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SUMMARY

The processes leading up to species extinctions
are typically characterized by prolonged declines
in population size and geographic distribution, fol-
lowed by a phase in which populations are very small
andmay be subject to intrinsic threats, including loss
of genetic diversity and inbreeding [1]. However,
whether such genetic factors have had an impact on
species prior to their extinction is unclear [2, 3]; exam-
ining this would require a detailed reconstruction of a
species’ demographic history as well as changes in
genome-wide diversity leading up to its extinction.
Here, we present high-quality complete genome se-
quences from two woolly mammoths (Mammuthus
primigenius). The first mammoth was sequenced at
17.1-fold coverage and dates to !4,300 years before
present, representingoneof the last surviving individ-
uals on Wrangel Island. The second mammoth,
sequenced at 11.2-fold coverage, was obtained
from an !44,800-year-old specimen from the Late
Pleistocene population in northeastern Siberia. The
demographic trajectories inferred from the two ge-
nomes are qualitatively similar and reveal a popula-
tion bottleneck during the Middle or Early Pleisto-
cene, and a more recent severe decline in the
ancestors of the Wrangel mammoth at the end of
the last glaciation. A comparison of the two genomes
shows that the Wrangel mammoth has a 20% reduc-
tion in heterozygosity as well as a 28-fold increase in
the fraction of the genome that comprises runs of
homozygosity. We conclude that the population on
Wrangel Island, which was the last surviving woolly
mammoth population, was subject to reduced ge-
netic diversity shortly before it became extinct.

RESULTS AND DISCUSSION

The woolly mammoth is considered to have been one of the
most abundant megafaunal species during the Middle to Late
Pleistocene, yet along with !70 other species of large mam-
mals, it became extinct throughout most of its range at the
Pleistocene/Holocene transition !11,000 years ago [4]. A few
small, isolated populations persisted into the Holocene on
islands off the coasts of Siberia and Alaska that had become
isolated from the mainland by rising sea levels [5, 6]. The last
known population inhabited Wrangel Island until !4,000 years
ago [7].
We extracted DNA from the remains of ten woolly mammoths

from Wrangel Island (Figure 1A) and used shotgun sequencing
on a pool of indexed libraries to assess their levels of preservation
(see Supplemental Experimental Procedures for full details). This
allowed us to identify a molar tooth that contained a high propor-
tion of mammoth DNA (!80%; Table S1). With a direct calibrated
radiocarbon age of !4,300 calendar years (Figure 1B; Table S1),
this represents one of themost recently dated specimens that has
been discovered on the island [7].
We also extracted DNA from a soft tissue sample obtained

from a juvenile Siberianmammoth found in theOimyakon District
of Yakutia in northeastern Siberia (Figure 1A) and dated to
!44,800 calendar years ago [8] (Figure 1B). This individual,
henceforth referred to as Oimyakon, was a member of the wide-
spread woolly mammoth population that inhabited continental
Eurasia during the Late Pleistocene.
We generated double-stranded DNA libraries from extracts

of both specimens using uracil-DNA glycosylase treatment to
excise uracils, following established protocols [9, 10]. As a refer-
ence, we used the genome of the African savanna elephant
(Loxodonta africana) generated from a 6.8-fold coverage assem-
bly at the Broad Institute (LoxAfr4). This assembly was based
on paired-end long Sanger sequencing reads with a range of
insert sizes, and optical mapping, allowing the construction of
chromosome-length supercontigs. Approximately 76% of the
sequences from the Wrangel individual aligned to the reference
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genome with an average length of 69 bp, yielding 17.1-fold
average coverage. For the Oimyakon individual, 64% of se-
quences aligned and had average lengths of 55 bp, yielding
11.2-fold coverage (Figure 1B). We did not detect an excess of
nucleotide misincorporations at the terminal positions of the se-
quences. Such misincorporations typically derive from cytosine
deamination outside of CpG dinucleotides; their absence indi-
cates that uracil excision was effective in both libraries (Fig-
ure S1). Phylogenetic analysis of the complete mitochondrial
(mt) genomes from both individuals together with previously
published woolly mammoth mitochondrial genomes [11] placed
the Wrangel individual within mtDNA clade I [12] and the Oimya-
kon individual within mtDNA clade II [12] (Figure S2). These two
mitochondrial clades have been proposed to represent two
highly divergent populations or species [11, 13].

