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Abstract

We present a general method for estimating the dates of mutations using variation at linked microsatellite
markers. Risch et al. (1995) take a similar approach to estimating the age of the mutation causing
idiopathic torsion dystonia among Ashkenazic Jews, but they do not describe how to produce a confidence
interval for the date. Here, we not only obtain a confidence interval for the date by assessing the degree
of correlation amang samples, but also describe how to use a Markov transition matrix approach to take
full account of the complexities of the recombination process. Finally, we show how the method has
been applied to a specific example: estimation of a date for a mutation that confers resistance to HIV-1
infection (Stephens et al. 1998),

10.1 Introduction

It is possible to estimate the age of a mutation because of the non-random asso-
ciation of alleles (i.e. linkage disequilibrium) that is generated whenever a new
mutation occurs. The immediate descendants of a mutant chromosome will be
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monomorphic for a set of markers linked to the locus of interest. Over time, how-
ever, as recombination and mutation undo the linkage disequilibrium, the pattern
of variation among mutant chromosomes will gradually reflect the pattern of
variation in the population as a whole. By making a quantitative assessment of
the extent to which the disequilibrium has been undone, and using known rates
of mutation and recombination, we can estimate an age for the most recent com-
mon ancestor of mutant chromosomes.

10.2 Estimating the age of the mutation when almost
all chromosomes have the ancestral haplotype

To estimate the date of the mutation when almost all mutant chromosomes are
of a single type, we employ a two-pronged strategy. First, we assume that the
common haplotype is the ancestral haplotype, a questionable assumption if the
genealogical tree of relationships among individuals includes only a few ancient
lineages, and in particular, if an early mutation or recombination eventoccurred on
alineage that was ancestral to the majority of current chromosomes. To determine
the ancestral haplotype unequivocally, we use markers that are relatively close
to the gene locus of interest. We then use the frequency (r) of mutation and
recombination events that have the potential to unlink some chromosomes from
the ancestral haplotype to find the most likely number of generations that have
passed since the ancestral mutant chromosome.

To obtain the maximum likelihood estimate for the date of the mutation, we
begin by considering a particular lineage of the genealogy, the chain of ancestors
linking a present-day haplotype to the haplotype at coalescence. The probability
that a haplotype remains ancestral during the time tracing back to the most recent
common ancestor is given by the depth of the genealogy in generations, G, and
the frequency r of mutation and recombination:

p=e0r. (10.1)

Here, p is just the zero term in a Poisson series with parameter Gr.

To find p, we note that for a dramatically expanded population, one for which all
lincages are essentially independent, an unbiased estimate of p is the proportion
of observed haplotypes that are ancestral (Stephens et al. 1998). A surprising fact
is that this statement is true even for constant-sized populations in which many
lineages are highly correlated in the sense that pairs of alleles share extensive
periods of co-ancestry during the time tracing back to the most recent common
ancestor of the sample. The reason why the age estimate is independent of topol-
ogy is that as long as mutations at the marker loci have no selective effect, the
correlations in the tree amount to a process of pseudo-replication of lineages.
This process will affect the variance of our estimate of p (see below); however,
because the lineages that are replicated are selected independent of allelic state,
the proportion of ancestral haplotypes will not be systematically affected.
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Finally, to obtain G in terms of the estimate of p, we transform eqn (10.1):
G =—In(p)/r. (10.2)

As discussed previously, this holds true whatever the shape of the genealogical
tree.

10.3 A comprehensive approach for estimating the
age of a mutation

The previous method produces an appropriate estimate for the age of the muta-
tion when the large majority of observed chromosomes have become unlinked
from the ancestral haplotype. However, when enough mutant chromosomes have
become unlinked from the ancestral haplotype, the date estimate must account
not only for the rate of loss of the ancestral haplotype by mutation or recombi-
nation, but also for regeneration of the ancestral haplotype among chromosomes
that currently do not have it (Risch et al. 1995). When this process is included in
our analysis, the estimated date of mutation becomes systematically older than
that predicted by eqn (10.2).

