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1  | INTRODUC TION

f-statistics (Patterson et al., 2012; Reich, Thangaraj, Patterson, Price, 
& Singh, 2009) are a widely used toolkit for making inferences about 
phylogeny and admixture from population genetic data, particularly 
in humans. The statistics measure correlations in allele frequencies 
among sets of two, three or four populations. Observed values re-
flect degrees of shared ancestry and can serve as a means for test-
ing hypotheses regarding population split orders and past gene flow 
events under historical models.

As compared to some other common methods in population 
genetics, f-statistics are quite simple and flexible, but interpreting 
them is not always straightforward. Additionally, one of the primary 
applications of f-statistics is in building admixture graphs (i.e., phy-
logenetic trees augmented with admixture events) with more than 
four populations, which introduces a greater level of complexity. In 
this note, I hope to clarify some of these potential difficulties and 
provide a range of tips for practitioners. Some of the topics have 
been addressed previously but are covered here as well for the sake 
of completeness.

2  |  f-STATISTIC S AND ADMIX TURE

2.1 | Basic definitions and properties

More complete introductions to f-statistics have been published 
elsewhere (Lipson et al., 2013; Patterson et al., 2012; Peter, 2016; 
Reich et al., 2009; Soraggi & Wiuf, 2019), but the following are 
some basics that are used in other sections of the paper. The most 
general definition is that of the f4-statistic f4 (A, B; C, D), which 
measures the average correlation in allele frequency differences 
between (a) populations A and B and (b) populations C and D (i.e., (
pA−pB

)
∗
(
pC−pD

)
, for allele frequencies p, typically averaged over 

many biallelic single-nucleotide polymorphisms [SNPs]). This f4-
statistic is the same as the (perhaps more familiar) D-statistic up 
to a normalization factor. If the four populations are related by the 
(unrooted) phylogeny ((A, B), (C, D)), then the expected value of f4 
(A, B; C, D) will be zero, while the expected values of f4 (A, C; B, D) 
and f4 (A, D; B, C) will be positive. (When I refer to expectations of 
f-statistics, I mean with respect to the random noise in real data—
typically assumed to be normally distributed—caused by sampling 
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finite numbers of independent SNPs and individuals.) Simple algebra 
shows that

The other two basic definitions are of the f2- and f3-statistics, 
which can be formulated as f2 (A, B) = f4 (A, B; A, B) and f3 (A; B, C) = f4 
(A, B; A, C).

The most important usage for f-statistics is in the context of ad-
mixture. If a population C has a mixture of ancestry derived from 
sources C' and C'' in proportions � and (1−�), then in expectation,

Expected values of f-statistics can be visualized in terms of over-
lapping paths in an admixture graph (Figure 1; see also Patterson 
et al. (2012); Peter (2016); Soraggi and Wiuf (2019)). In the case of 
admixture, the above equation can be used to derive the expec-
tation in terms of a weighted sum of path-overlaps involving each 
source (Figure 1c). Thus, if C is admixed, the typical expected value 
of f4(A, B; C, D) will be a branch length times a mixture proportion 
(Figure 1c).

Unlike FST (and normalized D-statistics, at least approximately), 
the values of f-statistics (including branch lengths in admixture 
graphs that are defined in f-statistic units, as in Figure 1) depend 
on the absolute allele frequencies of the SNPs used to calculate 
them (cf. Lipson et al., 2013). For example, adding fixed sites to 
the SNP set will shrink f-statistics towards zero. As a result, when 
comparing multiple f-statistics, it is important that each one should 
be computed on the same set of SNPs (or as similar as possible). In 
applications involving ancient DNA, where missing data is common, 
I typically make the assumption that the SNPs covered for each indi-
vidual or population are a random subset with respect to allele fre-
quency. By contrast, comparisons across different genotyping arrays 
are likely to be biased.

