis to 469 cases and 268
controls in whom all markers were successfully typed, the result was still
significant (P < 0.01; Table 1). We then removed from the analysis 40
cases and 48 controls who reported that either they or their parents had

some non-African American ancestry2,5, because a small number of indi-
viduals with misclassified ancestry might disproportionately affect the
result. The evidence for stratification was stronger in this subset (P <
0.005; Table 1). Notably, the Genomic Control estimate of stratification
(removing SNPs that had been specifically chosen to have large differ-
ences in frequency across populations17) was λ1000 = 1.5, with a 95th per-
centile upper bound of 3.34. This indicates that an observation of χ2 =
19.5, expected only once by chance in a scan of 100,000 SNPs, would
instead be seen 31 times (effective χ2 = 19.5/1.5 = 13) due to this level of
stratification. At the 95% upper confidence limit of our estimate (λ1000 =
3.34), 1,568 false positives would be expected due to stratification.

The observation of population stratification in African Americans
with prostate cancer is not entirely unexpected. People of west African
descent are thought to have a higher genetic risk for prostate cancer
than those of European descent18, and hence African Americans with
prostate cancer, who are known to have ancestry from both popula-
tions15, might be expected to have more African ancestry, on average,
than controls. Population stratification was also observed in a separate
study of African Americans with prostate cancer9. Our analysis
strengthens this result, in that our sample was prospectively collected
in a population-based cohort19, considered to be the optimal epidemi-
ological design to minimize systematic differences between cases and
controls (as opposed to the case-control design).
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Figure 2  Likelihood surfaces for stratification for the 11 studies, assuming 1,000 cases and 1,000 controls (we provide results for λ1000, but likelihood
surfaces for other numbers of cases and controls could be obtained simply by rescaling the axis using the equation in Methods). The upper bound on the
level of stratification can be obtained from the figures as the point where the likelihood drops to 4.5% of its maximum, which is a log-likelihood criterion for
a 95th percentile upper bound (one-sided test). With the handful of SNPs genotyped initially (24–48), the likelihood distribution is broad. Although no
studies show significant stratification, all are consistent with levels of stratification that could produce notable numbers of false positives. Increasing the
number of SNPs and samples can tighten the estimate of population stratification. This is shown for the African American and European American prostate
cancer studies, for which we provide both an initial estimate of stratification based on the noncoding SNPs and a more precise estimate based on an
expanded sample size and inclusion of missense SNPs.
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We also followed up with a study of European Americans with
prostate cancer (approximately doubling the number of SNPs to 79
and quadrupling the number of samples to 391 cases and 456 cohort
controls). In this study, we did not find statistically significant evi-
dence for stratification (P < 0.10). The 95th percentile upper bound
on stratification from Genomic Control, however, was similar to that
in the study of African Americans (λ1000 = 3.03; Fig. 2). Much more
data will be needed from many studies before it is possible to assess
whether matching cases and controls solely on the basis of their self-
reported ancestry, in a population such as European Americans with-
out recent mixture, is adequate to take into account population
stratification.

Our data indicate that genotyping a few dozen markers cannot
rule out modest levels of population stratification that could gener-
ate false positives in an association study designed to detect alleles of
weak effect—even in the setting of a prospectively collected cohort
study. Stratification is probably most problematic in populations

whose ancestors recently mixed due to intercontinental migrations
and for diseases that have different prevalence rates across these
ancestral populations11,13 (such as hypertension, obesity, diabetes
and autoimmunity). Because the importance of stratification grows
with sample size12,13, however, it seems possible that, even for dis-
eases whose incidence rates are not currently known to vary across
populations, stratification could exist. Thus, our study argues that
stratification cannot be excluded based on either first principles or
published empirical data. We suggest instead that investigators con-
tinue to monitor for stratification. In addition to presenting nomi-
nal P values, investigators should also report the range of values
consistent with the Genomic Control estimate of stratification in
the samples based on genotyping unlinked markers. Alternatively,
investigators could present a P value corrected for the full range of
possible values of λ1000, using the full Bayesian approach to
Genomic Control12.