We inferred the history of population size changes in the
ancestors of the two individuals using the pairwise sequentially
Markovian coalescent (PSMC) method [14]. This approach uses
the density of heterozygous sites across the diploid genome of

a single individual to infer the distribution of the time to the
most recent common ancestor (TMRCA) between the two alleles
acrossall chromosomes. This in turncanbeused to infer effective
population size (Ne) changes over time since effective population
size is inversely proportional to coalescent rate. The estimated
population size histories were qualitatively similar for Wrangel
and Oimyakon but were offset by a fixed amount (Figure S3A),
as might be expected since Oimyakon was around DT =
44,828 " 4,336 = 40,492 years older than Wrangel. We inferred
the number of missing substitutions per base pair in the Oimya-
kon genome that would be needed in order for the two popula-
tions to have the most concordant curves to be d = 0.0001
(range = 0.00004–0.00015) per base pair (Figure S3C). We then
used this estimate to infer a substitution rate per base pair
sincewe know that the rate of accumulation of divergent sites be-
tween samples is fully determined by two times the product of
the substitution rate and time: d = 2m(DT) [15]. The estimated sub-
stitution rate is m=1.233 10"9 (range=0.493 10"9–1.853 10"9)
per base pair per year, which is equivalent to 3.83 3 10"8
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Figure 1. Geographic Location and Dating of Samples, Mapping Statistics of the Two Genomic Libraries, and Inference of Population Size
Changes through Time
(A) Map indicating the sites where the mammoth samples were collected. The dashed red line indicates the approximate extent of the Beringia coastline during

the last glacial maximum.

(B) Sample dating information and mapping statistics of the two libraries. 14C date ± error refers to the radiocarbon age of each specimen and associated

standard error. Median calibrated date refers to the median estimate of the calibrated radiocarbon date. Average read length (bp) refers to aligned sequences

only.

(C) Population size history inferred using the PSMC method. Time is given in units of divergence per base pair on the lower x axis and in years before present on

the upper x axis. The latter assumes the substitution rate estimated in this study based on the age difference between the two samples. (The range given in

parentheses takes into account the uncertainty of the rate estimate as well the range of rate estimates obtained from paleontological calibration; see Table 1.) The

PSMC curves of the Oimyakon genome and the pseudo-diploid chromosome X are empirically corrected for missing heterozygotes (false negatives = 30%) and

are shifted along the x axis so that the former is aligned to the curve of the Wrangel genome and the latter ends at!24,500 years ago, the average age of the two

individuals (which was converted in units of divergence based on the mean substitution rate estimated in this study). The Ne of the PSMC curve of the pseudo-

diploid chromosome X was scaled by 0.75. The Eemian interglacial period and the Pleistocene/Holocene transition are indicated by gray vertical bars assuming

