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ABSTRACT
An important clue to the evolutionary history of an allele is the structure of the neighboring region of

the genome, which we term the genomic background of the allele. Consider two copies of the allele. How
similar we expect their genomic background to be is strongly influenced by the age of their most recent
common ancestor (MRCA). We apply diffusion theory, first used by Motoo Kimura as a tool for predicting
the changes in allele frequencies over time and developed by him in many articles in this journal, to prove
a variety of new results on the age of the MRCA under the simplest demographic assumptions. In particular,
we show that the expected age of the MRCA of two copies of an allele with population frequency f is just
2Nf generations, where N is the effective population size. Our results are a first step in running exact
coalescent simulations, where we also simulate the history of the population frequency of an allele.

CONSIDER two copies of an allele in a panmictic lated to the central idea of a recently proposed powerful
test for selection (Sabeti et al. 2002); suppose we havepopulation. What is the age of the most recent com-

mon ancestor (MRCA)? This question is interesting for an allele that is frequent, but the genomic background
over a long distance lacks diversity. Under a neutral model,population genetics, but has also taken on importance

for medical genetics, because the age controls the ex- we have a mismatch of information—the lack of diversity
suggests a young allele that should not be frequent.pected length of the region over which the genomic

backgrounds of the two copies are identical. If the It therefore is interesting to consider the joint distri-
bution of population frequency and the age of the MRCA.MRCA is old, then, since the time of the ancestor, many

nearby mutations or recombinations will usually have Related ideas are discussed by Slatkin and Rannala
(2000) who consider the problem of estimating alleleoccurred. If the MRCA is young, then most often the

genomic background of a copy of the allele will be age, using both frequency and linkage disequilibrium
information. However, they are chiefly concerned withsimilar to the background of the most recent ancestor.

If the genomic background of a disease allele has little practical methods of analyzing data, and with the influ-
ence of past demographic events, while our aim herevariation over a long region, then detection of genomic

association becomes much easier than if linkage with is to derive exact probability models and work out the
consequences under the simplest possible demography.the allele exists only over a short distance. Thus, on

average, it is easier in a genomic scan to detect young There are some striking results, including the new result
that the expected age of the MRCA of two copies of andisease-causing mutations than old, although after suc-

cessful detection precise mapping will be harder (on allele of population frequency f is proportional to f.
The two most important tools for the analysis of howaverage) with a young allele.

The association of the age of the MRCA with the mutant alleles spread through a population are diffu-
sion theory, largely developed in a genetic context byextent of genomic diversity is natural to consider and

is not a new idea. For example, it is discussed by Reich Kimura over a series of 25 years from 1955 to 1980 (see
Watterson 1996 for a very clear review), and Kingman’sand Goldstein (1999), although they are not con-

cerned with the probability distribution of the age. How coalescent (Kingman 1982; Nordborg 2001). How-
ever, these two essential tools have infrequently beenthen can we estimate the age of the MRCA? A quantity

that is relatively easy to estimate is the population fre- used together.
We work through some ideas motivated by the coales-quency of an allele. This is correlated with both the age

of the mutation and the age of the MRCA. Most rare cent, but using diffusion techniques, very much in the
spirit of Kimura’s work. Indeed we generalize some ofmutations are young, as has been well understood for

a long time and made precise in Kimura and Ohta his results. There are evident relationships with our
work and the theory of the coalescent, which deserve(1973), and most young mutations are rare. This is re-
future study. The work of Griffiths and Tavaré (1998,
1999, 2003), Wiuf and Donnelly (1999), and Grif-
fiths (2003) could be regarded as applying the theory1Address for correspondence: Broad Institute, 1 Kendall Square, Cam-

bridge, MA 02139. E-mail: nickp@broad.mit.edu of the coalescent to the diffusion of alleles. We do the
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reverse. It seems that some results are much easier in We have here an implicit reverse diffusion process
where we consider the frequency of the allele back inone approach than in the other.
time from the present. For a new allele the frequencyWe briefly mention two other relevant recent articles.
will at some point be 0, for an old allele the frequency

1. Barton et al. (2004): This, like our work, considers will at some point be 1, and the coalescent process will
coalescence at a single biallelic locus with the allele become the ordinary Kingman coalescent.
frequencies varying in time and uses diffusion theory. We assume our organism is diploid and scale time so
Comparing their work and ours, although the situa- that unit time is 2N generations, where N is the effec-
tions analyzed are similar they are not the same. They tive population size. This is convenient and has become
consider recurrent mutations while we are interested standard in the literature.
in alleles where there has been a single mutation event. Our results, true for a panmictic population of very
They also consider the case of selection, and their large constant size N, include:
main technique is to derive a set of coupled ordinary

1. The MRCA satisfies a diffusion equation with killingdifferential equations, which require numerical solu-
(see Karlin and Taylor 1981, for definitions), andtion. Our situation is simpler and we can obtain ana-
the solution can be given as an explicit (infinite) sumlytic solutions.
of orthogonal polynomials.2. Innan and Nordborg (2003): This article, which

2. The expected time to the MRCA of two copies of andoes not use diffusion theory, considers expressions
allele is f, the frequency of the allele. More generally,relating to the length of a polymorphism of known
if M is the expected time to the first coalescent eventfrequency. For instance, they use the theory of the
for k copies of an allele of frequency f, thencoalescent, conditional on the observed number of

alleles in the sample, to estimate the probability of no
recombination between two sites of distance L apart M � f��k2�in the history of the sample.

