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Statistical Properties of Two Tests that Use Multilocus Data Sets to Detect
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University

We describe two methods for detecting population expansions based on variation at unlinked microsatellite loci.
The tests were first used in a study of human demographic history that showed evidence for a Paleolithic human
population expansion in Africa. Here, we provide a simple recipe for applying the tests to other data sets and
describe the power of the tests as a function of the sample size, number of loci, mutation rate, diploid population
size N0, and time since expansion. An important property of the tests is that as long as the population doubles at
least once every 0.1N0 generations, where N0 now represents the pre-expansion population size, and the overall
factor of expansion is sufficiently large, the signal of growth will be nearly identical to one generated by a sudden
and massive expansion. This greatly simplifies the mathematical modeling necessary to evaluate the test results but
also means that many patterns of growth will be indistinguishable using the tests. A second conclusion from our
analysis is that the tests show different sensitivities to specific deviations from the biological and demographic
models. Hence, more information can be garnered from the two tests taken together than from either alone.

Introduction

We describe two tests that use patterns of diversity
at unlinked microsatellite loci to study demographic his-
tory (Reich and Goldstein 1998). Previous tests for pop-
ulation expansions, applied mainly to DNA sequence
variation at the control region of mitochondria (Rogers
and Harpending 1992), have yielded ambiguous results
because they utilize information from only a single lo-
cus. The problem with single-locus studies is that the
effect of a selective sweep on a linked gene cannot be
distinguished from the effect of a population expansion.
Multilocus data, however, can distinguish between de-
mographic effects and selection because population
growth produces a signal at all loci, while selection only
influences linked loci.

The basis of our approach is that gene genealo-
gies—the trees of ancestral relationships among sampled
alleles—reflect a population’s history of growth. For a
constant-sized population, a gene genealogical tree tends
to be dominated by only a few ancient bifurcations, and
mutations occurring in the oldest parts of the tree tend
to divide the alleles into a few distinct clusters (Don-
nelly 1996). On the other hand, for an expanding pop-
ulation, allele types do not tend to be clustered (Don-
nelly 1996). By taking advantage of the systematic dif-
ferences in gene genealogies for the two scenarios and
by assuming a simple stepwise mutation model for mi-
crosatellites whereby allele lengths change by a single
unit and the direction of change is unbiased, we have
developed within-locus and interlocus tests of demo-
graphic history (Reich and Goldstein 1998).

Two Tests for Population Expansion
Within-Locus k Test

The within-locus test (Reich and Goldstein 1998)
is based on the assumption that microsatellite loci mu-
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tate according to a simple stepwise model, as well as on
expectations about the systematic differences in the
shapes of allele-length distributions for constant-sized
and expanding populations. In the case of a constant-
sized population, the typical allele-length distribution at
a locus is expected to have several modes, correspond-
ing to the small number of ancient bifurcations in the
gene genealogy at that locus, while for an expanding
population, the distribution is expected to have a single
mode and to be more peaked (Reich and Goldstein
1998).

Peakedness is classically quantified using the kur-
tosis, g4/s423, where s4 is the variance squared and g4
is the fourth central moment of a frequency distribution.
The kurtosis is expected to be positive if a distribution
is more peaked than Gaussian and is expected to be
negative otherwise. Reich and Goldstein (1998) defined
a statistic, denoted k, which measures peakedness and is
centered at 0 for the allele length distributions expected
from a constant sized population. The combination of
statistical moments was selected by trial and error using
coalescent-based simulations (Appendix 2), and the val-
ue of k tends to decrease with the greater peakedness
and the higher value of the kurtosis that occurs after an
expansion.

Specifically, k is a linear combination of unbiased
estimators—S2 for the variance, Sig4 for the variance
squared, and Gam4 for the fourth central moment (Ap-
pendix 1)—and an adjustment for the sample size, n.
We used computer simulations (Appendix 2) to assign
weights to these terms and adjusted the weights empir-
ically, so that for a constant-sized population, k is pos-
itive about 50% of the time for as wide as possible a
range of sample sizes and values of N0n. (N0 is the dip-
loid effective population size, and n is the mutation
rate.)

k 5 2.5∗Sig4 1 0.28∗S2 2 0.95/n 2 Gam4 (1)

The relationship between k and the kurtosis is ev-
ident in equation (1). Specifically, when the equation is
divided through by (2Sig4), the first and last terms form
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FIG. 1.—The probability of obtaining a positive k as a function
of sample size and N0n under an assumption of constant population
size. For each data point (i.e., combination of sample size and N0n),
we perform 10,000 simulations and calculate the probability of a pos-
itive k based on the simulations. The probability fluctuates in a narrow
range, between 0.515 and 0.55, for sample sizes of at least 10 and N0n
. 0.5.

an estimator for g4/s422.5, and thus the equation has a
similar form to the kurtosis. The additional terms of
equation (1), although not directly related to the kurto-
sis, are included to ensure that the probability of a pos-
itive k is nearly constant for as wide as possible a range
of sample sizes and values of N0n. As shown in figure
1, the probability that k is positive is fully constrained
between 0.515 and 0.55 for sample sizes of at least 10
and N0n . 0.5. To make sure that N0n is at least 0.5,
we use the relation that for a population of constant size,
E[Var] 5 2N0n (Zhivotovsky and Feldman 1995), im-
plying that if the variance of an allele-length distribution
at a locus (Var) is greater than 1, it is likely to meet the
conditions on N0n. Finally, to implement the test, we
limit ourselves to loci for which the sample size is at
least 10 and the variances of allele-length distributions
are at least 1 and count the proportion of loci that give
positive k values. In order to assess significance levels,
we use a binomial distribution with the number of trials
equal to the number of loci and the probability of a
positive k set conservatively at its lower boundary of
0.515.

