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Abstract

qpAdm is a statistical tool for studying the ancestry of populations with histories that involve admixture between two or more source
populations. Using qpAdm, it is possible to identify plausible models of admixture that fit the population history of a group of interest and
to calculate the relative proportion of ancestry that can be ascribed to each source population in the model. Although qpAdm is widely
used in studies of population history of human (and nonhuman) groups, relatively little has been done to assess its performance. We
performed a simulation study to assess the behavior of qpAdm under various scenarios in order to identify areas of potential weakness and
establish recommended best practices for use. We find that qpAdm is a robust tool that yields accurate results in many cases, including
when data coverage is low, there are high rates of missing data or ancient DNA damage, or when diploid calls cannot be made. However,
we caution against co-analyzing ancient and present-day data, the inclusion of an extremely large number of reference populations in a sin-
gle model, and analyzing population histories involving extended periods of gene flow. We provide a user guide suggesting best practices
for the use of qpAdm.
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Introduction
The last decade has experienced a revolution in the amount of
genetic data available to study from both living and ancient
organisms. Questions about the origins of populations have in-
creased in complexity, often in an effort to understand histories
that involve admixture, which are incompatible with traditional
tree-like models of relatedness. qpAdm is a tool that can be used
to understand the history of admixed populations in both human
and nonhuman species. It has been applied to study the genetic
history of human populations that would otherwise remain mys-
terious. For instance, the use of qpAdm was vital to studying the
ancestry of the Late Bronze Age Greek culture of the
“Mycenaeans” (Lazaridis et al. 2017)—the subjects of the Iliad and
Odyssey. However, little has been done to assess qpAdm’s perfor-
mance under both simple and complex scenarios.

A potential drawback of many population genetic tools for
studying the population history of specific groups is that they re-
quire the historical relationships of all other populations in-
cluded in the analysis to be explicitly modeled (Patterson et al.
2012; Pickrell and Pritchard 2012). This underlying phylogeny is
either specified by the user (as in qpGraph) or is calculated during
the analysis (as in TreeMix). This may lead to biases or errors in
inferences about admixture if mistakes are made when

specifying the underlying relationships of nontarget populations
(Lipson 2020). This requirement for a complete and accurate pop-

ulation history is especially difficult to satisfy in studies that uti-
lize ancient DNA, which increasingly attempt to use genetic data

of limited quality to analyze nuanced differences between closely
related groups. However, even in cases where it is difficult to re-

construct a full population history, it is often possible to examine
patterns of shared genetic drift between various populations in

order to learn about their relationships to one another (Patterson
et al. 2012). qpAdm exploits this information, enabling admixture

models to be tested for plausibility and admixture proportions to
be estimated.

The theory underlying qpAdm, which was introduced in Haak

et al. (2015), builds upon a class of statistics known as f-statistics
(Patterson et al. 2012). f-statistics analyze patterns of allele fre-

quency correlations among populations in order to determine

whether their population histories can be described using strictly
tree-based models, or if more complex models, such as those

involving admixture, are required to explain the genetic data.
f-statistics have been widely used in the population genetic litera-

ture and their behavior is well understood (Reich et al. 2009, 2012;
Patterson et al. 2012; Peter 2016; Soraggi and Wiuf 2019; Lipson

2020). qpAdm harnesses the power of f-statistics to determine
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whether a population of interest (a target population) can be
plausibly modeled as descending from a common ancestor of one
or more source populations. For example, in a model with two
source populations, qpAdm tests whether the target population
is the product of a two-way admixture event between these
source populations. The method requires users to specify a list of
target and source populations and a list of additional reference
populations which provide information about the relationships
among the target and source populations.

Often, the target and source populations are referred to as
“left” populations while the reference populations are called
“right” populations. This is due to their positions as arguments in
the f4-statistics, i.e. f4(target, source; ref1, ref2). Here, we prefer
“target,” “source” and “reference” and minimize our use of “left
and “right.” In addition, reference or “right” populations have pre-
viously been referred to as “outgroup” populations, but we also
avoid this term because it suggests that reference populations
should be outgroups in phylogenetic sense (i.e., equally closely re-
lated to all “left” populations). In fact, if all reference populations
are symmetrically related to all source populations in this way,
qpAdm will not produce meaningful results. The method
requires differential relatedness, meaning that at least some ref-
erence populations must be more closely related to some source
populations than to others. We illustrate this in Methods and
Results, and further describe the assumptions qpAdm makes
about relationships among target, source, and reference popula-
tions with examples in the qpAdm User Guide in Supplementary
Material S1.

Inferences about admixture in qpAdm are made by fitting a
series of hypothetical models to a matrix of f4-statistics com-
puted from the data. We describe the methodological details in
Supplementary Material S2, which may be summarized briefly as
follows. qpAdm compares possible scenarios involving admixture
to the unconstrained alternative. Each hypothesized model of ad-
mixture assumes that the target population was produced as a
mixture of ancestral populations which are direct ancestors of
the specified source populations. Allele frequencies in the ances-
tral target population are constrained to be linear combinations
of allele frequencies in the ancestral source populations. In the
unconstrained model, the ancestral target population is allowed
to vary freely. For each constrained model, qpAdm gives a P-
value which is used to determine whether the proposed admix-
ture scenario is plausible or whether it is rejected in favor of the
unconstrained alternative. The P-value is calculated using a like-
lihood ratio test in which the constrained model is the null hy-
pothesis and the unconstrained model is the alternative
hypothesis. A simple example in which the constrained model
would obviously be rejected is when the putative target popula-
tion is actually an outgroup to all source populations.

While qpAdm has been applied in numerous studies (e.g.,
Lazaridis et al. 2016; Haber et al. 2017; Lazaridis et al. 2017;
Skoglund et al. 2017; de Barros Damgaard et al. 2018a, 2018b;
Hajdinjak et al. 2018; Harney et al. 2018; Olalde et al. 2018;
Narasimhan et al. 2019), producing results that are consistent
with those of other population genetic methods, very little has
been done to assess the performance of the tool when the popu-
lation history is known (i.e., using simulated data). The only
simulation-based analysis that has been previously conducted
examined whether simulated populations—generated according
to the model fitted by qpAdm by resampling data using the
source populations and estimated admixture proportions—be-
haved similarly to the real target population in further statistical
analyses (Lazaridis et al. 2017). Although this limited example

supports the use of qpAdm in population genetic analyses, it did
not address any of the potential limitations of the method. Here
we use simulated genomic data to study the distributions of P-
values and estimated admixture proportions from qpAdm, the
potential of qpAdm to distinguish optimal from nonoptimal mod-
els of admixture for a given set of samples (where optimal models
are those that do not violate any of the assumptions that qpAdm
makes about the relationship between target, source and refer-
ence populations), and the performance of qpAdm in the face of
more challenging demographic scenarios.

The chief purpose of qpAdm is to identify a subset of plausible
models of a population’s ancestry from a larger set of possible
models. Users propose a series of possible models, each with dif-
ferent combinations of source populations contributing to a given
target population, then eliminate implausible models. Models are
deemed implausible if their estimated admixture proportions fall
outside the biologically relevant range (0–1) or if they are rejected
statistically by having a small P-value. Again, the proposed mod-
els are the null models in the likelihood ratio tests described
above. The resulting set of plausible models are the ones which
are not rejected, meaning they have P-values greater than the cho-
sen significance level, which is usually 5%. As this is a nonstan-
dard use of P-values, in Box 1 we provide a simple illustration of
an analogous technique for identifying plausible models for the
(unknown) probability of heads for a coin. We emphasize that
Box 1 is not meant to illustrate the complexities of model specifi-
cation and choice in qpAdm, which involves the specification of
target, source and reference populations and the additional esti-
mation of admixture proportions. In a later section (Comparing
admixture models) we describe an approach for identifying opti-
mal admixture models among the several possible models which
might be deemed plausible by qpAdm.

Identical to standard statistical methods, this sort of approach
may be considered to be working properly if the P-values gener-
ated by qpAdm follow a uniform distribution when the correct
admixture model is specified. In this case, the correct model will
be rejected 5% of the time when a threshold of P< 0.05 is applied.
For other plausible but less-optimal models, the distribution of P-
values is not expected to be uniform but should have an appre-
ciable chance of being above the 5% cutoff. The distribution of P-
values for implausible or incorrect models should fall largely be-
low the 5% cutoff. While experience suggests that the P-values
generated by qpAdm are reasonably consistent with these
expectations, in this work we perform the first systematic test of
these ideas.