To provide a complete description for a system in which a single locus is typed,
we use a Markov transition matrix K. Note that Risch er al. (1995) have used
an alternative approach to the same problem, involving differential equations.
However, we have chosen to use the transition matrix approach instead because we
find it to be very flexible, and because it allows us to easily incorporate mutation
and recombination events into the same evolutionary process. Specifically, the
entries in the Markov matrix give the probabilities, per generation, that any one
haplotype will transform into any other. To calculate K, we take a weighted sum
of matrices corresponding to recombination (R), mutation (M), and no event
occurring (I):

K=cR+uM+ (1 —c— ), (10.3)

where ¢ 1s the frequency of recombination, p is the frequency of mutation, and
I — ¢ — p is the frequency of no event occurring. We now consider a single
lineage tracing its ancestry back to the original mutation, and by multiplying K
by the state vector generation by generation, evaluate the probability that after
n generations, the mutation will have lost its linkage to the ancestral haplotype.
This is exactly analogous to the method described in Section 10.2, except here
we take into account regeneration of the ancestral haplotype as well as the rate
of loss of that haplotype.

Consider the case in which only a single microsatellite marker has been typed.
For this case, the state vector is represented as (g, 1 — ¢), with the first entry the
probability that the allele is of the ancestral type and the second the probability
that it is not. The matrices R and M, and hence the Markov transition matrix, can
then be derived straightforwardly from the distribution of alleles in non-mutant
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chromosomes. We begin with the recombination matrix (R). After a recombi-
nation event, the probability that the allele will end up ancestral, regardless of
the initial state, can be estimated as the proportion of alleles in the population
that have the ancestral haplotype (a). The probability that the allele will be non-
ancestral type is then 1 — a:

a a
R=|:l—a l—aj|' (10.4)

We now calculate the mutation matrix (M). According to the stepwise muta-
tion model for microsatellites (Goldstein and Pollock 1997), mutations change
the length of an allele by a single unit, with an equal chance of increasing or
decreasing the length of the allele. Using this model, we estimate the probability
that a mutation will transform a non-ancestral allele into an ancestral one as b/2,
where b is the proportion of alleles that are one mutation step away from the
ancestral haplotype, and the division by 2 occurs because only half of mutations
at these alleles produce the ancestral type. Note that in the case of a mutation that
occurs on an ancestral allele, the outcome is even simpler: the probability that an
allele will remain ancestral is 0.

_Jo b2
R_[l 1—5/2] (10.5)

To find b in any generation, we require information that is not contained in
the two-dimensional state vector: specifically, the frequencies of alleles that are
one mutation step away from the ancestral chromosome. Thus, to describe the
frequencies of all k possible alleles in the system, we require a k-dimensional
state vector—a complicated circumstance because the R and M matrices would
now have to be k x k rather than 2 x 2. Nevertheless, it is often possible to simplify
the analysis when recombination occurs much more frequently than mutation. In
this case, the distribution of non-ancestral alleles among mutant chromosomes
is expected to be the same as in the control population, and b can be estimated
directly from the proportions of alleles in the control population.

We now use eqn (10.3), and the matrices R and M, to obtain the Markov
transition matrix K. Errors in K could arise either from misestimation of ¢ and In
(since information about these parameters is often inaccurate), or from errors in
a and b that might occur due to inappropriate selection of control populations or
failure to type a sufficient number of chromosomes in the control population, or
changes in the proportions of alleles in the population over the course of recent
history. Since none of these sources of error is taken into account in our method for
estimating a date of mutation, experimenters should consider a range of possible
values of ¢, (1, @, and b, as a way of assessing how much variability in the estimate
of the age of the mutation could arise from misestimation of parameters.

Under the assumption that K is correct, we can now consider a particular
lineage of the genealogy—the chain of ancestors linking a present-day haplotype
to the haplotype at coalescence—and use K to determine the probability that the
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lineage remains ancestral at any given generation. We begin with the state vector
representing the ancestral mutant chromosome, which has the form (1, 0) where
the first entry is the probability that the lineage has the ancestral type. To evaluate
the fate of the lineage in every subsequent generation, we multiply K by the state
vector until we obtain a probability of observing an ancestral haplotype that is
closest to the observed proportion, p, of mutant chromosomes. The number of
times that K has been multiplied tells us the number of generations that have
passed since the ancestral mutant chromosome.