Interlocus g Test

Variance in the widths of allele-length distributions
across loci is usually lower in an expanding population
than in a constant-sized population (Reich and Goldstein
1998). Thus, by measuring the variance of the allele-
length distribution at each locus (Vj) and considering the
variance of these variances across loci (Var[Vj]), we ob-
tain a statistic that can be compared with its theoretical
expectation to test for size constancy. An interlocus test

on this basis can be applied to any type of genetic marker.
However, what makes our test specific for microsatellites
is the incorporation of the analytical expectation of
Var[Vj] for the specific case of the stepwise mutation
model.

To implement this approach, we use the analytical
result for E[Var[Vj]] in the case when microsatellite mu-
tations are single step and mutation rates are the same
across loci and there is no selection (Roe 1992, pp. 137–
203; Zhivotovsky and Feldman 1995):

E[Var[Vj]] 5 (4/3)(E[Vj])2 1 (1/6)E[Vj]. (2)

Here, E[Vj] is the expected value of the variance at a
given locus. Kimmel and Chakraborty (1996) have
shown this equation to be true even for directionally-
biased mutations.

To formulate the interlocus test explicitly, we con-
sider the ratio Var[Vj]/E[Var[Vj]]; that is, the ratio of the
observed to the predicted variance of the variance. Sub-
stituting the average variance across loci (V̄) for the ex-
pected variance (E[Vj]) in equation (2), the test statistic
we propose is as follows:

Var[V ]j
g 5 . (3)

4 1
2¯ ¯V 1 V

3 6

An unusually low value of g may be interpreted as an
indication of an expansion.

Significance levels for the interlocus test are ob-
tained empirically, using a modified form of Hudson’s
(1990) coalescent computer simulation (see Appendix
2). A look-up table of 0.05 significance level cutoffs for
a range of numbers of loci and sample sizes—including
the g 5 0.333 cutoff for 30 loci and 40 samples used
in many of the examples in this paper—is given in table
1. Importantly, the behavior of g is nearly independent
of the mutation rate and population size for all N0n .
0.5 (fig. 2), so that the cutoffs provided in table 1 are
valid for many values of N0n even though they were
derived specifically for N0n 5 0.63. However, the inter-
locus test also applies when N0n , 0.5, even though
cutoffs are not presented for this case. Whatever the
underlying value of N0n, loci should never be selectively
dropped from the analysis, even if they are monomor-
phic, because doing so would cause bias in the test re-
sults. An exception to this rule might be made in cases
of a priori evidence for a lower mutation rate, for ex-
ample due to an interrupted stretch of repeats in the
microsatellites.

An alternative multilocus test of demographic his-
tory has recently been introduced for use with micro-
satellite data (Kimmel et al. 1998). This is based on an
‘‘imbalance index,’’ b(t), which is a ratio of two esti-
mators for 4N0n: one using the average variance across
loci, and the other using the average heterozygosity. The
imbalance index changes in response to population ex-
pansions and bottlenecks, because its numerator and de-
nominator are differently affected by departures from
size constancy. However, the intuitive effects of an ex-
pansion on b are not obvious, as in the case of g. In
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Table 1
Fifth-Percentile Cutoffs for Interlocus Test

NUMBER

OF LOCI

SAMPLE SIZE

10 20 40 80 160

5. . . .
6. . . .
7. . . .
8. . . .

10. . . .

0.12
0.13
0.16
0.19
0.23

0.10
0.12
0.15
0.16
0.19

0.08
0.11
0.14
0.15
0.17

0.08
0.10
0.13
0.15
0.18

0.08
0.10
0.12
0.14
0.17

12. . . .
14. . . .
17. . . .
21. . . .
25. . . .

0.26
0.29
0.31
0.35
0.38

0.21
0.24
0.26
0.29
0.33

0.20
0.22
0.25
0.28
0.31

0.19
0.22
0.24
0.27
0.30

0.19
0.22
0.24
0.27
0.29

30. . . .
37. . . .
44. . . .
53. . . .
64. . . .

0.39
0.47
0.48
0.53
0.54

0.36
0.39
0.43
0.46
0.47

0.33a

0.37
0.40
0.42
0.45

0.33
0.35
0.37
0.41
0.43

0.32
0.35
0.37
0.41
0.44

77. . . .
92. . . .

110. . . .
133. . . .
159. . . .

0.56
0.60
0.63
0.67
0.70

0.51
0.54
0.56
0.59
0.61

0.47
0.50
0.54
0.56
0.57

0.46
0.49
0.51
0.53
0.57

0.45
0.48
0.51
0.53
0.56

191. . . .
230. . . .

0.73
0.76

0.65
0.67

0.61
0.64

0.58
0.62

0.58
0.61

NOTE.—Each entry in the table is obtained on the basis of 2,000 simulations
of a constant-sized population, with N0n 5 2.5. Since g is nearly independent
of N0n for N0n . 0.5, the cutoffs apply to a range of values of N0n and not just
to 2.5. Interestingly, the cutoffs decrease with increasing sample size, the reason
being that the variance at each locus is measured less reliably when the sample
size is smaller, and hence the variability of the variances across loci is larger.

a The fifth-percentile cutoff of g 5 0.33 is used in many of the examples in
this paper.

FIG. 2.—Ninety percent central confidence intervals for g and the average value of g over 1,000 simulations, under the assumption of a constant
population size. For each value of N0n, we use 30 loci and a sample size of 40 and calculate the expectation and confidence interval for g. When N0n
is greater than 0.25, g is nearly independent of N0n. The near independence of g from N0n also holds for other numbers of loci and sample sizes.

addition, statistical concerns about b(t) remain. For ex-
ample, due to the statistical difficulties posed by ratios
of random variables, Kimmel et al. (1998) construct b(t)
as the ratio of the estimators averaged separately. How-
ever, it may be that variation in the mutation rate causes
the ratio of the expectations to have a different value
from the expectation of the ratios. Despite these poten-
tial problems, g and b(t) may turn out to be comple-
mentary, with different sensitivities to certain aspects of
demographic history.