Similarly, although the estimated admixture proportions cal-
culated by qpAdm appear generally consistent with values gener-
ated using other statistics, the accuracy of these estimates have
never been rigorously tested. Of particular interest is the accu-
racy of these estimates when calculated on low quality data, as
qpAdm is often applied to the study of ancient DNA, which is
characteristically low coverage, may have a high rate of missing
data, and is susceptible to deamination of cytosine nucleotides
(manifesting in sequence data as cytosines being misread as thy-
mines). Furthermore, ancient DNA is often subject to a complex
ascertainment process that could potentially bias statistical anal-
yses. We explore the impact of each of these factors on the ad-
mixture proportions estimated by qpAdm.

Additionally, while one of the main features of qpAdm is its
ability to distinguish between optimal and nonoptimal models
for a group’s population history, there are no formal recommen-
dations about what strategy should be employed to compare
models. We therefore consider two of the most commonly
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employed strategies for model comparison, one using a consis-

tent “base” set of reference populations and the other using a

“rotating” set of reference populations that is dependent upon

the particular source populations included in each model,

highlighting their potential benefits and weaknesses.
Finally, we conclude by exploring nonstandard cases where

the expected behavior of qpAdm is poorly understood, such as

the impact of including reference populations that violate the as-

sumption of qpAdm that gene flow into the source population

does not occur after its split with the lineage leading to the

admixed target population in the proposed model, the impact of

including a large number of populations in the reference popula-

tion set and the behavior of qpAdm when applied to population

histories that involve continuous gene flow rather than single

pulses of admixture.
We show that qpAdm reliably identifies population histories

involving admixture and accurately infers admixture propor-

tions. It is robust to low coverage, high rates of missing data,

DNA damage occurring at similar rates in all populations, the use

of pseudo-haploid data, small sample size, and ascertainment

bias. We also identify some issues with naive applications of

qpAdm. One of these issues is that multiple plausible scenarios

may be found most of which are not the truth because qpAdm

uses nonrejection of null models as its criterion for plausibility.

Another of these issues is that true models may be rejected if

samples from too many populations are included in the analysis.

A third is that qpAdm results may be difficult to interpret and

even misleading under conditions of continuous gene flow. In or-
der to help guard against these potential pitfalls and make this
tool more accessible to users, we include an updated user guide
for qpAdm (Supplementary Material S1) where we make specific
recommendations for best practices for use.

Methods and results
Data generation
We used msprime version 0.7.1 (Kelleher et al. 2016) to simulate
genome-wide data using the TreeSequence.variants() method,
which provides information about the position of all mutations
arising in the dataset and the alleles observed for each individual
at the variant sites. We then converted this output to
EIGENSTRAT format (Patterson et al. 2006). Parameters were cho-
sen in order to mirror what has been estimated for humans, in-
cluding a mutation rate of 1.5 � 10�8 mutations per base pair per
generation (1000 Genomes Project Consortium 2010), recombina-
tion rate of 1.0 � 10�8 per base pair per generation, and effective
population sizes between 2.5 � 104 and 8.0 � 105 (varying be-
tween populations and over time; see Supplementary Files S1–S5
for full details). We generated sequence data for 22 chromo-
somes, each of the approximate length of each of the human
autosomes. We simulated 2n haploid individuals then combined
pairs of haploid individuals to form n diploid individuals.

In order to assess the performance of qpAdm when the popu-
lation history of a group is relatively simple and fully understood,
we simulated genetic data according to a base population tree
(Figure 1), consisting of 16 populations and two admixture events
(one relatively recent and the other occurring much earlier in the
population history). For the more recent admixture event, line-
ages 14a and 14b contribute a and 1 � a proportion of ancestry to
population 14, respectively. Unless otherwise noted, a is equal to
0.5. In the earlier admixture event, lineages 15a and 15b contrib-
ute b and 1 � b proportion of ancestry to population 15, respec-
tively, where b is set (arbitrarily) to 0.55. This tree is an expanded
version of a population tree described in Patterson et al. (2012),
which was used to test the performance of the tool qpGraph. The
parameters of this model were chosen so that the overall level of
variation (total number of SNPs) and the differentiation between
populations (FST) were similar to what is observed between
known human groups, such as the Uyghur, French, and Han.
We used the same parameters, including population sizes, as
Patterson et al. (2012). All new populations added to the model

Table 1 Using a generalized likelihood-ratio test of H0: PL < P � PU

to identify plausible models for the probability of heads of a coin

Models for the
probability of heads

P-values for a generalized-likelihood
ratio test of H0: PL < P � PU against

unconstrained alternative

Number of flips 100 1,000
Number of heads 64 646
0.0� P� 0.1 <0.001 <0.001
0.1< P� 0.2 <0.001 <0.001
0.2< P� 0.3 <0.001 <0.001
0.3< P� 0.4 <0.001 <0.001
0.4< P� 0.5 0.005 <0.001
0.5< P� 0.6 0.411 0.003
0.6< P� 0.7 1.000 1.000
0.7< P� 0.8 0.198 <0.001
0.8< P� 0.9 <0.001 <0.001
0.9< P� 1.0 <0.001 <0.001

Models that produce P-values �0.05 are indicated in bold.

Box 1 Coin flipping analogy

Imagine that we wish to know which of several possible
models for the probability of heads best describes the be-
havior of a coin. The actual value is unknown and the coin
may be unfair. To illustrate how P-values are used in
qpAdm, we might specify a set of possible models, for in-
stance with probabilities of heads constrained to fall within
bins of width 0.1 (Table 1, left column). In order to deter-
mine which of these models are plausible for the coin, we
flip it multiple times and count the number of heads we ob-
serve. The probability of a particular outcome would then
be given by the binomial distribution.

By analogy with qpAdm, we could assess the plausibility
of each model using a generalized likelihood ratio test of
each constrained model against the unconstrained alterna-
tive (0� P� 1). The models we are interested in are the null
models in these tests, and we consider them as plausible if
they are not rejected. Thus, qpAdm identifies a set of plausi-
ble models using what would be called Type II error in a
standard statistical test.

For example, if we flip the coin 100 times and it comes up
heads 64 times, then using a P-value threshold of 0.05 we
can eliminate seven of the ten models for the probability of
heads of the coin (middle column Table 1). Three models re-
main plausible. By increasing the number of flips to 1000,
and assuming we observe 646 heads, we rule out two more
model, corresponding to bins (0.5,0.6] and (0.7,0.8]. This
leaves only the model 0.6< P� 0.7 as plausible for the proba-
bility of heads of our coin.
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retain the same population sizes as the original branch from
which they split. The exact simulation parameters we used are
described in Supplementary File S1 and we report the pairwise
FST between all populations in Supplementary Table S1.

For most simulations, we generated genomic data for samples
taken from 10 (diploid) individuals from each of the 16 popula-
tions in Figure 1. The populations in Figure 1 are idealized, theo-
retical populations (see Winther et al. 2015) and are not meant to
represent any particular human groups. Likewise, the mostly
tree-like relationships of populations in Figure 1 simply reflect
the kinds of historical scenarios qpAdm was designed to handle.
We consider an example of non-tree-like structure in the section
on continuous gene flow.

Unless otherwise noted, the admixture model of interest is de-
fined as follows; population 14 is the target population (the an-
cestry of which is being modeled), populations 5 and 9 are
defined as the sources of this admixture, while populations 0, 7,
10, 12, and 13 are designated as reference populations. As none of
these reference populations are more closely related to the target
population than to either of the two source populations (i.e., the
reference populations do not have any shared drift with the tar-
get population that is not also shared with at least one of the
source populations), this model should be considered plausible.
This model will be referred to as the standard model. Note that
because populations 5 and 6 are symmetrically related to popula-
tion 14, both represent be equally good sources of its ancestry.
Unless otherwise noted, population 6 will therefore be excluded
from analyses.

All qpAdm analyses were performed using qpAdm version
960, using default parameters, and the optional parameter
“allsnps: YES” unless otherwise specified. See Supplementary
Material S1 for a complete description of all qpAdm parameters.

We confirm that the simulated individuals share the expected
genetic relationships through analysis with the population ge-
netic tools principal components analysis (PCA) (Patterson et al.
2006) and ADMIXTURE (Alexander et al. 2009) (Supplementary
Figure S1; Tables S2–S4), which reveal patterns that are consis-
tent with the defined demographic history, including that popu-
lation 14 is admixed. Notably, we cannot meaningfully

distinguish between populations 0–6 using these methods,
highlighting how closely related these populations are.