2.2 | Interpreting nonzero f4-statistics

If a set of four populations are unadmixed relative to each other, 
then some permutation of them will yield an f4-statistic of zero (in 
expectation), as in Figure 1a. Equivalently, if all three permutations 
of f4-statistics for a certain set of four populations are (significantly) 
nonzero, then at least one of the populations must be admixed; this 
is one of the most common signals of admixture used in the liter-
ature. In this paper, I will use the example of a quartet consisting 
of four present-day human populations: Mixe (from Mexico), Han 
Chinese, French and Baka (hunter-gatherers from Cameroon). The 
common ancestral population of all Native Americans is known to 
have been admixed with ~70% ancestry from an eastern Eurasian lin-
eage and 30% from a western Eurasian lineage (Figure 2; Raghavan 
et al., 2014). Thus, in the context of this quartet, Mixe can be mod-
elled as admixed with ancestry related to Han (~70%) and to French 
(~30%). I computed the three possible f4-statistics for the quartet 
and obtained significantly nonzero values, with the signs as ex-
pected based on the known history (Table 1). (These and all results 
in the paper are computed from previously published whole-genome 
sequence data (Fan et al., 2019; Mallick et al., 2016), on a set of ~1.1 
million autosomal SNPs (Mathieson et al., 2015), using the imple-
mentation in admixtools (Patterson et al., 2012), including standard 
errors estimated by block jackknife.)

In this case, there is prior knowledge available about the ad-
mixture in Mixe, but in general, without additional information, the 
existence of such a quartet does not identify which of the four pop-
ulations is admixed. Here, for example, it could also be that Han is 
admixed with most of its ancestry related to Mixe but a small amount 
related to Baka, and likewise for the other two (see further discus-
sion in the admixture graph sections below). In real-world applica-
tions, it can also be true that more than one population is admixed, 
making the interpretation more complicated. Sometimes, in fact, 
two admixture events together can cause an f4-statistic to be close 
to zero and thereby mask the signal of admixture (at first glance).

Another observation is that as depicted in Figure 1, f4-statistics 
are not only zero or nonzero but also carry quantitative informa-
tion about amounts of shared drift between populations. One im-
plication is that populations sharing more drift (i.e., yielding longer 

f4 (A,B;C,D)= f4 (C,D;A,B) ,

f4 (A,B;C,D)=−f4 (B,A;C,D)=−f4 (A,B;D,C) ,

f4 (A,B;C,D)= f4 (A,C;B,D)+ f4 (A,D;C,B) .

f4 A,B;C,D =�f4 A,B;C�,D + 1−� f4 A,B;C��,D .

F I G U R E  1   Expected values of f4-statistics under specified admixture graph models. (a) The expected value of f4 (A, B; C, D) is given by 
the intersection between the path from A to B with the path from C to D. Under the model shown, E[f4 (A, B; C, D)] = 0. (b) The expected 
value of f4 (A, D; B, C) is given by the intersection between the path from A to D with the path from B to C. Under the model shown, E[f4 (A, 
D; B, C)] = y. (c) With population C admixed, the path from B to C can be decomposed into two components. Under the model shown, with 
a proportion of � B-related ancestry and 1−� D-related ancestry, the former yields a path (lighter red) that has a weight of � but does not 
intersect the path from A to D, while the latter yields a path (darker red) that has a weight of 1−� and intersects the path from A to D over 
the branch with length y. In total, E[f4 (A, D; B, C)] = (1−�) y

z 1-α
A B C D A B C D A B C D

α

y y
x

(a) (b) (c)
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intersecting paths in an admixture graph) will have greater-magni-
tude f4-statistics associated with them. For example, in the trees of 
Figure 1b,c, if one replaced population D with a population D′ that 
split halfway between D and the root of the tree, then the expected 
magnitude of f4 (A, B; C, D′) would be smaller, since the length of the 
shared drift branch would now be less than y. As a result, under the 
model in Figure 1c, one could use the fact that f4 (A, B; C, D) > f4 (A, B; 
C, D′) to conclude that D is a better proxy than D′ for the ancestry in 
C (the component with proportion 1−�). However, this procedure is 
complicated by the fact that if the D-related source was in fact itself 
admixed, with ancestry related to X and Y, then the f4-statistic can 
sometimes be maximized by X or Y instead of by D, even though one 
would consider D to be a better proxy (Pickrell et al., 2014). It is also 
good to remember that if a certain signal is weak compared to the 
noise in the data—for example, if one were testing for admixture in 
C and the shared drift branch length y was short—then one may not 
have enough power to identify it.

