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Materials and Methods 

In 1979–1980, the skeletons of 32 individuals were excavated from the Catoctin Furnace African 

American cemetery in Thurmont, Maryland, in advance of planned highway construction and 

were transferred into the custody of the NMNH. Sampling of 27 skeletons for ancient DNA was 

authorized by the NMNH Department of Anthropology Collections Advisory Committee.  5 

 

A report describing the generation of the genetic data was submitted to the NMNH Department 

of Anthropology Collections Advisory Committee (13) and the genetic data was deposited in the 

European Nucleotide Archive under accession number PRJEB52230 after three years had 

elapsed following the original date of sampling, in accordance with the review committee’s 10 

sampling policies. For completeness, we reprise here a description of how the DNA data was 

prepared. 

Ancient DNA Sequencing: 

We performed all ancient DNA sampling work in dedicated ancient DNA facilities at Harvard 

Medical School, following standard guidelines for ancient DNA laboratory setup and cleaning.  15 

 

We sampled bone powder from the petrous portion of the temporal bone (74, 75) from a total of 

27 Catoctin individuals. When sampling from intact skulls, we used a minimally destructive cranial 

base drilling approach (59). We extracted DNA from ~37 mg of bone powder using published 

methods (60–62) and created dual-barcoded, double stranded DNA libraries treated with a partial 20 

uracil-DNA glycosylase (UDG) approach that reduces characteristic ancient DNA damage (63, 

64). 
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To maximize the amount of endogenous human DNA sequenced, we used an in-solution targeted 

enrichment capture approach. We enriched for sequences that overlap the mitochondrial genome 

and ~1.24 million (1240k) single nucleotide polymorphisms (SNPs) from the nuclear genome (24–

26, 76). Following enrichment, we added unique seven base pair long indexing barcodes to each 5 

molecule in the library and performed paired-end sequencing using either an Illumina HiSeq10 or 

NextSeq500 instrument with 2x101 or 2x76 cycles, respectively, and with 2x7 cycles to read the 

library indices. We also performed a relatively small amount of shotgun sequencing for each 

library, which we used to assess DNA quality.  

 10 

We trimmed the molecular adapters and barcodes from sequenced reads, and merged paired-end 

reads (requiring an overlap of 15 base pairs with up to 3 mismatches in low quality bases (<20) or 

1 mismatch of a high quality base (≥20) using custom software 

(https://github.com/DReichLab/ADNA-Tools). We mapped the merged sequences to both the 

mitochondrial (mt) consensus sequence (RSRS) (77) and the human reference genome (version 15 

hg19) using samse in BWA (v0.6.1) (78). We identified duplicate molecules using Picard 

MarkDuplicates (http://broadinstitute. github.io/picard/), defining reads with identical start and 

end positions, orientation, and identical DNA barcodes as duplicates, and retaining only the highest 

quality duplicate sequence.  

 20 

We assessed ancient DNA authenticity and considered the following criteria when deciding if the 

data were suitable for analysis. Typically, requiring a minimum rate of 3% cytosine-to-thymine 

substitutions at the 5’ end of each molecule is recommended to establish ancient DNA authenticity 
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(63). However, based on the relatively recent age of the Catoctin skeletal samples, versus the 

considerably more ancient samples upon which this recommendation was based, we considered 

all of the Catoctin individuals (minimum 2.3% terminal damage rate) to have sufficient damage 

rates to be suitable for analysis (63). Next, we quantified the mt contamination rate using contamix 

v1.0-12 (26), requiring libraries to have 95% confidence intervals for their inferred contamination 5 

rate to be entirely greater than 5%. Additionally, we used ANGSD (65) to estimate contamination 

on the X-chromosomes of genetic males, requiring contamination rates below 3%.  

 

The libraries generated from two individuals (Burials 13 and 25) had somewhat elevated levels of 

estimated contamination when we considered the upper bounds of the 95% confidence intervals 10 

of the mt match to consensus and ANGSD contamination rates. Therefore, we restricted to 

sequences that showed evidence of having ancient DNA damage, using the damage restriction 

approach described in PMDtools (79). The damage restricted version of each library passed all 

authenticity metrics and was used to create pseudo-haploid genotype calls (described later) used 

for preliminary population genetic analyses. However, since we do not expect such low rates of 15 

contamination to significantly impact the accuracy of imputed genotype calls, all sequences were 

used during the imputation process.  

Imputation 

Imputation was performed using GLIMPSE (72) (v1.0.0) using the 1000 Genomes project phase 

3 dataset as the reference panel (68). Diploid genotype calls were generated using bcftools mpileup 20 

(v1.10.2). All the autosomal biallelic SNPs and indels in 1000 Genomes project phase 3 have been 

imputed. Only biallelic genotype likelihoods for SNPs, generated by mpileup were used as input 
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to build the phasing and imputation model, and genotype likelihoods for indels were ignored 

because of more severe reference bias. Unless otherwise noted, the data were filtered to remove 

genotype calls with an estimated maximum genotype posterior below a minimum threshold 

(henceforth referred to as the “max (GP) threshold”) of 0.95. 

Genetic Sex and Uniparental Haplogroups 5 

We determined the genetic sex of each individual by calculating the ratio of the number of shotgun 

sequences that align to the X chromosome versus the Y chromosome. Individuals for whom we 

detected a ratio of approximately 1:1 shotgun sequences aligning to the X and Y chromosomes 

were assigned a genetic sex of male, while individuals for whom we detected a ratio of 

approximately 1:0 were assigned a genetic sex of female (66). To identify mitochondrial 10 

haplogroups, we considered reads that aligned to the RSRS mitochondrial genome with MAPQ ≥ 

30 and base quality ≥ 20. Haplogroups were determined with haplogrep2 (67), using Phylotree 

version17. Y-chromosome haplogroups were called from reads that aligned to the Y-chromosome 

with MAPQ ≥30 and base quality ≥30. The most derived mutation for each individual was used to 

determine the Y-haplogroup, using the nomenclature defined by the International Society of 15 

Genetic Genealogy (ISOGG) (http://www.isogg.org) version 14.76 (April 2019). Assigned genetic 

sex, mt and Y haplogroups for each individual are reported in Fig. 1B and Table S1. 

Genetic relatedness between Catoctin Individuals 

We identified genetic relatives of first, second, and third degree using a previously described 

method based on comparing the rate of matching across individuals to the rate of matching of the 20 

maternal and paternal chromosomes of the same individual (80). We identified 15 related 

individuals, belonging to 5 distinct families. Another individual (Burial 28) did not have sufficient 
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coverage to conclusively determine whether they should be included in genetic Family B. Using 

the estimated degree of relatedness, genetic sex, uniparental haplogroups and age of death of each 

individual we further resolved the relationship shared between each pair of related individuals, as 

shown in Fig. 1B. While IBD comparisons between the Catoctin individuals (described later) were 

not used to determine these genetic relationships, the results of this analysis are consistent with 5 

these predicted relationships considering that we expect to underestimate the total amount of IBD 

shared between historical individuals (Fig. S16). 

Comparison to publicly available data 

We determined pseudo-haploid genotype calls for the non-imputed dataset by randomly sampling 

a single sequence to represent each position. We merged previously reported, publicly available, 10 

genome-wide data from present-day individuals from 12 populations (BantuSA.SDG, CHB.SG, 

ESN.SG, FIN.SG, GBR.SG, GWD.SG, Khomani_San.DG, Mandenka.SDG, Mbuti.SDG, 

MSL.SG, Pima.SDG, and YRI.SG) (68–71) with the newly generated pseudo-haploid dataset 

containing 27 Catoctin individuals. We refer to this dataset as “the public dataset.” The resulting 

merged dataset contained information at 1,233,013 SNPs. We also created a version of this 15 

publicly available dataset using the imputed genotype calls for the Catoctin individuals (filtering 

out all genotype calls with a maximum genotype posterior below 0.95), to show the impact of 

imputation on the Catoctin dataset. This dataset contained information at 1,083,703 SNPs. 

qpAdm estimates of mixture proportions 

We used the software qpAdm (81) (version 960) to estimate the proportion of ancestry that derived 20 

from African, European and Indigenous American sources for each Catoctin individual, using 

default parameters and the option “allsnps:YES”. Since the purpose of this analysis was to broadly 
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estimate ancestry proportions and not to identify the best possible model for each individual’s 

ancestry, we selected a single population to represent each ancestry type: YRI.SG (African), 

GBR.SG (European), and Pima.SDG (Indigenous American). An advantage of qpAdm is that it 

does not require access to reference data from individuals from the true source population to give 

unbiased and accurate results; instead, it works well if the set of samples used to represent each 5 

ancestry type are descended from the same ancestral population (perhaps distantly in time) as the 

true source population. We selected four reference populations that are differentially related to 

each of these source populations and that we considered unlikely to be more closely related to the 

Catoctin individuals than chosen source populations: Mubti.SDG, Khomani_San.DG, CHB.SG, 

FIN.SG. We considered all models with p-values >0.01 to be plausible. Additionally we 10 

considered models that assigned ancestry proportions outside the range of 0–1 to be plausible if 

the assigned proportions were within 3 standard errors of this range. Applying this approach to the 

non-imputed dataset, we could plausibly model the ancestry of 22 of the 27 Catoctin individuals 

tested. Two of the individuals whose ancestry could not be plausibly modeled using this approach 

were assigned over 100% YRI.SG ancestry, indicating that they likely have fully African ancestry 15 

but that YRI.SG is not a good proxy for this ancestry with respect to the reference populations 

included in the model. We could plausibly model the ancestry of all Catoctin individuals using this 

approach when using the imputed dataset. 

ADMIXTURE 

We used the clustering tool ADMIXTURE (82) to assign the ancestry of the Catoctin individuals 20 

and representative African (GWD.SG, Mandenka.SDG, MSL.SG, YRI.SG, ESN.SG and 

BantuSA.SDG), European (GBR.SG) and Indigenous American (Pima.SDG) populations to k 
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theoretical ancestral populations. We pruned SNPs in linkage disequilibrium using PLINK with 

parameters --indep-pairwise 200 25 0.4 and performed ADMIXTURE analysis on the remaining 

1,095,120 SNPs for values of k between 2 and 10, with 10 replicates for each value of k. The 

highest likelihood replicate at each k was retained and we display results for k=4, which was the 

most visually informative for distinguishing broadly between African, European and Indigenous 5 

American ancestry in the Catoctin individuals. We also repeated this analysis using the public 

dataset with imputed versions of the Catoctin individuals. The pruned dataset consisted of 

1,021,850 SNPs. 

PCA 

We performed principal components analysis (PCA) using smartpca (83) with default parameters 10 

in addition to the settings lsqproject:YES, numoutlier:0, shrinkmode:YES and ellconf: 0.95. We 

projected the Catoctin individuals onto a PCA plot created using representative African (YRI.SG), 

European (GBR.SG) and Indigenous American (Pima.SGD) populations. This PCA was designed 

to reveal a cline of European-related ancestry among self-identifying African Americans 

(ASW.SG). The PCA plot was created using both the non-imputed and imputed versions of the 15 

Catoctin dataset to show the impact of imputation.  

DATES 

We estimated the date of European and African admixture for each of the Catoctin individuals 

using the tool DATES (84) using the non-imputed dataset, with default parameters in addition to 

the settings mincount: 2 and minparentcount: 0. The populations YRI.SG and GBR.SG were used 20 

to represent the European and African admixture sources. 
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23andMe dataset  

We compared the Catoctin dataset with data from 9,255,493 participants (elsewhere referred to as 

the “23andMe cohort”) who had been genotyped by 23andMe, Inc., a consumer personal genetics 

company, by July 28th, 2020. Participants provided informed consent and participated in the 

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 5 

Independent Review Services (E&I Review). Participants were included in the analysis on the 

basis of consent status as checked at the time data analyses were initiated. The name of the IRB at 

the time of the approval was Ethical & Independent Review Services. Ethical & Independent 

Review Services was recently acquired, and its new name as of July 2022 is Salus IRB 

(https://www.versiticlinicaltrials.org/salusirb). We also included data from the 1000 Genomes 10 

Project (68) (Table S24), the Human Genome Diversity Project (69), and previously published 

data from people from Angola (22), the Democratic Republic of the Congo (85) and Sierra Leone 

(86), in addition to Khoe-San speaking people (87) in these comparisons.  

 

We considered a participant to be associated with a particular geographic location based on their 15 

answers to questions about where they and their grandparents were born. In cases where all four 

grandparents were born in the same location, we prioritized this information over participant birth 

location. Additionally, in cases where participant birth location and grandparent birth location was 

the same, and where we had finer resolution for participant birth location (i.e., we know that all 

four grandparents and the participant were born in the same country and we also have information 20 

about the participant’s birth state) we prioritized birth location information. We grouped 

participants associated with the US in the “US cohort.” We grouped participants associated with 

European countries (including the following countries, as denoted by their ISO2 country codes: 

https://www.versiticlinicaltrials.org/salusirb
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AD, AL, AT, AX, BA, BE, BG, BY, CH, CZ, DE, DK, EE, ES, FI, FO, FR, GB, GG, GI, GR, HR, 

HU, IE, IM, IS, IT, JE, LI, LT, LU, LV, MC, MD, ME, MK, MT, NL, NO, PL, PT, RO, RS, RU, 

SE, SI, SJ, SK, SM, UA, VA, and XK) into a “European cohort,” with the additional requirement 

that participants in this cohort are assigned ≥99% European ancestry by Ancestry Composition. 

Similarly, we grouped participants associated with African countries (including the following 5 

countries, as denoted by their ISO2 country codes: AO, BI, CD, CM, CF, TD, CG, GQ, GA, KE, 

NG, RW, ST, TZ, UG, SD, SS, DJ, ER, ET, SO, BW, KM, LS, MG, MW, MU, MZ, NA, SC, ZA, 

SZ, ZM, ZW, BJ, ML, BF, CV, CI, GM, GH, GN, GW, LR, MR, NE, SN, SL, and TG) into an 

“African cohort,” requiring that participants in this cohort were assigned ≥95% Sub Saharan-

African ancestry by Ancestry Composition. Finally we grouped participants associated with 10 

Atlantic African countries (including the following countries, as denoted by their ISO2 country 

codes: AO, CD, CF, CI, CM, GH, GM, GN, LR, NG, SL, SN, TG, and ZA) into an “Atlantic 

African cohort,” again requiring that participants in this cohort were assigned ≥95% Sub-Saharan 

African ancestry by Ancestry Composition. 

Ancestry Composition 15 

We performed ancestry prediction using 23andMe’s Ancestry Composition tool (42) for each of 

the 22 Catoctin individuals with >0.5x coverage, using a max (GP) threshold of 0.00, reporting 

results with a 90% confidence threshold. In Supplementary Text S4, we tested the performance of 

ancestry composition on an imputed test dataset of high coverage ancient individuals, which was 

originally described in Supplementary Text 3. We find that Ancestry Composition performs better 20 

when poorly imputed genotypes are retained (i.e. no max (GP) threshold is used) than when these 

genotypes are considered missing. We therefore rephased the unfiltered imputed Catoctin 
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genotypes against the panel of 23andMe research participants genotyped on the version 5 23andMe 

sequencing platform, as described previously, and performed Ancestry Composition analysis on 

the resulting dataset. We also found that while the broadest level Ancestry Composition 

assignments (e.g., Sub-Saharan Africa, East Asia & the Americas, West Asia & North Africa) 

were consistently assigned, even to the lowest coverage, imputed ancient DNA data, the more 5 

specific assignments (e.g., British & Irish versus Italian) were not reliably assigned. We therefore 

only considered the broadest level Ancestry Composition assignments for each Catoctin 

individual.  