Distribution of P-values
As stated earlier, qpAdm outputs a P-value that is used to deter-
mine whether a specific model of population history can be con-
sidered plausible. Models are rejected, or regarded as
implausible, when the P-value is below the chosen significance
cut-off (typically, although arbitrarily, 0.05). In order for true
models to be rejected properly at this nominal significance level,
that is only 5% of the time, the distribution of P-values should be
uniform when the null model is equal to the true model.
However, this assumption of uniformity of P-values in qpAdm
has never been confirmed. We therefore assessed the distribution
of P-values produced by qpAdm by simulating 5000 replicates un-
der our standard model (defined in Figure 1) and running qpAdm
on each replicate using the target, source, and reference popula-
tions defined in the standard model. We find that the P-values
generated by qpAdm appear uniformly distributed (Figure 2A;
Supplementary Table S5). Using a Kolmogorov–Smirnov test, we
fail to reject the null hypothesis that the calculated P-values are
uniformly distributed (P¼ 0.644), supporting theoretical predic-
tions for the uniform distribution of P-values generated by
qpAdm when an accurate model is used.

As qpAdm is often used to distinguish between optimal and
nonoptimal models of admixture, we also seek to confirm that
the distribution of P-values is not uniform when an incorrect
model is considered. We therefore examine the distribution of
P-values produced when nonoptimal populations (i.e., popula-
tions 1–4 and 11) are used as sources instead of population 5. As
populations 1–4 share more genetic drift with reference popula-
tion 0 than the true source population (and similarly because
population 11 shares less drift with population 0 than the true
source population), we expect that the distribution of P-values
produced by qpAdm should be biased toward zero when these
populations are used as sources (with population 11 producing
the strongest bias). We ran these nonoptimal qpAdm models on
the 5000 replicate datasets described above and observe a devia-
tion from a uniform distribution. In the case of populations 1–4,
models that include source populations that share the most drift
with population 0 yield P-value distributions that are most
strongly biased toward zero (Figure 2, B–F; Supplementary Table
S5), and as expected, P-values associated with using population
11 as a source are even more strongly biased toward zero. In each
case, using a Kolmogorov–Smirnov test, we reject the null hy-
pothesis that the P-values are uniformly distributed.

Although the distributions of P-values deviate from a uniform
distribution as expected, we also note that in the cases where
populations 1–4 are used as potential source populations, a large
proportion of these models are assigned P-values that would be
considered plausible using 0.05 as a standard threshold. These
results reflect the fact that populations 1–5 are all closely related
(average pairwise FST between <0.001–0.005; Supplementary
Table S1), therefore the inclusion of population 0 as the only ref-
erence population with the power to distinguish between these
populations (as it is differentially related to them), may not be
enough to reject models that use populations 1–4 as sources in
all cases. In practice, if populations 1–5 were all proposed as po-
tential sources and qpAdm assigned plausible P-values to multi-
ple models, further analysis would be required to distinguish
between these models. Furthermore, we do note that when popu-
lation 0 is excluded from the reference population set, all of the
tested qpAdm models using populations 1–5 as a potential

Figure 1 Population history of simulated data. Populations included in
the standard model used for qpAdm models are indicated as follows:
target (red), sources (yellow), and references (blue).
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sources produce approximately uniformly distributed P-values,

as would be expected theoretically, as populations 1–5 are all
symmetrically related to all other reference populations
(Figure 2, G–K; Supplementary Table S6). We also observe consis-

tent results when using qpAdm to model the ancestry of popula-
tion 15, finding that population 15 can be modeled as the product

of admixture between populations 8 or 9 and 11, only in cases
were populations 10 and 12 are removed from the reference pop-
ulation set, as these populations violate the assumption of

qpAdm that reference and source populations must be differen-
tially related to the target population (Supplementary Figure S2;

Tables S7 and S8).
While the overall distributions of P-values differ between opti-

mal and nonoptimal qpAdm models, we note that for individual
replicates the most optimal model is not necessarily assigned the

highest P-value. We find that the P-value associated with the best
model (sources 5 and 9) produces the highest P-value in only 48%

of cases (Supplementary Table S5), when the standard reference
set is used (13, 12, 10, 7, and 0). In frequentist methods such as
qpAdm, P-values below the nominal significance level are judged

wrong enough to be rejected, but P-values do not represent prob-
abilities of models being correct. As Figure 2 shows, qpAdm is

fairly conservative in rejecting models. For example, the model
which posits populations 4 and 9 as sources may be considered
wrong because population 4 is more closely related to source

population 0 than it is to the target population 14. Still, P-values
under this model are almost uniformly distributed (Figure 2B)

and for a given data set the P-value for this model could easily be
larger than the P-value for the correct model (Figure 2A). In con-
trast, models that diverge strongly from the truth are always

rejected, as when populations 11 and 9 are used as sources
(Figure 2F). Therefore, in cases where multiple models are

assigned plausible P-values (i.e., P� 0.05), we caution that P-value
ranking (i.e., selecting the model that is assigned the highest
P-value) should not be used to identify the best model. Methods

for distinguishing between multiple models will be discussed fur-
ther in the section on comparing admixture models.

Effects of varying the block jackknife size
We also explored the effect of varying the block jackknife size,
which is used in qpAdm to compute standard errors
(Supplementary Material S2). In order to understand how depen-
dent qpAdm is on choosing an appropriate block jackknife size,
we vary the block size between 0.0001 and 1 Morgans (default is
0.05 Morgans), and for each block size we test 500 replicates of
the standard qpAdm model calculated either on the entire data-
set or after randomly down-sampling to 1 million SNPs. We find
that admixture proportion estimates are relatively consistent re-
gardless of block size (Supplementary Figure S3A; Table S9) and
that standard error estimates are lowest when the smallest block
sizes are used (Supplementary Figure S3B). However, for the
smallest and largest block sizes, we observe nonuniformly dis-
tributed P-values (Supplementary Figure S3, C–R), suggesting that
when selecting an appropriate block jackknife size for qpAdm
there is a trade-off between minimizing standard errors and cal-
culating meaningful P-values. This effect also appears to depend
upon the number of SNPs used, as biases in P-value distributions
appear stronger when the full dataset is used. These results are
consistent with theoretical expectations, as we expect that when
the block size is too small there will be correlation between SNPs
across different blocks that is uncorrected. Conversely, when the
block size is too large, the standard error of the f4 statistics used
in qpAdm calculations may be poorly estimated. Despite the ob-
servation of biased P-value distributions, qpAdm appears rela-
tively robust to the selected block jackknife size, as biases were
only observed in cases where the block size was either 50�
smaller or 20� larger than the default block jackknife size.

Accuracy of admixture proportion estimates
In addition to generating informative P-values, it is essential that
qpAdm generates accurate admixture proportion estimates. This

Figure 2 Distribution of P-values generated for various qpAdm models. The distribution of P-values generated by 5000 replicates of qpAdm is shown for
all models of the ancestry of the admixed population (14) of interest. (A) The distribution of P-values produced by models using populations 5 and 9 as
sources, which are the best possible sources of ancestry for population 14 out of the proposed models when the base reference population set (13, 12,
10, 7, and 0) is used (left). (B–F) The distribution of P-values produced by models that use increasingly inappropriate source populations, relative to the
base reference population set. In contrast, when population 0 is removed from the reference population set (right), all models are considered
equivalent, except for that in which population 11 is defined a source (G–L). Vertical black dotted lines indicate the P-value threshold of 0.05, above
which qpAdm models are considered plausible. The results of a Kolmogorov–Smirnov test to determine whether the P-values are uniformly distributed
are indicated.
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has also not been formally tested using simulated data. We
therefore simulate genetic data according to the population tree
shown in Figure 1, varying the proportion of admixture (a) occur-
ring in the lineage ancestral to population 14 between 0.0 and 1.0
at intervals of 0.1 with 20 replicates per interval. We find that the
estimated admixture proportions are extremely close to the ac-
tual simulated admixture proportions for all values of a

(Figure 3A; Supplementary Table S10). In 99.3% of cases (220 to-
tal), the estimated a is within 3 standard errors of the simulated
a, consistent with theoretical expectations, with an average stan-
dard error of 0.0092 (range: 0.008–0.011). These results indicate
that qpAdm accurately estimates admixture proportions, regard-
less of the level of admixture, and that the standard errors pro-
duced by qpAdm are well calibrated. However, we recognize that
in practice, users of qpAdm have access to a much less complete
dataset. Therefore, we modify the data in order to explore the
performance of qpAdm when applied to data of lower coverage
and quality.