Power of Tests as a Function of Number of Loci,
Sample Size, and Value of N0n

In designing studies of demographic history, it is
important to know how many loci, what sample size,
and what value of N0n, where N0 now represents the
pre-expansion population size, are necessary for the
tests to have a specific level of resolving power. To as-
sess these questions, we consider 100-fold expansions
that began N0 generations ago and that have an approx-
imately 50% chance of producing unusually low test
statistics for 30 loci, a sample size of 40, and an N0n
value of 0.88. (This set of conditions is evaluated for
both the within-locus and interlocus tests.) By varying
the number of loci, sample size, and N0n in turn (with
the other two parameters fixed at the above values), the
power of the tests can be assessed as a function of the
three main demographic parameters.

The power of a test is one minus the probability
that the test fails to reject size constancy for a particular
combination of parameters when an expansion actually
occurred (that is, one minus the Type II error rate). To
estimate this probability, it is first necessary to find the
fifth-percentile lower cutoffs for the proportion of pos-
itive k values (within-locus test) and for the value of g
(interlocus test). The cutoffs for the within-locus test are
obtained from the binomial distribution, and the cutoffs
for the interlocus test are taken from table 1. By per-
forming 1,000 computer simulations for each of several
combinations of demographic parameters, and then
counting the proportion of test statistics that are above
the fifth-percentile cutoffs when a 100-fold sudden ex-
pansion occurred N0 generations ago, we derive the
probability of not rejecting size constancy and use one
minus this probability to calculate the power of the tests
(fig. 3).

Figure 3A shows that the power of both tests in-
creases with an increasing number of loci. Figure 3B
shows that the power of the within-locus test increases
with increasing sample size, while the power of the in-
terlocus increases very little once the sample size is
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FIG. 4.—(A) Power of the within-locus test and the interlocus test
as functions of the number of loci, for a sample size of 40, and for
population growth from N0n 5 0.88 to Nfn 5 88. The power is defined
as 1 minus the probability of not detecting an expansion at the 5%
significance level if one indeed occurred. To obtain this probability,
we assume a model of 100-fold growth that occurred 1.0N0 generations
ago, perform 5,000 simulations for each combination of parameters,
and calculate the percentage of results that are below the fifth percen-
tile cutoff for a constant size population. Graph (B) shows the power
of the two tests as functions of sample size, for 30 loci and population
growth from N0n 5 0.88 to Nfn 5 88. Each data point is calculated
on the basis of 1,000 simulations. Graph (C) shows the power of the
two tests as functions of N0n, for 30 loci and a sample size of 40 and
with each data point calculated on the basis of 5,000 simulations.

←

FIG. 3.—Confidence intervals for the within-locus and interlocus test statistics as functions of the time since expansion. We perform 10,000
simulations for each date of expansion and consider 100-fold growth from N0n 5 0.88 to Nfn 5 88 with 30 loci and a sample size of 40. The
within-locus test statistic is expected to be lowest for an expansion that occurred 5.1N0 generations ago, and the probability of detecting an
expansion using the test is expected to be greater than 50% for expansions that occurred 0.87N0 2 26N0 generations ago (A). The date range
is given by the intersection points of the 50th percentile cutoff for a constant-sized population and the curve. In contrast, the interlocus test
statistic (g) is expected to be lowest for an expansion that occurred 14.6N0 generations ago, and the probability of detecting an expansion is
expected to be greater than 50% for expansions that occurred 1.02N0 2 171N0 generations ago (B).

above a minimum. The reason for this is that the within-
locus test is based on the fourth central moment—best
assessed using a large sample size—while the interlocus
test is based on the variance, which can be estimated
with relatively fewer samples. Finally, figure 3C shows
that the power of both tests is nearly independent of N0n
as long as N0n $ 1.0, as noted elsewhere. However, the
test statistics will not be independent of N0n if micro-
satellites are subject to constraints on the lengths of al-
leles.

Due to space limitations, only a few combinations
of demographic parameters are presented in figure 3.
Three general principles, however, are apparent: (1) in-
creasing the number of loci increases the power of both
tests, (2) increasing the sample size increases the power
of the within-locus test only, and (3) the magnitude of
N0n affects neither test when N0n . 1.0.

Sensitivity of Within-Locus and Interlocus Tests to
the History of Expansion

Statistical signals of expansion take a considerable
time to develop and fade gradually as the genetic vari-
ation in a population approaches a new state of muta-
tion-drift equilibrium. The time window of sensitivity of
the within-locus and interlocus tests—that is, the range
of dates for which growth would be detected at a spec-
ified significance level—is now explored for a range of
demographic models.

Sudden and Gradual Expansions

We begin by simulating 100-fold, sudden popula-
tion growth from N0n 5 0.88 to Nfn 5 88, where Nf is
the postexpansion population size. For each date of ex-
pansion, we perform 1,000 simulations—each involving
30 unlinked microsatellite loci and a sample size of
40—and calculate central confidence intervals for the
two tests. The dates of expansion to which the tests are
maximally sensitive, that is, that produce the most
marked reductions of the expected test statistics, are
5.1N0 generations ago for the within-locus test, and
14.6N0 generations ago for the interlocus test (fig. 4).
The within-locus test is more sensitive to recent expan-
sions than the interlocus test, a fact that is also reflected
in the dates of expansion that the tests can detect with
greater than 50% probability: 0.87N0 to 26N0 genera-
tions ago for the within-locus test, and 1.02N0 to 171N0
generations ago for the interlocus test (data not shown).
Simulations for a range of N0n values other than 0.88
show that as long as N0n . 0.5, the range of dates of
expansion to which the tests are most sensitive, scaled
in units of N0, is independent of N0n.

We now plot the proportion of loci with positive k,
and the average value of g, against the time since ex-
pansion for 10-fold, 100-fold, and 1,000-fold expansions
(fig. 5). The minimum points of the curves in figure 5,
corresponding to the dates of expansion to which the
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FIG. 5.—(Sudden growth) Average values of the within-locus statistic (A), and the interlocus statistic (B), as functions of the time since
expansion and the factor of sudden growth. For each date of expansion, we use 30 loci, a sample size of 40, and calculate test statistics based
on an average of 250 simulations. The contours correspond to 10-fold, 100-fold, and 1,000-fold growth from N0n 5 0.88. Immediately following
the expansion (the left side of the figure), the behavior of both test statistics is nearly independent of the factor of expansion.