Using our results we can run coalescent simulations and the mean times for the whole coalescent subtree
of these k alleles are the same as for the ordinarybackward in time where we simulate jointly both the
coalescent with fixed population size Nf. This is trueancestral history of a small sample of a population and
although the probability density of each coalescentthe population frequency.
time is not the same as for the ordinary coalescent.Even if (as is the case for humans) the past demogra-

3. If an allele is known to be new then over a smallphy is complex, we believe our results will find applica-
time interval back from the present, the probabilitytion. For instance, if the past population size is not
density of the time t to the MRCA is approximatelyconstant, one can “stretch time” so that coalescence occurs
the constant 1/f.at a constant rate, but the rate of mutation is varying.

4. If the allele is not known to be new or old, then theOur techniques should still apply and remain a founda-
probability density (for small time t) is approximatelytion for simulation.
e�t/f. [Corollaries 3 and 4 make these statementsOur main object of study is the probability distribu-
precise.]tion of the age of the MRCA of two copies of an allele

5. If an allele is known to be new then the expectedthat has known population frequency f today. We ig-
time M to the MRCA is an expression M1(y) givennore the possibility of recurrent mutations, so that the
in Equation 16 below. (This expression also appearspolymorphism arose with a unique mutation event.
in Equation 9.2 of Griffiths and Tavaré 2003.)Two cases naturally arise. The allele may be ancestral,

6. For a new allele, as the frequency f tends to 1, thewhich for the remainder of this article we term old, or
expected time to the MRCA tends tononancestral, which we term new. Suppose we are consid-

ering a biallelic polymorphic locus, for instance, an {A, 2(�2 � 9)
3

.C } SNP. In the absence of other information the prior
probability that the A allele is new is 1⁄2. If we observe a
set S of A alleles and study the joint distribution of
coalescence times of ancestors of S and the population METHODS
frequency of the A allele, then the setup is not symmetric

Diffusion equations: Suppose X(t) is the populationbetween the cases of A new or old.
frequency of an allele at time t. We begin with the basicFor example, it is obvious that for a new allele all
diffusioncoalescent events must occur after the mutation that

gave rise to the allele, but for an old allele some coales- dX(t) � (X(t)(1 � X(t)))1/2dBt ,cent events can occur before the mutation that made
the locus polymorphic and some after. This distinction which is the Wright-Fisher equation for the propagation

of the frequency of an allele under no selection, in ais important for much of our discussion.
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panmictic constant-size population of N diploids, where �D
�t

� �
D
x

.we scale time so that unit time is 2N generations.
We call this the Kimura case. A key quantity is the

Equation 4 also occurs as a special case of Equation 83transition function K(x, y; t), the probability density of
in a recent article of Griffiths (2003).X(t) � y conditional on X(0) � x. Thus setting

We may consider the forward process where the allele
frequency diffuses as in the K process but in additionP(t, x) � �

1

0

K(x, y; t)dy , (1)
at time t when the frequency is y the probability in
the interval (t, t � �t) that the process is killed is �t/y �

P(t, x) is the probability that the allele is polymorphic o(�t). This then yields the forward equation
at time t given that it has frequency x at time 0. The
transition function K(x, y; t) satisfies two important par- �C

�t
�

1
2

�2

�y 2
(y(1 � y)C) �

C
y

. (5)
tial differential equations:

Karlin and Taylor (1981, p. 314) give a simple method
of realizing this forward process with killing. Let X(t)

�K
�t

�
�2

�y2�y(1 � y)K
2 � (2)

be a sample path in the (forward) Wright-Fisher diffu-
sion with X(0) � x. As X(t) � 1 the integral

�
x(1 � x)

2
�2K
�x 2

. (3)

�
∞

0

1
X(t)

dt
Equation 2 is the Kolmogorov forward equation and (3)
is the Kolmogorov backward equation. Kimura uses these diverges. Let R be a random variable, exponentially
equations creatively in much of his work on diffusions. distributed with mean 1 and now set � (the killing time)
Kimura (1955) contains the first appearance of these by
equations in his work, with an extensive justification
and discussion given in Kimura (1964). A textbook � � inf �s : �

s

0

1
X(t)

dt � R � .
treatment is in Karlin and Taylor (1981), while the
original rigorous treatment is by Kolmogoroff (1931).

The path X killed at � is the realization we seek.
We are interested in the time to the MRCA of two

Solution of the transition function: In both the Kimura
copies of an allele with current population frequency

and coalescent cases, we can write the transition function
y. We call this the coalescent case.

as an explicit sum of polynomials, orthogonal on the unit
We discuss the diffusion of the population frequency interval with respect to an appropriate weight function.

back in time, conditional on coalescence not having The Kimura case: As we give a detailed argument for
occurred. When coalescence occurs we stop (kill) the the coalescent case and there is now a textbook treat-
diffusion. ment for the easier Kimura case in Karlin and Taylor

It is natural to consider the function C(x, y; t), which (1981, Chap. 16), we just give the result without proof.
is the joint probability density that X(0) � y and the Alternative approaches (“lines of descent”) are pre-
MRCA has age greater than t conditional on X(�t) � x. sented in Griffiths (1980) and Tavaré (1984).