10.4 Variance of the age estimate

The variance of the age estimate (unlike the age estimate itself ) is systematically
affected by a population’s demographic history. The reason for this is that popula-
tions with different demographic histories have differently shaped genealogical
trees. For example, in a population that has undergone a relatively recent and
dramatic expansion, almost all lineages will trace their ancestry independently
back to the time of the expansion, and the number of independent assessments
of the age of the tree will be equal to the number of samples. For a constant-
sized population, there will be high degree of shared ancestry among sampled
chromosomes, as explained above, and the number of independent assessments
of the age of the tree will therefore be much smaller than the number of sampled
chromosomes. The relatively large number of age assessments in an expanding
population means that the date estimate is more accurate.

To determine confidence intervals for the date, we use computer simulations
based on a coalescent algorithm by R.R. Hudson (1990) to describe a wide vari-
ety of population histories from constant population size to fast growth (final
population size and exponential growth rate are the variable parameters in our
simulation). For each set of demographic parameters, the simulation generates a
large number of genealogical trees and distributes mutation and recombination
events along them according to a random (Poisson) process (we use the Markov
transition matrix to determine which events turn an ancestral haplotype into a non-
ancestral one and vice versa). Thus, the final distribution of haplotypes along a
genealogical tree is affected by two sources of error: first, variability in the shapes
of the genealogical tree, and second, variability in the mutation and recombina-
tion events that occur on those trees. The simulations allow us to take account of
both these sources of error, generating a 95 per cent central confidence interval
for the number of ancestral haplotypes that could be expected to be seen in such
a sample. We can then reject certain combinations of demographic parameters if
the confidence intervals do not contain the number of ancestral haplotypes that
was actually observed.

To find allowed dates for the mutation, we consider each combination of
demographic parameters separately, simulating many genealogical trees and
considering only those simulations that result in the observed number of ancestral
haplotypes (i.e. we condition the simulations on the observed results). From the
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subset of trees obtained in this manner, we can then produce a 95 per cent central
confidence interval for the date of the mutation. To obtain an allowed range of
dates that is inclusive of all possible demographic histories, we then take the
union of confidence intervals for each combination of parameters. The range of
allowable dates can be constricted even further if we have additional information
about the demographic history—for example, if the observed distribution pat-
tern of non-ancestral haplotypes forbids particular combinations of demographic
parameters, as explained in Section 10.6, below.

10.5 Age of the CCR5-A32 AIDS resistance allele

The CCR5 gene encodes a protein that serves as part of the primary entry port
for HIV-1 in immune cells (Deng et al. 1996). Individuals homozygous for a
particular 32 base-pair deletion mutation in the gene, which we designate as
CCR5-A32, are resistant to HIV-1 infection (Dean et al. 1996). Indeed, as many
as 26 per cent of northern Europeans carry at least one deleted copy of the gene,
while the frequency of carriers drops to zero along a north-south gradient (no
copies are observed among Africans). The pattern of distribution of the gene
makes it seem likely that the mutation occurred recently, and it is therefore of
interest to obtain a direct estimate for the date of origin of the mutation.

The data we use consist of 46 chromosomes carrying the CCR5-A32 deletion,
and 146 controls that do not carry the mutation. Each chromosome was typed
at two microsatellite markers on the same side of the CCR5 gene: GAAT12D11
(GAAT) and AFMB362wb9 (AFMB), with GAAT closest to the deletion locus.
The ancestral haplotype is taken to be the one in which the GAAT marker carries
the 197 base-pair allele and the AFMB marker carries the 215 base-pair allele.
This haplotype occurs among 85 per cent of mutant chromosomes but only 36
per cent of the control population.

To calculate the Markov transition matrix for this system, we note that two
polymorphic markers were typed, and that there are therefore four possible states
in the system. Specifically, the states can be classified as follows: (1) both GAAT
and AFMB are ancestral; (2) only GAAT is ancestral; (3) only AFMB is ancestral;
and (4) neither GAAT nor AFMB is ancestral. The state vector can be represented
as (q1, g2, q3. | —q1 — q2 — q3), and the transition matrices, corresponding to
mutation at GAAT, mutation at AFMB, recombination at GAAT or recombination
at AFMB, will be four-dimensional (4x4) as well. The overall equation for the
transition matrix K is then:

K = ugaarMgaar + tarmeMarms + cgaaTRGaaT + carvB RAFMB
+ (1 — cGAAT — CAFMB — HGAAT — HAFMB)L, (10.6)

where [LGAATS AEMB CGAAT» and capmp are the rates of mutation and recom-
bination for the GAAT and AFMB markers, and Mgaat. MarMmB. Rgaar, and
RApMmp are mutation and recombination matrices.
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We must now estimate the Parameters [LGAAT, LAFMB.» CGAAT, and capmg. To
obtain the recombination rates cGaar and cApmg, we use physical distances that
were determined from radiation hybrid mapping, and convert these to recom-
bination distances using a linear regression that applies on average across the
chromosome on which the mutation was found. To estimate the mutation rates
HGAAT and apMB, we use the published value for dinucleotide microsatellites,
= 0.00053 (Weber and Wong 1993). In this analysis, error in estimation of the
recombination rate was much more of a worty to us than error in the mutation
rate, since the recombination rate is so much larger in absolute terms.

To obtain the mutation matrices, we use the frequencies of alleles in the control
population that are one mutation step away from the ancestral GAAT (b;) and
ancestral AFMB (b;) alleles (see eqn (10.4)). It follows that for mutation at the
GAAT marker, the matrix is Mg o, while for mutation at the AFMB marker,
the matrix is MAFMB-

00 b2 0 0 5/2 0 0

(040 00 by I B T e
Mgaar =1, g —bj2 0 |0 MammMB= |, 0 by/2
01 0 —b/2 0 0 1 —b)2

(10.7)

To obtain the recombination matrices, we follow eqn (10.5), dealing first with
the case in which the recombination occurs between the gene locus of interest
and GAAT, and then the case in which the recombination event occurs between
GAAT and AFMB. In the first case, the situation is exactly analogous to eqn
(10.4), and the frequencies of each possible outcome can be estimated as the
proportion of alleles in the control population that are of each haplotypic state.
We designate these frequencies, respectively, as ay, az, a3, and ay, recalling that
ay = 1 —a) —ay — a3. The resulting matrix is designated Rgaar. In the
second case, in which the recombination occurs between GAAT and AFMB, the
alleles change at only a single locus (AFMB), and the only relevant parameters
are the frequency of alleles for which the AFMB marker had the ancestral type
(a1 + a3), and the frequency of alleles for which the AFMB marker was non-
ancestral (a3 + a4). The overall 4 x 4 transition matrix, Ropmg, then becomes:

ap ay ay aj ap+as ay +as 0 0
R _ a2 ay ap ay R _lax+taq ar+ay 0 0
GAAT = as a3 a3 a3 |’ ~AFMB = 0 0 a+az a+a3
as aq a4 aq 0 0 az +aq ax 4+ ay
(10.8)

We now use egn (10.6) to calculate K. Ignoring any error in the Markov transi-
tion matrix (more likely to be due to errors in estimation of the recombination rate
and recombination parameters rather than errors in the mutation rate), the most
likely age for the CCR5-A32 mutation is 29 generations, or 725 years assuming a
generation time of 25 years. For comparison, if the calculation is done according
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to the method of Section 10.2, the estimate is 28 generations, slightly younger
because no Markov transition matrix is used to take into account regeneration of
the ancestral haplotype. Note that the estimated date of the mutation is likely to
be systematically lower than the date of first appearance of the mutation, since
the estimation procedure only finds information about the age of the most recent
common ancestor of the sampled chromosomes. Thus, our estimate of the date
must be interpreted with caution: if a dramatic expansion occurred in the popula-
tion of mutant chromosomes, it is likely that the most recent common ancestor of
the mutant chromosomes dates to before the expansion (although it is difficult to
say how much earlier). Note that Slatkin and Rannala (1997) provide an approach
for dating mutations that takes this systematic bias into account.

10.6 Estimating a variance for the date by
reconstructing the genealogy of CCR5-A32

To obtain a confidence interval for the date estimate, we use simulations that take
into account all possible combinations of demographic parameters and genealog-
ical trees, as described in Section 10.4. To place further restrictions on the allowed
dates of the mutation, we forbid certain genealogical trees—in the simplest case
by using prior knowledge of population history. For the CCR5-A32 data, for
example, we assume that during the past 10000 years, northern European popu-
lations have had a certain minimum size. By specifying that the initial effective
population size was at least 5000, we conclude that the date of the most recent
common ancestor was between 11 and 75 generations in the past (275-1875
years, assuming 25 years per generation).