Identity-by-Descent  

To search for portions of the genome that are identical by descent between the Catoctin individuals 10 

and members of the 23andMe cohort, we filtered out genotype calls that were assigned a max (GP) 

of less than 0.95. This threshold was chosen based on extensive testing of the performance of 

TPBWT comparisons between ancient individuals and 23andMe participants, described in 

Supplementary Text S3. After filtering, we then rephased the imputed data using EAGLE, with 

default settings and optional parameter --allowRefAltSwap. We created two rephased datasets 15 

using a reference panel of either 691,759 23andMe research participants at 454,507 SNPs or 

706,995 23andMe research participants at 541,948 SNPs for subsequent analysis of participants 

genotyped on the versions 1-4 or version 5 23andMe genotyping platforms, respectively. Missing 

genotypes, including those that were filtered out when the minimum genotype posterior threshold 

was applied, were not re-imputed.  20 
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We ran TPBWT with default parameters, comparing the 22 Catoctin individuals with sequencing 

coverage of at least 0.5x and the 23andMe cohort. While TPBWT reports IBD segments as short 

as 3cM, we restricted our analyses to segments that exceeded minimum length thresholds. These 

thresholds were defined for each Catoctin individual based on average chromosomal coverage at 

1240k sites to reduce the frequency of false positive IBD calls to ~10% in the shortest IBD 5 

segments that we consider (Supplementary Text S3). We used average chromosomal coverage at 

1240k sites, rather than the overall coverage on 1240k sites (which does not consider coverage on 

each chromosome separately) to best match the coverage estimates used in the down-sampling 

tests described in Supplementary Text S3. References to “coverage” in this manuscript refer to 

average chromosomal coverage at enriched autosomal positions. For individuals with >2x average 10 

chromosomal coverage (n=5), we considered segments as short as 6 cM. For individuals with 1-

2x average chromosomal coverage (n=10), we considered segments as short as 9cM and for 

individuals with 0.5-1x average chromosomal coverage (n=7), we considered segments as short as 

10cM.  

 15 

We interpreted IBD shared between the Catoctin individuals and participants by generating 

summary statistics that group participants based on their geographic location (provided by 

participants through surveys) and their ancestry composition (assigned by 23andMe’s Ancestry 

Composition tool (42)). We generated metrics including the proportion of participants that shared 

IBD with the Catoctin individual(s) of interest, the average total IBD shared between participants 20 

and the Catoctin individual(s) of interest (where average is calculated across all participants, and 

only those participants who shared some amount of IBD with the Catoctin individual(s) of 

interest), the maximum amount of IBD shared between a single participant and Catoctin individual 
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(rounded to 1 digit when IBD sharing is <10cM, 0 digits when IBD sharing is between 10-100cM, 

and to the nearest 10 when IBD sharing exceeds 100cM), and the number of participants that 

shared at least 30 cM of IBD with the Catoctin individual (s) of interest. Results are reported for 

participants grouped based on associated geographic coordinates (rounded to the nearest integer) 

for participants in the US, European and African cohorts. 5 

 

To ensure participant anonymity, coordinate level results are reported only for locations that have 

at least 25 associated participants. Additionally, we randomly downsampled our 23andMe cohort 

to include only results for 80% of participants to provide further anonymity. In the US and 

European maps, we show data only for participants who provided county or state level information, 10 

respectively, while in Africa we also include participants who provided only country level 

information, in which case we assigned them to the geographic centroid of the country. 

Randomization Tests 

We performed randomization tests in order to determine whether cases where elevated rates of 

IBD sharing with the Catoctin individuals among specific subsets of research participants were 15 

observed could be explained by random chance. In each case, we randomly sampled participants 

(with replacement) from the larger participant cohort of interest (e.g. participants in the US with 

over 5% Sub-Saharan African ancestry) to create 1000 random subsets of participants that were 

equal in size to specific subsets of participants of interest (e.g. participants with over 5% Sub-

Saharan African ancestry from the southern US [i.e., Alabama, Arkansas, Delaware, Florida, 20 

Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, 

Tennessee, Texas, Virginia, West Virginia and the District of Columbia]). For each replicate, we 
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counted the number of participants in the subset who shared any IBD with a Catoctin individual, 

or at least 30 cM in the case of the Maryland randomization test. We calculated p-values as the 

proportion of sampled subsets in which more individuals shared matches to Catoctin than were 

observed among participants from the true subset of participants under consideration. We 

considered all p-values <0.01 to be significant.  5 

 

IBD Networks 

To identify Catoctin individuals' distant and recent connections to genetic groups, we first 

performed community detection using the Louvain Method (88). The Louvain Method uses a 

heuristic model to optimize modularity, a value that represents the number of connections inside 10 

proposed groups with respect to connections to outside groups. Optimizing this value results in a 

natural grouping of participants of a given cohort. In the context of this study, the Louvain Method 

determines genetic clusters of participants by placing individuals into groups that maximize IBD 

sharing within a group after assessing pairwise IBD shared between all individuals in the cohort. 

We applied this method to unrelated Atlantic Sub-Saharan Africans with ≥99% Sub-Saharan 15 

African ancestry (N = 2,807), unrelated Europeans with ≥99% European ancestry (N = 23,092), 

and a partially-related cohort of individuals that share >30 cM with any Catoctin individual (N = 

4,828). Unrelated cohorts are filtered so that no two individuals share ≥700 cM, whereas partially-

related cohorts contain no IBD filters. In each of the three cohorts, we identified the groupings of 

participants that maximize modularity and found any enrichment of geographical or 20 

ethnolinguistic terms within each group using survey answers provided by participants. After 

identifying the optimal clusterings, based on modularity, we determined the average amount of 

IBD each Catoctin individual shares with each of the groups. We used these data to display each 
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Catoctin individual's connections to each group in the form of a graph layout. To achieve this, we 

first arranged groups within each of the cohorts, using the Force Atlas layout(89). Force Atlas is 

an algorithm that situates groups (or nodes) in a graph using a physical magnetic model. In this 

case, groups with more IBD sharing will be attracted to one another and groups with less IBD 

sharing are repelled. Force Atlas runs until balance between repulsion and attraction is achieved, 5 

essentially illustrating the structure of groups via their IBD sharing. After Force Atlas was run on 

each of the participant cohorts, we independently ran Force Atlas between each Catoctin individual 

and the pre-arranged graph of participants, projecting Catoctin individuals onto the structure of 

each cohort, thus illustrating where Catoctin individuals physically fell into the structure of each 

cohort. 10 

Pedigree Reconstruction 

Pedigrees were inferred between Catoctin families and modern pedigrees using a modified version 

of the Bonsai pedigree inference algorithm that is used to reconstruct research participant pedigrees 

at 23andMe (43). The algorithm was modified to use likelihoods adjusted for low coverage 

individuals (Supplementary Text S6). 15 

Biologically Significant Variants 

We determined the number of reference and alternative alleles observed in unique reads that 

overlap positions of phenotypic interest, including those known to be associated with sickle cell 

anemia and G6PD deficiency. While sequencing coverage was not high enough for any of the 

Catoctin individuals to make diploid genotype calls, the presence of causal alleles that are 20 

associated with phenotypes of interest suggests that the Catoctin individuals were either 

homozygous or heterozygous at these sites
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Supplementary Text S1: Extended Ethics Statement 

S1.1 Permissions for this and prior related studies  

The Catoctin Furnace cemetery was excavated during a Maryland state highway project in 1979-

1980 and the remains were subsequently transferred to the care of the Smithsonian National 

Museum of Natural History (NMNH). Authorization for the ancient DNA analysis of 27 Catoctin 5 

individuals was provided by the NMNH Department of Anthropology Collections Advisory 

Committee. In fulfillment of DNA sampling requirements, the genetic data were made fully 

publicly available on European Nucleotide Archive after 3 years had elapsed after the initial date 

of sampling. A technical report that describes the methods used during sampling, data generation, 

and bioinformatic processing and that details the results of the genetic analyses that had already 10 

been publicly presented during the community outreach events described below was returned to 

the Collections Advisory Committee and posted publicly at the same time (13). 

 

The Catoctin Furnace Historical Society, Inc. (CFHS) and the African American Resources 

Cultural and Heritage Society (AARCH) are considered organizations with a vested interest in the 15 

research, and were consulted throughout the study.  Members of two families that can 

genealogically trace their ancestry to enslaved and free African Americans who labored at Catoctin 

Furnace were also consulted. Each group directly supported the decision to collaborate with the 

direct to consumer genetic testing company, 23andMe, Inc., in order to compare the DNA of the 

Catoctin individuals to research participants in the 23andMe cohort.  20 
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S1.2 Community outreach  

The community outreach efforts included in this study built upon a foundation established by co-

author Elizabeth Comer (current President of the Catoctin Furnace Historical Society). For further 

information about the history of CFHS please refer to https://catoctinfurnace.org/.  

 5 

A major goal of CFHS is to identify a descendant community of the African American individuals 

buried at Catoctin Furnace. Despite extensive efforts to identify such a community, CFHS has only 

recently been successful in identifying one family who can trace their ancestry back to an enslaved 

person at Catoctin Furnace. They have also identified a family who can trace their ancestry to a 

free African American ironworker who labored at the furnace. The search for the broader 10 

descendant community was therefore one of the primary drivers of this genetic study. 

 

Although identifying a descendant or direct biological kinship community for the enslaved and 

free African Americans buried at Catoctin Furnace is a goal for CFHS, multiple groups have served 

as community stakeholders for these individuals, including: 15 

 

● The Catoctin Furnace Historical Society, Inc. (CFHS). This society was established in 

1972 and among its members are descendants of the paid laborers of primarily European 

ancestry who worked at (but did not own) the Furnace. Many of these descendants still 

reside in Thurmont, Maryland in dwellings associated with Catoctin Furnace and their lives 20 

are deeply intertwined with the village’s history.  

● The African American Resources Cultural and Heritage (AARCH) Society, 

Frederick, Maryland. AARCH was officially incorporated in 2009, and its mission is to 
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“identify, collect, preserve and exhibit the cultural objects, artifacts, and stories that tell 

and celebrate the unique history, culture, and heritage of African Americans in Frederick 

County, Maryland for the purpose of educating the general public and deepening our 

understanding of how the African American past can shape and enrich the present and the 

future.” Members of AARCH have worked closely with CFHS to ensure that the portrayal 5 

and study of African Americans at Catoctin Furnace is done sensitively and appropriately. 

● Members of descendant families. Historical research led by CFHS has recently identified 

two descendant families whose ancestry can be directly traced to enslaved and free African 

American ironworkers who labored at Catoctin Furnace.  

 10 

Interaction with these stakeholder communities and others with an interest in the history of 

Catoctin Furnace has involved a variety of engagement events and activities, during which we 

shared findings from the study and gathered community feedback on the project. These events and 

activities include: 

● The Catoctin Furnace African American Cemetery Interpretive Trail. Visitors to 15 

Catoctin Furnace (both in person and virtual) can learn about the role that enslaved and 

free African Americans played at Catoctin Furnace during its early history by participating 

in a self-guided tour that leads participants from the ruins of Catoctin’s “Isabella” Furnace 

to an observation area that overlooks the site of the African American cemetery. Along the 

trail are 11 informational panels that describe the site and various aspects about the lives 20 

of the enslaved and free African American laborers at Catoctin. We contributed to panel 9 

of the interpretive trail by reporting the genetic relationships identified among the 27 
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individuals included in this study. More information about the interpretive trail is available 

here: https://catoctinfurnace.org/african-american-cemetery/   

● Facial Reconstruction Unveiling Event. In June of 2021, the CFHS held an event during 

which facial reconstructions that had been created of two African Americans buried at 

Catoctin were unveiled to members of CFHS and other interested members of the Frederick 5 

community. The evening included readings by Elayne Bond Hyman from her collection of 

poems, Catoctin SlaveSpeak, performances by Joseph Ngwa, a master ancestral drummer, 

and a reading of the names of the enslaved individuals at Catoctin, which paid tribute to 

the idea that “A person is not forgotten until his or her name is forgotten” (Supplementary 

Text S2). Also among the events of the evening were two talks in which representatives of 10 

our research team shared preliminary genetic results from our study, including a description 

of the genetic relationships that were identified, preliminary estimates of ancestry, and 

discussion of the possible identification of several individuals who may have been carriers 

of or had sickle cell disease. Media coverage of the evening is available in The Washington 

Post (90) and in The Frederick News-Post (91). Placards describing the results presented 15 

during this evening are now on display in the Museum of the Ironworker at Catoctin 

Furnace.  

● Tours of the NMNH Collections for Catoctin Stakeholders. Co-authors affiliated with 

the NMNH hosted multiple tours of the NMNH collections for members of CFHS and 

AARCH, as well as students and teachers from the Silver Oak Academy, a school for at-20 

risk youth in Keymar, Maryland affiliated with CFHS. The most recent of these tours 

occurred in April, 2022. 

https://catoctinfurnace.org/african-american-cemetery/
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● Screening of “America’s Hidden Stories: Forged In Slavery.” CFHS and members of 

the study team helped to organize a screening of this Smithsonian Channel documentary in 

Frederick Maryland in June, 2022. The documentary spotlights the ongoing research into 

the lives and legacies of the Catoctin African Americans. Additionally, several members 

of the study team were interviewed about the genetics of the Catoctin individuals as part 5 

of the documentary.  

● Virtual meeting with members of the descendant families. In June, 2022, members of 

the research team virtually met with representatives from the two descendant families to 

discuss the results of this study. 

S1.3 Informed Consent Provided by Present-day Research Participants 10 

In this study, we compared the Catoctin individual’s genomes to that of present-day research 

participants whose genetic data was obtained from a variety of sources. Here, we outline the 

different datasets used and provide an overview of the informed consent that was provided with 

each of these datasets. In Table S1.1 we specify which datasets were used in each analysis and 

indicate whether the results of those analyses can be reproduced using publicly available data. 15 

● Non-23andMe datasets: 

○ 1000 Genomes Project 

Individual’s whose genetic data is included in the 1000 Genomes Project (68) 

dataset provided broad consent to allow individual level data generated from the 

samples that they provided to be made publicly available on online scientific 20 

databases, provided that no individual identifiers or medical information was 

associated with the samples. The 1000 Genomes dataset can be used for a variety 
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of purposes, including studying population history and relatedness, and it may be 

accessed by academic, commercial and government entities. The sampling protocol 

for all samples included in the dataset was required to be approved by local Internal 

Review Boards (IRB) or Research Ethics Committees (REC), while also fulfilling 

the requirements of the 1000 Genomes Samples and ELSI group. For more 5 

information about the 1000 Genomes Project consent process, see: 

 https://www.internationalgenome.org/sample_collection_principles/.  

○ The Human Genome Diversity Project 

Like the 1000 Genomes Project dataset, individual’s whose genetic data is included 

in the Human Genome Diversity Project (HGDP) dataset provided broad consent 10 

to allow individual level data generated from the samples that they provided to be 

made publicly available on online scientific databases. The HGDP dataset was 

generated with the intention of providing a resource that could be used to study 

human genetic variation, including studies of human evolutionary history and/or 

ancestry. In this study, the HGDP dataset is used to learn about the ancestry of the 15 

Catoctin individuals, an aim that falls within the intended use case. However, a 

number of criticisms have emerged since the release of the HGDP dataset regarding 

sampling procedures and informed consent, as the majority of samples included in 

the dataset came from existing collections that were not originally sampled with the 

intent of creating a public database of global human genetic variation (e.g. 92, 93). 20 

○ Simons Genome Diversity Project 

We considered individuals whose genetic data was included in the Simons Genome 

Diversity Project dataset. Only genetic data from individuals who provided 

https://www.internationalgenome.org/sample_collection_principles/
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informed consent that was consistent with fully public data release on the EBI 

European Nucleotide Archive was considered. Data uploaded to the European 

Nucleotide Archive may not be subject to any usage restrictions and must remain 

permanently accessible as part of the scientific record. For more information about 

the Simons Genome Diversity Project and the European Nucleotide Archive 5 

policies, see: Mallick et al, 2016 and 

https://www.ebi.ac.uk/ena/browser/about/policies  

● 23andMe datasets: 

○ 23andMe Research participants 

This study (like all 23andMe Research studies) only considered the data of 10 

23andMe customers who had actively provided consent to participate in 23andMe 

Research at the time of study onset (July 28th, 2020). More than 80% of 23andMe 

customers have provided informed consent to participate in research via a protocol 

that was approved by an external AAHRPP-accredited IRB, Ethical & Independent 

Review Services (E&I Review), now known as Salus IRB. Consenting participants 15 

provide broad consent to allow 23andMe researchers to study and publish on a wide 

variety of research topics, including, but not limited to, “The history of peoples 

across the world, including how they migrated and intermixed in the past.” In order 

to protect participant privacy, 23andMe researchers do not have access to 

identifying information, such as participants’ names and contact information. 20 

Additionally, all research results are reported as combined summaries that do not 

allow identification of any particular individual. Participants are informed that they 

are unlikely to directly benefit from participation and that they should not expect to 

https://www.ebi.ac.uk/ena/browser/about/policies
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receive individual results that are learned through 23andMe Research discoveries. 