Consider the event E that the allele frequency is x at Here is the result, first obtained by Kimura (1955),
time �t and that the time to the MRCA (TMRCA) oc-
curs earlier than �t so that coalescence has not yet K(x, y; t) � x(1 � x)�

∞

i�0

J 1,1
i (x) J 1,1

i (y)

N 1,1
i

e�	(i )t (6)
occurred at �t . Thus the probability, conditional on
the event E, that the MRCA occurs in the interval (�(t �

with 	(i) given by�t), �t) is �t/x � o(�t). This is for the same reason
that in the ordinary coalescent the waiting time for the

	(i) �
(i � 1)(i � 2)

2
. (7)coalescence of two alleles is exponential with mean 1.

That is, the instantaneous probability that our diffusion
The J 1,1

i are Jacobi polynomials (in this case also calledis killed is 1/x.
Gegenbauer polynomials), and N 1,1

i are normalization con-Now it follows that the function C satisfies the back-
stants. The Ji and Ni are defined explicitly in the appen-ward equation:
dix. This result is generalized by Theorem 2 below.

The coalescent case: The diffusion C differs from K by�C
�t

�
x(1 � x)

2
�2C
�x 2

�
C
x

. (4) considering the extra chance that coalescence has oc-
curred. As a result C(x, y; t) 
 K(x, y; t). It follows that

To motivate Equation 4, note that if we consider a C(x, y; t) → 0 as x → 0 or x → 1. Fix y and seek solu-
Wright-Fisher diffusion in a population of constant fre- tions to (4). We seek a solution of the form �(t)�(x).
quency x, then the probability D(t) that the MRCA of We give details of the analysis in the appendix, but

here is a summary of the main results.two alleles is greater than t is just e�t/x and we have
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Theorem 1. Let �(t)�(x) be a solution to the differential Theorem 2. Consider k copies of an allele with population
frequency y. Suppose that the diploid population is panmicticequation (4). Then
with constant size N. Take unit time to be 2N generations.

1. �(t) � e�	t , Write X(t) to be the population frequency of the allele at time
t, so that X(0) � y. Let Ck(x, y; t) be the probability density,where 	 � (n � 2)(n � 3)/2 for some integer n 
 0.
conditional on X(�t) � x of the event that X(0) � y and2. For a given choice of n of 1 above, set
no coalescence has occurred by time �t. (So each of the k ances-
tors is distinct at time �t . If k � 1, coalescence is meaningless�(x) � x 2(1 � x)wn(x);
and we take C1(x, y ; t) � K(x, y ; t)). Then under the diffusion

then wn(x) is a polynomial in x. approximation
3. Substitute x � (1 � z)/2; then w � wn satisfies

Ck(x, y ; t) � y k�1xk(1 � x)�
∞

i�0

J 1,2k�1
i (x)J 1,2k�1

i (y)

N 1,2k�1
i

e�	k (i )t ,(1 � z2)w″(z) � (2 � 6z)w�(z) � n(n � 5)w � 0,

(11)which is a special case of the Jacobi differential equation,

where(1 � z2)w″(z) � [b � a � (a � b � 2)z]w�(z) � n(n � a � b � 1)w � 0,

(8)
	k(i) �

(i � k)(i � k � 1)
2

.
with a � 1, b � 3, whose solutions are the Jacobi polynomi-
als P a,b

n (z), which we define explicitly in the appendix.
The polynomials J 1,2k�1

i and normalizing constants N 1,2k�1
i are(See, for example, Birkhoff and Rota 1969, Chap. 9,

defined in the appendix.Equation 32).
4. The wn are orthogonal with respect to the norm

The age of an allele—a Bayesian interpretation: We now
discuss our interpretation of the meaning in our diffu-|| f ||2 � �

1

0

x 3(1 � x)f 2(x)dx .
sion model of the “age of an allele.” We propose first
taking a rather natural Bayesian prior and then taking

It now follows from standard results on orthogonal poly- limits. This is an interpretation made in Kimura and
nomials that we can write C(x, y; t) as Maruyama (1975) and made very explicit in Watt-

erson (1976) and Sawyer (1977), although both of
C(x, y; t) � �

∞

i�0

ci(y)x 2(1 � x)J 1,3
i (x)e�(i�2)(i�3)t/2 , (9) these authors preferred a different interpretation in-

volving reversibility. Take the time now to be 0 and
assume for the moment that mutations have taken placewhere the coefficient ci(y) is determined from the or-
in a finite time interval [�T, 0] where T is very large.thogonality of the Jacobi polynomials.
We assume that the prior distribution of the mutationThe general case: There is a more general diffusion
time is uniform in [�T, 0] and that the probability ofequation for the most recent coalescent event with k
a double mutation is so low as to be negligible.copies of an allele. What we have been terming the

We model a mutation as giving birth to an allele with“coalescent case” is the simplest case where k � 2.
frequency ε that is very small. (Indeed this is biologicallyIf we have k copies, there is a most recent coalescent
as well as mathematically reasonable; the initial fre-time, which is the first time in which the k copies have
quency is 1/2N, where N is the effective populationfewer than k distinct ancestors. We call this a coalescent
size, and N is of course finite.)event. We now define Ck(x, y; t) as the joint probability

We are interested in quantities of the formthat the frequency now (at time 0) is y, and no coalescent
event occurred in the time interval (�t, 0), conditional �

1

0
�

T

t

P(X(�t) � x |X(�s) � ε)ds · f(x)dxon X(�t) � x. If k � 1, then coalescence is impossible
so we take

for various functions f(x).
C1(x, y; t) � K(x, y; t). We always neglect terms of order ε2. Here is an exam-

ple. Let A(t) be the probability that the age of a nonan-The same argument as before shows that Ck satisfies the
cestral allele of frequency y is at least t .backward equation,

Then it follows from our mutation model that without
approximation,�Ck

�t
�

x(1 � x)
2

�2Ck

�x 2
� S

Ck

x
, (10)

A(t) � �
1

0
�

T

t

P(X(�t) � x |X(�s) � ε)ds · K(x, y; t)dx .
where S � �k

2	.