Each simulation contains an average of �30 million SNPs. In
order to understand the performance of qpAdm with less data,
we randomly down-sample the complete dataset to produce
analysis datasets of 1 million, 100,000, and 10,000 sites. In all
cases, the average admixture proportion estimate generated is
extremely close to the simulated a, although we do observe an in-
crease in variance in the individual estimates as the amount of
data analyzed decreases (Figure 3A; Supplementary Table S10).
Similarly, we do not observe biases in admixture proportions
when using nonrandom ascertainment schemes to select sites
for analysis (Figure 3B; Supplementary Table S11). The impact of
nonrandom ascertainment schemes on qpAdm analyses are de-
scribed in more detail in a later section. In order to increase com-
putational efficiency and to better approximate typical analysis
datasets, all subsequent analyses are performed on the data that
has been randomly down-sampled to 1 million sites, unless oth-
erwise specified.

We find that qpAdm is robust to missing data, where data
from randomly selected sites in each individual is considered
missing with rate 10%, 25%, 50%, 75%, or 90% (Figure 3C;
Supplementary Table S12), resulting in a dataset where each indi-
vidual has genetic data available for a different subset of SNPs
(as opposed to the previous down-sampling test where all individ-
uals shared a common set of SNPs of varying sizes). Additionally,
we find that pseudohaploidy—a common feature of ancient
DNA, where due to low sequencing coverage, a haploid genotype
is determined by randomly selecting one allele at each diploid
site and assigning that to be the genotype—has little impact on
admixture estimates (Figure 3D; Supplementary Table S13).

Ancient DNA is also subject to deamination, resulting in C-to-
T or G-to-A substitutions appearing in transition sites (Dabney
et al. 2013). In the 1.2 million SNP sites that are commonly tar-
geted in ancient DNA analysis, approximately 77.6% of these sites
are transitions (Fu et al. 2015; Haak et al. 2015; Mathieson et al.
2015). We therefore randomly defined 77.6% of simulated sites to
function as transitions. For each of these transition sites, in each
individual, if the allele at that position is of the reference type, it
was changed to the alternative type with 5% probability (repre-
senting an extreme degree of damage), mimicking the unidirec-
tional change in allelic state caused by ancient DNA damage. We
find that admixture proportion estimates produced by qpAdm
are relatively robust to the presence of ancient DNA damage in
cases where all populations exhibit an equal damage rate
(Figure 3E; Supplementary Table S14). However, in cases where
the target (population 14) and source (5þ 9) populations have a

different rate of ancient damage the estimated admixture pro-
portions are biased. This bias reflects attraction between popula-
tions on the left and right sides of the f4 statistics calculated by
qpAdm and is not unexpected, as ancient DNA damage occurring
in only a subset of populations would cause allele frequencies in
these populations to appear more correlated than would be
expected based on their phylogenetic relationship alone due to
the unidirectional shift from cytosine to thymine (or guanine to
adenine) nucleotides at transition sites.

Another concern that is common among ancient DNA analy-
ses is small sample size. We therefore explore the effect of re-
ducing the sample size of various populations in the analysis
from 10 individuals down to a single individual. We find that ad-
mixture estimates are relatively robust to this reduced sample
size regardless of whether the target (14), source (5, 9, or 5þ 9),
or reference (0 or 0þ 7 þ 10) population set has only a single in-
dividual sampled (Figure 3F; Supplementary Table S15).
Reducing the target sample size to a single individual appears to
have the greatest effect out of all cases where only the sample
size of a single population was reduced, maximally increasing
the variance in estimates of alpha. Furthermore, we see that
when only a single individual is sampled from every population,
the admixture proportion estimates vary the most between rep-
licates, however, the mean of these estimates fall close to the
true a, suggesting that small sample size does not result in an
upward or downward bias in the admixture proportion esti-
mates produced by qpAdm.

In order to confirm that these results are also consistent when
applied to nonsimulated data, we repeat these analyses on real
population genetic data. We therefore model the ancestry of the
Uyghur population as the product of admixture between popula-
tions related to the French and Han, with Adygei and Yoruba
used as references populations (as defined in Patterson et al.
[2012]), adding the Onge as an additional reference population in
order to meet the requirement that there are at least as many ref-
erence populations as target and source populations. In this
analysis, we replicate previous findings that the Uyghur can be
modeled as �47% French and �53% Han. Furthermore, when we
model the reduction in data quality as described for the simu-
lated data, we find that the admixture proportion estimates are
similarly robust to this reduction in data quality. While only a
single replicate was performed for each condition, we note that
the size of the standard errors assigned by qpAdm mirror the
amount variance observed in admixture proportion estimates in
the simulated analyses (Supplementary Figure S5; Table S16).

Comparing admixture models
One of the major applications of qpAdm is to identify an optimal
admixture model out of a variety of proposed possible models,
many of which may be deemed plausible by qpAdm. However, no
formal recommendations have been made about what strategy to
use when comparing models. We therefore explore two commonly
employed approaches for comparing admixture models in order to
make recommendations for best practices in qpAdm usage.

One of the most typical implementations of qpAdm involves
the selection of a set of differentially related populations to serve
as the base set of reference populations. This base set of refer-
ence populations is often chosen to represent key positions in the
known population history [i.e., the ‘O9’ reference set defined in
Lazaridis et al. (2016)]. A nonoverlapping set of source populations
is then defined, and qpAdm models involving different combina-
tions of source populations and the base set of reference popula-
tions are tested. Using this method, multiple models may meet

6 | GENETICS, 2021, Vol. 0, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyaa045/6070149 by  eadaoinharney@

gm
ail.com

 on 19 February 2021



the criteria to be considered plausible, and the most optimal
model is identified by adding additional reference populations to
the base set of references, which are selected for their differential
relatedness to one or more of the source populations in the set of
potentially plausible qpAdm models.

While this strategy is relatively straightforward and widely
implemented (e.g., Lazaridis et al. 2016; Harney et al. 2018), it has
several drawbacks. In particular, because a population cannot si-
multaneously serve as a source and reference population, this
strategy either requires that populations that are placed in the

Figure 3 Accuracy of admixture proportion estimates. Box and whisker plots showing the estimated values of admixture proportion (alpha) generated
by qpAdm for varying simulated alphas. Only alpha 0.5 is shown for panels B–F, however all alphas 0–1 are reported in Supplementary Figure S4. For
each simulated alpha, 20 replicates of qpAdm are performed for each condition. (A) Estimates produced by qpAdm when run on the entire dataset and
after randomly down-sampling to 1 million, 100 thousand, and 10 thousand SNPs. All subsequent analyses are performed on the 1 million SNP down-
sampled dataset unless otherwise specified. (B) Estimates produced by qpAdm when data is ascertained on population 14, 5, 10, or 13. (C) Estimates
produced by qpAdm where some proportion (0%, 10%, 25%, 50%, 75%, or 90%) of data is missing in each individual. (D) Estimates produced by qpAdm
in both diploid and pseudohaploid form. (E) Estimates produced by qpAdm where 5% ancient DNA damage is simulated in a subset of populations
(target, target þ sources, target þ references, sources þ references, references only, and all populations). (F) Estimates produced by qpAdm, where only
a single individual is sampled from varying populations [target, a single source (5 or 9), both sources (5þ 9), a single reference (0), multiple references
(0þ7þ 10), and all populations].
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base set of reference populations are not considered as potential
source populations (meaning it is possible that the best source
population would be entirely missed if it were selected to serve in
the reference population set) or that potential source populations
be selectively removed from the reference population set so that
they can be used as source populations for some models. This
strategy results in the creation of some models that are not
equivalent, and therefore are difficult to compare.

An alternative to the “base” reference set strategy that has
been implemented in order to avoid these problems is to create a
set of “rotating” models in which a single set of populations is se-
lected for analysis (e.g., Skoglund et al. 2017; Harney et al. 2019).
From this single set of populations, a defined number of source
populations are selected, and all other populations then serve in
the reference population set for the model. Under this “rotating”
scheme, populations are systematically moved from the set of
reference populations to the set of sources. Thus, all population
models are generated using a common set of principles and are
therefore more easily directly compared. In order to compare the
performance of these two strategies (“base” vs “rotating”), we
again focus on the population history of population 14 (Figure 1).