However, they or people with shared ancestry may indirectly benefit if these 

23andMe Research discoveries go on to be incorporated into the 23andMe product 

in the future. 23andMe Research participants have the option to change their 

consent choice at any time. For more information about the 23andMe Research 5 

consent process, see: https://www.23andme.com/about/consent/  

○ 23andMe’s African American Sequencing Project imputation panel: 

The 23andMe African American Sequencing Project imputation panel reported in 

O’Connell et al (94) is composed of 23andMe Research participants who provided 

additional informed consent to allow their individual level genetic data to be 10 

uploaded to the database of Genotypes and Phenotypes  (dbGap), where it may be 

accessed by qualified researchers conducting human genetic variation research.  

The study design and consent were approved by Ethical & Independent Review 

Services (E&I Review), now known as Salus IRB. For more information about the 

panel, see O’Connell et al (94). 15 

○ 23andMe Population Collaboration Datasets:  

The following datasets were generated as part of collaborations between 23andMe 

and academic institutions with the purpose of increasing global representation of 

genetic databases: 

■ 299 individuals from Angola (22, 95). Sampling was conducted and 20 

consented for following a research protocol that was approved by ethics 

committees at the University 11th of November (Universidade 11 de 

https://www.23andme.com/about/consent/
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Novembro), Cabinda, Angola (REf: GD-FM/UoN/2016) and the University 

of Leicester ethics committee (REf: 11334-sdsb1-genetics). 

■ 605 individuals from The Democratic Republic of the Congo (85). 

Sampling was conducted and consented for following a protocol that was 

approved by the Harvard Internal Review Board (IRB00000109; Protocol 5 

24087).  

■ 225 individuals from Sierra Leone (86). Sampling was conducted and 

consented for following a protocol that was approved by IRBs obtained by 

Boston University and the University of South Carolina.  

■ 95 Khoe-San speaking people (87). Sampling was conducted and consented 10 

for following a protocol that was approved by an IRB obtained from 

Stanford University. 

The 23andMe Population Collaboration Program provided support to 23andMe 

collaborators to genotype research participants from populations that are 

understudied in terms of genetics. The exact research protocols and consent 15 

procedures used in each study was developed in collaboration between 23andMe 

and the external collaborators who were leading the study. In all cases, informed 

consent was received that permitted researchers to collect a saliva sample and for 

23andMe to store, access and analyze the sample and resulting data. Additionally, 

collaborating researchers were responsible for gathering demographic information, 20 

including participant age, sex, birthplace, ethnic affiliations and languages to be 

shared with 23andMe. For more information about the 23andMe Population 
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Collaborations Program, see: https://blog.23andme.com/articles/23andmes-

population-collaboration-program-supports-research-in-understudied-groups  

 

S1.4 Strategies to Ensure 23andMe Participant Anonymity 

23andMe Research participants provided informed consent for their data to be used in 23andMe 5 

Research studies with the understanding that 23andMe would not release individual level data to 

outside collaborators or include it in publications without their explicit and separate consent. 

Instead, under the 23andMe Research Consent Document 

(https://www.23andme.com/about/consent/), 23andMe researchers may only share research 

participant data in a combined format that does not identify any particular individual. We applied 10 

several anonymization strategies throughout the study that were created in order to fulfill this 

requirement, while also enabling us to share fine grained results. Here, we outline the strategies 

used for each analysis involving 23andMe Research participants: 

● Default approach: k-anonymity (k ≥ 5):  

Unless otherwise noted, all results generated using the 23andMe dataset were required to 15 

meet the requirement of k-anonymity, where k ≥ 5 (96). This means that any reported 

counts that were less than 5 were excluded or masked (i.e. reported as “≤ 5”). This 

anonymization strategy greatly reduces the chance that individual-level data could be 

discerned from the reported results.  

Applies to results reported in: Table 1, Figs 4b, 5b, 6b, 7 and associated Supplementary 20 

Tables 

 

 

https://blog.23andme.com/articles/23andmes-population-collaboration-program-supports-research-in-understudied-groups
https://blog.23andme.com/articles/23andmes-population-collaboration-program-supports-research-in-understudied-groups
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● Rounding of IBD segment lengths and total IBD: 

While individual-level results about genetic connections to the Catoctin individuals were 

not returned to research participants as part of this study, we wanted to ensure that if these 

results were to be returned in the future, that this information would not make it possible 

to determine whether specific research participants were included in the study. While it 5 

would be difficult to discern whether or not a particular participant was included in the 

dataset when considering values like average IBD sharing or the proportion of participants 

in a particular subset, the maximum IBD segment length and maximum total IBD could be 

more easily linked to a particular research participant if that participant’s results were 

known. We rounded the maximum IBD segment length and total IBD sharing using the 10 

following approach to unlink individual results from the values provided in these tables: 

Values >100 cM were rounded to the nearest ten, values between 30–100 cM were rounded 

to the nearest five, values between 10–30 cM were rounded to the nearest integer, and 

values <10 cM were rounded to one decimal place. 

Applies to results reported in: Table 1, Figs 4a, 5a, 6a and associated Supplementary 15 

Tables 

● Downsampling to 80% and only reporting coordinates with at least 25 associated 

participants: 

Many of the geographic signals that we identify in this study would not have been possible 

to discern using a strategy where counts ≤5 were masked for k-anonymity, particularly at 20 

geographic coordinates where there were only a small number of associated individuals. 

We therefore adopted the following strategy in order to report meaningful results, involving 

counts ≤5 that were associated with specific geographic coordinates.  
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First, we downsampled the entire dataset to 80% of its original size, meaning that 1 in 5 

research participants were excluded from the analysis. Next, we only reported results from 

geographic coordinates where there were at least 25 associated participants (after 

downsampling). This means that on average, there were at least 5 individuals from each 

coordinate that were not included in the analysis.  5 

Following this anonymization strategy, it would not be possible to determine whether a 

particular research participant was included in the analysis, even if their birth or 

grandparental birth location and the exact amount of IBD they shared with a Catoctin 

individual were known. 

Applies to results reported in: Figs 4a, 5a & 6a and associated Supplementary Figs and 10 

Tables 

● Pedigree Figures: 

To ensure the anonymity of research participants in the display of pedigree structures, we 

did not show pedigrees containing relationships among present-day research participants. 

We only displayed the relationships among historical individuals along with summary 15 

information depicting the connections between historical and modern pedigrees. This 

ensures that pedigrees with unusual structures, which could be identified as belonging to 

one or few present-day families, were not depicted. In cases where five or fewer research 

participants shared a unique connection to the historical pedigree, we masked the exact 

count and instead reported “≤5”. 20 

Applies to results reported in: Fig. 7 and associated Supplementary Figs and Tables 
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S1.5 Terminology Choices 

Discussions involving topics such as race, ancestry and gender require careful consideration of 

terminology. In what follows, we outline choices that we made regarding the terminology that is 

used throughout the manuscript. In some cases, we used terms that are imprecise in order to 

maintain the ease of readability of the manuscript, so we have provided a detailed explanation of 5 

how these terms should be interpreted.  

● Ancestry, Race and Ethnicity 

Although they are often incorrectly used interchangeably, the terms ancestry, race and 

ethnicity have distinct definitions in the fields of anthropology and genetics that researchers 

must be careful not to conflate (97). In genetics, the term “ancestry” refers to one’s 10 

biological ancestors and their genetic connections to groups of people or places in the past. 

In contrast, the terms “race” and “ethnicity” are not biologically defined categories. Race 

is a socially constructed category that is often associated with shared physical 

characteristics. Members of the same race often share social experiences, while the term 

ethnicity refers to self-identified cultural groups. Each of these terms and how they are 15 

used (correctly and incorrectly) by researchers in the fields of anthropology and genetics 

are discussed in detail in Birney et al  (97), Wagner et al (98) and Mathieson and Scally 

(99) .  

The term “African American” is often associated with descendants of enslaved individuals 

of Sub-Saharan African ancestry in the US, while the term “Black” is applied more broadly, 20 

also encompassing individuals whose ancestors (or who themselves) moved to the US more 

recently and individuals who live outside the US (100). As this study is specifically focused 

on individuals buried in the Catoctin Furnace African American Cemetery, the majority of 
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whom were enslaved, we primarily use the term “African American” throughout the 

manuscript. However, we also use the term “Black” where it is more appropriate, such as 

to match how race-based information was collected by outside sources (such as the US 

census) or when paired with the term “white” (to maintain linguistic continuity). We follow 

the Associated Press style guidelines, which recommend that the term “Black” be 5 

capitalized while “white” not be when referring to race (101). 

When discussing genetic ancestry, we refer to continental-level ancestry categories, either 

defined in relation to one or more representative populations sampled from each region (as 

in the qpAdm, ADMIXTURE and PCA analyses) or to assignments made by the 23andMe 

Ancestry Composition algorithm (42), whose categories are also defined using a panel of 10 

representative individuals with deep ancestral ties to known geographic regions. We do not 

use genetic ancestry to assign the Catoctin individuals or research participants to specific 

racial or ethnic groups (i.e. African American) and instead refer to their continental-level 

ancestry assignments (i.e. participants with at least 5% Sub-Saharan African ancestry). In 

cases where we do refer to research participants as African American, we are referring 15 

specifically to their self-reported ethnicity. 

Race and ethnicity are not defined by genetic ancestry, and continental-level ancestry 

categories can obfuscate the differences (and similarities) that exist between different 

groups of people (e.g. 102, 103). However, there are correlations between people who 

identify as African American and genetic ancestry (39), and we believe that it is important 20 

to highlight the historical associations between these distinct categories in cases where 

genetic signatures may reflect or shed new light on historical events and/or patterns that 

were known to have impacted African American individuals. For instance, we observe a 
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higher number of European-associated Y-haplogroups among the Catoctin individuals 

relative to the number of European-associated mt-haplogroups. This is a likely a genetic 

signature of historically well-documented patterns in which white men raped enslaved 

Black women (38). These acts have left a genetic signature that is detectable in the DNA 

of many historic and present-day individuals in the US with African ancestry. 5 

● Genetic sex and gender 

We determine the genetic, or chromosomal, sex of the Catoctin individuals based on X to 

Y-chromosome ratios. Throughout the manuscript, we refer to individuals who are 

determined to have XY sex chromosomes as male and those who have XX sex 

chromosomes as female. We chose to use the singular, gender-neutral pronoun ‘they’ when 10 

referring to individuals, in acknowledgement that although genetic sex and gender are often 

correlated, gender is not defined by genetic sex (104).  

● Genetic relatedness and kinship 

We use kinship-based terminology to describe the genetic relationships detected between 

the Catoctin individuals, referring to groups of individuals with close genetic relationships 15 

as genetic families and using terms such as mother and child/son/daughter to refer to 

specific genetic relationships that are shared between individuals in each family. We 

acknowledge that genetic relatedness does not necessarily dictate how kin relationships 

were defined between the Catoctin individuals (105). Therefore, in all cases, any terms that 

we use to define relatedness refer specifically to genetic relatedness (i.e., “mother” may be 20 

read as “genetic mother” or “biological mother”), rather than to kinship. 
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Supplementary Text S2: The Return of Names 

An overlook located close to the Catoctin Furnace cemetery includes three interpretive panels. The panels 

provide information about the erasure and rediscovery of the cemetery, and a list of 271 given names found 

in land records, probate inventories, church records, diaries, and freedom-seeker ads, which we list below. 

Notice the number of names listed simply as “unknown” and the absence of any last names. As we read 5 

their names, which are listed on the following pages, these people are remembered. 

 

“a person is not forgotten until his or her name is forgotten” 

In reading these names to you, you ensure enslaved workers at Catoctin Furnace are not 

forgotten: 10 
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Jack 

Jaines 

Milly 

Phil 

Ben 

Nelly 

Sam 

John 

Thomas 

John 

Clemens 

Jenny 

Polly 

Rachel 

Samuel Hercules 

Caty 

Clemens 

Maria 

Petty 

Sammy 

Susanna 

Ally 

Anne 

Ben 

Betty 

Betty 

Big Dick 

Bill 

Bill 

Bill 

Cate 

Charlot 

Christina 

Cloay 

Elsey 

Estor 

Farm Jacob 

Frederick 

George 

Harriet 

Harry 

Harvey 

Henry 

Hetty 

Humbert 

Jack 

Jacob 

Jane 

Jane 

Jane 

Janey 

Joe 

Larkin 

Len 

Lewis 

Liddy 

Little Bill 

Lock 

Lorena 

Lusinda 

Magdeline 

Maria 

Mary 

Mary 

Mattie 

Mill 

Milly 

Mingo 

Nanny 

Ned 

Nell 

Old Hanna 

Old Jack 

Old Will 

Parris 

Priss 

Resey 

Romeo 

Rose 

Sal 

Sam 

Sam 

Samuel 

Sue 

Sue 

Toby 

Wally 

Will 

Yellow Girl 

Hanson 

Big Bill 

Daniel 

Isaac 

John 

William 

William of Elizabeth 

Jacob 

Moses 

Nicholas 

Richard 

Mary 

Daniel 

Anne 

Anthony 

Richard 

James 

Patsy 

Nace 

Rachel 

Ann 

Bill 

Bob 

Charity 

Christiana 

David 

Eliza 

George 

George 

Harrison 

Harry 

Henry 

Isaac 

Leonard 

Lucky 

Lucy 

Peter 

Sarah 

Stacy 

Wally 

Sarah 

Leonard 

Jeremiah 

Henry 

Peter 

Nathaniel 

Ruth 

Polly 

Richard 

William 

Priscilla 

Phebe 

George 

Jessee 

Thomas 

James 

Richard 

Richard Jr 

Thomas 

Henry 

Peter 
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Celeste 

Benjamin 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Charles 

Elias 

Rebecca 

Isabella 

John 

Elizabeth 

James 

Joseph 

Maria 

Nathan 

William 

George 

Milly 

William 

Eliza 

Joseph 

Ann 

Elias 

Elizabeth 

Hesekiah 

Hesekiah 

James 

John 

John 

John 

Mary 

Mary 

Mary 

Nathaniel 

Otho 

Anna 

Ann 

Archibald 

Bisi 

Daniel 

Elias 

Lulian [Julian] 

Mary 

Mary 

Mary 

Merideth 

Savilla [Sasilla] 

Susan 

Thomas 

William 

Carlline [Caroline] 

Ellen 

James 

John 

Mary 

Sarah 

William 

Zachariah 

John 

Annenise 

Emiley 

Georgeana 

James 

Daniel 

Martin 

Sylvester 

Caroline 

Henry 

Jane 

Joseph 

Lucy 

Martha 

Philip 

Sarah 

Henry 

Elizabeth 

Hezakiah 

John 

Nathan 

Otho 

Sarah 

Susan 

Ann 

Isaac 

John 

Julia 

Julia 

Nick 

Peter 

Sarah 

Simon 

Andrew 

Julia 

Lucy 

Mary 

Peter 

Sarah 

Sylvester 

Andrew 

Eliza 

John 

John 

Joseph 

Mary 

William 

  

Total 271 
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Supplementary Text S3. Testing the application of IBD detection methods to imputed low 

coverage ancient DNA using simulated data 

  

S3.1 Data preparation 

 We selected 32 high coverage ancient genomes from varying time periods and regions across 5 

the globe in order to test the performance of TPBWT(41) when applied to imputed genotypes 

from low coverage, captured ancient DNA data. The imputation was performed using the tool 

GLIMPSE (40) with an approach that has been optimized for low-coverage, capture-based 

ancient DNA data. All 32 individuals included in this test dataset are of at least 20x coverage, 

except for two individuals (I6714.SG and I3388.SG) that were included as they are first degree 10 

relatives of two other high coverage individuals (Table S3.1). 