FIG. 6.—(Exponential growth) Average values of the within-locus
statistic (A) and the interlocus statistic (B), as functions of the time since
expansion and the rate of exponential growth. For each date, we use 30
loci and a sample size of 40 and calculate test statistics based on an average
of 1,000 simulations. The contours correspond to doubling every 0.1N0,
0.03N0, 0.01N0 and 0.001N0 generations (the population size is held con-
stant at N0 before the expansion begins). For comparison, we show a
contour corresponding to a massive, 10,000,000-fold sudden expansion.
For all contours shown, the test statistic is always within 10% of what is
predicted for a massive, sudden expansion.

tests have the greatest sensitivity, occur at older times
when the factor of expansion is larger, since it takes a
longer time for the population to return to mutation-drift
equilibrium. A second important property of the tests—
which can also be seen in figure 5—is that the test sta-
tistics are independent of the growth factor in the period
immediately following expansion. To quantify this ob-
servation, we compare the average test statistics for a
massive (10,000,000-fold) expansion, to those occurring
for smaller factors of growth. Specifically, we assess
how long after an expansion the average test statistics
stay within 10% of the value expected for a 10,000,000-
fold expansion: the answer is 0.7N0 generations in the
case of a 10-fold expansion, 2.3N0 generations in the
case of a 100-fold expansion, and 20N0 generations in
the case of a 1,000-fold expansion. We conclude that if
the factor of growth is large enough, and the time since
expansion is less than a value determined by the factor
of expansion, the tests have almost no power to distin-
guish among various factors of sudden growth. This is
actually a manifestation of a more general property of
the tests: whether growth is sudden or more gradual, the
tests have almost no power to distinguish among alter-
native scenarios of expansion. The behavior is likely to
be due mainly to the effects of growth on gene gene-
alogies, and is therefore probably a general feature of
genetic tests of demographic history.

We now consider the effect of gradual expansions
(as opposed to sudden expansions) on the test statistics.
Specifically, we consider the case of exponential growth.
Figure 6 shows that when the population size doubles
at least once every 0.1N0 generations, the expected val-
ues of the test statistics are always within 10% of the
expectation for a massive (10,000,000-fold), sudden ex-
pansion (fig. 6). The same holds true for more complex,
nonexponential histories of expansion, as long as dou-
bling occurs at least once every 0.1N0 generations. The
similar behavior of the test statistics for a range of
growth rates—evident in figure 6—greatly simplifies the
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the tests are most sensitive—that is, the position of the peaks of the
curves in (A) and (B)—is substantially higher for the within-locus than
for the interlocus test. Finally, for severe bottlenecks that ended 0 gen-
erations ago, the test statistics behave irregularly because the allele-
length distributions have extremely low variance (hence, the contours
corresponding to these cases, in A and B, are truncated).

→

FIG. 7.—Average values of the within-locus statistic (A), the in-
terlocus statistic (B), and variance of the allele-length distribution (C),
for sudden growth interrupted by a bottleneck that lasts 0.04N0 gen-
erations. Inset shows the time course for this scenario of growth in-
terrupted by a bottleneck. For each combination of parameters, we use
30 loci, a sample size of 40, an N0n value of 0.88, and perform 1,000
simulations of a 100-fold sudden expansion that began 3.0N0 genera-
tions ago and that was interrupted by a bottleneck ending 0, 0.5N0,
1.0N0 or 2.0N0 generations ago. The average value of the test statistic
in the absence of a bottleneck can be extrapolated from the far left
side of the curves in (A) and (B). The factor of contraction to which

study of demographic history using these tests. In par-
ticular, for many realistic growth scenarios, we can treat
gradual expansions as if they had been sudden. For ex-
ample, in the case of the Paleolithic human population
expansion that was recently detected in Africa (Reich
and Goldstein 1998), the doubling need only have oc-
curred at least once every 10,000 years—assuming a
pre-expansion population size of at least 4,000 and a
generation time of 25 years—for the expansion to have
been effectively sudden from the perspective of our
tests. Since 10,000 years and 4,000 individuals seem to
be a rather minimal requirement for a doubling time and
pre-expansion population size in humans, the assump-
tion of a sudden expansion (Reich and Goldstein 1998)
seems appropriate.

There are also certain cases in which it is not valid
to treat expansions as sudden: for example, when the
population doubles less frequently than once every
0.1N0 generations. In such circumstances, the earliest
periods of growth dominate the test statistics, since they
influence the times of occurrence of the first few bifur-
cations in the genealogical trees. These are the critical
bifurcations for determining the shapes of allele-length
distributions.

Population Growth Interrupted by a Bottleneck

We now examine the response of the test statistics
to strong growth interrupted by a bottleneck. For sim-
plicity, we consider a model in which a sudden popu-
lation expansion, by a factor of F, occurs t0 generations
ago. The population remains constant in size until t1 1
Dt generations ago, at which point it contracts to NC
individuals for Dt generations. Finally, the population
returns to the prebottleneck size (Nf 5 N0F) at time t1,
and remains static until the present. Using coalescent
simulations of this model, we estimate average values
for the test statistics (and also the average value of the
variance across loci) as functions of several demograph-
ic parameters. Figure 7 graphs simulation results for the
average test statistics and average variance when the pa-
rameters F, N0n, t0, and Dt are fixed at 100, 0.88, 3.0N0
generations, and 0.04N0 generations, respectively, and
when the population size during the bottleneck, NC, and
the time when the bottleneck ended, t1, are varied. As
shown, the average test statistics tend to be raised due
to a bottleneck; however, when the population contrac-
tion during the bottleneck is sufficiently severe, the av-
erage value can actually be depressed below what is
expected, which explains why the curves are nonmon-
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FIG. 8.—The effect of the duration of the bottleneck (Dt) on the
interlocus test. Using 30 loci, a sample size of 40, and an N0n value of
0.88, and considering a 100-fold expansion that began 3.0N0 generations
ago and was interrupted by a bottleneck 1.0N0 generations ago, we per-
form 1,000 simulations for each data point. As shown in the figure, an
increase in Dt by a certain factor causes the contours to shift to the left
by the same factor. Similar effects occur for the within-locus test.

otonic. Another important feature of figure 7 (A–C) is
that the effects of a bottleneck are more pronounced
when the bottleneck is relatively recent (i.e., t1 is small),
than when the bottleneck is older.