the mean substitution rate estimated in this study. See also Table S1 and Figure S1.
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(range = 1.53 3 10"8–5.73 3 10"8) per base pair per generation
assuming a generation time of 31 years [16]. Our inference that
the substitution rate in mammoths is twice as high as the substi-
tution rate recently estimated in humans using the same method
(m = 0.43 3 10"9 per base pair per year) [15] may initially seem
surprising since earlier studies have suggested that substitution
rates in elephants may have been half that between humans
and chimpanzees (an apparent factor of four difference)
[13, 17]. However, there is substantial statistical uncertainty in
all of these estimates, and part of the apparent discrepancy
may have nothing to do with the accuracy of our rate estimate
in mammoths and instead may reflect a major slowdown in the
substitution rate in the hominin lineage [18]. In all of the analyses
that follow, we use the PSMC-based point estimate of the substi-
tution rate, which we view as the most accurate available, as this
is the most direct estimate of the rate of substitutions that is
available over the last tens of thousands of years of mammoth
history, which are the main focus of this study. However, to be
conservative, we also always quote a range of uncertainty of
0.213 10"9–1.853 10"9 per base pair per year, which is a union
of the range of statistical uncertainty around the point estimate
(0.493 10"9–1.853 10"9 per base pair per year) as well as an in-
dependent estimate of the substitution rate of 0.213 10"9–0.63
10"9 per base pair per year that we obtained based on a
more traditional calibration to the paleontological record. Specif-
ically, we assume a genome-wide average genetic divergence
time Tdiv(African-Eurasian) = 6.2–17.4 million years for African and
Eurasian elephants and note that the divergence per base pair
between the African savanna elephant genome and Wrangel
is DAfrican-Eurasian = 0.0074 per base pair, which gives the sub-
stitution rate estimate range via the formula m = DAfrican-Eurasian/
2Tdiv(African-Eurasian) (see Supplemental Experimental Procedures
for full details).
The Wrangel and Oimyakon individuals appear to have nearly

identical demographic trajectories, once we line up the curves to
account for the difference in the ages of the two samples (Fig-
ure 1C). In both genomes, we infer a dramatic reduction in Ne

during the Middle or Early Pleistocene with a point estimate of
285,000 years ago (range of 189,000–1,646,000 years ago)
(Table 1). A similar population bottleneck followed by population

expansion has previously been suggested based onmtDNAdata
[19]; however, the estimated time of this event was associated
with the penultimate interglacial period (the Eemian [20],
116,000–130,000 years ago). The timing of the decline in Ne in-
ferred using PSMC analyses of both genomes, across the entire
range of dates obtained by our substitution rate estimates
(Table 1), definitively predates the Eemian and thus does not
seem to reflect this particular climatic event. Interestingly,
ancient horses from Taymyr in Russia exhibit a reverse demo-
graphic pattern compared to woolly mammoths, with a demo-
graphic expansion at !280,000 years ago and a decline during
the Eemian as inferred using the PSMC analysis [21]. Following
the population size recovery, Ne in woolly mammoths appears
to have remained comparatively stable until a drastic reduction
at !12,000 years ago in the history of the Wrangel mammoth’s
genome (8,000–71,000 years; Table 1). Our best estimate
for the timing of this steep decline in Ne coincides with the
Pleistocene/Holocene transition and the subsequent isolation
of Wrangel Island due to rising sea levels [7] and simultaneous
disappearance of mammoths from mainland Eurasia [4]. We
note that the upper limit of our range of uncertainty for this
estimate (up to 71,000 years) is incompatible with the population
history of the two woolly mammoths since the most recent
decline, inferred in the Wrangel mammoth’s genome, appears
to have occurred after the death of the Oimyakon individual.
To test the hypothesis that woolly mammoths carrying clade

I and II mtDNA haplotypes represented highly divergent popula-
tions, we estimated the divergence time of the ancestral popula-
tions of the Wrangel and Oimyakon individuals using two inde-
pendent methods. First, the proportion of sequences mapping
to chromosome X suggests that both individuals were males,
which allowed us to construct a pseudo-diploid genome by
combining their X chromosomes and estimate rates of coales-
cence between their ancestral populations [14]. The coales-
cence rate for the pseudo-diploid X chromosome is inferred to
have changed over time in a similar manner as for the Wrangel
and Oimyakon autosomes until the split of the two populations.
The estimated split time dates to just before the death of the
Oimyakon individual; after this period the PSMC estimates a
sharp increase in Ne to an unmeasurably large size, reflecting

Table 1. Dating of Different Events in Years and Ne Estimation Using Alternative Substitution Rate Calibrations