 

Table S3.1. Ancient Individual Background 

Individual ID 
Genetic 

Sex 

Country 

where 

individual was 

excavated 

Average age 

(years before 

present) 

Coverage 

(average 

autosomal) 

Original 

Publication 

Publication of 

High 

Coverage 

Shotgun Data 

Notes 

HSJ-A-1_38.SG M Iceland 1015 34.68 (106) (106)   

I2861.SG F Great Britain 2853 20.54 (107) (108)   

I1053.SG M Russia 3793 20.22 (84) (108)   

I5835.SG M Germany 4200 23.75 (107) (108)   

I2514.SG M Iran 4341 21.30 (84) (108)   

I1633.SG F Armenia 4465 20.89 (109) (108)   

I5950.SG M Ethiopia 4472 22.68 (110) (108)   

I6714.SG M Russia 4495 17.95 (84) (121) Afanasievo Family – Son B 

I3388.SG F Russia 4600 8.95 (84) (121) Afanasievo Family – Mother 

I3949.SG M Russia 4618 22.78 (84) (121) Afanasievo Family – Son A 

I3950.SG M Russia 4707 23.33 (84) (121) Afanasievo Family – Father 

Yamnaya.SG M Kazakhstan 4903 27.32 (111) (111)   

I5279.SG M Russia 4905 24.58 (84) (108)   

I2935.SG M Great Britain 5123 23.95 (107) (108)   

I2978.SG M Great Britain 5129 30.90 (107) (108)   

I2520.SG M Bulgaria 5132 22.41 (76) (108)   

I2980.SG F Great Britain 5181 26.20 (107) (108)   

I3133.SG M Great Britain 5455 26.27 (107) (108)   

I1631.SG F Armenia 6100 29.62 (109) (108)   
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I5077.SG M Croatia 7026 24.24 (76) (108)   

I1496.SG M Hungary 7052 26.07 (112) (108)   

I4438.SG M Latvia 7291 20.63 (76) (108)   

I4878.SG M Serbia 7803 22.62 (76) (108)   

I4873.SG F Serbia 7872 21.95 (76) (108)   

I4596.SG M Latvia 7976 20.27 (76) (108)   

I4914.SG M Serbia 8123 22.19 (76) (108)   

I1960.SG F Russia 8166 20.40 (84) (108)   

I1583.SG M Turkey 8281 21.50 (23) (113)   

I4877.SG F Serbia 8505 23.33 (76) (108)   

SF12.SG F Sweden 8895 65.47 (114) (114)   

I5236.SG M Serbia 10008 23.10 (76) (108)   

I5235.SG M Serbia 10835 20.12 (76) (108)   

  

We used samtools view (v1.10.2) to subsample reads and create bam files with coverages of  0.01x, 

0.05x, 0.1x, 0.2x, 0.5x, 1x, 2x, 5x, max (the max case was only generated for shotgun-style 

simulations) (Fig. S3.1). For shotgun (SG) and 1.2 million SNP capture (1240k) simulations we 

only keep reads that overlap with 1000 Genomes project phase 3 (68) and the 1.2 million sites 5 

targeted during enrichment capture (23–25), respectively. These bam files were used as input to 

the imputation pipeline to estimate the Genotype Posterior (GP=[GP0, GP1, GP2]) for each 

genotype. The genotype with highest GP value was used as the imputed genotype. 

 

Following imputation, the data were filtered to remove genotype calls with an estimated maximum 10 

genotype posterior below a minimum threshold (henceforth referred to as the “max(GP) 

threshold”) of 0.85, 0.90, 0.95 or 0.99, resulting in 2,176 simulated test cases. We also considered 

the non-imputed versions of the original 32 individuals in our analyses, using the most likely 

genotype calls generated by bcftools mpileup (v1.10.12) prior to imputation. In cases where no 

genotype could be predicted or two genotypes were equally likely, the genotype was considered 15 

missing. All data were then rephased with EAGLE (73) using a panel of 706,995 23andMe 
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research participants at 541,948 SNPs, with default settings and optional parameter --

allowRefAltSwap. Missing genotypes were not re-imputed. 

 

 

Fig. S3.1. Schematic of simulated data processing strategies. The schematic shows the various 5 

conditions that were generated at each stage of processing. Starting with 32 high coverage 

ancient individuals, the data modified to mirror shotgun (SG) and capture (1240k) sequencing 

strategies. Then the data were downsampled to coverages between 0.1x-5x (also retaining the 

max coverage case for shotgun data). Next, data was filtered to retain sites with a max(GP) 

threshold between 0.85-0.99, resulting in a total of 2,176 cases. 10 

 

S3.2 Impact of data quality reduction on total IBD sharing 

While IBD-based tools have previously been applied to ancient DNA (115–118), these analyses 

have been restricted to shotgun sequence data. In order to ensure that the process of imputation 

on low-coverage, captured sequence data did not introduce substantial biases, we explored the 15 
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impact of data generation strategy  (i.e,. capture versus shotgun) and down-sampling coverages 

on IBD segment detection. For each case, we used TPBWT (41) to detect IBD shared with a 

panel of ~470,863  23andMe research participants who indicated having 4 grandparents that 

were born in the same region, including ~200,000 research participants whose grandparents were 

born in the same US state and an additional ~270,000 research participants whose grandparents 5 

were born in a single country. We emphasize that imputation is an essential step in our process, 

not only because it allows inference of diploid genotypes, but also because only 22.3% 

(146,701/656,786) of the version 5 panel of SNPs genotyped by 23andMe were targeted in the 

1240k capture process.  

 10 

We detected 229,492,064 IBD segments shared between all the downsampled cases and the 

23andMe panel, ranging in size from 3cm (the minimum segment length output by TPBWT) to 32 

cM (Fig. S3.2a; Table S3.2). The majority of IBD segments (71.8%) were between 3-4cm in 

length, while fewer than 0.5% of segments exceeded 8cm. The relative abundance of short IBD 

segments is expected, as shorter IBD segments reflect more distant relatedness (119, 120). 15 

  

Because imputation can potentially introduce false positive IBD segments, particularly for the 

lowest coverage cases, we determined the rate of false positive IBD detected across all scenarios. 

We assumed that IBD segments detected between 23andMe research participants and the highest 

coverage cases (i.e. DP max) represented true IBD segments, while segments only observed in 20 

lower coverage cases represented false positive segments introduced by imputation. We defined 

false positive rate (FPR) as the number of false positive IBD segments detected in a lower coverage 

case divided by the total number of segments detected in that case. In our calculations, segments 
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that overlapped at any position were considered to be the same segment. In Fig. S3.2b (Table S3.3) 

we present the weighted average of the FPR for each case, where the relative weight of each ancient 

individual is determined based on the number of IBD segments detected in the highest coverage 

(DP max) condition. 

 5 

We found that FPR increases as coverage decreases with a higher rate of increase in capture data. 

The difference in performance of capture versus shotgun data is unsurprising as coverage 

measurements are not equivalent between the two data types—for shotgun sequenced data, 

coverage refers to the average number of reads aligning to every site in the human genome, while 

only the targeted sites are considered in measurements of coverage for capture data. The large 10 

amount of data from non-targeted SNPs available from shotgun data greatly increases the precision 

with which we can make genotype inferences at all SNP positions including targeted ones.  We 

also found that the FPR was generally similar across the various max(GP) thresholds, with slightly 

higher FPRs typically associated with max(GP) threshold of 0.99, particularly in lowest coverage 

cases. This likely reflects the relative increase in missing data associated with using a more 15 

stringent filtering threshold. In order to strike a balance between the number of reliably imputed 

genotype calls and the amount of missing data, we chose to apply a max(GP) threshold of 0.95 

going forward. However, we note a minimal impact of varying max(GP) threshold across 

subsequent analyses. We also focus on the capture-style data going forward in order to mirror the 

data available for study in the main text, again noting that we observe similar trends in the shotgun 20 

style data. 
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Fig. S3.2 IBD Segment Authenticity [A] Histogram of IBD segment lengths shared with 

23andMe research participant panel across all simulated cases. x-axis labels indicate the upper 

bound of each size bin (i.e. 4cM indicates the 3-4cM bin). Segment counts are shown on the y-

axis using a log scale. [B] FPR for shotgun (dotted line) and 1240k capture (solid line) style 5 

sequence data, with varying max(GP) thresholds (as indicated by line color). FPR was calculated 

as the proportion of IBD segments in a specified case that do not occur in the corresponding highest 

coverage (DP max) case. We present the weighted average of the FPR for each case, where the 

relative weight of each ancient individual is determined based on the number of IBD segments 

detected in the highest coverage (DP max) condition. [C] Weighted average FPR for the max(GP) 10 

threshold = 0.95 for 1240k capture style data after filtering using a variable minimum segment 

length threshold between 3-10cM (as indicated by line color). [D] Weighted average TPR for the 
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max(GP) threshold = 0.95 for 1240k capture style data after filtering using a variable minimum 

segment length threshold between 3-10cM (as indicated by line color). The TPR was calculated as 

the proportion of IBD segments that are detected in the max coverage case that are also detected 

in the lower coverage case. TPR is shown on the y-axis using a log scale. 

 5 

To minimize the FPR while maximizing the true positive rate (TPR) when studying capture-style 

sequenced ancient DNA we explored the impact of filtering IBD segments based on length, with 

the hypothesis that shorter reads are more likely to be false positives. We find that the FPR 

decreases as more stringent minimum IBD segment length filters are applied (Fig. S3.2c, Table 

S3.3). At 5x coverage, a minimum segment length threshold of 4cm is sufficient to reduce the 10 

weighted average FPR to 9.8%. However, as coverage decreases, longer minimum segment length 

thresholds are required to reach the 10% FPR threshold. 

 

While length thresholding reduces FPR, it also dramatically reduces the number of true IBD 

segments detected. Therefore, we considered the impact of length filtering on the true positive rate 15 

(TPR)—the proportion of IBD segments that are detected in the max coverage case that are also 

detected in the lower coverage case. Mirroring trends observed with FPR, when using the standard 

minimum segment length threshold of 3cM TPR is maximized in the highest coverage cases and 

dramatically declines as coverage decreases (Fig. S3.2d, Table S3.3). Applying a more stringent 

minimum length threshold dramatically reduces the TPR, even in the highest coverage cases, 20 

indicating that many of the shorter IBD segments removed by length filtering are real. 
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In order to balance the reduction in false positive IBD with the loss of true IBD associated with 

length filtering, we chose to apply a sliding scale minimum segment length threshold to our 

TPBWT results, selecting the minimum segment length threshold at each coverage that is closest 

to a 10% FPR. For empirical analyses we applied the following thresholds: 

 5 

Coverage (x) Minimum IBD Segment Length 

>5 4  cM 

[2,5) 6 cM 

[1,2) 9 cM 

<1 10 cM 

  

We note that at 0.5x coverage and below, none of the thresholds that we tested substantially 

reduced the FPR. We therefore chose to apply a minimum segment length threshold of 10 cM for 

the purposes of testing.  

 10 

S3.3 Exploring broad geographic signals of IBD sharing 

In order to assess whether the IBD segments detected between the ancient individuals and the 

panel of 23andMe participants reflect known historical patterns, we considered the geographic 

distribution of IBD sharing. Since each country in our dataset has a different number of associated 

participants who report ancestry from the region, we considered the average total IBD shared with 15 

23andMe participants from each country in each case. To protect individual research participant 

privacy, we only report results for countries with a minimum of 5 associated 23andMe research 
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participants. Here we highlight the results of 3 ancient individuals who serve as representative 

examples of general trends that we observed in this dataset. 

  

First, we considered individual HSJ-A-1_38.SG. This individual was excavated in Iceland and 

dates to approximately 1015 years before present (106), making them the most recent individual 5 

in our test dataset. The highest average IBD is shared between this individual and 23andMe 

participants with 4 grandparents from Iceland for all cases with at least 0.2x coverage, including 

the non-imputed case (Fig. S3.3a-e, Table S3.4). Research participants with ancestry from 

Northwestern Europe, including Scandinavian countries, Great Britain and Ireland also show a 

high rate of IBD sharing with this ancient Icelander. This pattern of IBD sharing directly matches 10 

our historical expectations, as Iceland was colonized by populations with ancestry from these 

regions.  Further, ancient Icelanders have previously been shown to be even more genetically 

similar to present-day Scandinavian, British and Irish populations than present-day Icelandic 

people, likely due to the genetic drift that inhabitants of the region have undergone in the 

millennium since this ancient individual lived (106). The most total IBD is observed in the 5x 15 

coverage case, even relative to the non-imputed dataset. We believe that the relative increase in 

IBD detected in the high coverage imputed dataset versus the non-imputed dataset is due to the 

greater accuracy of genotype calls in this dataset, as the non-imputed dataset did not undergo any 

filtering based on the likelihood of the genotype calls and likely includes more incorrect genotype 

calls than the high coverage imputed dataset. Similarly, we observe a relative decrease in total IBD 20 

for the imputed cases down-sampled to lower coverages, in part due to the higher minimum 

segment length thresholds that we apply in the lower coverage cases. However, this decrease in 

IBD is relatively uniform across the entire 23andMe cohort, therefore the geographic pattern is 
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apparent even in the 0.2x coverage case. In the 0.1x coverage case and below, the geographic 

pattern is lost, as almost no IBD is detected between any 23andMe participants. 
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Fig. S3.3. Geographic distribution of average IBD sharing. Average IBD shared between an 

ancient individual and 23andMe research participants with 4GP from each country. Higher average 

IBD is highlighted in blue, while lower average IBD is shown in yellow. Countries with fewer 

than 5 associated 23andMe research participants are shown in gray. Average IBD shared with each 

of three ancient individuals is shown in each column, while varying coverages are shown in each 5 

row. In all cases, except for the non-imputed version, results for the 1240k capture style data 

filtered using a max(GP) threshold of 0.95 is shown, with minimum IBD segment length thresholds 

applied based on coverage. The color scale used for each coverage varies and is indicated by the 

scale bar to the right of each row.  

 10 

In contrast, we detect very little IBD shared between the oldest ancient individual in the test 

dataset—a 10,835 year old individual from present-day Serbia (76)—and the panel of 23andMe 

research participants for any case (Fig. S3.3 f-j). This failure to detect IBD shared between 

23andMe research participants and an ancient individual of this age is expected, as IBD breaks 

down over time due to recombination. The likelihood of an IBD segment over 4 cM in length being 15 

shared between individuals that are separated in time by almost 11 thousand years is nearly 

negligible (119). 

  

S3.4 Detecting relatedness between ancient individuals 

Among the 48 high coverage ancient individuals used for testing are 4 individuals that form a 20 

genetically related family unit, consisting of a biological father (I3950.SG), mother (I3388.SG) 

and two sons (I3949.SG and I6714.SG). These individuals were originally described and identified 

as relatives in Narasimhan et al. (84), and the shotgun sequencing data are reported in Wohns et 
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al. (121) The inclusion of these related individuals in our test dataset provided the opportunity to 

determine how well TPBWT can detect IBD in known relatives. 

  

We therefore compared all 32 individuals to one another using TPBWT. In order to understand the 

impact of imputation of low coverage data, we compared cases with 0.1-5x coverage (with the 5 

same coverage used for each individual in the comparison) and included comparisons with the 

highest coverage shotgun case. At the highest coverage, first-degree relatives in the Afanasievo 

family share substantially more IBD than any other pair of individuals (Fig. S3.4a, Table S3.5). 

Further, the total IBD detected between the related Afanasievo family members is highly 

dependent upon coverage, with the most total IBD detected at 5x coverage. These results indicate 10 

that total IBD detected between ancient individuals depends on both the degree of relatedness and 

coverage, and therefore the degree of closeness of a relationship cannot be directly inferred from 

the total IBD measured between two individuals without taking the coverage of those individuals 

into consideration. Further, we observe an increase in total IBD detected between unrelated 

individuals at lower coverages. By 0.2x coverage it is not possible to distinguish between the 15 

known 1st degree relatives and random pairs of unrelated individuals. We therefore caution that 

total IBD measured between two ancient individuals with less than 1x coverage should be 

interpreted with extreme caution. 
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Fig. S3.4. Total IBD detected between ancient individuals. Total IBD measured by TPBWT in 

pairwise comparisons of all ancient individuals. Comparisons between members of the Afanasievo 

family are shown in varying colors (see legend) while all other comparisons are shown in gray. 