To understand the behavior of figure 7, note that a
bottleneck increases genetic drift, thereby transforming
the starlike genealogies expected for an expansion into
the more clustered topologies expected for a constant-
sized population. However, the opposite effect can also
occur: when a bottleneck is sufficiently severe, geneal-
ogies tend to become more starlike, and a powerful sig-
nal of expansion is generated because the typical gene
genealogy is reduced to only a single ancestral lineage
as old as the bottleneck, and this resets the genetic
‘‘clock’’ in the sense that the average statistics are below
what is expected even in the absence of a bottleneck (cf.
the right side of the curves in fig. 7A and B). Interest-
ingly, the resetting of the genetic clock actually requires
a more severe contraction in the case of the interlocus
test than in the case of the within-locus test (cf. the peak
positions in fig. 7A and B). For the interlocus test, every
one of the sampled loci must be reduced by drift to a
single lineage before the genetic clock is reset, while for
the within-locus test, the clock is reset locus by locus
and the overall requirement for the development of a
new signal of expansion is less stringent.

We now consider the effects of varying the param-
eters that were held fixed in figure 7. Variation in t0 has
a complex effect on the test statistics; however, the fac-
tor of expansion to which the tests are maximally sen-
sitive, as well as the overall shape of curves in figure
7A and B, is independent of t0. Variation in Dt and its
effect on the interlocus test statistic is depicted in figure
8. Figure 8 shows that when Dt is changed by a given
factor, the curves in figure 7B shift to the left by the
same factor and are mostly unchanged in shape after the
shift. (Similar effects are observed for the k statistic.)
Hence, it is possible to extrapolate the quantitative re-
sults of figure 7A and B to bottlenecks of durations other
than 0.04N0 generations. Indeed, if the ‘‘severity’’ of the
bottleneck is defined as a simple combination of NC and

Dt—N0Dt/NC—figure 7A and B can be used to make the
very rough estimate that if Dt(N0/NC) , 0.04 (in units
of N0 generations) for the within-locus test, or Dt(N0/
NC) , 0.08 (in units of N0 generations) for the interlocus
test, the test statistics will be essentially unaffected by
a bottleneck. When NC is time-dependent, a similar ex-
pression (involving an integral over the duration of the
bottleneck), is the critical determinant of the effect on
the test statistics (not shown).

Application to Human Demography

In connection with an expansion that was recently
detected in Africa but not outside of Africa, Reich and
Goldstein (1998) speculated that the statistical signal of
population expansion may have been generated among
the ancestors of all modern humans in the Paleolithic
but was then erased in non-African groups due to a pop-
ulation bottleneck that occurred approximately 80,000–
100,000 years ago during the emergence of the first hu-
mans from Africa. In order to test this idea, we used
Rogers and Harpending’s (1992) estimation (based on
analysis of variability in mitochondrial DNA) of an ex-
pansion from N0 5 3,254 to Nf 5 547,586 estimated to
have occurred 4,800 generations ago (cf. Kimmel et al.
[1998]). With an estimated mutation rate for dinucleo-
tide microsatellites of n 5 5.6 3 1024 (Weber and Wong
1993), this corresponds to an expansion from N0n 5 1.8
to Nfn 5 306 occurring 1.48N0 generations ago. We then
model a bottleneck starting 1.04N0 generations ago
(85,000 years ago, assuming 25 years per generation)
and lasting for 0.04N0 generations. Our simulations
show that a bottleneck of this type could indeed have
obscured an ancient signal of expansion, and would be
expected to cause a rise in the average value of g above
the 0.05 percentile lower cutoff for significance as long
as Dt(N0/NC) is in the approximate range 0.00025 ,
Dt(N0/NC) , 0.0045 (in units of N0 generations; see e.g.,
fig. 7B). This bottleneck is not expected to cause g to
rise above the cutoff if the bottleneck occurred more
than 1.2N0 generations ago. Note that erasure of a signal
of population expansion outside of Africa is not neces-
sarily the result of an out-of-Africa bottleneck; it could
also be due to more recent bottlenecks, or to population
structure (see below) in non-African populations.

Our time-sensitivity results also shed light on the date
of the detected human population expansion. In particular,
to evaluate our estimate that the expansion was Paleolithic,
we ask whether the expansion would have been likely to
be detected had it occurred in the Mesolithic or Neolithic
time periods. As described above, the most recent popu-
lation expansion that can be detected with greater than
50% probability is 0.87N0 generations ago for the within-
locus test and 1.02N0 generations ago for the interlocus
test. If we now assume that effective African population
sizes were at least 50,000 during the Neolithic and Me-
solithic, this translates to dates of expansion of 1.1 million
years ago and 1.3 million years ago, respectively (assum-
ing a generation time of 25 years). It therefore seems un-
likely that the tests would be able to detect a Mesolithic
or Neolithic expansion. We conclude that in the case of
human demographic history, the two tests are not expected
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to be sensitive to any but the most ancient expansions that
began from relatively small population sizes. Indeed, be-
fore applying these approaches to any data set (not just
human data sets), it may be worth making a quick assess-
ment—based on what is known about the history of the
species and about the properties of the tests—to anticipate
whether the expansions of interest are likely to be detected
by the tests or whether the pre-expansion population size
and age of the species rule out detection.