We can now generalize Theorem 1. Detailed argu- Since T is large this can be approximated by the infi-
nite integralments are found in the appendix.
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�
1

0
�

∞

t

P(X(�t) � x |X(�s) � ε)ds · K(x, y; t)dx P(allele old|x) �
1/(1 � x)

1/x � 1/(1 � x)
� x .

� 2�
ε

0

1 � ε
1 � x

K(x, y; t)dx � 2�
1

ε

ε
x

K(x, y; t)dx , Corollary 2 (Watterson 1962; Ewens 1963b). Let
an allele have frequency x ; then the expected time to fixation
or extinction iswhere we use Theorem 3 below.

Now K(x, y; t) � O(x) for small x. It follows that the
F(x) � �2[x log x � (1 � x)log(1 � x)].

first integral can be neglected and that approximately,

Proof. If A(u) is a probability density, and B(u) �A(t) � 2ε�
1

0

K(x, y; t)/x · dx .

∞

uA(u) (the complement of the cumulative density),
then it is well known that

Other such integrals in what follows should be interpre-
EA � �uA(u)du � �B(u)du .ted in the same sense.

As A(0) � 1, it is easy to determine the constant of
Using this,proportionality, and we finally obtain

F(x) � �
∞

0
�

1

0

K(x, y; t)dy · dtA(t) � y�
1

0

K(x, y; t)/x · dx .

� �
1

0

G(x, y)dyGreen’s functions: We next discuss the Green’s function
of our diffusion, which is a technical tool that has be-
come standard in diffusion theory. Karlin and Taylor

� �
x

0

2(1 � x)
1 � y

dy � �
1

x

2x
y

dy(1981) have an extensive treatment. Knowledge of
Green’s function is the fastest route to deriving a num-

� �2[x log x � (1 � x)log(1 � x)]ber of the results we will prove. Ewens (1963a, 1964)
was the first to make use of Green’s function in genetics, as asserted.
and it was used implicitly by Kimura in several of his
articles. Suppose all we know about a biallelic marker is that

The Kimura case: Green’s function it is polymorphic. If x is the population frequency of one
of the two alleles, what is the natural prior probability

GK(x, y) � �
∞

0

K(x, y; t)dt (12) distribution P(x) for x? From Green’s function and our
Bayesian interpretation, we see that the appropriate

is well known, and a textbook treatment is in Karlin prior is the improper prior,
and Taylor (1981).

The result is as follows. P(x) �
2ε
x

�
2ε

1 � x

Theorem 3 (Ewens 1963a, 1964). For x � y
�

1
x(1 � x)

.
GK(x, y) � 2x/y.

This prior is often used in the remainder of the article.For x � y
An interesting consequence, given in Kruglyak and
Nickerson (2001, Box 1), though with a different argu-GK(x, y) � 2(1 � x)/(1 � y).
ment, is that if a SNP is detected from examination of
two chromosomes, then the distribution of the alleleMost of the basic results on the Kimura diffusion
frequency of the discovered SNP is uniform. This followsfollow rapidly from knowledge of Green’s function. We
because if a SNP has frequency x, the probability thatgive two examples.
two copies of the marker do not agree is proportional
to x(1 � x) and multiplication by the prior gives aCorollary 1 (Kimura and Ohta 1973; Watterson
constant, independent of x.1976). Given an allele has frequency x, the probability the

The coalescent case: Our process now is subject to kill-allele is old is x.
ing at rate 1/x.

Define Green’s function:Proof.

GC(x, y) � �
∞

0

C(x, y; t)dt . (13)P(x |allele new) � GK(ε, x) � 2ε/x

P(x |allele old) � GK(1 – ε, x) � 2ε/(1 � x).
Standard techniques (and some heavy algebra using

Maple) yield the following.Thus
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Theorem 4. For x � y

GC(x, y) �
�2(x 2 � 2x log(1 � x) � 2x � 2 log(1 � x))

y 2x
.

For x � y

GC(x, y) �
2(1 � x)(2y � y 2 � 2 log(1 � y) � 2y log(1 � y))

(1 � y)y 2x
.

Theorem 5. For an allele of unknown ancestry status and
frequency y :

1. Let A(t) be the probability that the MRCA of two copies is
at least t. Then

Figure 1.—Expected age of MRCA (old and new allele).
A(t) � y(1 � y)��

1

0

C(x, y; t)
x(1 � x)

dx

� limε→0
1
2ε�

t

0

e�(t��)C(1 � ε, y; �)d�� . We show the expected age of the MRCA of two copies of an
allele conditioned both on the population frequency of the
allele and on its ancestral status. If the ancestral status of an

(14) allele is unknown, then the expected age of the MRCA is
simply the population frequency, which is the appropriately

2. The expected age of the MRCA is y. More generally the ex- weighted sum of the top and bottom curves.
pected age of the first coalescent event, for k copies of the allele
is y/S, where S � �k

2	.
3. The expected age of each coalescent event, in the coalescent tree

as in Theorem 6, then the expected age of the MRCAof k copies of an allele with frequency y is the same as in the
of two copies, M2(y) say, isordinary coalescent in a fixed size population of size y.