For the “base” reference approach, we continue to use the base
set of reference populations as previously defined (populations 0, 7,
10, 12, and 13), all other populations are considered to be potential
source populations. We used qpAdm to test all possible combina-
tions of two source populations. We ran each of these qpAdm mod-
els on the data generated using the standard population history
with a¼ 0.50, with 20 replicates. Among these 20 replicates, qpAdm
identified the optimal model, in which populations 5 and 9 serve as
source populations, as plausible in 19 cases (Figure 4A, upper trian-
gle; Supplementary Table S17). However, there are also a large
number of other population models that are consistently deemed
plausible; for example when population 8 is used as a source (in
conjunction with population 5) instead of population 9, 90% of the

models are deemed plausible. The high rate of acceptance of this
model is fully consistent with expectations, because while popula-
tion 9 is more closely related to the true source population, popula-
tions 8 and 9 are symmetrically related to all of the reference
populations included in the model, and therefore are indistinguish-
able using this approach (unless data from a population that differ-
entially related to these two populations could be added to the
model). Models that include populations 1–4 (in combination with
populations 8 or 9) were also frequently identified as plausible.
These results suggest that the inclusion of population 0 as a refer-
ence does not provide enough information to differentiate between
these potential source populations and the true optimal source
(population 5). Therefore, the next step in a qpAdm analysis that
utilizes the base model approach would be to add additional refer-
ence populations that are differentially related to populations 1–5
in order to help differentiate between the remaining possible
models.

In contrast, we find that under a “rotating” model, where all
populations (except for population 6 because it is phylogeneti-
cally a clade with source 5) were selected to serve as either a
source or a reference population, all models that included popu-
lations 5 and 9 as sources were identified as plausible. In contrast
all other population models were rejected (Figure 4A, lower trian-
gle; Supplementary Table S18). The inclusion of the optimal
source populations (5 and 9) as references in all other models
enables qpAdm to differentiate between models that would oth-
erwise be indistinguishable (such as differentiating between pop-
ulations 8 and 9 and between populations 1 and 5). Furthermore,
in cases where optimal source populations are not available (i.e.,
if both populations 5 and 6 are excluded from the model), qpAdm
still identifies closely related models as plausible (such as those
involving admixture between population 9 and populations 0–4),
suggesting that this rotating approach is not overly stringent in
cases where optimal sources are not available (Figure 4B;

Figure 4 Comparing qpAdm models using various approaches. A heatmap showing the proportion of replicates in which the two-way admixture model
generated using each combination of possible source populations is deemed plausible (i.e., yielded a P-value > 0.05 and admixture proportion estimates
between 0 and 1) by qpAdm. (A) The upper triangle (red) shows results generated using the base set of reference populations (0, 7, 10, 12, and 13), while
the lower (blue) triangle shows results generated using the rotating model approach. The proportion of replicates deemed plausible is indicated by the
color (darker shades indicate a higher proportion) and is written inside each square of the heatmap. The optimal admixture model for in each case is
outlined in red. Only results for combinations of sources that were possible using both approaches are shown. (B) The results generated when
population 5 (an optimal source) is excluded from all models.
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Supplementary Table S19). Due to the relative simplicity of the
rotating model approach and the increased ability to identify the
optimal admixture model when using it, we recommend utilizing
a rotating strategy when possible.

Ascertainment bias and “rotating” model selection
In order to understand the impact of ascertainment bias on
model selection, we repeated this analysis on data that was
ascertained from the full dataset using several nonrandom ascer-
tainment strategies, in which we ascertained on (i.e., restricted
to) sites that were found to be heterozygous in a single individual
from (1) the target (population 14), (2) a source (population 5),
and (3) two populations that are uninvolved in the admixture
event (population 10 and 13), mirroring the ascertainment
scheme used to generate the Human Origins dataset (Patterson
et al. 2012). The individual used for data ascertainment was ex-
cluded from subsequent analyses. In all cases, using the rotating
approach previously described, only models that use populations
5 and 9 as sources are deemed plausible (Supplementary Figure
S6; Table S20), suggesting that ascertainment bias is unlikely to
cause users to identify inappropriate models as plausible.
Furthermore, the optimal model was identified as plausible in at
least 90% of replicates using all ascertainment strategies, sug-
gesting that qpAdm is robust to ascertainment bias. These results
are consistent with previous findings that f4 statistics, which are
used for all qpAdm calculations, are robust to biased ascertain-
ment processes (Patterson et al. 2012).

Missing data and the “allsnps” option of qpAdm
We also explored the effect of qpAdm’s “allsnps” option when
working with samples with a large amount of missing data. If the
default “allsnps: NO” option is selected, qpAdm only analyzes sites
that are shared between all target, source, and reference popula-
tions that are included in the model. In contrast, if “allsnps: YES” is
selected, every individual f4 statistic is calculated using the inter-
section of SNPs that have available data for the four populations
that are involved in that particular calculation, therefore every f4
statistic is calculated using a unique set of sites. The “allsnps: YES”
parameter is commonly used in cases where one or more popula-
tions in the analysis dataset has a high rate of missing data, in or-
der to increase the number of sites analyzed. However, this causes
the underlying calculations performed by qpAdm to deviate from
those on which the theory is based, and the effect of this change in
calculations on admixture proportions estimated by qpAdm and
on optimal model identification is not well studied.

We explore the effects of this parameter, using simulated data
with admixture proportion a¼ 0.50 and rates of missing data
equal to either 25%, 80%, 85%, or 90% for all individuals across 1
million randomly chosen SNP sites. We implemented the rotating
model for both the “allsnps: YES” and “allsnps: NO” options (all
previous analyses used the “allsnps: YES” option). Comparing all
possible models using the rotating approach, we find that the
results produced when using the “allsnps: YES” and “allsnps: NO”
options are similar when the rate of missing data is low (i.e., 25%)
(Figure 5A; Supplementary Table S21). The optimal model
(with sources 5 and 9) was identified as plausible in 95% of cases
and no other models were deemed plausible for both options.
Furthermore, the admixture proportion estimates produced in
both cases are relatively similar, with average standard errors of
0.006 in both cases. The similar performance of the “allsnps: YES”
and “allsnps: NO” options in this case is likely due to the rela-
tively large sample size (10 individuals per population) used in
the analysis. With 25% missing data, the expected number of

SNPs to be included the analysis when the “allsnps: YES” option
is selected is 1 million. This number is only slightly reduced, to
999,985.7, when the “allsnps: NO” option is selected.

In contrast, when the rate of missing data is elevated (i.e., 80%,
85%, or 90%), a difference in performance between the “allsnps:
YES” and “allsnps: NO” options was observed. In each case, when
the rate of missing data increased, the number of nonoptimal
models that were identified as plausible also increased (Figure 5,
B–D). These changes were more dramatic when the “allsnps: NO”
parameter was used, further we observe a greater increase in the
standard errors associated with admixture proportion estimates
produced when using the “allsnps: NO” option, with average stan-
dard errors equal to 0.025, 0.066, and 9.994 when analyzing data
with 80%, 85%, and 90% missing data, respectively. In contrast,
while the standard errors produced using the “allsnps: YES” op-
tion also increased, the increase was lower in magnitude in all
cases, with standard errors of 0.015, 0.020, and 0.035 observed, re-
spectively. This difference in performance is likely the result of
the number of SNPs available for analysis when using each op-
tion. When using the “allsnps: YES” parameter, the expected
number of SNPs used in analysis of data with 80%, 85%, and 90%
missing data rates remains 1 million. However, when using the
“allsnps: NO” parameter, the expected number of SNPs used in
analysis with each rate of missing data is only 181,987.5, 37,303.7,
and 1,610.4 SNPs, respectively. These results suggest that the in-
creased data provided by using the “allsnps: YES” option
improves the ability of qpAdm to distinguish between models,
without creating biases in cases where missing data is distributed
randomly throughout the genome of all individuals.