In a much more fundamental way, it is also possible to use the distribution of
non-ancestral haplotypes among mutant chromosomes to put restrictions on the
shape of the genealogical tree. For example, if the haplotypes all derive from
separate mutation or recombination events, the lineages of the genealogical tree
are uncorrelated, and consistent with a dramatically expanded population. If the
non-ancestral haplotypes derive from relatively few mutation or recombination
events (which have been recopied and amplified within the lower branches of the
genealogical tree), then the history of the mutant chromosomes is more likely to
be consistent with a constant-sized population. By focusing on the distribution
of non-ancestral haplotypes among CCR5-A32 chromosomes, we are then able
to directly assess the degree of correlation in the tree, and from there to assess
the variability of the date estimate.

To implement this approach, we consider the fact that of the seven non-ancestral
CCR5-A32 chromosomes that were observed, there were four distinct haplotypes.
The number of mutation and recombination events that actually gave rise to the
four haplotypes was probably larger than four, since the distribution of non-mutant
CCRS5 chromosomes indicates that given six or seven chances, several haplotypes
would be generated more than once (and, as expected from this hypothesis, the
non-ancestral haplotypes we observe are the ones that are most frequent in the
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control population). We surmise that the non-ancestral haplotypes derive for
the most part from separate mutation and recombination events, and that in the
present sample, we are observing the results of at least six and perhaps seven
different events. Note that it would have been possible to determine the number
of events with even more precision if more that two microsatellite markers had
been typed.

To make explicit use of this information, we modify the simulation described
in Section 10.4 to report not only the number of non-ancestral haplotypes but
also the number of distinct mutation and recombination events that gave rise to
these haplotypes. Thus, for each set of demographic parameters in the CCRS5-
A32 data set, we simulate a large number of genealogical trees that gave rise to
seven out of 46 non-ancestral haplotypes, and then determine the proportion of
these replicates that were derived from seven distinct events. If we require that no
fewer than 5 per cent of replicates have fewer than seven distinct haplotypes, we
can restrict the date of the mutation to between nine and 214 generations in the
past (225-5350 years, assuming 25 years per generation). While this restriction
on the date of the mutation is less stringent than the one derived from a historical
assumption about effective population sizes, it is valuable precisely because it is
independent of such assumptions.

10.7 The analysis of new data sets

In applying the method to a new data set, it is always appropriate to begin by
picking microsatellite markers that have the proper distance from the gene locus of
interest. The markers should be chosen to be close enough to the locus of interest
to define the ancestral haplotype, but far enough away to allow as many lineages
as possible to have had a chance to become non-ancestral. A good strategy for
identifying markers is to select a panel that are at varying distances from the gene
locus of interest, and then to pick out ones that comply with the criteria described
above.

The analysis of data from a single microsatellite locus can often extract most
of the relevant information about the date of a mutation. However, the use of
multiple markers (e.g. in the CCR5-A 32 experiment) may have a particular value
in assessing the variance of the date estimate, allowing for a better assessment of
the shape of a genealogical tree than would be possible with a single marker. The
reason for this is that multiple markers allow us to reconstruct more accurately
the history of mutation and recombination events. If even more markers are
typed, it becomes possible to pinpoint the exact number of distinct mutation
and recombination events that had led to the observed number of non-ancestral
haplotypes, further restricting the allowed range of genealogical tree. On the other
hand, multiple markers have a drawback because they can make an analysis more
complicated, forcing the estimation of more matrix parameters, recombination
distances and mutation rates.

Another factor to consider in designing future experiments is that some muta-
tions will be sufficiently old that only markers close to the locus will display
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disequilibrium. In this case, it will be difficult to determine the recombination
distances of markers from the locus, and it is appropriate to use markers that are
sufficiently close to the gene that mutation serves as the main molecular clock
for estimating a date for the mutation. Errors in estimating the mutation rate (and
not the recombination rate) then become the main source of systematic error in
determining the age of the mutation, and to reduce this error, it is appropriate to
use several markers that are close to the gene locus of interest, with an average
mutation rate that in general will be more predictable than that of a single marker
(Goldstein and Pollock 1997). In practice, however, it may be difficult to find
enough markers that are sufficiently close to the gene locus of interest to make
this possible, except perhaps on the Y chromosome, where a large number of
microsatellites are completely linked.