M2(y) � 1 �
(1 � y)M1(y)

y
. (17)We give details in the appendix, but briefly sketch the

central, rather simple idea to prove 2 and 3. An easy
This follows immediately, since by Theorem 5 and Cor-calculation shows that if � is the time to the coalescent
ollary 1:event, M � E(�), and x is the expected population fre-

quency at time �, then x � SM. But from general princi- (1 � y)M1(y) � yM2(y) � y.
ples x � y. This gives statement 2. Statement 3 now

In Figure 1 we show plots of M1 and M2.follows by induction.
Our formulas have implications for coalescent theory.Although the expectations are the same as for the ordi-

As an illustration, and a check on our algebra, supposenary coalescent, the distributions of the coalescent times
we observe n alleles and of these i carry a mutation,are different, because the population size of the allele
known to be nonancestral. Wiuf and Donnelly (1999,varies with time.
Equation 28) give a formula for the expected age of
the MRCA of the i alleles, using coalescent arguments.Theorem 6. For a new allele, of frequency y:

Take as an example i � 2, n � 4. Then with the same
1. Let B(t) be the probability that the MRCA of two copies time normalization as we have been using, the Wiuf-

has age at least t. Then Donnelly formula gives the expected MRCA age as 5/
18. On the other hand, if we observe two copies of a

B(t) � y ��
1

0

C(x, y; t)
x

dx� . (15) new mutation out of four, the posterior distribution of
the population frequency y is readily seen to be 12y(1 �

2. The expected age of the MRCA is M1(y), where y)2 and so the expected age of the MRCA is

�
1

0

12y(1 � y)2M1(y)dy ,M1(y) � �4 � 2 log y �
2�2 � 12 dilog y

3y
�

2 log y
1 � y

(16) which Maple shows is indeed 5/18. If the mutation is
and not known to be new or old, we get an easier integral

for the expected age of the MRCA,
dilog x � �

x

1

log t
1 � t

dt .

�
1

0

6y2(1 � y)dy �
1
2

,
We again give details in the appendix.

If we consider an old allele, rather than a new one, which we checked by coalescent simulations.
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distinct ancestors. Thus a simulation procedure can be
iterated until k � 1.

In our case, if we begin with k haploids, each with an
allele of frequency y, we can proceed analogously by
sampling (t, x), where x is the population frequency at
coalescence. Just as in an ordinary coalescent simulation
we can iterate, until k � 1.

The required probability densities are given by Equa-
tions A22 and A23 in the appendix. To use these we
will need to evaluate Ck(x, y; t) numerically. The series
expansion given by the orthogonal polynomial expan-
sion of Theorem 2 converges very fast unless t is small,
but in that case the series has poor numerical behavior.
We therefore give alternative formulas for the coales-
cent times valid for small t. Taken together these give
satisfactory results for all t.

Taylor series for the coalescent time: Our orthogonal poly-
nomial expansions are not numerically very stable for
small time t. The instability is related to the well-known
Gibbs phenomenon. (See Gottlieb and Shu 1997, for
a modern review and some sophisticated techniques for
alleviating the problem.) To develop random sampling
procedures valid for all regions of time, we wanted to
have high-accuracy solutions to the density of the coales-
cent time valid for small time.

Voronka and Keller (1975) and Tier and Keller
(1978) develop, for the Kimura case, highly accurate
asymptotic series when time t is small. Their methods
use techniques from the theory of wave propagation.
We instead use methods that are more elementary andFigure 2.—The probability distribution of the coalescence

time. We display the probability density of the coalescent time seem sufficient for our needs.
for two copies of an allele of a known population frequency. Fix the frequency y and let C(x, y; t) be defined as
The ancestral status of the allele is assumed to be unknown. before. We term a function f(x) on the unit intervalNote the approximate invariance up to scaling.

well-behaved if for all derivatives f (k )(x) of f and all par-
tial derivatives

The distribution of the time to the MRCA: Some numer- �lC(x, y; t)
�x lical plots: Consider an allele of frequency y at t � 0. We

are again interested in coalescence of two copies of the
allele. We let V(t) � V(t |y) be the probability density

lim
x→0

lim
t→0

f (k )(x)
�lC(x, y; t)

�x l
� 0of the event that the coalescence time is �t, which we

can compute numerically using Theorem 2 and Equa-
tions A22 and A23. lim

x→1
lim
t→0

f (k )(x)
�lC(x, y; t)

�x l
� 0.

In Figure 2 we show plots of V(t). We first show a
plot for y � 0.01, 0.02, 0.05, 0.10. Then we plot y � If f(x) is a rational function, it is well behaved. Let
0.10, 0.20, 0.50, 0.99.

The frequency in the top graph is lower than that in F(y, f ; t) � �
1

0

f(x)C(x, y; t)dx .
the bottom graph (except we chose to plot frequencies
0.1 and 0.99) by a factor of 10 and the graphs are similar There is an interesting recursion for the Taylor series
except for the scale. As a rough approximation the proba- of F as a power series in t around t � 0.
bility density P(y, t) that the MRCA of two alleles of popula-
tion frequency y has age t is a function of y/t . Theorem 7. Let f(x) be a well-behaved function on the

A simulation scheme: We simulate the coalescent with side unit interval. Let
information—the population frequency of an allele.