Our data show that stratification cannot be excluded as a possibil-
ity in real case-control studies, but that there is no need to abandon
case-control and case-cohort studies in favor of family-based
designs (such as transmission disequilibrium tests). Two powerful
approaches are available to detect and correct for stratification20.
The first clusters samples based on multilocus genotypes (e.g.,
STRUCTURE21) to identify individuals with different ancestries.
This provides a way to adjust for ancestry as a covariate in the asso-
ciation analysis7,21. Genomic Control, on the other hand, makes a
quantitative estimate of the degree of stratification and uses it to
adjust for any stratification that might be present. The two methods
are not mutually exclusive: STRUCTURE can be used first to iden-
tify and eliminate samples that contribute unduly to stratification,
and a smaller Genomic Control correction can then be made in the
final study.

How many SNPs need to be used in an assessment of stratifica-
tion? This question must be viewed in relation to the magnitude of
genetic effects under study. Given a substantial magnitude of effect
and a highly significant P value, only a few dozen markers probably
need to be genotyped to rule out gross stratification as an explana-
tion for the positive association11,22 (Table 3). In contrast, if the
results point to more modest influences on disease, such as the risk
due to variation in CTLA4 on autoimmune thyroid disease and type
1 diabetes23, it may be necessary to genotype a larger number of
markers to rule out modest amounts of stratification. Genotyping
more than 340 markers can bring the conservative 95th percentile
upper bound on the level of stratification to within 10% of the true
value (Table 3). Fortunately, as the number of SNPs tested in associ-
ation studies grows larger (to survey the genome for risk-associated
alleles of increasingly modest effect), the bounds on the estimate of
stratification should become increasingly precise with no additional
effort, as all the markers in a study can be used to assess and adjust
for stratification12,13.

Table 2  Comparison of levels of stratification in missense versus randomly chosen SNPs

SNPs used in calculation Mean χ2 for Mean χ2 Mann-Whitney
Comparison (noncoding/missense) noncoding SNPs for missense SNPs significance

African American (n = 88) versus Asian American (n = 70) 40/68 12.5 17.2 P < 0.36

African American (n = 88) versus European American (n = 156) 41/70 12.5 14.8 P < 0.11

Asian American (n = 70) versus European American (n = 156) 35/66 8.3 15.3 P < 0.04

Application of the Genomic Control approach relies on the assumption that the distribution of noncoding, unlinked SNPs across populations is similar to that for the missense SNPs
typically tested in association studies. We assessed this by genotyping missense SNPs in 50 African American, 88 European American and 42 Asian American population samples
and comparing the χ2 values to the noncoding SNPs. The differentiation between populations is not significantly greater among missense SNPs than noncoding SNPs (accounting for
the fact that three hypotheses were tested). This suggests that noncoding SNPs can be used to assess stratification in a way that is roughly applicable to missense SNPs as well.

Table 3  Number of SNPs necessary to ensure an association
is not due to stratification

Number of markers Maximum factor by which λ can exceed
evaluated the best estimate of stratification

5 1.847

10 1.599

15 1.487

20 1.421

25 1.375

30 1.342

40 1.295

50 1.263

60 1.240

80 1.207

100 1.185

125 1.166

150 1.151

200 1.130

250 1.116

300 1.106

350 1.098

400 1.092

450 1.086

500 1.082

1,000 1.058

Number of markers than must be genotyped to be 95% confident that the upper bound
on stratification is within a particular factor of the best estimate. If we observe a χ2 value
of x and the genome-wide threshold of significance is y, then ruling out stratification as
an explanation for the positive association means genotyping enough markers so that the
second column in the table is less than x/y. See ref. 13 for a related table.
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METHODS
Clinical samples. We obtained all samples for the new data collections with per-
mission of the principal investigators and with approval of the Institutional
Review Boards of the Massachusetts General Hospital, the Cleveland Clinic,
SUNY/Upstate Medical University, the University of Hawaii and the University
of Southern California. Informed consent was obtained from all subjects by the
institutions responsible for the collections. Citations provide additional detail on
the ascertainment of cases and controls.