The effects of ancient DNA damage on model selection
In an earlier section, we show that admixture proportion estimates
produced by qpAdm can be biased when produced using popula-
tions with differential rates of ancient DNA damage. We therefore
explored the effects of damage on model comparison, using the ro-
tating model approach. Across all cases, only models involving the
optimal sources (populations 5 and 9) are deemed plausible, sug-
gesting that ancient DNA damage, even when unevenly distrib-
uted, is unlikely to cause a user to identify a nonoptimal model as
plausible (Supplementary Figure S7; Table S22). Furthermore,
when damage rates are consistent between the target and optimal
source populations, the optimal model is identified as plausible in
at least 95% of cases. However, when the target and source popula-
tions have differential rates of damage, this optimal model is al-
most always deemed implausible. We do note that the ancient
DNA damage simulated in this analysis (5% ancient DNA damage
rate at all “transition” sites) is relatively high, as most ancient DNA
damage occurs at the terminal ends of DNA molecules. Therefore,
these results likely represent an extreme case. However, these
results highlight the importance of considering the effect of ancient
DNA damage in ancient DNA analyses. In particular, we caution
against designs where both ancient and present-day populations
are included in a single qpAdm model.

The effects of sample size on model selection
We also considered the impact of limited sample size when com-
paring models, using a rotating model approach. Using the same
data shown in Figure 3E, where the sample size of the specified
population(s) was reduced from 10 to 1. In cases where the popu-
lation(s) with reduced sample size were not involved in the ad-
mixture event of interest the effect of sample size reduction is
minimal (Supplementary Figure S8; Table S23). Similarly, the
results do not appear to be significantly affected when the
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sample size of population 9 (one of the optimal source popula-
tions) is reduced, suggesting that when the optimal source popu-
lation is relatively differentiated from all other populations
considered, reduced sample size has little effect. However, when
the sample size of source population 5 is reduced to one, models
using closely related populations as sources were also deemed
plausible. Similarly, when the target population (14) contained
only a single sampled individual, the proportion of nonoptimal
models that were identified as plausible by qpAdm increased.
These results suggest that when the sample size is lower, particu-
larly for target or source populations, qpAdm has less power to
reject nonoptimal models. This is likely to become an even
greater issue in cases where populations included in qpAdm
models contain only a single individual with large amounts of
missing data. To demonstrate this, we repeat all model

comparison analyses, sampling only a single individual from
each population and report these results in Supplementary
Figures S9–S12 (Supplementary Tables S24–S27).

Modeling unadmixed populations using qpAdm
Finally, while we know that the population history of population
14 involves admixture, the number of ancestral sources that con-
tributed ancestry to a real target population is typically un-
known. Therefore, we explored the behavior of qpAdm when
modeling the population history of unadmixed and admixed pop-
ulations (populations 6 and 14, respectively) under various sce-
narios. First, we explored models in which only a single source
population contributed ancestry to the target population, using
the same rotating model approach as described previously, but
only selecting a single source population for each model. In the

Figure 5 Effect of the allsnps parameter on qpAdm model selection. Heatmaps showing the proportion of replicates in which the two-way admixture
model generated using each combination of possible source populations is deemed plausible by qpAdm (i.e. yielded a P-value > 0.05 and admixture
proportion estimates between 0 and 1) on SNP data using the “allsnps: yes” (blue; lower right triangle) and “allsnps: no” parameters (red; upper left
triangle), on data with (A) 25% (B) 80% (C) 85%, or (D) 90% missing data. The proportion of replicates deemed plausible is indicated by the color (darker
shades indicate a higher proportion) and is written inside each square of the heatmap. The optimal admixture model for each of the approaches are
highlighted in red.
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case of the unadmixed population 6, we find that in 95% of cases,
it can be modeled as forming a genetic clade with population 5,
consistent with theoretical expectations (Supplementary Table
S28). In contrast, population 14 is never found to form a genetic
clade with any of the tested source populations (Supplementary
Table S29), again consistent with expectations. However, when
population 6 is modeled as the product of admixture between 2
source populations, we find that it is frequently modeled as the
product of a two-way admixture between population 5 and any
other source population, where population 5 is estimated to con-
tribute the vast majority of ancestry to population 6
(Supplementary Table S30). We therefore stress the importance
of testing all possible models with the lowest rank (i.e., number of
source populations) using qpAdm (or the related qpWave) before
proceeding to test models with higher rank.

Impact of combined data quality reduction
While any observed bias produced by the factors considered here
is minimal, we caution that the increase in variance caused by
each form of reduced data quality is additive. Therefore, models
relying on data with high rates of missingness, damage, and
small sample sizes should be interpreted with particular caution.
We demonstrate this by testing 12 combined models, in which we
simulated data with alpha equal to 0.1, 0.5, and 0.9. For each
dataset, we simulated a 5% damage rate in either the target pop-
ulation (14) or in all populations, made pseudohaploid genotype
calls, and then down-sampled each individual to produce either
25% or 75% missingness rates, and then restricted each popula-
tion sample size to either 1, 2, or 10 individuals, using the previ-
ously described methods for data quality reduction (Figure 6;
Supplementary Table S31). As data quality is reduced across mul-
tiple factors, we observe an increase in variance in estimated al-
pha and a greater proportion of implausible models, where the
estimated alpha falls outside the range of 0–1.

Additionally, we find that qpAdm is generally robust to mod-
erate rates of data quality reduction across multiple factors, how-
ever in cases where the rate of missing data is high (75%) and
sample size for all populations is low (1 or 2 individuals per popu-
lation), qpAdm cannot distinguish between optimal and nonopti-
mal models (Figure 7; Supplementary Table S32). Notably, while

differences in damage rates between populations has a large af-

fect when the sample size is large and missing data rate is low,

this appears to be less of a problem when data quality is other-

wise low, suggesting that differential ancient DNA damage rates

only affect model comparison when data quality is otherwise ex-

tremely high (although the bias in admixture proportion esti-

mates is still apparent when data quality is reduced).

Challenging scenarios
While we find that qpAdm behaves as expected under standard

conditions, we are also interested in identifying scenarios under

which qpAdm might behave in unanticipated and undesirable

ways. We therefore explore the performance of qpAdm under

three challenging scenarios: when there is gene flow between

source and reference populations that occurs after the admixture

event of interest, when the number of reference populations is

very large and when the relatedness of populations is not tree-

like but rather reflects ongoing genetic exchange.

Gene flow from reference populations
One of the underlying assumptions of qpAdm is that no gene

flow occurs between source and references populations following

the split of the source population from the true lineage that par-

ticipated in the admixture event (or population split) of interest.

However, in practice this may be a difficult requirement for users

to satisfy in cases where the population history is not well under-

stood. The impact of violating this assumption on qpAdm results

has not be formally studied. We therefore explored this scenario

by adding gene flow events from a reference population 10 to

source population 9 occurring either before (generation 350) or af-

ter (generation 200) the split of population 9 from the true admix-

ing source lineage at generation 280. In both cases, we simulate

the main admixture event with varying rates of alpha (a¼ 0, 0.05,

and 0.50) and the additional gene flow event at varying rates,

gamma (c¼ 0.01, 0.05, 0.10, and 0.25) (see Supplementary Files

S2a–b for exact simulation parameters). For each scenario, we

model the ancestry of population 14 using qpAdm with the stan-

dard set of source (5 and 9) and reference (0, 7, 10, 12, and 13) pop-

ulations.

Figure 6 Combined impact of multiple factors of data quality reduction on admixture proportion estimates. Box and whisker plots showing the
estimated values of admixture proportion (alpha) generated by qpAdm for varying simulated alphas when applied to data with either 25% (top) or 75%
(bottom) missing data, with population sample sizes of either 10 (left), 2 (middle) or 1 (right), and 5% ancient DNA damage in either all populations or
just in the target population (14). In each case, 20 replicates were simulated, but only models that produced admixture proportion estimates 0–1 are
plotted. The total number of replicates included for each category is written above each box and whisker plot.

E. Harney et al. | 11

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyaa045/6070149 by  eadaoinharney@

gm
ail.com

 on 19 February 2021



Consistent with theoretical expectations, in all cases, when
the gene flow event occurs at generation 350 (i.e., before the
split between population 9 and the lineage involved in the ad-
mixture event of interest), no bias is observed between the sim-
ulated and estimated admixture proportions. In contrast, we
observe a strong upward bias in alpha when this gene flow
event occurs at generation 250 and the magnitude of this bias is
correlated with the migration rate (Figure 8B; Supplementary
Table S33).

As population 10 is involved in the gene flow of interest and
serves as a reference population, we also considered the impact
of excluding this population from the qpAdm model (Figure 8C).
We observe a similar upward bias in alpha estimates, but the
magnitude of this bias is reduced, indicating that any gene flow
into a source population that occurs after the split with the line-
age involved in the admixture event of interest causes bias, but
that this bias is substantially stronger in cases where this gene
flow comes from a reference population.