F(y, f ; t) � �
1

0

f(x)C(x, y; t)dx .In the ordinary coalescent, if we begin with k haploids,
the next coalescent time t is exponentially distributed
with mean 1/�k

2	 and at coalescence we have k � 1 Define f0 � f and iteratively for n � 1, 2, . . . , let
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improved the article. This work would hardly have been possible
fn(x) �

�2(x(1 � x)fn�1(x)/2)
�x 2

� fn�1(x)/x . without the extensive use of the symbolic algebra program MAPLE
(2002).

Then fn(y) is the nth partial derivative of F with respect to t,
evaluated at t � 0.

LITERATURE CITED

Let an allele have frequency y, and let Y(t) be the Abramowitz, M., and I. A. Stegun, 1964 Handbook of Mathematical
Functions. Dover Publications, New York.probability distribution of the coalescence time of two

Barton, N., A. Etheridge and A. Sturm, 2004 Coalescence in a
copies of the allele. random background. Ann. Appl. Probab. 14: 754–785.

Birkhoff, G., and G.-C. Rota, 1969 Ordinary Differential Equations,
Ed. 2. Wiley, New York.Corollary 3. If the allele is new, then the Taylor series

Ewens, W., 1963a The diffusion equation and a pseudo-distribution
T(t) for Y at t � 0 is in genetics. J. R. Stat. Soc. Ser. B 25: 405–412.

Ewens, W., 1963b The mean time for absorption in a process of
Y(t) 
 T(t) � 1/y . genetic type. J. Austr. Math. Soc. 3: 375–383.

Ewens, W., 1964 The pseudo-transient distribution and its uses in
genetics. J. Appl. Probab. 1: 141–156.Corollary 4. If the allele is not known to be new or old,

Gottlieb, D., and C.-W. Shu, 1997 On the Gibbs phenomenon and
then the Taylor series T(t) for Y at t � 0 is its resolution. SIAM Rev. 39: 644–668.

Griffiths, R., 1980 Lines of descent in the diffusion approximation
Y(t) 
 T(t) � e�t/y. of neutral Wright-Fisher models. Theor. Popul. Biol. 17: 37–50.

Griffiths, R., 2003 The frequency spectrum of a mutation, and its
age, in a general diffusion model. Theor. Popul. Biol. 64: 241–251.Proof. For Corollary 3, using Green’s function, we see Griffiths, R., and S. Tavaré, 1998 The age of a mutation in a
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and soAPPENDIX

Proof of Theorem 1: As we have already argued, C(x, cn�1 � cn �1 �
2	

(n � 1)(n � 2)���1 �
2

(n � 2)(n � 3)� .
y; t) 
 K(x, y; t), and so C(x, y; t) → 0 as x → 0 or x →
1. Fix y. We seek solutions to (4) of the form �(t)�(x). (A10)
From the equation, ��(t)/�(t) is independent of t. It

It follows that if there exists n with (n � 1)(n � 2) �follows that �(t) � e�	t for some 	 and
2	, and cn � 0 that the sequence cm converges to a
nonzero value, L say, as m → ∞. But then as x → 1,(1 � 	x)�(x) �

x 2(1 � x)
2

�″(x). (A1)
x 2(1 � x)�″(x) → L , and �(x) → L/(2(1 � 	)). This
is a contradiction. Therefore �″(x) [and �(x)] is a poly-We want solutions with �(0) � �(1) � 0. We first show
nomial, and 	 � (n � 1)(n � 2)/2 for some integer

	 � 0. Consider the homogeneous differential equation
n 
 0. As 	 � 1 we in fact obtain

x 2(1 � x)
2

d 2w
dx 2

� w � 0. (A2)
	 �

(n � 2)(n � 3)
2

, n � 0, 1, . . . .

This equation has two independent solutions, as can be
From (A1) and noting that 	 � 1, �(x) is divisible byverified directly by differentiation:
x 2(1 � x). Set

a1(x) � 2 � x �
2(1 � x)log(1 � x)

x
(A3)

w(x) �
�(x)

x 2(1 � x)
.

a2(x) �
1 � x

x
. (A4)

Substituting in (A1) we get after a little algebra

We find that x(1 � x)w″ � (4 � 6x)w� � n(n � 5)w � 0, (A11)

a1(0) � 0 (A5) a hypergeometric equation,

a1(1) � 1 (A6) x(1 � x)w″(x) � (� � (� � � � 1)x)w�(x) � ��w � 0.
(A12)a2(x) → ∞ as x → 0 (A7)

(See, for example, Birkhoff and Rota 1969, Chap. 9,a2(1) � 0. (A8)
Equation 18.) Here,

And so no nonzero linear combination gives 0 at both
� � 4ends of the unit interval. Thus 	 � 0.

Next, in contrast to the Kimura case, we show 	 � 1. � � � � 5
Indeed if 	 � 1 Equation A1 is

�� � �2(	 � 3) � �n(n � 5) (n � 0).

�(x) �
x 2

2
�″(x), Substituting x � (1 � z)/2 we obtain Equation A13.

(1 � z 2)w″(z) � (2 � 6z)w�(z) � n(n � 5)w � 0,
which has the two independent solutions x 2 and 1/x (A13)
and again no linear combination is feasible.