GeneQuest coronary artery disease study24. We randomly selected 83 cases and
80 controls, all European Americans. The cases were from Cleveland, and con-
trols were identified by random digit phone dialing in Atlanta, Georgia, USA.

Multiethnic Cohort prostate cancer study. The Multiethnic Cohort19 is an ongo-
ing (n = 215,251) study focusing on the effects of diet, genes and environment on
the risk of cancer. The cohort samples include four main ethnic groups in Los
Angeles and Hawaii. For European Americans, we randomly selected 110 incident
cases and 97 cohort controls; for African Americans, we selected 90 incident cases
and 69 cohort controls; for Japanese Americans, we selected 121 incident cases and
106 cohort controls; and for Hispanic Americans, we selected 142 incident cases
and 124 cohort controls. We followed up in the study of African American prostate
samples by genotyping all the missense and ancestry-informative SNPs described
below. We genotyped an expanded sample of 469 African-American incident cases
and 268 cohort controls from the cohort for all the SNPs and genotyped an addi-
tional 5 cases and 208 cohort controls for 31 of the SNPs that had high allele fre-
quency differences across populations before the DNA for these samples ran out.

Bipolar disorder in European Americans. We obtained 93 DNA samples from
Massachusetts General Hospital from individuals with diagnoses of bipolar dis-
order 1 or bipolar disorder 2. As controls, we used GeneQuest samples (both
this and the coronary artery disease study are examples where cases are
matched to controls only using self-reported ancestry.)

Schizophrenia. We obtained samples from 149 cases diagnosed with schizo-
phrenia according to the criteria of the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition, and 152 matched controls as part of a study
of schizophrenia in the Portuguese population. Samples were descended from
continental Portugal (83% of cases, 87% of controls), the Azore islands (13% of
cases, 3% of controls) or the Madeira islands (3% of cases, 10% of controls).
Some individuals were from Fall River, Rhode Island, but in each of these cases,
all four grandparents were from the Azore islands.

For comparison of noncoding to missense SNPs, we studied 50 African
American, 88 European American and 42 Asian American population samples.
These were identical to those previously studied25, except that the 88 European
American samples were replaced by the parents of the 44 samples resequenced
previously26.

Choice of markers. The physical and genetic map positions, along with flanking
sequences, of all SNPs used in this study are available from the authors on request.

We obtained noncoding SNPs (67) from the SNP Consortium website. They
were identified by comparing a single sequencing read from a diverse panel of
individuals with the publicly available genome sequence27. The SNPs were evenly
spaced throughout the autosomes, each at least 20 Mb from the others. In prac-
tice, only 34–48 of these SNPs genotyped successfully and were of high enough
frequency in any study to use in our analysis (the expected number of reference
and variant alleles based on the allele frequency and sample size was ≥5).

We identified missense SNPs (100) from a database of SNPs in coding regions
of genes28, obtained as part of an effort to catalog SNPs in genes of interest for dis-
ease. We used only genes that were not designated in the database or in a pub-
lished meta-analysis10 as having any relationship with prostate cancer, coronary
artery disease, asthma or atopy. We excluded from the study those SNPs with a
minor allele frequency <10% in a multiethnic screening panel. SNPs were chosen
to be at least 1 Mb away from each other and from all the noncoding SNPs.

We obtained ancestry-informative SNPs (101) with high allele frequency dif-
ferences comparing European and African Americans by combining data from
ref. 15 with unpublished data from our own laboratory. These SNPs were all
chosen to be at least 20 Mb from each other. The average frequency difference
comparing west Africans and Europeans was 67%.