Finally, f-statistics can be subject to certain kinds of biases and 
batch effects (to varying degrees, as with other methods) arising 
from SNP ascertainment, sample type and processing (ancient vs. 
present-day, sequencing platform, etc.), and other aspects of the 

data, so it is important to keep such factors in mind when interpret-
ing results. For ancient DNA data, challenges include C-to-T errors 
induced by postmortem deamination (Hofreiter, Jaenicke, Serre, 
Haeseler, & Pääbo, 2001), as well as short fragment lengths and 
(often) low coverage, which can exacerbate reference bias (Günther 
& Nettelblad, 2019). All of these effects can cause ancient individu-
als to appear artificially closely related to one another and to certain 
other populations (e.g., deep outgroups). In general, statistics f4 (A, B; 
C, D) in which A and C share a data type and B and D share a different 
data type are most prone to this kind of artefact.

3  | ADMIX TURE GR APHS: MODELLING 
AND INFERENCE PROCEDURE

3.1 | Fitting an admixture graph with qpGraph

In addition to their stand-alone usage, f-statistics can serve as a 
means to fit admixture graphs from allele frequency data. (Other 
kinds of statistics can also be used to fit admixture graphs, but I will 
not discuss such methods in detail here; see Discussion.) In this con-
text, an admixture graph consists of an ordering of population splits, 
positions of admixture events, branch length parameters and mix-
ture proportions. Given the first two, the third and fourth can be 
inferred by solving a system of equations (linear in terms of the 
branch lengths) in which observed f-statistic values are matched to 
their expectations in terms of the model parameters. For example, 
one such equation for the model in Figure 1b would be f2 (B, 

C) =x + y + z. With n populations, there are 3×
⎛⎜⎜⎜⎝

n

4

⎞⎟⎟⎟⎠
 possible f4-

statistics, 3×
⎛⎜⎜⎜⎝

n

3

⎞⎟⎟⎟⎠
 possible f3-statistics and 

⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
 possible f2-statistics, 

but many of these are linearly dependent; for example, f4 (A, B; C, 

D) = f3 (A; B, D)−f3 (A; B, C). In fact, there are a total of 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
 linearly 

independent f-statistic equations; in other words, f-statistics form a 

vector space of dimension 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
. Possible choices of basis include (1) 

the set of all f2-statistics and (2) the set of all f2- and f3-statistics with 
a given population in the first position.

The software I typically use to build admixture graphs is qpGraph 
(also referred to as admixturegraph; Patterson et al., 2012). In qp-
Graph, the user manually specifies the topology of the model, and 
the program then solves for the optimal values of the parameters. 
In theory, one might wish to search the entire space of all topologies 

F I G U R E  2   Major human lineages used for examples in the 
paper, represented by Baka (African), French (western Eurasian), 
Mixe (Native American) and Han (eastern Eurasian). Setting aside 
other complexities in the histories of these populations, the 
admixture event being modelled involves eastern and western 
Eurasian lineages contributing ancestry to Native Americans 
(Raghavan et al., 2014). See Figures 3a and 5a for fitted models 
using this correct topology

Western 
EurasianAfrican Eastern 

Eurasian
Native 

American

TA B L E  1   Observed f4-statistics (values and Z-scores for 
difference from zero) for the example populations

Populations f4 (A, B; C, D)

A B C D Value
Z-
score

Mixe Baka Han French 0.011 27.1

Mixe French Han Baka 0.013 35.8

Mixe Han Baka French −0.0025 −8.9
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and parameter values (for a given number of admixture events) to 
find the best-fitting model, but the size of the space (exponential in 
the number of populations) makes this impractical for larger graphs 
(Leppälä, Nielsen, & Mailund, 2017). The set of basis statistics used 
for fitting is the set (2) alluded to in the previous paragraph, with the 
first population listed in the input file as the 'base' population.