We show the change in total IBD detected at varying down-sampling coverages, where either both 5 

individuals are down-sampled to the same coverage [A] or a single down-sampled individual 

compared with the highest coverage (DP max) case. 

 

In comparisons between 23andMe participants and ancient individuals, only the ancient 

individuals will be impacted by reduced data quality, as the diploid genotypes of 23andMe research 10 

participants are called with a high degree of confidence. We therefore decided to repeat our 

comparison of the ancient individuals while only downsampling a single ancient individual and 

using the highest coverage version (DP max) of the second individual (Fig. S3.54b, Table S3.6) in 

order to better mirror this scenario. In this case, we find a more rapid decline in total IBD detected 

between the first-degree relatives as coverage decreases; however, we do not detect substantial 15 

IBD between the unrelated pairs of individuals, even at the lowest coverage threshold. These 
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results suggest that when substantial IBD is detected between an ancient individual with at least 

0.5x coverage and a 23andMe participant, it likely reflects a true genetic relationship. Again, 

however, it is not possible to directly translate the total amount of IBD shared into a specific degree 

of relatedness without taking the coverage of the ancient individual into consideration. 

  5 

Finally, in order to understand how the distribution of IBD segments detected between relatives 

changes as coverages decreases, we mapped the genetic positions of the IBD segments detected 

between the two highest coverage members of the Afanasievo family—I3950.SG (Father) and 

I3949.SG (Son A). In a comparison between the highest coverage cases (DP max), we detect IBD 

across almost the entire genome (Fig. S3.5, Table S3.7). Additionally, we observed relatively few 10 

instances where two IBD segments were detected in the same region (i.e., full IBD), consistent 

with the distribution of IBD segments expected between a father and son pair. In the few cases 

where we do detect full IBD, many of these regions are also areas where we detect IBD shared 

between the father and mother. Thus, these may represent true instances of full IBD sharing 

between the father and son, as the son may have also inherited an identical segment from the 15 

mother. When we reduce the coverage of a single individual (I3949.SG), we again show that as 

coverage decreases we fail to detect additional true IBD.  
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Fig. S3.5. Location of IBD segments detected between Father (I3950.SG) and Son A 

(I3949.SG) at varying coverages. In all cases, the highest coverage version (DP max) of the father 

is compared with Son A, downsampled to varying coverages, as specified by segment color. 

Positions where full IBD is detected (i.e. two overlapping IBD segments are detected in single 5 

pair) are indicated by darker colors. Positions where IBD is detected between the mother and father 

(in the max case for both individuals) are shown in orange. 

 

S3.6 Guidelines for IBD analysis of imputed ancient DNA 

Taken together, these results suggest several guidelines for IBD analysis of imputed data which 10 

we will follow for all analyses in the main text. First, we require an absolute minimum coverage 
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of 0.5x for ancient individuals sequenced using a 1240k capture-based approach (in cases where 

shotgun sequenced data is considered, a threshold of 0.05x is acceptable), and will interpret results 

for individuals with <1x coverage with caution. In order to maximize genotype call quality while 

minimizing missing data, we filter all imputed data using a max(GP) threshold of 0.95. Finally, in 

order to reduce false positive IBD, while still capturing as much true IBD as possible, we only 5 

consider IBD segments that exceed a minimum length threshold, as defined by the coverage of the 

individual. 
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Supplementary Text S4: Testing the performance of Ancestry Composition on imputed low 

coverage ancient DNA using simulated data 

 

23andMe’s Ancestry Composition (42) algorithm infers local ancestry in genomic windows across 

each chromosome. Ancestry Composition was designed to predict local ancestry using high 5 

coverage genotypic data from present-day individuals. Consequently, there are several factors that 

might impact the performance of Ancestry Composition when applied to aDNA data, such as 

biases caused by imputation and the presence of missing data (even at the rate that it is present in 

an imputed dataset that has been filtered to remove low confidence genotype calls). Therefore, 

using the test dataset described in Supplementary Text S4, we evaluated Ancestry Composition 10 

applied to imputed ancient genomes generated from low-coverage capture-based sequence data.  

 

Since Ancestry Composition was not designed for use with missing data, we also created an 

unfiltered dataset for which we did not perform any filtering based on the quality of the inferred 

genotype. We refer to this unfiltered dataset as having a minimum maximum genotype posterior 15 

(max(GP) threshold) of 0.00, and compared this dataset to the max(GP) thresholds of 0.85, 0.90, 

0.95 and 0.99 datasets described in Supplementary Text S3.  

 

Ancestry Composition predicts local ancestry using present-day reference populations which may 

not be applicable to very ancient individuals. We therefore chose to focus our tests on the most 20 

recently deceased of the 32 individuals in our test dataset for whom these assignments would be 

most meaningful. The current version of Ancestry Composition assigns windows of each 

chromosome to one of 45 leaf populations. These populations are nested within a hierarchical 

structure (Fig. S4.1). The broadest level assignments are divided into 6 categories (which we will 
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refer to as “level 1”): “Sub-Saharan African”, “East Asian & Indigenous American”, 

“Melanesian”, “Central & South Asian”, “Western Asian & North African” and “European”. 

Within each of the level 1 (Continental) categories, there are up to two additional levels of nested 

classifications, referred to as “level 2” (Regional) and “level 3” (Population) assignments. For 

instance, within the Sub-Saharan African level 1 category are the nested “African Hunter-5 

Gatherer”, “Congolese & Southern East African”, Northern East African, and “West African” level 

2 categories, and each of these (except for “African Hunter Gatherer”) contains its own nested 

level 3 categories. It is also possible for a proportion of an individual's genome to be classified as 

"Unassigned" (i.e., level 0) when a genomic window cannot be confidently assigned to a single 

ancestry across all levels.  10 

 

We hypothesized that there were two likely ways in which Ancestry Composition assignments 

could be impacted by data of reduced quality, like that observed in aDNA data: (1) the total amount 

of ancestry assigned to any category could be reduced. This could mean that a large proportion of 

the individual’s ancestry would be considered “Unassigned” or their ancestry would be assigned 15 

to a lower level category, such as “Sub-Saharan African” and not to a more granular higher-level 

category, like “Congolese & Southern East African,” which are more difficult to predict. Although 

it would be ideal to have as much ancestry assigned to the highest-level category possible, we view 

this potential impact as preferable to the alternative option, (2) that portions of the genome would 

be assigned to the incorrect ancestry category (e.g., “European” instead of “Sub-Saharan 20 

African”).  
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Level 

0 

Level 

1 

Level 

2 

Level 

3 
Unassigned 

  Sub-Saharan African 

    West African 

      Senegambian & Guinean 

      Ghanaian, Liberian & Sierra Leonean 

      Nigerian 

    Northern East African 

      Sudanese 

      Ethiopian & Eritrean 

      Somali 

    Congolese & Southern East African 

      Angolan & Congolese 

      Southern East African 

    African Hunter-Gatherer 

  East Asian & Indigenous American 

    Japanese & Korean 

      Japanese 

      Korean 

    Chinese & Southeast Asian 

      Chinese 

      Chinese Dai 

      Vietnamese 

      Filipino & Austronesian 

      Indonesian, Thai, Khmer & Myanma 

    Northern Asian 

      Manchurian & Mongolian 

      Siberian 

    Indigenous American 

  Melanesian 

  Central & South Asian 

    Central Asian, Northern Indian & Pakistani 

      Central Asian 

      Northern Indian & Pakistani 

      Bengali & Northeast Indian 

      Gujarati Patidar 

    Southern Indian Group 

    Southern South Asian 

      Southern Indian & Sri Lankan 

      Malayali Subgroup 

  Western Asian & North African 

    Northern West Asian 

      Cypriot 

      Anatolian 

      Iranian, Caucasian & Mesopotamian 

    Arab, Egyptian & Levantine 

      Peninsular Arab 

      Levantine 

      Egyptian 

      Coptic Egyptian 

    North African 

  European 

    Northwestern Europe 

      British & Irish 

      French & German 

      Scandinavian 

      Finnish 

    Southern European 

      Spanish & Portuguese 

      Sardinian 

      Italian 

      Greek & Balkan 

    Eastern European 

    Ashkenazi Jewish 

Fig. S4.1 Nested Ancestry Composition Categories. The hierarchical structure of Ancestry 

Composition (ac45), with higher level (more granular) categories nested beneath and to the right 

of the corresponding lower level (less granular) categories. Ancestry Composition categories are 

colored using a color palette that is consistent in all subsequent plots.  
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In order to understand whether either of these two types of errors occurred when Ancestry 

Composition is applied to imputed aDNA data, we first focused our analysis on individual HSJ-

A-1_38.SG (a ~1015 year old individual from Iceland). As in Supplementary Text 4, we assumed 

that the Ancestry Composition results assigned to the highest quality versions this individual (i.e. 

the shotgun maximum coverage versions) represented the most accurate Ancestry Composition 5 

assignments, and that any changes to these assignments at lower coverages represented an error. 

We computed Ancestry Composition assignments for HSJ-A-1.SG across a variety of 

downsampled coverages and max(GP) thresholds. For all max(GP) thresholds, the maximum 

coverage versions of individual HSJ-A-1.SG are assigned 100% European ancestry (Fig. S4.2a, 

Table S4.1). This level 1 ancestry assignment appears most stable across all coverages at the 10 

max(GP) threshold 0.00 (i.e., without filtering out low confidence genotype calls). At 1x coverage 

and below an increasing proportion of the individual’s ancestry could not be assigned to a level 1 

category; however, very little ancestry was mis-assigned to a non-European category, even at the 

lowest coverages. In contrast, data produced with the other max(GP) thresholds produced 

deviating results at much higher coverages  (Fig. S4.2b-e, Table S4.1). We therefore use the 15 

max(GP) threshold 0.00 data for the remainder of our analyses. 
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Fig. S4.2 - Level 1 Ancestry Composition Assignments for a single ancient individual (HSJ-

A-1_38.SG) across multiple max(GP) thresholds. Each panel shows the total proportion 

ancestry assigned to each Level 1 Ancestry Composition categories across the genome of a single 

ancient individual (HSJ-A-1_38.SG) at a variety of sequencing approaches and coverages 5 

(Shotgun max coverage, 1240k 5x coverage, 1240k 2x coverage, 1240k 1x coverage, 1240k 0.5x 

coverage, 1240k 0.2x coverage). Panels A-E show the Ancestry Composition assignments using 

max(GP) thresholds of 0.00, 0.85, 0.90, 0.95 and 0.99, respectively.  

 

In order to study this stability of the level 1 Ancestry Composition assignments across a variety of 10 

ancestry types, we generated Ancestry Composition assignments for 6 additional individuals 

across multiple downsampled coverages and again found that level 1 Ancestry Composition results 

can be reliably generated for ancient individuals with coverage great than or equal to 1x (Fig. S4.3, 

Table S4.1). For several individuals at coverages below this threshold we observe more 

appreciable amounts of ancestry mis-assigned to Ancestry Composition categories that differ from 15 
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the highest coverage assignments, suggesting that we should exercise caution when interpreting 

Ancestry Composition results for imputed ancient individuals with less than 1x coverage. 

 

Fig. S4.3 - Level 1 Ancestry Composition Assignments for multiple ancient individuals. The 

total proportion ancestry assigned to each Level 1 Ancestry Composition categories across the 5 

genome of multiple ancient individuals at a variety of sequencing approaches and coverages 

(Shotgun max coverage, 1240k 5x coverage, 1240k 2x coverage, 1240k 1x coverage, 1240k 0.5x 

coverage, 1240k 0.2x coverage). Each panel displays the assignments for a different ancient 

individual: (A) HSJ-A-1_38.SG, (B) I2861.SG, (C) I1053.SG, (D) I5835.SG, (E) I2514.SG, (F) 

I1633.SG and (G) I5950.SG.   10 

 

Since Ancestry Composition not only determines the overall proportion of ancestry assigned to 

each category, but also assigns ancestry to specific regions of the genome, we next painted the 

chromosomes of several individuals using their ancestry composition assignments at a variety of 

coverages and found that these level 1 ancestry assignments occured in stable locations throughout 15 

the genome (Fig. S4.4, Table S4.1).
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Fig. S4.4 - Chromosome paintings at a variety of coverages. Level 1 Ancestry Composition assignments visualized across the genome of seven 

historical individuals (left to right: HSJ-A-1_38.SG, I2861.SG, I1053.SG, I5835.SG, I2514.SG, I1633.SG, I5950.SG), at a variety of sequencing 

approaches and coverages (top to bottom: Shotgun max coverage, 1240k 5x coverage, 1240k 2x coverage, 1240k 1x coverage, 1240k 0.5x coverage). 

Chromosomes are colored according to their Level 1 Ancestry Composition category, with unassigned portions of the genome shown in white. 5 
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Next, we next considered the higher level Ancestry Composition assignments. We first considered 

the Icelandic individual (HSJ-38-1_A.SG) (Fig. S4.5a, Table S4.1). While only the highest 

coverage cases received level 2 assignments for their whole genomes, for all coverages, the only 

level 2 assignment was to the “Northwestern European” category. The level 3 assignments were 

somewhat less stable, with some ancestry assigned to the categories “British & Irish” and 5 

“Scandinavian” categories at the highest coverages. At 2x coverage and below, some ancestry was 

assigned to the level 3 category “French & German” suggesting that the level 3 category 

assignments are not reliable, even at modest (2x) coverages. Further, when we explored the 

Ancestry Composition assignments for individual 15950.SG–a ~4472 year old Ethiopian 

individual–we observed a steady increase in the amount of ancestry assigned to the level 2 “West 10 

African” category across all downsampled coverages (Fig. S4.5b, Table S4.1), suggesting that 

level 2 ancestry assignments are also unreliable for imputed, ancient DNA data. The reliability of 

level 2 and 3 Ancestry Composition assignments on aDNA data likely varies depending on the 

ancestry and imputation quality of the data, therefore further work may reveal that some level 2 

and 3 Ancestry Composition assignments can be reliably inferred; however, in our analysis of the 15 

Catoctin individuals, we favored a conservative approach and only reported the level 1 ancestry 

assignments.  

 



 

58 

 

Fig. S4.5 - Level 1-3 Ancestry Composition Assignments for two ancient individuals. The total 

proportion ancestry assigned to Ancestry Composition categories with varying granularity across 

the genome for two ancient individuals (HSJ-A-1_38.SG (left) and I5950.SG (right)) at a variety 
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of sequencing approaches and coverages (Shotgun max coverage, 1240k 5x coverage, 1240k 2x 

coverage, 1240k 1x coverage, 1240k 0.5x coverage, 1240k 0.2x coverage). (Top row) Panels show 

Level 1 Ancestry Composition assignments. (Middle row) Panels show Level 2 Ancestry 

Composition assignments, in addition to Level 1 assignments for portions of the genome that could 

not be assigned to a Level 2 category. (Bottom row) Panels show Level 3 Ancestry Composition 5 

assignments, in addition to Level 1 and 2 assignments for portions of the genome that could not 

be assigned to a higher level category.  
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Supplementary Text S5. Genetic connections to African Among Catoctin individuals and 

23andMe participants in the US cohort with at least 50% Sub-Saharan African ancestry  

 

S5.1 The impact of applying minimum IBD segment size thresholds.  

Catoctin individuals share segments of DNA that are identical-by-descent (IBD) with present-day 5 

individuals from African genetic groups that are associated with ethnolinguistic affiliation and 

geography (Fig. 4, Table S11). Given that Catoctin individuals were estimated to have died in 

Maryland between 1776-1850, they are likely recent descendants of enslaved Africans from 

specific regions of Africa who were forced into the Americas between the 16th and 19th century as 

part of the transatlantic slave trade. If Catoctin individuals are fewer generations removed from 10 

their African ancestors, they are expected to share more recent common ancestors with African 

genetic groups from which their ancestors were kidnapped. 