Estimating a Date of Expansion and Other
Parameters

To estimate a date for a detected expansion, we
assume a model of sudden growth by a fixed factor, F,
and use computer simulations to find the range of ex-
pansion times and pre-expansion N0n’s that are consis-
tent with the observed variance and test statistic (Reich
and Goldstein 1998). A particular combination of pa-
rameters (including a date of expansion) is considered
to be ‘‘allowed’’ if the observed values of the variance
and test statistics are within the specified confidence in-
tervals determined from computer simulation. To cal-
culate the allowed range of dates for the expansion, we
then take the full set of dates that, when combined with
an appropriate value of N0n, are consistent with the ob-
served variance and test statistic in the sense that they
comprise an allowed parameter combination. These al-
lowed ranges of dates are specific to a particular factor
of expansion, F. To find allowed ranges of dates for
other factors of expansion and more complex models of
growth, it is necessary to perform further analysis.

We now show how the same simulations can be used
to construct a likelihood surface for the observed results
as a function of the date of expansion and value of N0n.
By counting the proportion of results—for each combi-
nation of parameters—that are within a narrow window
around the observed variance and test statistic, we obtain
a surface that is generally bimodal, with peaks at positions
that vary with the factor of expansion F. To understand
this, we consider a graph showing the average value of
the test statistic as a function of the time since expansion
(fig. 5). By drawing a horizontal line through the graph at
the height of the observed value of the within-locus or
interlocus test statistic, we understand immediately why
the likelihood surface has two peaks, and we can roughly
identify the positions of the peaks as a function of the time
since expansion. Specifically, the two dates when the hor-
izontal line and the curve intersect (that is, the dates for
which the expected value of the test statistic is equal to
the observed value), correspond roughly to the most likely
dates of expansion and the peaks in the likelihood surface.
The more recent of the two peaks corresponds to a pop-
ulation that is just beginning to register a signal of expan-
sion, while the older peak corresponds to a population that
is returning to equilibrium after an older expansion. Note
that the points of intersection do not give the best estimates
of the positions of the peaks. To obtain the best estimates,
it is necessary to take into account the observed average
variance across loci.

We now consider how date estimates change in re-
sponse to different factors of growth. Figure 5 shows
growth factors of 10, 100, and 1,000; in all three curves,
the expected value of both test statistics shrinks in the
period immediately following the expansion, then rises
again to its equilibrium levels when the expansion is
sufficiently old. Thus, a typical horizontal line through
figure 5 intersects the curves twice, with the date of the
more recent intersection being the same regardless of
the factor of expansion and the date of the older inter-
section varying with the factor of expansion. To take a
specific example, consider a horizontal line through fig-
ure 5B at the level g 5 0.4, and note that it first inter-
sects all three curves at a time lag of about 1.2N0 gen-
erations but intersects the other part of the curves at time
lags of 20N0, 200N0, and 2,000N0 generations for F 5
10, 100, and 1,000, respectively. The similar values of
the curves shortly after expansion are due to the inability
of the tests to distinguish between different factors of
growth in the case of recent expansions. The different
values of the curves at the right side of the figures are
due to the fact that the rate of return to mutation-drift
equilibrium depends on population size.

The independence of the more recent intersection—
and hence the date of the more recent peak in the like-
lihood surface—from the assumed model of population
growth is especially useful when it is possible to use
other evidence, for example from the fossil record, to
eliminate the possibility of the ancient peak. If we can-
not eliminate an ancient peak, however, our estimate for
the date of expansion will be subject to error depending
on our assumptions about growth history. There are also
other complications that can affect date estimation. For
example, if a population has undergone a series of small
expansions over an extended period of time or if a se-
vere bottleneck has occurred, a date estimate would be
obtained that is not likely to correspond to a specific
historical expansion.

Finally, it is possible to estimate other parameters:
specifically, the maximum pre-expansion population size,
N0, and the minimum post-expansion population size, Nf.
To obtain these values, we assume a variety of factors of
expansion, and for each F, use the N0n values associated
with the most recent and oldest “allowed dates” to find
a maximum pre-expansion population size (N0), and min-
imum post-expansion population size (Nf). In principle,
the estimates obtained in this way could be different for
each factor of expansion. However, we find that the max-
imum N0 and minimum Nf (but not the minimum N0 and
maximum Nf), are generally extremely robust to changes
in the assumed F if it is sufficiently large (Reich and
Goldstein, unpublished data).

Complications in the Model

We have assumed single-step and unbiased muta-
tions that are constant in rate across loci, and we have
also assumed unstructured populations, an absence of
selection, and independent sampling. In what follows,
we explore the effects of departures from these assump-
tions on the test statistics (cf. tables 2 and 3).
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Table 2
Quantitative Effects of Deviations from Assumed Model on the Fifth-Percentile Cutoffs for the Within-Locus and
Interlocus Tests

Average Step Size s̄

(A) Multi-step mutations 1.0 1.05 1.1 1.15 1.2 1.35 1.5 2.0
Within-locus test

Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1
0.05

0.92
0.08

0.92
0.12

0.92
0.14

0.83
0.17

0.75
0.25

0.75
0.28

0.75
0.35

Interlocus test
Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.05

1.03
0.04

1.07
0.03

1.09
0.03

1.12
0.03

1.15
0.02

1.15
0.02

1.17
0.02

(B) Interlocus variability in mutation rate

Variance of N0n in Units of (N0n)2

0.0 0.05 0.1 0.2 0.3 0.4 0.8 1.6
Interlocus test

Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.05

1.06
0.04

1.11
0.03

1.2
0.01

1.36
0.007

1.42
0.005

1.88
0.002

2.59
0.000

(C) Interlocus variability in step size

Variance of s̄ (using E[s̄] 5 1.2)

0.0 0.01 0.02 0.04 0.08 0.16 0.32 0.64
Interlocus test

Ratio of observed cutoff to Var[s̄] 5 0.0 cutoff . . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.03

1.03
0.02

1.05
0.02

1.12
0.02

1.20
0.006

1.29
0.008

1.37
0.006

1.34
0.009

(D) Three-island model with migration

Migration Rate (M 5 4N0m)