We now seek solutions with a convergent power series which is a special case of the Jacobi equation (8). Theo-
in the open interval (0, 1), rem 1 now follows from standard facts about the Jacobi

polynomials.
�(x) � �

∞

n�0

bnxn The general case—Proof of Theorem 2: We now gen-
eralize the analysis to the solution of Equation 10, which
is the corresponding equation for considering the co-so that
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alescence of k copies of an allele. As before set S � where the last term corresponds to the case that the
allele is old and that the coalescent event occurs before�k

2	. Again we seek solutions of the form �(t)�(x), and
the mutation event, so that the allele was fixed in the

�(t) � e�	t . population at the time of coalescence.
As A(0) � 1 we getThe corresponding equation to (A1) for general k is

(S � 	x)�(x) �
x 2(1 � x)

2
�″(x). (A14)

A(t) � y(1 � y)��
1

0

C(x, y; t)
x(1 � x)

dx

� limε→0
1
2ε�

t

0

e�(t��)C(1 � ε, y; �)d�� ,

Substitute

(A18)
w(x) �

�(x)
xk(1 � x)

.
which is what we required. For the second part we give
a Martingale argument that has its own interest andMaking the same transformation as before, by setting
avoids any heavy computation.x � (1 � z)/2 we obtain the differential equation, gener-

We first give a “reversibility” argument that is now wellalizing (A13),
known (see Watterson 1976, for a detailed description

(1 � z 2)w″(z) � ((2k � 2) � (2k � 2)z)w�(z) � n(n � 2k � 1)w � 0, and applications). Write
(A15)

R(x, y; t) � P(X(�t) � x |X(0) � y),
a Jacobi equation with a � 1, b � 2k � 1.

calculated for the Kimura diffusion. First assume thatThe eigenvalues are
0 
 x 
 1. It follows from the Kolmogorov equations

	n � (n � k)(n � k � 1)/2 (A16) or directly from Theorem 2 that
and the solution to Equation A15 is the Jacobi polyno- K(x, y; t)

x(1 � x)
�

K(y, x; t)
y(1 � y)

.mial P 1,2k�1
n (z).

Thus the equation generalizing (9) is
Under our Bayesian interpretation,

Ck(x, y; t) � �
∞

i�0

ci(y)xk(1 � x)J 1,2k�1
i (x)e�	i t ,

R(x, y; t) � P(X(�t) � x |X(0) � y)

where 	i is given by (A16). Multiply by xk�1J 1,2k�1
i (x) and

�
y(1 � y)K(x, y; t)

x(1 � x)integrate. We define

Na,b
i � �

1

0

xb(1 � x)a( J a,b
i (x))2dx � K(y, x; t)

� P(X(t) � x |X(0) � y).
and get, using Ck(x, y, 0) � �(x � y),

At the boundary we can also check that with our
y k�1J 1,2k�1

i (y) � ci(y)N 1,2k�1
i . (A17) Bayesian interpretation

This is enough to prove Theorem 2.
P(X(�t) � 1|X(0) � y) � P(X(t) � 1|X(0) � y)

In Table A1 we give the first few values of Jn and Nn ,
which are useful for checking a software implementa- P(X(�t) � 0|X(0) � y) � P(X(t) � 0|X(0) � y).
tion that uses Theorem 2.

It follows that if we fix y, then R(x, y; t) and K(y, x; t)Proof of Theorem 5: Let A(t) be the probability that
are equivalent stochastic processes. However, K(y, x; t)the MRCA of two copies of an allele with frequency y
is evidently a Martingale (Karlin and Taylor 1975) andis at least t, where the ancestral status of the allele is
therefore R(x, y; t) is also.unknown. Then

Next we give a result, of independent interest, relating
the expected coalescent time to the expected allele fre-A(t) � �

∞

0
�

1

0

K(ε, x; �)C(x, y; t)dx · d�
quency at coalescence. The result holds in wide gener-
ality.

� �
∞

0
�

1

0

K(1 � ε, x; �)C(x, y; t)dx · d�

Lemma 1. Consider k copies of an allele with population
� �

t

0

e�(t��)C(1 � ε, y; �)d� frequency f. Do not assume details of the process such as whether
the allele is old or has unknown status, selection . . . . Normalize
time so that unit time is 2N generations. Let the mean time to

� 2ε�
1

0

C(x, y; t)
x(1 � x)

dx the first coalescent event be M( f ). Set S � �k
2	. Let X( f ) be

the expected frequency of the allele at first coalescence. Then
� �

t

0

e�(t��)C(1 � ε, y; �)d� ,
SM( f ) � X( f ).
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TABLE A1

The first few values of Jn and Nn

Kimura Coalescent

Degree (n) J 1,1
n N 1,1

n J 1,3
n N 1,3

n

0 1 1/6 1 1/20
1 4x � 2 2/15 6x � 4 2/35
2 15x 2 � 15x � 3 3/28 28x 2 � 35x � 10 1/18
3 56x 3 � 84x 2 � 36x � 4 4/45 120x 3 � 216x 2 � 120x � 20 4/77

We give the first few values of Jn and Nn required for applications of Theorem 2 in either the Kimura case
or the coalescent case with two copies of an allele.