 

To test this, we compared the IBD connections between Catoctin individuals and unique African 

genetic groups to the IBD connections observed between 23andMe participants in the US cohort 15 

with substantial Sub-Saharan African ancestry and unique African genetic groups. We constructed 

a cohort of present-day participants who have at least 50% Sub Saharan African ancestry, as 

estimated by 23andMe's Ancestry Composition algorithm (42), and who reported that all four of 

their grandparents were born within the United States (N = 43,696), henceforth referred to as the 

“US Sub-Saharan African ancestry cohort.”  20 

 

Using the templated positional Burrows-Wheeler transform (TWBWT) we can accurately detect 

small IBD segments in genotyped present-day participants (41); however, we set minimum 

segment size thresholds to identify IBD between Catoctin individuals and present-day individuals 
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to decrease false positive segments that can occur due to variable depths of coverage in historical 

samples (Fig. S3.2). Unsurprisingly, increasing the minimum IBD segment size threshold 

decreased the number of unique African groups an individual has connections with, on average 

(Fig. S5.1). This is expected as small segments can indicate connections to more distant common 

ancestors that may have existed prior to, or in the initial stages of the transatlantic slave trade. 5 

These temporally distant connections become undetectable as smaller IBD segments are pruned 

and connections become focused on the African groups with whom individuals share more recent 

common ancestors (22). 

 

 10 

Fig. S5.1. Relationship between minimum IBD segment size threshold and number of unique 

African group connections. The left panel shows the mean number of connections with standard 

deviation bars of the US Sub-Saharan African ancestry cohort. The right panel shows the number 

of connections for independently plotted Catoctin individuals. 

 15 
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To account for biases that IBD segment size may have on the number of  connections to African 

groups, we ran IBD analyses between the US Sub-Saharan African ancestry cohort and African 

genetic groups using 6,7,8,9, and 10 cM minimum segment size thresholds. To explore the effects 

African ancestry proportions may have on the number of connections to African genetic groups 

we parsed the US Sub-Saharan African ancestry cohort into different bins based on minimum 5 

African ancestry:  ≥50% (N=43,696),  ≥75% (N=28,763), and ≥95% (N=421). Together, these 

cohorts cover the range of African ancestry and minimum IBD segment size observed in Catoctin 

individuals. However, the minimum IBD segment size thresholds are variable among Catoctin 

individuals, depending on their depth of coverage, making direct comparisons more nuanced. To 

address variability in filtering thresholds, we also ran analyses on a present-day lookalike cohort 10 

whose Ancestry Composition and IBD segment size thresholds match those in the Catoctin cohort 

at the same frequency. In this special instance, 22 individuals (to match the sample size of Catoctin) 

whose ancestry and minimum IBD segment size thresholds match those of the Catoctin cohort 

(Table S1) were resampled 1000 times from the total present-day cohort to ensure that patterns 

seen in Catoctin individuals were not being driven by African ancestry proportion and segments 15 

size thresholds.  

 

S5.2 Exploring number of connections to African genetic groups between US Sub-Saharan 

African ancestry cohort and Catoctin individuals 

We compared the number of unique connections to African genetic groups between Catoctin 20 

individuals and various subsets of the US Sub-Saharan African ancestry cohort (Fig. S5.2). In 

addition to including all Catoctin individuals, we investigated the distribution of connections in 

Catoctin individuals that have >90% African ancestry. Catoctin individuals with more African 
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ancestry are expected to have had more recent African ancestors and therefore may share 

common ancestors with fewer present-day African groups.   

 

Fig. S5.2. The distribution of the number of unique African group connections in various 

cohorts. The mean and standard deviation of the number of unique hits are displayed in the top 5 

right of each panel. Asterisks indicate a significant ( p≤0.05) difference in means between the 

Catoctin cohort and the corresponding panel using either a Student's t-test or Welch's t-test 

(depending on equal or unequal variances between datasets, respectively). The lookalike panel 

demonstrates the mean distribution of connections of 22 members of the US Sub-Saharan African 

ancestry cohort, sampled 1000 times, whose Sub-Saharan African Ancestry and minimum cM 10 

thresholds mimic those of the Catoctin cohort. 
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As expected, the distribution of unique connections to African genetic groups is widespread in 

present-day cohorts when retaining smaller IBD segments and skewed towards smaller values 

when restricting to larger segment sizes. From comparing the mean number of connections 

across all cohorts using a t-test, the Catoctin distribution is most similar to the ≥75% African 

cohorts at 9 cM (p= 0.96) and 10 cM (p = 0.83) thresholds and least similar to the ≥95% African 5 

cohort at 6 cM ( p = 5.6e-13) 

 

To determine if the distribution of connections to African genetic groups in Catoctin is smaller 

than expected among members of the US Sub-Saharan African ancestry cohort, we resampled 

the lookalike cohort 1000 times and determined the number of times the distribution of 10 

connections was significantly larger (p<0.05; t-test) than that of Catoctin. Though the raw mean 

of number of connections was higher 100% of the time, this was only significant (p<0.05) 50% 

of the time. When performing the same analysis on the Catoctin 90% African cohort, the mean of 

connections was higher 100% of the time and significant 84.5% of the time, indicating that 

individuals with more African ancestry in the Catoctin cohort tended to have fewer connections 15 

to African groups. In contrast, subsetting the US Sub-Saharan African ancestry cohort by 

increasing African ancestry increased the mean number of unique connections to African groups 

in every instance. This may indicate that the Catcotin individuals with high African ancestry had 

ancestors from the few groups they connect to, whereas members of the US Sub-Saharan African 

ancestry cohort have a greater chance of connecting with multiple African groups that may have 20 

admixed during and after the slave trade.  
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S5.3 Connections to specific African groups. 

Self-identifying African Americans in the United States tend to have African ancestry from 

multiple regions of Atlantic Africa, presumably due to migrations and admixture that occurred 

during and after the colonial slave trade in the US (22). Studies have also noted an over-

representation of ancestry from Nigeria when considering embarkation rates from ports along 5 

present-day Nigeria documented during the transatlantic slave trade (22, 122). In general this 

over-representation of Nigerian ancestry is thought to be a consequence of events that occurred 

during the colonial slave trade, such as forced breeding in certain US states (123). Catoctin 

individuals are expected to deviate from African group connection patterns seen among members 

of the US Sub-Saharan African ancestry cohort because they existed prior to many migrations 10 

and admixture events.  

 

We investigated shared IBD connections between Catoctin and African groups and found that 

the largest proportion of Catoctin individuals have connections to the Kongo (36%), Wolof 

(22%), and Mandinka (18%) groups (Fig. S5.3). Contrastingly, the largest proportion of 15 

individuals in present-day cohorts have connections to the Igbo and Kongo groups consistent 

with previous studies (22, 122).  
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Fig. S5.3. The proportion of individuals with connections to specific African groups across 

all tested cohorts. The lookalike panel demonstrates the mean proportion of African group 

connections of 22 members of the US Sub-Saharan African ancestry cohort, sampled 1000 times,  

whose African Ancestry and minimum cM thresholds mimic those of the Catoctin cohort. 5 

 

To test if the distribution of African connections seen in Catoctin is significantly enriched for 

specific African groups, we calculated the number of times the count of individuals with 

connections to each African group connection was matched both between Catoctin and the 

lookalike dataset across 1000 iterations. From this analysis, the most striking difference between 10 

the distributions is the underrepresentation of connections to the Igbo group in Catoctin 

individuals ( p<0.001; Table S5.3). That is to say, the distribution of Igbo connections seen in the 
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Catoctin cohort (just a single connection) was observed 0 times across all subsampling analyses. 

Though the Catoctin group shows enrichment for the Mandinka, Kongo, and Wolof groups, it is 

not until the Catoctin cohort is subset to >90% African ancestry that these groups are 

significantly enriched. 

 5 

Records from the transatlantic slave trade indicate that the majority of enslaved Africans brought 

to Maryland embarked from Senegambia and West Central Africa (1) (Table S9). Comparing these 

records to connections to African groups provides support that at least a portion of the Catoctin 

individuals had recent African ancestors brought to the US from Senegambia (where Wolof 

ancestors would have disembarked from) and West Central Africa (where Kongo ancestors would 10 

have disembarked from). It is more likely that the Catoctin individuals with more African ancestry 

and less European admixture were those with the recent ancestors embarking from the central and 

northwestern coasts of Africa.  
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African Group 

Catoctin (N=22) Catoctin >90% African (N=13) 

p higher rep p lower rep p higher rep p lower rep 

Akan 0.958 0.231 0.777 0.578 

Baka 1 0.964 1 0.991 

Cameroon 0.571 0.743 0.256 0.945 

Edo 1 0.284 1 0.535 

Esan 0.909 0.337 0.681 0.718 

Ewe 0.969 0.149 0.845 0.481 

Gikuyu 0.404 0.902 0.183 0.993 

Hadza 1 0.98 1 0.988 

Igbo 1 <0.0001 0.998 0.009 

Kongo 0.659 0.517 0.079 0.971 

Krio 0.961 0.168 0.879 0.437 

Luhya 0.729 0.671 0.441 0.933 

Luluwa 0.735 0.592 0.269 0.961 

Maasai 1 0.837 1 0.892 

Mandinka 0.112 0.968 0.008 1 

Mende 0.838 0.364 0.523 0.731 

Rundi 1 0.89 1 0.968 

Shona 1 0.24 1 0.577 

Temne 1 0.067 1 0.174 

Wolof 0.213 0.917 0.027 0.992 

Yoruba 0.838 0.376 0.509 0.802 

Table S5.3. Significant over- and under-representation of African groups that Catoctin 

(N=22) and Catoctin > 90% African ancestry (N=13) connected to. p higher represents the 

proportion of times the present-day lookalike cohort had the exact same number or fewer number 

of individuals with connections to each African group over 1000 iterations (lower values 5 

correspond to higher representation in Catoctin) ; proportions less than <0.05 are bolded  p lower 

represents the proportion of times the present-day lookalike cohort had the exact same number or 
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greater number of individuals with connections to each African group over 1000 iterations 

(lower values correspond to lower representation in Catoctin);  proportions less than <0.05 are 

bolded. 

 

Supplementary Text S6. A method for inferring relationships and pedigrees when 5 

individuals have low coverages 
 

S6.1 Likelihoods for low-coverage pedigrees 

The most likely ways of connecting historical and present-day pedigrees were inferred using a composite 

likelihood approach. First, pedigrees connecting present-day 23andMe research participants were inferred 10 

using the software Bonsai (Jewett et al, 2021). We then considered all plausible ways of connecting the 

most recent common ancestral node in each present-day pedigree to a node on the historical pedigree (Fig. 

S6.1). All possible points of connection on the historical pedigree were considered, assuming outbred 

pedigrees, and a broad range of possible connection degrees, d, covering the range of realistic historical-to-

present-day connecting lineage degrees. 15 

 

For each possible point of connection and degree, d, we computed the composite likelihood, 𝐿𝐴, of the 

arrangement, 𝐴, as 

                                                              𝐿𝐴 =  ∏𝑖,𝑗 �̂�𝑖,𝑗
𝑔,𝑐

𝐿𝑖,𝑗
𝑎 ,                                       (Eq. 6.1) 

Where 𝐿𝑖,𝑗
𝑎 = 𝑓(𝑎𝑖 − 𝑎𝑗  | 𝑅𝑖,𝑗) is the probability density function of the difference in ages 𝑎𝑖  and 𝑎𝑗 of 20 

individuals 𝑖 and 𝑗 and 𝐿𝑖,𝑗
𝑔,𝑐 = 𝑃𝑟(𝐼𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) is the probability of the observed IBD 𝐼𝑖,𝑗 between individuals 

𝑖 and 𝑗, given that their pairwise relationship is 𝑅𝑖,𝑗 and given that the genotypes of one of the individuals 

were obtained from sequencing data with coverage 𝑐. �̂�𝑖,𝑗
𝑔,𝑐

 is the composite likelihood approximation of 

𝐿𝑖,𝑗
𝑔,𝑐

 given by 

 25 
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                                             �̂�𝑖,𝑗
𝑔,𝑐  =  𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐),                       (Eq. 6.2) 

 

where 𝑁𝑖,𝑗 is the number of segments observed between individuals 𝑖 and 𝑗 and 𝑇𝑖,𝑗  is the total length of 

IBD observed between individuals 𝑖 and 𝑗. When computing the approximation �̂�𝑖,𝑗
𝑔  =

 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗) 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗), we used the analytical formulas for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗) and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗) derived 5 

by Huff et al (119), but we corrected these formulas to account for the fact that the genomic data for the 

historical individuals was low coverage, as described in section S6.2. The pairwise age likelihoods were 

computed using distributions trained with 23andMe research participant data as described in Jewett et al 

(43). Age distributions were extended to arbitrarily distant relationships as follows: denote a relationship 

between 𝑖 and 𝑗 by 𝑅𝑖,𝑗  =  (𝑢, 𝑑, 𝑛) using the notation of Ko and Nielsen (124). Here, 𝑢 is the number of 10 

meioses between 𝑖 and their common ancestor with 𝑗, 𝑑 is the number of meioses between 𝑗 and their 

common ancestor with 𝑖, and 𝑛 is the number of common ancestors of 𝑖 and 𝑗. If 𝐸[△ 𝑎𝑝,𝑐] and 𝑣𝑎𝑟(△

𝑎𝑝,𝑐) are the empirically observed mean and variance of the difference in age between a parent and child, 

then the age difference distribution between a pair, 𝑖 and 𝑗, with relationship 𝑅𝑖,𝑗 is modeled as a Gaussian 

random variable with mean (𝑢 − 𝑑)𝐸[△ 𝑎𝑝,𝑐] and variance (𝑢 + 𝑑)𝑣𝑎𝑟(△ 𝑎𝑝,𝑐). 15 
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S6.2: Correcting IBD probabilities for low coverage data 

Here, we derive the probabilities 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) and c of the number and total length of segments shared 

between a pair of individuals 𝑖 and 𝑗 when the genotypes of one individual were obtained from low coverage 

imputed sequencing data with coverage 𝑐. 5 

 

Low coverage imputed data introduces both false negative and false positive segments. False negative 

segments arise because missing genotypes or genotyping errors occur within true IBD (or identical-by-

state) segments, causing them to be missed by an IBD detection algorithm. For low coverage imputed data, 

Fig S6.1: Determining the most likely way of connecting a present-

day and historical pedigree. Genotyped individuals in the present-day 

pedigree are shaded in red. Genotyped individuals in the historical 

pedigree are shaded in purple. The lineage connecting the present-day 

and historical pedigrees is shown as a dashed orange line. All locations 

where this lineage can attach to the historical pedigree are shown as 

small orange dots. The degree of the lineage is denoted as d. We 

connected the present-day and historical pedigrees through each 

possible attachment point and a range of values for d. The composite 

likelihood (Equation SE6.1) was computed for each connection point 

and value of d. 
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false positive segments arise largely due to imputation, which can cause two regions to be identical-by-state 

over a region that is longer than the minimum threshold set by the IBD detection algorithm. Thus, when 

considering IBD called on genotypes inferred from imputed low coverage data, we must jointly model the 

IBD arising from Mendelian inheritance, as well as missing and spurious IBD arising from the low coverage 

data. 5 

 

Huff et al (119) derived a formula for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗) for the case in which the observed IBD 𝐼𝑖,𝑗 between 

individuals 𝑖 and 𝑗 was the true IBD without false positive or false negative segments and they derived a 

joint likelihood for the total number of segments together with the set of segment lengths, allowing for a 

given false positive segment rate and mean false positive segment length. In contrast to the approach by 10 

Huff et al, we don’t consider individual segment lengths, which can be noisy in the case of low coverage 

DNA. Thus, we do not include a term in the genetic likelihood for the probability of all observed segment 

lengths, and instead consider the total IBD length, which may be more robust to IBD inference errors such 

as the fragmentation of segments.  