Substitution Rate (m) Recent Bottlenecka Earlier Bottleneckb
Wrangel-Oimyakon

Splitc
Wrangel-Oimyakon

Splitd
Wrangel

Bottleneck Ne
e

Mean (m)f 1.23 3 10"9 12,195 284,553 49,877 53,000–64,000 328

Upper limit (m)f 1.85 3 10"9 8,108 189,189 41,400 50,000–57,000 218

Lower limit (m)f 0.49 3 10"9 30,612 714,286 88,077 65,000–93,000 823

Upper limit (m)g 0.6 3 10"9 25,135 586,486 76,717 61,000–84,000 676

Lower limit (m)g 0.21 3 10"9 70,541 1,645,946 170,896 91,000–155,000 1,896
aEstimated time for the recent decline in Ne observed in the PSMC curve of the Wrangel genome.
bEstimated time for the earlier decline in Ne observed in the PSMC curves of both mammoth genomes.
cSplit time between the Wrangel and Oimyakon individuals inferred from the PSMC analysis of the pseudo-diploid chromosome X.
dSplit time between the Wrangel and Oimyakon individuals inferred from the F(AjB) analysis using autosomal data.
eNe for the Wrangel population following the recent bottleneck inferred by the PSMC analysis.
fMean, lower, and upper limit of the range of substitution rates (per bp per year) estimated in this study by lining up the two PSMC curves.
gUpper and lower limit of the substitution rates (per bp per year) obtained from paleontological calibration, assuming 6.2–17.4 million years for the
genetic divergence time between African and Eurasian elephants (see Supplemental Experimental Procedures for details).

Current Biology 25, 1–6, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 3

Please cite this article in press as: Palkopoulou et al., Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly
Mammoth, Current Biology (2015), http://dx.doi.org/10.1016/j.cub.2015.04.007



an absence of detected coalescent events as would be ex-
pected if the populations were separated (Figures 1C and
S3B). Similarly, the split time (T) between the populations repre-
sented by the Oimyakon and Wrangel genomes was estimated
at!50,000 years ago (range 41,000–171,000 years ago; Table 1),
indicating that the Wrangel and Oimyakon populations shared
ancestry until shortly before the death of the Oimyakon individ-
ual. To further investigate the split time of the ancestral popula-
tions, we used an independent approach for estimating popula-
tion split times that uses the probability of a SNP across the
diploid genome that is heterozygous in one population (Oimya-
kon) being derived in a second population (Wrangel) as a func-
tion of population split time [22, 23]. Based on this method, the
Wrangel and Oimyakon populations were estimated to have
split from each other 53,000–64,000 years ago (range 50,000–
155,000 years ago) (Table 1; Figure 2). Overall, these results
contrast sharply with those from a previous genomic study
based on two low-coverage autosomal genomes. The previous
study suggested coalescent times of !1–2 million years be-
tween individuals that carried clade I and II mtDNA haplotypes
and proposed that these individuals may have represented
different species or highly divergent populations [13]. Based on
the findings from the two autosomal genomes presented here,
we conclude that there are multiple lines of strong evidence
against this hypothesis. The observed discordance between
nuclear and mtDNA estimates of divergence is not surprising if
we consider the biology and natural history of the Elephantidae.

Females are largely non-dispersing, and this tends to produce
deeper coalescent times for mtDNA lineages compared to nu-
clear coalescent dates [24]. Conflicting genetic patterns be-
tween nuclear and mtDNA have been observed in modern
elephants [25]. Indeed, all extant elephant species exhibit
mtDNA coalescent dates that are about as old as the divergence
date between mtDNA clades I and II in woolly mammoths [26].
Average autosomal heterozygosity in the Wrangel individual