Genotyping. The genotypes collected for this study are available from the
authors to the extent that is consistent with the informed consent provided
by the study participants. We used matrix-associated laser desorption ion-
ization–time of flight mass spectrometry (MALDI-TOF)29 with 5 ng of
DNA per multiplex genotyping reaction to genotype most SNPs in this
study. The PCR protocol is described elsewhere25. Error rates with the
Sequenom MassARRAY system have been estimated to be ∼ 0.4% at our lab-
oratory25, although the discrepancy rate in the present data set suggests
closer to 0.25% (215 conflicts out of 42,766 genotypes, each done at least in
duplicate).

Elimination of poorly performing SNPs. We removed all SNPs from our
analysis that showed Hardy Weinberg P values of <0.01 in at least two of the
three diversity samples (CEPH, East Asian and African American). We also
excluded SNPs from the analysis if the combined Hardy-Weinberg P value, over
all populations excluding African Americans and Hispanic Americans, was
<0.01. To calculate the P value, we summed the χ2 values for the Hardy-
Weinberg test over all n populations for which the statistic could be calculated
and assessed significance using a χ2 distribution with n degrees of freedom. (We
excluded African Americans and Hispanic Americans from the Hardy-
Weinberg assessment because different levels of population mixture across
individuals in these groups can produce a deficiency of heterozygotes, even
with accurate genotyping.) We also excluded from analysis SNPs for those stud-
ies in which the genotyping success rates were <75% in either cases or con-
trols25. We also eliminated from analysis SNPs that showed discrepancy rates of
>3% in duplicate genotypes.

Detection of population stratification. We calculated χ2 association statistics
for all k SNPs in a study, including only those for which the expected number of
allele counts (based on the combined frequency in the two population samples)
was at least 5. We then summed the values and assessed significance using a χ2

distribution with k degrees of freedom11.

Quantitative assessment of population stratification. For each SNP in each
study for which at least 40% of the cases and controls had been successfully
genotyped, we calculated χ2 values for all SNPs for which the expected num-
ber of allele counts (based on the combined frequency in the two population
samples) was at least 5.

We carried out a likelihood analysis to estimate the level of stratification con-
sistent with the data in each study. Defining cj as the association statistic
observed at marker j genotyped in nj cases and mj controls and f as the χ2 distri-
bution with 1 degree of freedom, the likelihood of a given inflation factor due to
stratification is simply

a consequence of the fact that the χ2 distribution scales with the inflation
factor12. The likelihood at all K markers is then

To estimate a likelihood distribution for the level of stratification, we define a
reference sample size (we use nref = 1,000 cases and mref = 1,000 controls). We
then use an equation derived in ref. 12 and confirmed by simulation as in ref. 13
to relate this to the inflation factor applicable to nj cases and mj controls. The
inflation factor should be different from marker to marker because it scales
with sample size:

In this paper we abbreviate λ1000,1000 as λ1000.
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Substituting equation 3 into equation 2 allows us to obtain a likelihood distri-
bution for λ1000 . The maximum likelihood estimate for λ1000 is simply the value
for which L is maximized, with the requirement that λ1000≥ 1. We obtained the
likelihood surfaces shown in Figure 2 by plotting the values of L for different
λ1000, normalizing by the maximum likelihood (set equal to 1 in Fig. 2). We
obtained the upper bound on λ1000by picking the value such that the likelihood
ratio 2log10(Lmax/L) = 2.7; that is, the point for which the likelihood was 4.5% of
the maximum, corresponding roughly to a P < 0.05 cutoff (one-sided test).

To test for a difference in the distribution of χ2 values between missense and
noncoding SNPs (Table 2), we compared the random African American,
European American and Asian American population samples in our study. For
each SNP for which at least 70% both sample sets had been successfully geno-
typed, we randomly dropped samples until we had the same number at all sites.
We then calculated χ2 values and used a Mann-Whitney U test to assess
whether the empirical distributions of statistics at missense and noncoding
SNPs were distinguishable.

URL. The SNP Consortium website is available at http://snp.cshl.org.

Note: Supplementary information is available on the Nature Genetics website.
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