 15 

We take the alternate approach of incorporating the false negative rates into the formulas for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗) 

and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) directly. We assume that the false positive rate based on coverage is small and only 

exerts a significant influence on the likelihood of a pairwise relationship when the two individuals are truly 

unrelated. This assumption is reasonably well justified by the low observed average false positive rate of < 

0.2 false positive segments per pair, shown in Fig. S6.4A. Using this assumption, we derive one set of 20 

formulas for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) for the case in which 𝑅𝑖,𝑗 denotes an unrelated pair and 

we derive a separate set of formulas for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) for the case in which 𝑅𝑖,𝑗 

denotes a pair of truly related individuals. For the case in which 𝑖 and 𝑗 are unrelated, the influence of low 

coverage on the distributions of 𝑁𝑖,𝑗 and 𝑇𝑖,𝑗 comes solely from false positive segments arising from the 
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imputation process. For the case in which 𝑖 and 𝑗 are related, the influence of low coverage on the 

distributions of 𝑁𝑖,𝑗 and 𝑇𝑖,𝑗 comes solely from false negative segments arising from genotype error. 

 

S6.3: The distributions of 𝑵𝒊,𝒋 and 𝑻𝒊,𝒋 for related individuals 

In deriving formulas for 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐), we will use two results that we demonstrate 5 

in Section S6.4. First, the false negative rate for a segment of length 𝑙 – i.e., the probability that a segment 

of true length 𝑙 is unobserved when one individual has coverage 𝑐 – can be modeled as 

 

    𝑃𝑟(𝑂 | 𝑐, 𝑙)  ≈  1 − 𝑒−𝑞𝑐𝑙 ,                                              (Eq. 6.3) 

 10 

for some constant 𝑞. Second, we demonstrate that the average observed length 𝑙𝑜 of a segment with true 

length 𝑙𝑡 is approximately given by 

 

    𝐸𝑐[𝑙𝑜  | 𝑙𝑡]  ≈  (1 −  𝑒−𝑝𝑐)(𝑙𝑡  −  𝜏)  +  𝜏,                       (Eq. 6.4) 

 15 

for some constant 𝑝, where 𝜏 is the minimum threshold length for an IBD segment to be called. Using 

Equations (Eq. 6.3) and (Eq. 6.4), we now derive 𝑃𝑟(𝑁𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐) and 𝑃𝑟(𝑇𝑖,𝑗  | 𝑅𝑖,𝑗 , 𝑐). 

    As in Huff et al (119), we model the number 𝑁𝑖,𝑗 of segments shared between individuals 𝑖 and 𝑗 as a 

Poisson random variable. The parameter 𝜆𝑅,𝑐 of the Poisson distribution is equal to the expected number of 

segments shared between individuals of relationship 𝑅 =  (𝑢, 𝑑, 𝑛) when one of the individuals has 20 

coverage 𝑐. The expected number of segments when the coverage is 𝑐 is equal to the expected number of 

segments at full coverage, times the probability that a segment is observed between two people with 

relationship 𝑅𝑖,𝑗 when the coverage of one of them is 𝑐. Let 𝑂𝑅 be the event that a given segment is observed 

between a pair of individuals with relationship 𝑅. Then we have 
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     𝜆𝑅,𝑐 = 𝜆𝑅𝑃𝑟(𝑂𝑅| 𝑅, 𝑐), 

 

where Huff et al (119) showed that 

 5 

     𝜆𝑅 ≈ 𝑛
((𝑢+𝑑)𝑟 + 22)

2(𝑢+𝑑)−1 𝑒−(𝑢+𝑑)𝜏/100,              (Eq. 6.5) 

 

where 𝑟 ≈ 35.5 is the expected number of meioses in the autosomal genome, 22 is the number of 

autosomes, and 𝜏 is the threshold in cM below which IBD segments are not considered. The probability 

𝑃𝑟(𝑂𝑅| 𝑅, 𝑐) can be obtained by integrating over the true length of the segment: 10 

 

 𝑃𝑟(𝑂𝑅| 𝑅, 𝑐) = ∫
∞

𝑙 =0
𝑃𝑟(𝑂 | 𝑙 , 𝑐)𝑓𝑅(𝑙 ) 𝑑𝑙𝑡   

          = ∫
∞

𝑙 =0
(1 − 𝑒−𝑞𝑐𝑙 ) 1𝑙≥𝜏 𝑓𝑅(𝑙 ) 𝑑𝑙   

          = ∫
∞

𝑙 =𝜏
(1 − 𝑒−𝑞𝑐𝑙 )

(𝑢+𝑑)

100
𝑒−(𝑢+𝑑)𝑙 /100 𝑑𝑙  

          = 𝑒−(𝑢+𝑑)𝜏/100  − ∫
∞

𝑙 =𝜏

(𝑢+𝑑)

100
𝑒−(

𝑢+𝑑

100
+𝑞𝑐)𝑙  𝑑𝑙  15 

          = 𝑒−(𝑢+𝑑)𝜏/100  −
(𝑢+𝑑)

100
(

𝑢+𝑑

100
+ 𝑞𝑐)−1 𝑒−(

𝑢+𝑑

100
+𝑞𝑐)𝜏 ,                      (Eq. 6.6) 

         

where the density 𝑓𝑅(𝑙 ) comes from Huff et al (119) and 1𝑙≥𝜏 is the indicator function taking the value 1 

whenever 𝑙 ≥ 𝜏 and 0, otherwise. In the second equality, we have assumed that the observed segment is not 

longer than the true segment because we are only considering false negative rates. Thus, the true segment 20 

must be longer than 𝜏 to be observed. 
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We can check the formula for 𝑃𝑟(𝑂𝑅| 𝑅, 𝑐) by noting that as the coverage approaches infinity, the formula 

for 𝑃𝑟(𝑂𝑅| 𝑅, 𝑐) approaches 𝑒−(𝑢+𝑑)𝜏/100, which is the probability that the true segment has at least length 

𝜏. As the relationship 𝑅 = (𝑢, 𝑑, 𝑛) becomes increasingly distant – i.e., as 𝑢 + 𝑑 goes to infinity – the 

formula for 𝑃𝑟(𝑂𝑅| 𝑅, 𝑐) approaches 𝑒−(𝑢+𝑑)𝜏/100(1 −  𝑒−𝑞𝑐𝜏), which is the probability that the true 

segment has length at least 𝜏 and that the segment of length 𝜏 is observed between the low coverage 5 

individuals, regardless of the relationship. 

 

To find the expected total IBD length 𝑇𝑅,𝑐 between two individuals separated by relationship 𝑅 = (𝑢, 𝑑, 𝑛) 

when one individual is full coverage and the other individual has coverage 𝑐, let 𝜇𝑅,𝑐 be the mean segment 

length observed between the two individuals. Then we can approximate 𝐸[𝑇𝑅,𝑐] by the product of 𝜇𝑅,𝑐 and 10 

the expected number of segments 𝜆𝑅,𝑐: 

 

     𝐸[𝑇𝑅,𝑐]  ≈ 𝜇𝑅,𝑐𝜆𝑅,𝑐 .                                            (Eq. 6.7) 

 

Using the relationship 𝐸𝑐[𝑙𝑜  | 𝑙𝑡]  ≈  (1 −  𝑒−𝑝𝑐)(𝑙𝑡  −  𝜏)  +  𝜏 from Equation (Eq. 6.4) we find that 15 

 

    𝜇𝑅,𝑐  =  (1 −  𝑒−𝑝𝑐)(𝐸𝑅[𝐿𝑡]  −  𝜏)  +  𝜏 

            = (1 −  𝑒−𝑝𝑐)(
100

𝑢+𝑑
 −  𝜏)  +  𝜏,                        (Eq. 6.8) 

 

where the formula 𝐸𝑅[𝐿𝑡] =
100

𝑢+𝑑
 comes from the result that segments between two individuals of 20 

relationship 𝑅 = (𝑢, 𝑑, 𝑛) have expected length 
100

𝑢+𝑑
 when expressed in centimorgans (119). 

 

To derive an approximation of the variance of the observed total IBD 𝑇𝑅,𝑐, we make the simplifying 

assumption that all variability in 𝑇𝑅,𝑐 arises from the lengths of the true segments 𝑇𝑅. In other words, we 
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assume that 𝑙𝑜 ≈  (1 −  𝑒−𝑝𝑐)(𝑙𝑡  −  𝜏)  +  𝜏, so that 𝑇𝑅,𝑐 ≈  (1 −  𝑒−𝑝𝑐)(𝑇𝑅  −  𝑁𝜏)  +  𝑁𝜏, where 𝑁 is 

the number of segments. Thus, we have 

 

    𝑣𝑎𝑟(𝑇𝑅,𝑐)  ≈ (1 −  𝑒−𝑝𝑐)2𝑣𝑎𝑟(𝑇𝑅).                              (Eq. 6.9) 

 5 

An approximate formula for 𝑣𝑎𝑟(𝑇𝑅) was derived in Jewett et al (43). For two related individuals with 

relationship 𝑅, we model the total IBD as a Gaussian random variable with mean 𝐸[𝑇𝑅,𝑐] and variance 

𝑣𝑎𝑟(𝑇𝑅,𝑐). 

S6.4: The distributions of 𝑵𝒊,𝒋 and 𝑻𝒊,𝒋 for unrelated individuals 

When individuals 𝑖 and 𝑗 are unrelated, we assume that the observed segments between them arise entirely 10 

from false positive segments due to imputation or other sources. In Section S6.5, we demonstrate that the 

expected number of false positive segments when one individual is high coverage and the other individual 

has low coverage 𝑐 can be modeled as 

 

     𝐸[𝑁𝑖,𝑗]  ≈  𝛾1/𝑐                                  (Eq. 6.10) 15 

 

for some constant 𝛾1, and we show that 𝑣𝑎𝑟[𝑁𝑖,𝑗]  ≈  𝛾1/𝑐 for the same constant 𝛾1, suggesting that 𝑵𝒊,𝒋 is 

reasonably modeled by a Poisson distribution. Thus, for two unrelated individuals 𝑖 and 𝑗, we model 𝑵𝒊,𝒋 

as a Poisson random variable with parameter 𝛾1/𝑐. 

 20 

In Section S6.5, we also demonstrate that the expected total false positive IBD between two unrelated 

individuals has mean 

 

     𝐸[𝑇𝑖,𝑗]  ≈  𝛾2/𝑐                                  (Eq. 6.11) 
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and that the variance is approximately  

 

     𝑣𝑎𝑟(𝑇𝑖,𝑗)  ≈  𝛾3/𝑐                              (Eq. 6.12) 

 5 

for constants 𝛾2 and 𝛾3. Thus, for two unrelated individuals, we model the total IBD 𝑇𝑖,𝑗 as a Gaussian 

random variable with mean 𝛾2/𝑐 and variance 𝛾3/𝑐. 

Section S6.5: False positive and false negative rates of IBD 

Using the same data set described in Supplementary Text S3, we computed true-positive, false-positive, 

true-negative, and false-negative rates as a function of coverage, as well as the relationship between the 10 

true and observed segment lengths.  

 

In Equation (Eq. 6.6), we used a simple and integrable expression for the per-segment true positive rate 

𝑃𝑟(𝑂 | 𝑐, 𝑙) as a function of the true segment length and coverage. The form of this equation comes from 

the empirical true-positive rate as a function of coverage (Fig. S6.2). By minimizing the mean squared error 15 
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between the empirical and fitted values in Equation (Eq. 6.3), we found that a value of q = 0.179 provided 

a good fit to the empirical data. 

Fig S6.3: Empirically-observed mean segment lengths as a 

function of the true segment length. Shown by coverage. Solid 

curves correspond to the empirical data. Dashed curves are the 

fitted values. 

Fig S6.2: True-positive rate of observing an IBD 

segment of a given length for several different 

coverages. Solid curves show empirical values. Dashed 

curves show fitted values using Equation (SE6.3). 
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    The form of Equation (Eq. 6.4) also comes from the empirical data. We observed that the mean observed 

length was approximately linear in the true length, with a constant that depended on the coverage. We found 

that the relationship in Equation (Eq. 6.4) captured the empirical relationship. By minimizing the mean 

squared error between the predicted and empirical mean observed lengths using Equation (Eq. 6.4), we 

found that a value of p = 1.79 provided a good fit for the data (Fig. S6.3). 5 
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    We found that the number of observed false-positive segments as a function of coverage is well modeled 

by Equation (Eq. 6.10). Furthermore, from Figs. S6.4A and S6.4B, it can be seen that both the mean and 

variance are well approximated by 𝛾1/𝑐, for the same value of 𝛾1 = 0.036. Thus, the expected number of 

false-positive segments can be modeled by a Poisson random variable with parameter 𝛾1/𝑐. 

 5 

A B 

Figure S6.4: Mean (A) and variance (B) in the number of false-positive segments 

observed between a pair of individuals as a function of the coverage of one of the 

individuals. Solid curves show empirical values, dashed curves minimize the mean squared 

error between empirical and fitted values. Both fitted curves are 0.036/c. 

A B 

Figure S6.5: Mean (A) and variance (B) in the total observed length of false-positive IBD 

between a pair of individuals, one of whom has coverage c. Solid curves indicate empirical 

values and dashed curves indicate fitted values. 
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Finally, the expected total length of false-positive IBD is well approximated by Equation (Eq. 6.11) and its 

variance is well approximated by Equation (Eq. 6.12), as can be seen in Figs S6.5A and S6.5B. By 

minimizing the mean squared error between the empirical and predicted values, we found that values of 

𝛾2 = 0.141 and 𝛾3 = 0.575 provided a good fit. 

S6.6: Pedigree inference 5 

Present-day pedigrees were inferred among individuals sharing at least a threshold amount of IBD with a 

historical individual in a given Catoctin family. The threshold was the one chosen to minimize false positive 

IBD sharing, given in Section S3.2 in Supplementary Text S3. Present-day family sets were first created by 

grouping individuals who shared at least 200 cM of IBD with at least one other person in the group. The 

individual in each group with the highest average sharing to all other group members was chosen as the 10 

focal individual and the pedigree of the group was inferred using Bonsai (43). We then identified the 

common ancestor of the present-day pedigree and exhaustively considered all positions to which the lineage 

extending from the common ancestor could attach in the historical family’s pedigree (Fig. S6.1). Positions 

were either lineages extending up from an unsampled individual or down from any individual and the 

possible partners of the individual. Lineages extending directly down from individuals in Fig. S6.1 are 15 

short-hand for lineages extending down from the individual and a partner. 

 

For each position in the historical family, we considered lineages extending from the most recent common 

ancestor of the present-day pedigree to the position on the historical pedigree. We considered degrees 

ranging from 0 to 15 degrees, where 0 degrees indicated that the common ancestor of the present-day 20 

pedigree was an individual in the historical pedigree. The likelihood of the attachment point and degree 

was computed using Equation (Eq. 6.1). 

 

The probability that a present-day pedigree attached to a given position on the historical pedigree was 

computed by assuming that the prior probability of attachment to any point on the historical family’s 25 
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pedigree was uniform across all attachment points. Let D denote the data (IBD segments and ages) and let 

A denote the arrangement (degree of relationship and point of connection on the historical pedigree). Then 

we have 

 

    𝑃𝑟(𝐴 | 𝐷)  =  
𝑃𝑟(𝐷|𝐴) 𝑃𝑟(𝐴)

𝑃𝑟(𝐷)
 ∝  𝑃𝑟(𝐷|𝐴)  =  𝐿𝐴  (Eq. 6.13) 5 

where 𝐿𝐴 is given in Equation (Eq. 6.1). Thus 𝑃𝑟(𝐴 | 𝐷) can be computed by normalizing the values of 𝐿𝐴. 

When computing Equation (Eq. 6.1), we took the age of each historical individual to be their estimated age 

at burial, plus the time difference between the present year and their date of burial (Table S1). 

 

The probability of any pedigree connecting through a given arrangement A is then 10 

 

   𝑃𝑟(𝐴)  =  ∑𝑝𝑒𝑑 𝑃𝑟(𝐴|𝐷𝑝𝑒𝑑)𝑃𝑟(𝑝𝑒𝑑)  =  
1

𝑃
∑𝑝𝑒𝑑 𝑃𝑟(𝐴 | 𝐷𝑝𝑒𝑑), (Eq. 

6.14) 

 

where ped indicates a particular present-day pedigree, Dped denotes the data for the pedigree, and P is the 15 

number of present-day pedigrees. The probabilities 𝑃𝑟(𝐴) are the values shown in Fig. 7 in the main text. 