In its standard mode, qpGraph attempts to minimize the quantity 
S (G)=1∕2 (g− f)� Q−1 (g− f), known as the 'score' of the model, where 

f is the vector of observed basis f-statistics (of length 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
), g is the 

vector of predicted f-statistics under the model, and Q is the (esti-
mated) covariance matrix of the statistics. Assuming multivariate nor-
mal errors, the score gives the negative log-likelihood of the model; it 
measures the total amount by which the system of f-statistic equa-
tions (one for each basis statistic) fails to be satisfied, taking into ac-
count the empirical correlation among the statistics (see also the next 
section on fit quality). To help insure that Q−1 does not become 

unstable, one can use the 'diag' input parameter to add a small number 
('diag: 0.0001' works well in my experience, but smaller values may be 
sufficient as well) to the diagonal entries of Q. The program can also be 
run using simple least-squares optimization without the Q matrix by 
specifying 'lsqmode: YES', but in this case highly correlated statistics 
will be treated as independent for the sake of the fitting, and the score 
will no longer represent a log-likelihood, both of which make the full 
objective function preferable. Other input parameters I typically set 
are 'outpop: NULL' (meaning no specified outgroup population in 
which SNPs are required to be polymorphic) and 'lambdascale: 1' 
(leaving the f-statistics in typical units rather than scaling into approx-
imate FST). More extensive descriptions of the qpGraph software can 
be found in Patterson et al. (2012) and in the admixtools package re-
pository (https://github.com/DReic hLab/Admix Tools), and of the 
f-statistic-based admixture graph inference process more generally in 
Lipson et al. (2013), Leppälä et al. (2017).

By default, qpGraph utilizes the set of SNPs that have genotype 
calls for at least one individual in each population in the model. With 
low-coverage data (e.g., in some ancient DNA applications), this 

F I G U R E  3   Four-population admixture 
graphs modelling (a) Mixe, (b) Baka, (c) 
Han or (d) French as admixed. All four 
versions provide perfect fits to the data 
(exact agreement between observed 
and predicted f-statistics). In this and 
all following figures, branch lengths (in 
f-statistic units, multiplied by 1,000) are 
rounded to the nearest integer

(a) (b)

(c) (d)

https://github.com/DReichLab/AdmixTools
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can result in losing the majority of the sites in the initial data set. 
The program allows an option to use all SNPs instead (‘allsnps: YES’ 
or ‘useallsnps: YES’, in which case each basis statistic is computed 
on as many sites as possible for the two or three populations in-
volved), but this mode can give unreliable results, in particular when 
the base population is highly diverged from the other populations 
in the model. To the best of my knowledge, this effect is caused by 
greater absolute noise when estimating larger-magnitude basis sta-
tistics, such that the small relative fluctuations in empirical f-statis-
tics caused by modest changes in the SNP set become substantial in 
the context of the admixture graph. In my own work, my preference 
has always been to avoid using the all-SNPs option. If this causes an 
undesirable loss of coverage, then the best approach given the cur-
rent implementation of qpGraph is probably to set as the base a pop-
ulation that (a) is not highly diverged from the others in the model, 
and (b) preferably has multiple individuals with diploid data (again to 
reduce the magnitudes of the statistics). Research is currently un-
derway aiming to develop an improved all-SNPs methodology.

3.2 | Parameters and constraints

An important consideration is whether the system of equations 
used to infer the parameters of an admixture graph is over- or un-
der-determined. As mentioned above, a model with n populations 

has 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
 linearly independent constraints (i.e., equations). In the ab-

sence of admixture, there are 2n−3 parameters, which is the num-
ber of branches in an unrooted binary tree with n leaf nodes (with 
the settings I have described, qpGraph results should not depend on 
where the root of a graph is specified). Converting a population 
from unadmixed to admixed adds two parameters: one for the mix-
ture proportion and one for the split position of the new source of 
ancestry. Thus, with a admixture events, the total number of free 
parameters is 2n+2a−3. One point to note is that in the case of an 
admixed population with two unsampled sources (which is the typi-
cal scenario), the three branch lengths surrounding the admixture 
event (in Figure 3a, from the node ‘East1’ to ‘East2’, from ‘West1’ to 
‘West2’ and from ‘pAM1’ to Mixe) cannot be determined individu-
ally but instead form a single compound parameter �2x+ (1−�)2y+z 
(where � is the mixture proportion, x and y are the branch lengths to 
the two corresponding sources, and z is the terminal branch length). 
The only exception (to my knowledge) is the case in which at least 
three populations are included that can be modelled as having dif-
ferent proportions of ancestry from the same two sources, which 
allows the branch lengths to be solved for individually.