12.8 6.4 3.2 1.6 0.8 0.4 0.2 0.1
Within-locus test

Ratio of observed cutoff to no-deviations cutoff . . . . 1.0 1.0 1.08 1.08 1.17 1.25 1.25 1.33
Probability of false rejection of size constancy. . . . . . 0.05 0.04 0.03 0.03 0.01 0.009 0.006 0.008

Interlocus test
Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.05

1.02
0.05

1.03
0.04

1.08
0.03

1.18
0.02

1.35
0.007

1.61
0.002

1.84
0.001

(E) Multichotomy model

No. of Populations (tsep 5 1.0N0 generations)

2 3 4 5 7 10 15 25
Within-locus test

Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.08
0.02

1.17
0.02

1.17
0.01

1.17
0.01

1.08
0.02

1.08
0.03

1.0
0.05

0.92
0.08

Interlocus test
Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

0.96
0.06

0.92
0.08

0.88
0.09

0.86
0.11

0.78
0.14

0.71
0.2

0.65
0.24

0.61
0.31

(F) Double-counting of samples

Average Multiplicity of Samples

1 1.2 1.4 1.7 2 4 8 16
Within-locus test

Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.05

1.0
0.04

1.08
0.03

1.08
0.02

1.08
0.02

1.25
0.003

1.42
0.000

1.42
0.000

Interlocus test
Ratio of observed cutoff to no-deviations cutoff . . . .
Probability of false rejection of size constancy. . . . . .

1.0
0.05

1.01
0.05

1.03
0.04

1.06
0.04

1.10
0.03

1.26
0.01

1.58
0.001

2.30
0.000

NOTE.—To calculate each entry in tables 2A–F, we assume a constant sized population and perform 5,000 coalescent simulations for 30 loci, a sample size of
40, and an average N0n of 0.88 (deviations are modeled as described in the text). For each combination of parameters, we provide the ratio of the fifth-percentile
cutoff calculated for the deviation, divided by the cutoff expected in the case of no deviations as well as by the probability of false rejection of size constancy
(probabilities less than 0.05 indicate a conservative test).

Deviations from the Mutation Model

Although the stepwise mutation model seems to de-
scribe changes in microsatellite allele lengths better than
alternative models, it is not completely accurate (Gold-
stein and Pollock 1997). We begin our study of devia-
tions by considering multistep mutations. In order to as-
sess this effect, we assume 30 loci, a sample size of 40,
and an N0n value of 0.88 and simulate genealogical trees
for constant-sized populations and with mutations dis-
tributed along the branches of the trees according to the

method described in Appendix 2. Each mutation has an
equal chance of increasing or decreasing the length of
an allele, and the number of steps is determined by add-
ing 1 to a random draw from a Poisson distribution with
parameter l. The average step size for an event drawn
from this distribution is s̄ 5 l 1 1. To determine the
probability of obtaining a false-positive signal of expan-
sion (Type I error rate), we then use the fifth-percentile
cutoffs for the case of a single-step mutation model.
Table 2A shows that the probability of a false positive
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Table 3
Qualitative Effects of Deviations from the Assumed Model on the Test Statistics, with Specific Application to Date
Estimation

Class of Deviation Description of Deviation
Effect on the Within-
Locus Test Statistic

Effect on Interlocus
Test Statistic

Effect on Rate of
Rise of the

Variance

Deviations from assumed
mutation model . . . . . . . .

Multistep mutations
Range constraints
Directional asymmetry

Falls
Depends on model
Slight rise

Rises
Depends on model
None

Quickened
Slowed
None

Variability across loci . . . . . Variable mutation rate
Variable average step size
Variable directional asymmetry

None
None
None

Rises
Rises
None

None
None
None

Population structure . . . . . . Island model with migration
Multichotomy model

Rises
Rises

Rises
Depends on model

None
None

Miscellaneous . . . . . . . . . . . Natural selection
Pseudoreplication

Falls
Rises

Rises
Rises

Slowed
None

NOTE.—The test statistics and the rate of rise of the variance after an expansion both have effects on date estimation. ‘‘Rises’’ indicates a conservative effect
on the test statistics, ‘‘Falls’’ indicates a nonconservative effect on the test statistics, and ‘‘Depends on model’’ indicates that the effect on the test statistics depends
on the specific type of range constraints that are in place.

is elevated above 5% in the case of the within-locus test
(a nonconservative effect) and reduced in the case of the
interlocus test (a conservative effect).

Second, we assess the effect of range constraints
on the test statistics and, specifically, a model of strict
upper and lower boundaries on the allowed allele
lengths (Feldman et al. 1997). The within-locus test sta-
tistic is expected to rise for this ‘‘reflecting boundaries’’
model because of the flattening of an allele-length dis-
tribution between the boundaries (a conservative effect).
In contrast, the interlocus test statistic is expected to fall
because the boundaries tend to restrict the variation of
variances across loci (a nonconservative effect). For
more realistic models of range constraints, involving
multistep mutations and length-dependent mutation
rates, the overall effect on the interlocus test may be
conservative. Indeed, it is difficult to predict the effect
of realistic range constraints on the test statistics.

Finally, we consider asymmetry in the direction of
mutations. Our simulations reveal that this has almost
no effect on the test statistics, although the within-locus
test is slightly conservative to asymmetric mutations
when the deviation is extreme (data not shown).

Variation in the Mutation Process Across Loci
We now consider sources of interlocus variation

and their effects on the interlocus test (for obvious rea-
sons, we do not describe effects on the within-locus
test). We begin by considering the effect of variation in
the mutation rate across loci on the interlocus test. For
this purpose, we assume the same set of parameters not-
ed earlier, except that to determine N0n for each locus,
we sample from a gamma distribution with a mean of
N0n 5 0.88 and a variance that is between 0.05(N0n)2

and 1.6(N0n)2. Table 2B shows that the fifth-percentile
cutoffs for g rise dramatically as variation in the muta-
tion rate across loci increases. A method for estimating
variation in the mutation rate across loci—which can
then be incorporated into adjusted fifth-percentile cut-
offs for the interlocus test—is described elsewhere
(Reich and Goldstein 1998).