We also explored the impact of gene flow between reference
populations (from 10 to 7) or from a source into a reference popu-
lation (from 9 to 10) and did not observe any bias in admixture pro-
portion estimates (Supplementary Figure S13; Table S33). These
results indicate that when selecting populations to include in
qpAdm models, users should avoid including source populations
that may have experienced gene flow that is more recent than the
admixture event of interest. In cases where this is unavoidable,
users should make particular effort to avoid including reference
populations that may have acted as sources of this gene flow and
exercise particular caution when interpreting qpAdm results.

Number of reference populations
We were interested in understanding the effect of assigning an
extremely large number of populations to the reference popula-
tion set. While a commonly employed method for distinguishing
between optimal and nonoptimal admixture models and reduc-
ing the standard errors associated with a admixture proportion
estimates is to increase the number of reference populations in-
cluded in qpAdm models (e.g., Lazaridis et al. 2016; Harney et al.
2018), the effect of including too many reference populations in a
model is unknown. As qpAdm generates f4 statistics involving
combinations of reference populations, the larger the number of
reference populations is, the more poorly estimated the covari-
ance matrix of these f4 statistics is predicted to be. Therefore,
existing guidelines for qpAdm usage recommend against assign-
ing too many populations to the reference set, as the computed
P-values are thought to be unreliable. However, how many refer-
ence populations is “too many” and what the effect of exceeding
this number would be on the calculated P-values is unknown.

We therefore simulated a dataset with a large number of pop-
ulations by adding two additional population branching events,
occurring 50 generations apart, to all locations on the standard
population tree that are marked with a star in Figure 9A, result-
ing in a total of 118 populations in the simulated dataset (see
Supplementary File S3 for exact simulation parameters). After
down-sampling the simulated data to 1 million sites, we then ran
qpAdm, with population 14 as the target, and populations 5 and 9
as sources. Populations 0, 7, 10, 12, and 13 were again assigned to
serve as reference populations. All other populations (excluding
population 6) were added, one at a time in random order to the

Figure 7 Combined impact of multiple factors of data quality reduction on qpAdm model selection. Heatmaps showing the proportion of replicates in
which the two-way admixture model generated using each combination of possible source populations is deemed plausible by qpAdm (i.e., yielded a P-
value > 0.05 and admixture proportion estimates between 0 and 1) on SNP data using the “allsnps: yes” (blue; lower right triangle) and “allsnps: no”
parameters (red; upper left triangle), on data with (A) 25%, (B) 80%, (C) 85%, or (D) 90% missing data. The proportion of replicates deemed plausible is
indicated by the color (darker shades indicate a higher proportion) and is written inside each square of the heatmap. The optimal admixture model for
each of the approaches are highlighted in red.
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reference population set, resulting in qpAdm models with be-
tween 5 and 114 reference populations. As each new reference
population was added to the model, we re-ran qpAdm and
recorded the P-value.

Figure 9B shows the change in estimated P-value as reference
populations are added to the model for 10 separate replicates
(Supplementary Table S34). While the P-values calculated for
each replicate using the original set of 5 reference populations
appear to fall randomly between 0 and 1 (consistent with the uni-
form distribution of P-values observed in earlier analyses), we
find that in all cases, as the number of reference populations
increases the P-values eventually fall below the threshold of 0.05,
resulting in all of the models with the maximum number of refer-
ence populations to be rejected. These results indicate that the
inclusion of too many reference populations is likely to result in
the rejection of qpAdm models, even in cases where the optimal
source populations have been specified.

The maximum number of reference populations that can be in-
cluded in a qpAdm model before this effect is observed is likely to
depend on the specific population history and the total amount of
data included in the analysis. In these simulations, we find that
qpAdm begins to reject models that would otherwise be deemed
plausible when as few as 30 additional populations are added to
the outgroup set. These results support previous warnings against
including too many reference populations in qpAdm models.

Continuous gene flow
An underlying assumption of qpAdm is that population admixture
occurs in a single pulse over a small interval of time, during which
the proportion of ancestry coming from each of the ancestral source
populations can be estimated. However, real population histories
often involve continuous gene flow that occurs over a prolonged

period of time. In this case, although the resulting population may
have received ancestry from multiple sources, estimates of admix-
ture proportions from these sources may not be meaningful.

Continuous gene flow following an initial pulse admixture
event

We first explore the effect of adding continuous migration to the
standard population history described in Figure 1. In order to do
this, we move the main admixture event to immediately after the
split between population 5 and the lineage that directly contrib-
uted to the admixture event that produced population 14, at gen-
eration 240 (Figure 10A). Following this initial admixture event,
continuous gene flow occurs from populations 5 and 9 into popu-
lation 14 at varying migration rates (m¼ 0.0, 0.00001, 0.0001,
0.001, and 0.01) (see Supplementary file S4 for exact simulation
parameters). We generate simulated data for two alphas (a¼ 0.0
and 0.50) and model the ancestry of population 14 as the result of
admixture between source populations 5 and 9 using qpAdm
with the rotating reference population approach.

We find that in the case of simulated alpha¼ 0.5, the esti-
mated alpha appears unbiased in all scenarios. However, in the
case of simulated alpha¼ 0.0, as the continuous migration rate
increases, the estimated alpha approaches 0.50, reflective of the
symmetric migration from populations 5 and 9 into population
14 (Figure 10B; Supplementary Table S35). These results highlight
the fact that qpAdm does not explicitly differentiate between
pulse admixture events and continuous migration, therefore
users should consider both scenarios when interpreting results.

Stepping-stone model

We further extended our exploration of the impact of continuous
gene flow by considering data simulated using a stepping-stone

Figure 8 Gene flow from reference populations. (A) Population history where gene flow has been added between reference and source populations to
the standard tree. The target, source, and reference populations underlined in red, yellow, and blue, respectively. Arrows represent one of the possible
gene flow events that has been simulated, from reference population 10 into source population 9 at generation 200 or 350. (B–C) Admixture proportions
estimates generated by a qpAdm model with population 14 as the target, and populations 5 and 9 as sources, applied to the simulated data described in
panel A with varying alpha (a¼ 0, 0.05, or 0.50). In each case, gene flow from population 10 to population 9 occurs at rate gamma (c¼0.01, 0.05, 0.1, or
0.50). The standard set of reference populations (13, 12, 10, 7, and 0) are included in qpAdm models, while in panel (C) population 10 was excluded from
the reference set. Error bars indicate 1 standard error.
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model of migration, in which neighboring populations exchange
migrants each generation with rate m (Kimura and Weiss 1964).
We simulated a population history based on this migration model
(Figure 11A), where six populations (each with an effective popula-
tion size of 5,000) split from a common ancestral population 1000
generations previously, after which point migration occurred be-
tween neighboring populations. The model also includes three ad-
ditional populations that are symmetrically related to these six
populations, with all nine lineages splitting from a common ances-
tral population 2000 generations in the past (see Supplementary
File S5 for exact simulation parameters).

While under this model, populations 1 and 3 have each con-
tributed ancestry to population 2, it would be inaccurate to say
that population 2 is the product of admixture between these two
populations. The duration of exchange of ancestry is much lon-
ger than what is supposed in qpAdm. In addition, population 2
was formed in the same population-splitting event that formed
populations 1 and 3, not as the result of admixture between dis-
tinct populations 1 and 3. Finally, by symmetry population 2 is
just as much the source of populations 1 and 3 as either of these
is the source of population 2.

Preliminary analyses of the relationships between these nine
populations using pairwise FST (Patterson et al. 2006) would

indicate that population 2 is closely related to both populations 1
and 3 (Figure 11B; Supplementary Table 36). Furthermore, if pop-
ulations 0–5 are plotted using PCA (Figure 11C; Supplementary
Table S37) (Patterson et al. 2006), population 2 appears to fall on a
genetic cline between these two populations. These results could
be interpreted as suggestions that population 2 is the product of
admixture between populations 1 and 3. While it might be possi-
ble using other f-statistics to determine that the relationship be-
tween these populations is not well described by a pulse
admixture event (Lipson 2020), there is nothing to prevent a user
from attempting to model this relationship as the product of ad-
mixture using qpAdm. We therefore explore the effects of
attempting to model the ancestry of population 2 (the target pop-
ulation) as the product of admixture between populations 1 and
3 (the source populations), with populations 0, 4, 6, 7, and 8 clas-
sified as reference populations.