Even if the inequality 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
≥2n+2a−3 is satisfied for an admix-

ture graph as a whole, there can be some parameters that are not 

uniquely determined because of repetition across the different 
equations caused by multiple populations in phylogenetically 
equivalent positions. Further discussion of this phenomenon can 
be found in the example sections below. Additionally, having suffi-
cient constraint to estimate parameters is not entirely a yes-or-no 
proposition. A model can have enough populations in distinct po-
sitions to be able to estimate a mixture proportion, but if two of 
the populations are only slightly separated, then the precision of 
the estimate will generally be lower. Similarly, if one of the popula-
tions providing the constraint is itself admixed, then the power will 
often be reduced.

3.3 | Fit quality

To my knowledge, no absolute measure of model fit has been de-
veloped for admixture graphs, but there are several ways to evalu-
ate how well a given model fits the data (this is an area of active 
study; see also Flegontov et al., 2019; Leppälä et al., 2017; Lipson 
& Reich, 2017; Lipson et al., 2020; Lipson et al., 2017; Shinde 
et al., 2019). The following discussion is tailored for qpGraph, but the 
ideas also apply more generally. First, the program returns a list of 
residual poorly predicted f-statistics and their Z-scores (drawn from 
the set of all possible f-statistics, not only those in the basis), which 
can give a good sense for the performance of the model and some 
idea of which populations are responsible for the greatest inaccura-
cies. There is no general rule for what threshold constitutes a signifi-
cantly nonzero residual; the situation is complicated because there 
are many statistics being tested simultaneously, but many of those 
are also correlated with each other.

Deviations between model predictions and the observed 
data can be caused either by an incorrectly specified topology or 
un-modelled admixture. In the first case, assuming that the pro-
gram does not get stuck at a local optimum, it will try to move the 
populations as close as possible to their correct positions but will 
be constrained by the input topology. Thus, an incorrectly speci-
fied split order usually manifests as an inferred length-zero inter-
nal branch; when such branches (i.e., trifurcations) appear in the 
results, the order of splits should be adjusted and re-tried. (The 
default qpGraph visualization output rounds branch lengths to the 
nearest integer, so some nonzero length but very short branches 
may initially appear as zero.) As noted in the f-statistics section 
above, however, one may not have sufficient power to resolve 
short branches, so some sets of three lineages may be found to be 
statistically consistent with forming a trifurcation, with all three 
possible split orders having similar fit quality.

In the case of un-modelled admixture, the observed deviations 
could potentially reflect admixture in one of multiple different pop-
ulations. Often one can gain information by examining the full list of 
residuals and noting which populations occur repeatedly. Another 
approach is to remove one population from the model and see if the 
fit improves, although even if it does, that could imply either that 
the population in question had un-modelled admixture or that it 
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F I G U R E  4   Four-population admixture 
graphs with Kyrgyz in place of Mixe, 
modelling either (a) Kyrgyz or (b) Baka 
as admixed. The first provides a perfect 
fit to the data, whereas the second has 
residuals up to Z = 27

(a) (b)

F I G U R E  5   Five-population admixture 
graphs. (a) Standard four-population 
example plus Ulchi; all f-statistics are 
predicted to within 1.9 standard errors 
of their observed values. (b) Same five 
populations, but with Baka modelled as 
admixed; residual statistics are present 
up to Z = 4.7 (c) Same five populations, 
with Mixe modelled as admixed, but with 
the positions of Han and Ulchi reversed; 
residual statistics are present up to 
Z = 5.7. (d) Original four populations 
plus Hungarian, with Baka modelled as 
admixed; all f-statistics are predicted 
to within 1.2 standard errors of their 
observed values

(a) (b)

(c) (d)
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provided a constraint enabling the detection of un-modelled admix-
ture among the other populations.