S6.7: Ancestries of pedigrees 

The ancestry of each present-day individual connected to a historical family was computed using the 

Ancestry Composition local ancestry inference method (42) and global ancestry proportions were 

aggregated with a confidence threshold of 51%. We computed the admixture fraction 𝑓𝑝
𝐴 for population p 20 

on lineage A as 

 

   𝑓𝑝
𝐴 =  ∑𝑁𝐴

𝑖=1 𝑃𝑟(𝑝 | 𝑖) 𝑃𝑟(𝑖)  =  
1

𝑁𝐴
∑𝑁𝐴

𝑖=1 𝑃𝑟(𝑝 | 𝑖),  (Eq. 6.15) 
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where 𝑁𝐴 is the number of individuals whose most likely connection is through arrangement 𝐴 and 𝑃𝑟(𝑝|𝑖) 

is the admixture fraction for population 𝑝 of individual 𝑖. These are the values in the pie charts shown in 

Fig. 7. 

 

S6.8: Resampling test of present-day pedigrees with American ancestry related to Catoctin 5 

Family A 

The ancestries of pedigrees attached through different lineages is informative about the accuracy of the 

method for connecting present-day and historical pedigrees through different arrangements. Ancestry 

information was not used when computing the probabilities of arrangements and can therefore be used as a 

check. In particular, for Family A, we know that individual f must have had a significant amount Indigenous 10 

American ancestry because their children, 1 and 2, have Indigenous American ancestry that is not observed 

in their parent, 3 (Fig. 2). We do not observe high proportions of Indigenous American ancestry in 

individual 24 in Catoctin Family A. 

 

This high Indigenous American ancestry in individual f allows us to test whether connections of present-15 

day pedigrees to Family A through individual f are consistent with their known recent Indigenous American 

ancestry. In particular, we expect that individual f has collateral relatives shared through their Indigenous 

American ancestors. We expect that such relatives would be enriched among the set of pedigrees related to 

Catoctin Family A that have particularly high Indigenous American ancestry. 

 20 

We considered present-day pedigrees whose sampled individuals had at least twice as much inferred 

Indigenous American ancestry as African ancestry. Of 149 present-day pedigrees that satisfied this 

criterion, all but one pedigree had a most likely connection through individual f. To evaluate whether this 

result was statistically significant, we considered the mean of the 149 log likelihoods of connecting through 

individual f. We repeatedly sampled 149 pedigrees from among the set of pedigrees with 25 
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𝑓𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 /𝑓𝐴𝑓𝑟𝑖𝑐𝑎𝑛 < 2 and computed the mean log likelihood of attaching through individual f. Out of 

1,000,000 samples of 149 such pedigrees, we found that no sample had a mean log likelihood as high as 

the mean log likelihood in the high American ancestry pedigrees. This yields a p-value for the resampling 

test of p < 10-6.
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Supplementary Figs 

Y-Haplogroup Distribution 

Haplogroup A1b1 

 Burial 4 

 
Haplogroup E1b1a1 

Burial 26 (E1b1a1~) 

 
 

Haplogroup E1b1a1a1 (E-M180) 
Burial 5  

 

Haplogroup E1b1a1a1a 
Burial 8 (E1b1a1a1a) & Burial 15 (E1b1a1a1a2a1a) 

 
 

Haplogroup E1b1a1a1c1a  
Burials 17 & 24 (Both E1b1a1a1a1c1a1) 

 
Haplogroup E1b1a1a1c1a1 

Burial 22 (E1b1a1a1a1c1a1a3a1d1) 
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Haplogroup E1b1a1a1c1b 
Burials 1, 2 (E1b1a1a1a1c1b1) & 6 (E1b1a1a1a1c1b2a) 

 
 

Haplogroup E1b1a1a1c2c  
Burial 33 

 
 

Haplogroup E2b 
Burial 13

 

 

 

Haplogroup R1a1a1 
Burial 32 

 
 

Haplogroup R1b1a  
Burials 10 (R1b1a1b1a1a2c1a1h2a~) & 34 (R1b1a1a2a1a2c1) 

 
 

Fig. S1. Geographic distribution of the observed Y haplogroup frequencies in the 23andMe 

database using Kriging interpolation. For each haplogroup, the Catoctin individuals who have been 

assigned that haplogroup are indicated. In cases where the Catoctin individuals have been assigned a 

haplogroup that is a subclade of the displayed haplogroup, the full assigned haplogroup is reported in 

parentheses. 



 

87 

 

mt-Haplogroup Distributions 
 

Haplogroup J1b1a 

Burial 32 (J1b1a1a) 

 
Haplogroup L0a1b1a 

Burial 4 

 
Haplogroup L2a1  

Burials 15, 18, 23 (all L2a1+143+16189 (16192)+@16309) & 

33 (L2a1+143+@16309) 

 
 

 

Haplogroup L2a1a1 

Burial 6 

 
Haplogroup L2b1a3 

Burials 11, 12, 13, & 28 

 
 

Haplogroup L2c 

Burial 26 
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Haplogroup L3d1b3 

Burial 22 

 
Haplogroup L3e1 

Burials 5, 34, and 35 

 
Haplogroup L3e1a1a  

Burial 7 

 
 

 

 

 

 

 

 

Haplogroup L3e2 

Burials 17 & 19 

 
Haplogroup L3e2a1b1 

Burials 1, 2, 3, 8 and 24

 
Haplogroup L3f1b1 

Burial 9 (L3f1b1a) 
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Haplogroup L3f1b3 

Burial 10 

 
 

Haplogroup L4b2b1 

Burial 14 

 

Fig. S2. Geographic distribution of the observed mt haplogroup frequencies in the 23andMe database using 

Kriging interpolation. For each haplogroup, the Catoctin individuals who have been assigned that haplogroup are 

indicated. In cases where the Catoctin individuals have been assigned a haplogroup that is a subclade of the displayed 

haplogroup, the full assigned haplogroup is reported in parentheses. 
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Fig. S3. ADMIXTURE analysis of 531 present-day individuals drawn from the public dataset from Africa (GWD.SG, 

Mandenka.SDG, MSL.SG, YRI.SG, ESN.SG and BantuSA.SDG), Europe (GBR.SD) and the Americas (Pima.SDG) 

and not imputed (a) or imputed (b) versions of the 27 Catoctin individuals with K = 4 ancestral components. The 

Catoctin individuals are ordered from highest to lowest coverage, placing the two individuals who are damage restricted in 

the non-imputed dataset last. Scatterplots demonstrate the difference in the amount of ancestry assigned to African (c), 

European (d) and Indigenous American (e) sources when calculated using the not imputed versus imputed datasets. The 

biggest deviations from a 1:1 ratio (x=y) occur among the lowest coverage individuals (shown in red) for all cases, 

particularly those with <0.5x coverage.  
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Fig. S4. African American Ancestry PCA. A principal component analysis of 213 present-day individuals from 

representative European (GBR.SG), African (YRI.SG) and Indigenous American (Pima.SDG) populations drawn from the 

public dataset. We projected the 27 Catoctin individuals onto the resulting PCA plot using non-imputed (black outline) and 

imputed (gray outline) versions of the Catoctin datasets. For each individual, a black arrow shows the change in position 

between the non-imputed and imputed versions of the data (pointing from the non-imputed data point towards the imputed 

data point). Ovals around each marker show the 95% confidence interval for the position of the marker. A zoomed-in view 

of the portion of the figure indicated with dotted lines is shown at the bottom of the figure. The position of the lowest 

coverage and/or damage restricted Catoctin individuals changed the most dramatically between the non-imputed and 

imputed datasets. 
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Fig. S5. qpADM estimates of African, European and Indigenous American Ancestry Proportions. The proportion of 

ancestry assigned to each Catoctin individual from representative African (YRI.SG), European (GBR.SG) and Indigenous 

American (Pima.SDG) populations drawn from the public dataset by the tool qpAdm using the not imputed (a) and imputed 

(b) datasets. Error bars indicate 1 standard error. Hash symbols (#) indicate models with p-values <0.01 and plus signs (+) 

indicate models with ancestry proportion estimates that fall more than 3 standard errors outside the range of 0-1. Asterisks 

(*) indicate damage restricted data. In panels c-e, scatterplots demonstrate the difference in the amount of ancestry assigned 

to YRI.SG (c), CEU.SG (d) and Pima.SDG (e) sources when calculated using the not imputed versus imputed datasets. The 

biggest deviations from a 1:1 ratio (x=y) occur among the lowest coverage individuals (shown in red) for all cases, 

particularly those with <0.5x coverage.  
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Fig. S6. Chromosome paintings showing the ancestry assigned to portions of the autosomal chromosomes for the 22 Catoctin 

individuals with >0.5x coverage. Catoctin individuals are grouped together into their assigned genetic families when possible. Across 

the genome, ancestry is assigned to one of six ancestry components defined using 23andMe reference populations: Sub-Saharan African 

(purple), West Asian & North African (dark blue), European (dark teal), East Asian & Indigenous American (red), Melanesian (orange), 

and Central & South Asian (green). Portions of the genome that could not be assigned to any of these components are shown in white.   
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Fig. S7. Correlation between Ancestry Composition and qpAdm assignments. Plots showing the proportion of ancestry 

assigned to African (top), European (middle) and Indigenous American (bottom) sources by qpAdm (using the public 

dataset) and Ancestry Composition (using 23andMe reference populations) for each Catoctin individual (blue dots) with 

>0.5x coverage when calculated using the not imputed (a) and imputed (b) datasets.  
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Fig. S8. Histogram of total IBD detected among 23andMe research participants who share IBD with one or more 

Catoctin individuals. For research participants who share IBD with multiple Catoctin individuals, the larger amount of 

total IBD is reported. Bin sizes were selected to include a minimum of 5 research participants.  
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Fig. S9. Histogram of total IBD shared with each Catoctin individual. Bins with ≤5 associated 23andMe research participants are 

reported as 5, indicated by the black, dotted horizontal line. A minimum segment length threshold was applied based on coverage using 

the following thresholds: ≥2x: 6cM, 1-2x: 9 cM, 0.5-1x: 10 cM. Catoctin individuals with <1x coverage are labeled in red to indicate 

that these results should be interpreted with caution. The total number of connections shared with each Catoctin individual is indicated 

above each plot, using the same masking approach for bins with ≥5 connections.  

 



 

97 

Burial 35 

5 Connections 

 

Burial 33 

0 Connections 

 

Burial 2 

15 Connections 

 

Burial 34 

16 Connections 

 

Burial 15 
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Burial 6 

3 Connections 

 

Burial 24 

1 Connection 

 

Burial 18 
0 Connections 

 
Burial 1 

1 Connection 

 

Burial 17 
0 Connections 

 

Burial 14 
0 Connections 

 
Burial 19 

0 Connections 

 

Burial 13 

1 Connection 

 

Burial 12 
0 Connections 

 
Burial 3 

0 Connections 

 

Marker Size:  

No. of participants at Coordinate 

 

Marker Fill:  

Proportion of Participants with 

IBD (%) 

 

Fig. S10. Genetic connections to each of the Catoctin individuals among African participants. The proportion of 

23andMe participants with ≥95% Sub-Saharan African ancestry in Africa who share IBD with each Catoctin individual 

with >0.5x coverage. Geographic coordinates are rounded to the nearest integer, and only coordinates that have at least 25 

associated participants are shown. To further protect participant privacy, we randomly downsample to include results for 
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only 80% of participants. The size of the marker corresponds to the number of participants associated with each site, while 

the color indicates the proportion of participants who share IBD with the Catoctin individuals. No participants share ≥30 

cM of IBD with one or more Catoctin individuals, so no marker outlines are shown. The total number of IBD connections 

observed is reported above each image, when 0 connections are observed, this number is reported in red. 
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Fig. S11. Genetic connections to each of the Catoctin individuals among European participants. The proportion of 

23andMe participants with ≥99% European ancestry in western and central Europe who share IBD with each Catoctin 

individual with >0.5x coverage. Geographic coordinates are rounded to the nearest integer, and only coordinates that have 

at least 25 associated participants are shown. To further protect participant privacy, we randomly downsample to include 

results for only 80% of participants. The size of the marker corresponds to the number of participants associated with each 

site, while the color indicates the proportion of participants who share IBD with the Catoctin individuals. No participants 

share ≥30 cM of IBD with one or more Catoctin individuals, so no marker outlines are shown. The total number of IBD 

connections observed is reported above each image, when 0 connections are observed, this number is reported in red.
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Fig. S12. Geographic distribution of distant and close relatives of each of the Catoctin individuals in the United 

States. The proportion of 23andMe participants at given geographic coordinates in the contiguous United States who share 

IBD with each of the 22 Catoctin individuals (one individual per row). Geographic coordinates are rounded to the nearest 

integer, and only coordinates that have at least 25 associated participants are shown. To further protect participant privacy, 

we randomly downsample to include results for only 80% of participants. The size of the marker corresponds to the number 5 

of participants associated with each site, while the color indicates the proportion of participants who share IBD with the 

Catoctin individuals. Marker outlines indicate the number of participants at each coordinate who share ≥30 cM of IBD with 

the specified Catoctin individual. Column A (left) reports results for all participants, column B (middle) shows participants 

with ≥5% Sub-Saharan African ancestry and column C (right) ≥99% European ancestry. The total number of IBD 

connections observed is reported above each image, when 0 connections are observed, this number is reported in red. 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 



 

107 

 
Fig. S13. Geographic distribution of 23andMe research participants with Sub-Saharan African ancestry in the 

contiguous United States. Predicted African ancestry proportions in the US using participants' grandparent birth locations. 

Prediction surfaces were generated using Kriging interpolation on the mean proportion of African ancestry at each unique 

geographic coordinate.  5 
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Fig. S14. Connections between Catoctin Family C and D and present-day pedigrees. The pedigree for Catoctin 

Family C (panel A) and Family D (panel B) is shown with blue-shaded individuals connected by grey lines. Open gray 5 

diamonds indicate un-genotyped individuals in each Catoctin family. The large purple triangle represents all present-day 

pedigrees composed of 23andMe research participants, and the probability distribution of how these pedigrees connect to 

the historical pedigree is inferred. Orange lines represent lineages connecting a present-day pedigree to the historical 

pedigree. Numbers in ovals give the probability that a present-day pedigree attached to a given point on the historical 

pedigree, scaled to a percentage. Numbers in diamonds indicate the average degree of a lineage connecting to a particular 10 

point. Pie charts show the average European (blue), African (red), and Indigenous American (yellow) admixture 

proportions of individuals in pedigrees whose most likely point of connection was through the lineage. 
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Sickle Cell Anemia/Trait (rs334 or i3003137) 

A      T  

 
increased Risk of G6PD Deficiency (rs1050828) 

T      C 5 

 

Fig. S15. Geographic distribution of biologically significant alleles. Heatmaps showing the geographic distribution of 

biologically significant alleles among 23andMe research participants using Kriging interpolation. For each phenotypically 

important SNP, the effect allele is shown in the left panel. 

 10 
 

 



 

110 

 
Fig. S16. Heatmap of total IBD measured between all pairs of Catoctin individuals. Individuals sorted from highest 

(top) to lowest (bottom) coverage. Comparisons between individuals with <0.5x coverage are likely to have high rates of 

false positive IBD, therefore black lines are used to separate individuals with >0.5x coverage from those with <0.5x 

coverage. Comparisons in the upper left quadrant contain the least false positive IBD as they involve no low coverage 5 

individuals, while comparisons in the lower right quadrant are expected to have very high rates of false positive IBD as they 

involve 2 low coverage individuals. Genetic relatives that were independently identified using an alternative method not 

based on imputation and IBD analysis (80) are annotated as follows: PC: Parent-Child; Sib: Sibling; AV: avuncular; 1D: 

1st degree relative ; 2-3D: 2nd to 3rd degree relative. We do not observe high amounts of IBD among any pairs of individuals 

that were not already identified as genetic relatives using the allele frequency-based method, which can detect relatives as 10 

distant as the 3rd degree, suggesting that while close genetic relationships are common among the Catoctin individuals, 

more distant relationships are less common.
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