Proof. Let A(t) be the probability of no coalescence an allele. Now � is a stopping time with finite mean, and
it follows from basic Martingale results thatby time t back from the present. Then by a standard

argument
E(X(��)|(X(0) � f )) � f . (A21)

M � �
∞

0

A(t)dt . (A19) Set, as before, S � �k
2	. By Lemma 1 we have

E(X(��)|X(0)) � SE(�|X(0))Let P(t, x) be the joint probability that coalescence has
not occurred at time �t and that the frequency at time and it follows that
�t is x. To make the notation clear we assume 0 
 x 
 1
and define Q(t) to be the joint probability that coalescence E(�|X(0) � f ) �

f

S
.

has not occurred at time �t and that the frequency at
time �t is 1. [In general, limx→1P(t, x) � Q(t).] Then This completes the proof of part 2 of Theorem 5. The

last part follows easily by induction.
A(t) � �

1

0

P(t, x)dx � Q(t). (A20) For numerical work we need expressions for the prob-
ability density

Next define B(t, x) as the joint probability density that
P(t, x) � P(� � t, X(�t) � x |X(0) � y)

coalescence occurs at time �t and that the frequency
is x (0 
 x 
 1). Then [so we could write, more explicitly, P(t, x; y) for P(t, x)]

and for
B(t, x) � SP(t, x)/x.

Q(t) � P(� � t, X(�t) � 1|X(0) � y).
Thus

Then by an argument we have already given, for 0 

x 
 1,X � �

∞

0
��

1

0

B(t, x)x · dx� � SQ(t)dt

P(t, x) � y(1 � y)S
Ck(x, y; t)
x 2(1 � x)

, (A22)
� S�

∞

0
�

1

0

P(t, x)dx � Q(t)dt

while
� S�

∞

0

A(t)dt
Q(t) � y(1 � y)lim

ε→0
1/2ε�

t

0

Se�S(t�u)Ck(1 � ε, y; u)du .

� SM , (A23)

where we use Equation A19. This proves the lemma. Here Ck is given explicitly by the series expansion of
Robert Griffiths (personal communication) pointed Equation 11.

out that this lemma is a result about any stochastic pro- Proof of Theorem 6: The same argument as the proof
cess X(t) on the positive real line that is killed at a rate of the first part of Theorem 5 gives our expression for
proportional to 1/X(t). B(t). For the second part, we have

Continuing with the proof of Theorem 5, we have
M1(y) � �

∞

0

B(t)dt � y�
1

0

GC(x, y)/x · dx .constant population size, no selection, and the popula-
tion frequency is f. We suppose that the allele status
(new or old) is unknown. Now using Theorem 4 and Maple we can integrate this

in closed form and obtain Equation 16.Let � be the first coalescence time given k copies of
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Proof of Theorem 7: We see that F(y, f ; 0) � f(y).
Aa,b

n �
2(a�b�1)�(n � a � 1)�(n � b � 1)

(2n � a � b � 1)n!�(n � a � b � 1)Define
(A27)

F (k) �
�kF(y, f ; t)

�t k
(t � 0). (A24)

and Pa,b
n (z) is defined by

We just prove the result for k � 1. The general case is P a,b
n (z) � �n � a

n �a0,n(z) (A28)
essentially the same. For the first derivative

(see Abramowitz and Stegun 1964, Equation 22.18),�F
�t

� �
1

0

f(x)
�C(x, y; t)

�t
dx

where a0,n(z) is defined recursively by

an,n(z) � 1 (A29)
� �

1

0

f(x)�x(1 � x)
2

�2C
�x 2

�
C
x�dx

am�1,n(z) � 1 �
(1 � z)tmam,n(z)

2m(a � m)
for m � n, n � 1, . . . , 1

� �
1

0

�2(x(1 � x)f(x)/2)
�x 2

C � f(x)C/x · dx (A30)

and
and so

tm � (n � m � 1)(a � b � n � m). (A31)
F (1) � lim

t→0
F(y,

�2(x(1 � x)f(x)/2)
�x 2

� f(x)/x ; t) The above formulas are recommended for numerical
work if one wishes to evaluate P a,b

n (z).
It is more convenient for us to work with polynomials� ��

2(x(1 � x) f(x)/2)
�x 2

� f(x)/x�
x�y

.
J a,b

n (x) defined on the unit interval by

This proves our result. J a,b
n (x) � P a,b

n (2x � 1),
Jacobi polynomials—some formulas: We give here

which are orthogonal on the unit interval with weightsome formulas involving Jacobi polynomials, necessary
function wa,b(x) � xb(1 � x)a andfor calculations using the orthogonal polynomial expan-

sion of Theorem 1. Our main source is Abramowitz �
1

0

Wa,b(x)J a,b
n (x)J a,b

m (x)dx � �mnNa,b
n , (A32)

and Stegun (1964, Chap. 22).
The Jacobi polynomials P a,b

n (z) are orthogonal on the where
interval [�1, 1] with respect to the weight function
Wa,b(z) � (1 � z)a(1 � z)b. We normalize so that Na,b

n �
Aa,b

n

2a�b�1

Pa,b
n (1) � �n � a

n � . (A25)
�

�(n � a � 1)�(n � b � 1)
(2n � a � b � 1)n!�(n � a � b � 1)

(A33)
With this normalization

and Aa,b
n is given by Equation A27.

�
1

�1

Wa,b(z)Pa,b
n (z)P a,b

m (z)dz � �mnAa,b
n , (A26) We have a � b � 1 for the Kimura case and a � 1,

b � 3 for the coalescent case. With a � 1 our normaliza-
tion is Pa,b

n (1) � J a,b
n (1) � n � 1.where Aa,b

n is given by