The score of the final graph is also returned as an output from 
the program, so it can be used to compare the fit quality of differ-
ent models with the same set of populations, preferring the one 
with the lower score. (If the equations being fit were independent, 
then one could apply a chi-squared test for the overall fit, but in 
practice they are heavily correlated. qpGraph returns a naive de-
grees of freedom count and p-value alongside the score, but they 
are not well calibrated.) As above, while this approach provides a 
useful heuristic, evaluating statistical significance is complicated, 
and I do not have a rigorous set of recommendations. One recent 
direction that seems promising is using the score to compare al-
ternative models with the same populations and same number of 
admixture events. In that case, the score difference can be inter-
preted in an AIC/BIC framework, with the likelihood difference as 
a Bayes factor (Flegontov et al., 2019; Leppälä et al., 2017; Shinde 
et al., 2019). The same idea could also be applied in cases with 
unequal numbers of free parameters—for example, adding one 
admixture event and testing whether the score improvement is 
significant. However, defining the change in degrees of freedom 
is not straightforward in this situation: as noted above, a new ad-
mixture event creates two additional parameters in the model, but 
that does not account for whether the admixture comes from a 
prespecified source or from a source that is allowed to be located 
anywhere in the graph. Finally, the score can additionally be used 
to compute confidence intervals on parameters (by considering 
the likelihood as a function of a single branch length or mixture 
proportion value), although it is worth keeping in mind that the 
results are model-dependent.

4  | ADMIX TURE GR APHS: E X AMPLES

One of the strengths of f-statistic-based admixture graphs is that 
they are computationally tractable enough that programs such as 
qpGraph can accommodate a large number of populations and ad-
mixture events. Sometimes though it can be difficult to digest all 
of the information in large admixture graph models and to analyse 
their behaviour. Fortunately, the main principles of admixture graph 
fitting can be illustrated with simpler examples, which, in particular, 
carry over directly to larger models by considering subsets of four 
and five populations.

4.1 | Four populations

The first examples I will present are four-population admixture 
graphs containing Mixe, Han, French and Baka. Given the observed 
nonzero f4-statistics in Table 1, there must be at least one admixture 
event present in order to fit the data. However, in light of the discus-
sions above about determining which population is admixed and 
about parameters and constraints in admixture graphs, it would be 

expected that these models should be insufficiently constrained to 

determine which population is admixed. Indeed, they have 
⎛⎜⎜⎜⎝

4

2

⎞⎟⎟⎟⎠
=6 

constraints but 2 (4)+2 (1)−3=7 free parameters. Confirming this 
expectation, perfectly fitting models (i.e., sets of branch length and 
mixture proportion parameters such that the six basis f-statistics are 
predicted exactly, yielding S (G)=0) can be obtained with Mixe 
specified as admixed (Figure 3a) as well as with any of the other 
three populations (incorrectly) specified as admixed instead 
(Figure 3b–d).

Interestingly, in some scenarios, the admixed population can 
be determined even with only four populations in the model: if a 
negative f3-statistic can be formed for some triple, then the pop-
ulation in the first position of the statistic (i.e., population A if f3 
(A; B, C) < 0) must be admixed. To give an example, I replaced Mixe 
with Kyrgyz in the four-population model. With Kyrgyz modelled 
as admixed, the fit is perfect as before (Figure 4a). With Baka mod-
elled as admixed, however, the fit is very poor, with residuals up 
to Z = 27 (Figure 4b). The most extreme residual is the statistic f3 
(Kyrgyz; Han, French), which has an observed value of −0.0064 
(Z = 27 for difference from zero) and can only be negative if 
Kyrgyz is admixed (i.e., in the position of the test population in a 
'three-population test' for admixture; Patterson et al., 2012; Reich 
et al., 2009).

Another note is that in these examples, I have been focusing on 
the primary signal of deep eastern/western Eurasian admixture in 
Mixe. The other populations are also admixed in their own ways; 
for example, all of the non-Africans have small proportions of 
Neanderthal ancestry, and Baka are admixed with ancestry related 
to nearby Bantu-speaking farmers (Fan et al., 2019). However, the 
first signal is not evident in the data without deeper outgroups 
present, and the second without other African populations. 
Conversely, if the model contained several sub-Saharan African 
populations plus Mixe as the lone non-Africans, then the primary 
signal in our examples here would not be visible. In some ways, 
this inability to detect certain admixture events is beneficial, as 
it means that models can be constructed so as to focus on events 
of interest while ignoring some that are outside the desired scope 
of the work.