was 1.00 heterozygous site per 1,000 bp (confidence interval
[CI] 0.99–1.02), which is 20% lower than the heterozygosity
observed in the Oimyakon individual (CI 1.23–1.27 per
1,000 bp; Table S2). This is consistent with results from previous
genetic studies [27, 28] indicating a loss of genetic diversity as
mammoths became isolated on Wrangel Island and is likely a
consequence of a reduced Ne due to the island’s small size
and estimated low carrying capacity [27]. When compared to
genome-wide diversity levels in extant organisms (Figure 3A),
we find that heterozygosity in the Wrangel individual was low,
but not exceptionally so. Diversity in the Wrangel genome falls
close to that observed in humans, bonobos, eastern lowland go-
rillas, and western chimpanzees, which have also experienced
dramatic declines in population size during their history as in-
ferred from PSMC analyses [29]. On the other hand, the Wrangel
individual harbored higher genomic diversity than that observed
in several other endangered taxa such as lions, tigers, Tasma-
nian devils, snow leopards [30], and polar bears [31], most of
which have experienced recent declines in population size. We
speculate that the particularly low heterozygosity in these latter
taxa may be partly due to these species all being predators,
which typically occur at low population densities and thus have
had comparatively small effective population sizes throughout
their history.
To examine the genomes for runs of homozygosity (ROHs), we

estimated the inferred TMRCA at every position across the
genome of each individual using the PSMCmethod. An extreme
excess of ROHs was detected in the Wrangel genome (23.3% of
the genome constituted ROHs) compared to the Oimyakon
genome (0.83% of the genome constituted ROHs), providing ev-
idence of a small Ne in the recent history of theWrangel individual
(Figures 3B and 3C), consistent with the PSMC results. Most of
these regions of low heterozygosity were found to span a few
million base pairs and were distributed across all autosomes
(Figure S4). ROHs of such length typically occur from back-
ground relatedness associated with limited population size in
the last dozens of generations rather than due to recent mating
of closely related individuals, which would be expected to pro-
duce much longer stretches [32]. Thus, we find no evidence of
inbreeding in the sense that the parents of theWrangel individual
were particularly close relatives. Instead, it seems likely that the
large proportion of ROHs in the Wrangel genome is due to a cu-
mulative effect of recurrent breeding among distant relatives,
which is consistent with a small Holocene effective population
size on Wrangel Island. Further genomic analyses on additional
specimens from Wrangel [7] should be able to resolve this
issue and enable detailed reconstruction of population size
changes over the Holocene period whenWrangel Island became
separated from themainland. Additional analyses onmammoths
representing the last remaining mainland populations in Eurasia
and North America would also be valuable in order to shed light
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on whether these populations were also subject to reduced
genetic variation prior to their extinction at the end of the last
glaciation.
Interestingly, the lower heterozygosity in the Wrangel genome

can largely be explained by its higher proportion of ROHs. This
implies that heterozygosity is similar between regions of the
Wrangel genome that are not in ROHs and the Oimyakon
genome as a whole, which may seem odd given the high likeli-
hood of genetic drift in the Holocene Wrangel population. We
suggest two possible hypotheses that might explain this obser-
vation. First, it is possible that positions in the Wrangel genome
that are not in ROHs are places where the TMRCA between the
Wrangel individual’s chromosomes extends all the way back to
the time when Wrangel was a part of the mainland (i.e., Berin-
gia). If this is the case, then non-ROH regions should reflect
the genetic diversity that existed at the time before Ne declined
(as a consequence of the isolation on Wrangel). Alternatively,
the observed similarity in diversity may be an effect of the
Wrangel genome being of higher quality and/or coverage than
the Oimyakon genome, which could have allowed more hetero-
zygous positions to be called in the analyses (due to lower
false-negative rates). If this is the explanation, the estimated
20% reduction in the Wrangel genome’s diversity may be an
underestimate.
In conclusion, our finding of an overall reduced genome-wide

diversity in one of the last surviving mammoths constitutes the
first direct observation of genetic stochasticity in a species
shortly before its extinction. Given that small population sizes
in wild animals often lead to reduced individual fitness [33], it
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seems plausible that the low genetic varia-
tion detected in this study may have had a
negative impact on the fitness of the Wran-
gel Island population and thus may have
contributed to its subsequent extinction.
The results presented here also highlight
the value of sequencing ancient genomes
from specimens that predate population
declines to establish baseline levels of
genome-wide diversity. In conservation

biology, this approach can be used to directly quantify the
amount of diversity lost in threatened species.
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