We first consider the case of a very high migration rate
(m¼ 0.01; equivalent to 100 migrants moving from one population
to the neighboring population per generation). Out of 20 replicates,
qpAdm identifies the proposed model as plausible in 90% of cases,
suggesting that qpAdm cannot always distinguish between popu-
lation histories that involve continuous migration and those in-
volving pulses of admixture. Furthermore, qpAdm assigns
admixture proportions of approximately 50% to each source popu-
lation, which is sensible because each population does contribute
roughly equal amounts of ancestry to the target population
(Figure 11, D and E; Supplementary Table S38). When we consider
lower migration rates (m¼ 0.001 and m¼ 0.0001), we observe simi-
lar admixture proportion estimates, but all of the P-values fall well
below the 0.05 threshold, suggesting that with lower rates of mi-
gration, qpAdm will reject admixture as a plausible model when
the actual history involves continuous migration.

These results suggest that users should be sure to consider al-
ternative demographic models to pulse admixture, even in cases
when qpAdm produces admixture proportion estimates and
P-values that appear plausible. These continuous migration sce-
narios are likely not the only cases in which qpAdm identifies
plausible admixture models for populations that were not formed
via admixture (or entirely via admixture), therefore, we caution
that users should use additional tools, in conjunction with or
prior to qpAdm analysis, to determine whether admixture is a
likely demographic scenario.

This stepping-stone model can also be used to highlight an in-
teresting feature of qpAdm, which is that admixture proportion
estimates that fall outside the bounds of 0–1 may also be informa-
tive about the history of the population being modeled. It has previ-
ously been suggested that in cases where the estimated admixture
proportion exceeds 1, this is indicative of the target population fall-
ing in a more extreme position along a genetic cline than either of
the modeled source populations (Lazaridis et al. 2017). We confirm
this to be true by attempting to model population 1 as the product
of admixture between source populations 2 and 3 (Supplementary
Figure S14). In this model, an estimated alpha of 1 would indicate
that population 1 could be modeled as deriving 100% of its ancestry
from population 2. Instead, we observe that all of the estimates of
alpha all fall outside the bounds of 0–1, instead centering around 2,
supportive of population 1’s more extreme position along the ge-
netic cline that also includes populations 2 and 3.

Data availability
The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, figures,

Figure 9 Inclusion of a large number of reference populations. (A)
Population history of simulated data with additional populations added
to tree. In all positions in the population history marked by a star, a
population branching event occurs, forming an additional population.
This new lineage undergoes an additional population branching event 50
generations later, resulting in two new populations created at each
location marked with a star. Colors indicate the populations used in the
base model, with the target in red, sources in yellow, and initial
references shown in blue. (B) The change in P-values assigned to each
model by qpAdm as additional reference populations are randomly
added to the model. Each line tracks the P-values assigned to a single
replicate [colors indicate initial P-value, ordered from highest (dark
brown) to lowest (dark purple)], as the number of additional reference
populations added to the base set of reference populations increases
from 0 to 108.
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Figure 11 Continuous migration models. (A) Population history involving continuous migration. The target, source, and reference populations
underlined in red, yellow, and blue, respectively. (B) A heatmap showing average pairwise FST between each population for 20 replicates (C) A PCA plot
showing the relationship between all populations, calculated using a single replicate (D) Admixture proportions assigned by qpAdm for a model with
population 2 as the target, and populations 1 and 3 as sources at varying migration rates. (E) Histograms showing the frequency of P-values produced
by this qpAdm model at varying migration rates.

Figure 10 Continuous gene flow following an initial pulse admixture event. (A) Population history where the standard tree has been modified so that
the initial admixture event occurs at generation 240, followed by continuous gene flow from populations 5 and 9 into population 14. (B) Admixture
proportions estimates generated by a qpAdm model with population 14 as the target, and populations 5 and 9 as sources, with populations 13, 12, 10 7
and 0 as references when applied to the simulated data described in panel (A) with varying alpha (a¼0 and 0.50) and subsequent gene flow occurring at
varying migration rates (m¼ 0.0, 0.00001, 0.0001, 0.001, and 0.01). Error bars indicate 1 standard error.
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tables, and supplementary materials. Code used to generate the
simulated data is provided in Supplementary Files S1–S5.

Supplemental material available at figshare DOI: https://doi.
org/10.25386/genetics.13403225.

Discussion
We find that qpAdm can accurately identify plausible admixture
models and estimate admixture proportions when applied to
simulated data, matching previous theoretical expectations
(Haak et al. 2015). When an appropriate admixture model is sug-
gested, qpAdm calculates P-values that follow a uniform distribu-
tion, suggesting that a cut-off value of 0.05 will result in the
acceptance of a correct model in 95% of cases. Additionally,
qpAdm estimates admixture proportions with high accuracy,
even when calculated on datasets with a limited number of SNPs,
high rates of missingness or damage (when occurring at similar
rates in all populations), or when analyses are performed on
pseudo-haploid data or on data that is subject to strong ascer-
tainment bias. Additionally, while the use of populations with
small sample sizes does increase the variance in admixture pro-
portion estimates, admixture proportion estimates appear unbi-
ased.

Furthermore, we tested two commonly used strategies for
identifying the best admixture model using qpAdm—base and ro-
tating—and find that both strategies can distinguish between
plausible and implausible models. However, the rotating strategy
is better able to distinguish between plausible and implausible
models, particularly when the potential source populations are
closely related. We therefore recommend users implement a ro-
tating model comparison strategy when possible. It is important
to note that the results from qpAdm are always going to depend
on the availability of samples. Thus, even if the rotating strategy
points to one particular model as the optimal model for a given
dataset, this should not be taken as proof that the source popula-
tions identified are the true sources populations. For example, in
Figure 1, if data were available from population 8 and not from
population 9, the rotating model would identify populations 5
and 8 as the optimal sources of population 14. This would be cor-
rect, given the samples available, but it would come as no sur-
prise if data from population 9 subsequently became available
and it was deemed a better source than population 8. A number
of examples exist in which previously identified qpAdm models
have been refined when ancient DNA from new populations has
become available, including in the Levant (Haber et al. 2017;
Harney et al. 2018) and Sardinia (Haak et al. 2015; Chiang et al.
2018; Fernandes et al. 2020; Marcus et al. 2020).

While qpAdm’s ability to identify the optimal admixture model
is affected by data quality, including the amount of missing data,
the number of individuals in an analysis population, and the rate
of ancient DNA damage, none of these factors ever bias qpAdm to-
ward accepting a nonoptimal model and rejecting the optimal
model. Instead, we find that high rates of missing data or small
sample size may make it more likely for qpAdm to accept multiple
models, particularly in cases where both of these factors are pre-
sent. On the other hand, ancient DNA damage appears to cause
qpAdm to be too stringent when it occurs at differential rates in
the target and optimal source populations, often rejecting models
that should be considered optimal, and resulting in biased admix-
ture proportion estimates. While these results show that improving
data quality and carefully curating data prior to analysis should be
a priority of qpAdm users, they are promising as they suggest that

data quality issues are unlikely to causes users to infer an incorrect

model of admixture using qpAdm.
Although we find that the performance of qpAdm matches the-

oretical predictions under standard conditions, we also highlight

several cases in which users should exercise caution. For instance,

we show that users should attempt to avoid choosing source popu-

lations that have experienced gene flow since their split with the

lineage that contributed admixture to the target population, or in

cases where this is unavoidable, avoid including the populations

that contributed to this gene flow event as reference populations.

They should also limit the number of reference populations in-

cluded in a qpAdm model, as the inclusion of too many reference

populations may result in lowered P-values. Furthermore, we show

that qpAdm may produce plausible admixture proportion esti-

mates and P-values in cases where the population of interest was

not formed via admixture, such as the case of continuous migra-

tion, therefore users should be careful to consider whether alterna-

tive demographic models may better explain their data.
Overall, we find that qpAdm is a useful tool for identifying

plausible admixture models and estimating admixture propor-

tions, and that its performance matches theoretical expectations.

qpAdm is particularly useful because it can be used in cases

where the underlying population history of all the populations in-

cluded in the analysis is difficult to determine and can therefore

be used in cases where it may not be possible to use other tools

for modeling population histories that involve admixture, like

qpGraph and TreeMix. We include an updated user guide for

qpAdm in Supplementary Material S1 in order to make this

method more accessible to future users.
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