4.2 | Five populations

In general, in order to be able to solve for the parameters of an ad-
mixture graph including one admixture event, it is necessary to use 

at least five populations, providing 
⎛⎜⎜⎜⎝

n

2

⎞⎟⎟⎟⎠
=10 constraints for the 

2n+2a−3=9 free parameters. Concurrently, in contrast to the four-
population examples above, having five populations present allows 
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one to determine which of the populations is admixed, as long as the 
topological relationships of the populations are all unique relative to 
the true mixing sources. More detail on this last point can be found 
elsewhere (Lipson & Reich, 2017; Pease & Hahn, 2015). A simple ver-
sion of this statement is that, at least in the case of a single admixture 
event, one four-population subset will be unadmixed, whereas the 
other four subsets will include the admixed population. Similarly, in 
order to solve for a given mixture proportion in a larger graph, there 
must four populations present (aside from the admixed one in ques-
tion) in distinct positions, yielding a nonredundant five-population 
subgraph; having three populations in distinct positions allows one 
to detect the signal of admixture but not to determine the propor-
tion uniquely.

As an example, I added Ulchi (from the Amur River Basin of north-
eastern Asia) as a fifth population alongside the four from above. 
Ulchi splits closer to the eastern Eurasian source population for Mixe 
than does Han, which provides the additional degree of constraint. 
The five-population model is a good fit to the data, but not a perfect 
one (Z = 1.9 for the most significant residual; Figure 5a). By contrast, 
if Baka are modelled as admixed instead of Mixe, the fit is poor (Z=4.7

; Figure 5b). I also show an example where the topology is incorrectly 
specified, with Han closer than Ulchi to the eastern Eurasian source 
population for Mixe (Figure 5c); this version fits poorly (Z=5.7), and 
the branch connecting the split positions of Ulchi and Han collapses 
to length zero. If I add a second admixture event into the models in 
Figure 5a,b, this creates more free parameters (11) than constraints, 
and indeed, there are choices of the parameters that yield perfect 
fits, even with Mixe modelled as unadmixed (not shown).

Having five populations present (with a single admixture event) 
also provides the ability to infer uniquely optimal parameter values. 
In the four-population example model, the initial estimate of east-
ern Eurasian ancestry in Mixe was 71%, but with the proportion 

manually set at 75%, the fit is still perfect (Figure 6a). Outside of 
a certain range of mixture proportions (dependent on the values 
of the branch lengths), the fit will become worse, but within a 
finite interval, the likelihood is entirely flat. In terms of f4-statis-
tics, the observed nonzero value is being fit as equal to a branch 
length in the admixture graph times the mixture proportion (as 
in Figure 1c), but without additional constraint, that product can 
remain the same while the branch length and mixture proportion 
covary (where the range is determined by bounds on the individual 
parameter values, e.g., positivity). With five populations, however, 
there is a unique optimal solution; for example, if I set the mixture 
proportion at 70% eastern Eurasian ancestry (as compared to the 
point estimate of 76% in the five-population model), there are re-
siduals up to Z=2.6 (Figure 6b), and the score is more than 10 units 
worse. Even in the example above with Kyrgyz (i.e., a four-pop-
ulation model where the admixed population can be determined 
because of a negative f3-statistic; Figure 4), the parameters remain 
not uniquely determined.

Finally, in Figure 5d, I show a model with the original four popu-
lations plus Hungarian instead of Ulchi. Although there are five pop-
ulations present, French and Hungarian can be modelled as sister 
groups, so equations relating parameters in the graph to statistics 
of the form f2 (French, X) and f2 (Hungarian, X) are linearly depen-
dent (up to their terminal branch lengths) and hence do not contrib-
ute fully independent constraints. This can be seen in the results, 
as Baka can successfully be modelled as the admixed population 
(with residuals up to Z = 1.2 reflecting small observed asymmetries 
between French and Hungarian). This contrasts with Ulchi, which 
has a distinct phylogenetic position from Han (relative to the other 
populations in the model) and thus adds new constraints (although it 
is worth noting again that a population with only a slightly different 
position adds constraint but only weakly).

F I G U R E  6   Admixture graphs 
with prespecified mixture proportion 
parameters. (a) Four-population model, 
with the proportion locked at 75%; the fit 
is perfect. Note that the branch lengths 
shift slightly relative to Figure 3a. (b) Five-
population model, with the proportion 
locked at 70%; residual statistics 
(indicating a need for more eastern 
Eurasian ancestry in Mixe) are present up 
to Z = 2.6

(a) (b)
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5  | DISCUSSION

Most of the material in this paper pertaining to admixture graphs 
has been presented from the perspective of the qpGraph software, 
but other methods are also available, using both different kinds of 
data and different fitting schemes. At the level of mathematical for-
mulation, the results have assumed that models are fit based on a 
distance metric (specifically, f-statistics). As an alternative example, 
the treemix algorithm (Pickrell & Pritchard, 2012) is based on a maxi-
mum-likelihood framework in terms of allele frequency covariances, 
although the information captured is the same; see Peter (2016) for 
the equivalence and a thorough exploration of alternative interpreta-
tions of f-statistics in terms of population genetic models. There are 
also methods that use richer summaries of the data (e.g., the full joint 
allele frequency spectrum) to infer more complicated demographic 
models that are similar in form, or in some cases essentially identical, 
to admixture graphs—for example, ∂a∂i (Gutenkunst, Hernandez, 
Williamson, & Bustamante, 2009), g-phocs (Gronau, Hubisz, Gulko, 
Danko, & Siepel, 2011), fastsimcoal2 (Excoffier, Dupanloup, Huerta-
Sánchez, Sousa, & Foll, 2013) and momi2 (Kamm, Terhorst, Durbin, & 
Song, 2019). The mathematical underpinnings of such methods are 
quite different from those based on f-statistics, and so the results 
presented here do not pertain to them. The choice of which program 
to use can depend on aspects of the particular application such as 
the data set (e.g., number of populations, whole-genome sequenc-
ing vs. genotyping array) and the desired level of complexity and 
parametrization. Even more generally, of course, numerous other 
approaches exist to model population genetic structure beyond phy-
logenetic trees with gene flow. While it may sometimes be possible 
to evaluate empirically the suitability of an admixture graph for a 
given problem—for example, by exploring whether any graph of a 
reasonable size provides a good fit to the data—the choice of model 
is ultimately at the discretion of the analyst.

Within the class of f-statistic-based (or equivalent) admixture 
graph methods, there are different approaches to automation and 
the selection of which populations to model as admixed. qpGraph 
leaves the choice of how many admixture events to include (and 
which populations are admixed) up to the user; some guidelines per-
taining to this choice have been discussed above. For smaller mod-
els, it can also be possible to search some or all of the full graph 
space (Shinde et al., 2019) to determine best-fitting topologies for 
a given number of admixture events (e.g., using the similar admix-
turegraph r implementation (Leppälä et al., 2017) and admixturebayes 
(Nielsen, 2018); other techniques are the subject of ongoing work). 
mixmapper (Lipson et al., 2013) provides an intermediate level of au-
tomation by attempting to infer an unadmixed submodel and then 
fitting one or two admixed populations onto this scaffold. With a 
small set of populations, this can sometimes be a useful approach, 
but it can largely be recapitulated within qpGraph, and the soft-
ware does not support large models with more admixture events. 
At the most automated end of the spectrum is treemix (Pickrell & 
Pritchard, 2012), which only asks the user to supply the list of popu-
lations and the number of admixture events and then returns a single 

inferred model. The advantage of this strategy is that the program 
does all of the work of building the graph, which is especially useful 
if one has limited prior knowledge about the populations. The main 
drawback, in my view, is that the way the program builds the graph 
is by starting with an optimal mixture-free tree and then adding ad-
mixture events to account for deviations between the predictions of 
the tree model and the observed data. Depending on the true his-
tories of the populations, this approach can be successful, but it can 
also increase the chances of falling into local optima imposed by the 
initial tree (especially if many populations are admixed; see Lipson 
et al., 2013). Additionally—as in other methods—the choice of how 
many admixture events to include, which can sometimes be difficult, 
is still left to the user.

In my experience, I have found f-statistics and admixture graphs 
to be very useful tools for learning about phylogeny and admixture. 
I hope that this guide will help others to get the most out of these 
tools in a range of real-world applications.
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