A second source of variation across loci is vari-
ability in the likelihood that a microsatellite will under-

go multistep mutations. In order to assess this deviation,
we use the usual parameters, except that multistep mu-
tations occur with an average step size of s̄ (s̄ 5 l 1
1, as described above). To determine l at an individual
locus, we then take a random draw from a gamma dis-
tribution with a mean of 0.2 and a variance ranging from
0 to 0.64 (the average step size across loci is then E[s̄]
5 E[l] 1 1 5 1.2). As shown in table 2C, variability
in step-size across loci causes a rise in the interlocus test
statistic, which is a conservative effect.

Finally, we consider variation in the degree of mu-
tational asymmetry across loci, which our simulations
show to have very little effect on the test statistics (and
hence we do not present quantitative results for it in the
paper).

Deviations Due to Population Structure
To assess the effect of population structure on the

tests, we first consider an island model with migration,
in which there are j islands, each with a constant-sized
population of N0/j, and a probability of an individual
migrating away from its current island of m per gener-
ation (note that migration is assumed to occur with equal
probability to each of the other islands). To simulate this
model, we use Hudson’s (1990) coalescent algorithm
and consider a constant-sized population with 30 loci, a
sample size of 40, N0n 5 0.88, and a migration param-
eter of M 5 4N0m. The geographic distribution of sam-
pled alleles at each locus is assumed to be the same for
each locus, and each individual contributes a full com-
plement of alleles (two from each locus) to the data set.
Our simulations using three populations (table 2D) show
that both statistics are elevated above the expectation
for a panmictic population—a conservative effect that
is more pronounced when migration rates are low. The
effect occurs because population structure causes gene-
alogical trees to be dominated by a few deep splits and
to be more variable from locus to locus (Donnelly
1996). When the number of islands is different from 3,
the test statistics are also higher than the expectation for
a panmictic population (although the deviation from ex-
pectation is less pronounced for larger numbers of is-
lands).
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As an alternative model of population structure, we
consider a multichotomy, in which a population is as-
sumed to be panmictic until a fixed time in the past (tsep),
at which point it suddenly breaks up into j isolated sub-
populations, each of size N0/j. To simulate a multicho-
tomy, we use the same procedure as for the island mod-
el, but this time set the migration rate to be 0 and force
all subpopulations to be lumped together into a single
panmictic population at time tsep. Table 2E shows the
results of the simulations for tsep 5 N0 generations ago,
for 30 loci, a sample size of 40, and N0n of 0.88 and
for various numbers of subpopulations that together
comprise a constant-sized population. We observe that
the within-locus test is conservative (the statistic is el-
evated above the expectation for a panmictic population)
unless the number of subpopulations is 15 or larger. In
contrast, the interlocus test statistic is conservative for
two subpopulations, approximately equal to expectation
for three subpopulations, and suppressed below expec-
tation (a nonconservative effect) for four or more sub-
populations. The same qualitative effects are observed
for both tests for larger values of t—although the effects
are more pronounced when the value of t is larger.

Selection and Pseudoreplication

We now consider two additional deviations from
the assumed model: selection and pseudo-replication.
Selection is a major problem for single-locus studies be-
cause the effect of selection at a given locus cannot be
distinguished from a population expansion that would
affect all loci. If many loci are available, however, it is
possible to make such distinctions. In particular, for the
within-locus test, most loci will reflect the population’s
history, and it is unlikely that more than a few will con-
tribute to a misleading signal of expansion. In the case
of the interlocus test, selection is likely to affect some
loci and not others, increasing the variability across loci
and thereby causing a rise in g. The conservativeness of
the interlocus test in response to selection means that
the test can be used to confirm a departure from size
constancy that is detected by the within-locus test.

We also consider pseudoreplication, or double
counting of samples, which can result from experimental
error or accidental sampling of multiple individuals
from the same extended family. To assess the robustness
of our two tests to pseudoreplication, we perform sim-
ulations of constant-sized populations with 30 loci, a
sample size of 40, and N0n of 0.88 and resample the
alleles to mimic pseudoreplication. For each allele that
is produced in a run (beginning with allele i 5 1), we
assume that the allele is double-counted Di times, with
Di obtained by adding 1 to a random draw from a Pois-
son process with parameter k. To obtain the resampled
set of 40 alleles, we then take D1 alleles of type i 5 1,
D2 alleles of type i 5 2, etc., until we obtain the full
resampled set of 40 (the average amount of double
counting in this set is about D̄ ø 1 1 k). Table 2F shows
that an increase in the amount of pseudoreplication in-
creases the expected values of the test statistics—a con-
servative effect that applies to both the within-locus and
interlocus tests.

Date Estimation in the Presence of Deviation from the
Assumed Model

To describe how estimates for the dates of an expansion
change when there are deviations from the assumed
model, we return to the illustration of a horizontal line
crossing the curves in figure 5 at the level of the ob-
served test statistic. The intersections of the line with
the curves roughly determine the positions of the peaks
of the likelihood surface, and if the curves are shifted
up (or down) due to a deviation from the assumed mod-
el, the maximum-likelihood peaks will also shift. For
example, if the deviation causes a systematic rise in the
test statistics, the estimate for the date of the more recent
likelihood peak will be too recent, the estimate for the
date of the older likelihood peak will be too old, and
the allowed dates of expansion will cover too wide a
range. Opposite effects are expected when the deviations
cause a fall in the expected test statistic.

The other parameter that affects date estimation is the
rate of rise of the variance after an expansion. A fast rise
in the test statistics due to deviations from the assumed
model will cause a systematic overestimate of the date of
expansion, while a slow rise will result in an underestimate
of the date. Table 3 summarizes the effects of each of the
deviations discussed above on this parameter.

Conclusions

Our two tests of demographic history are generally
conservative to deviations from the assumptions used to
design the tests (table 3). This means that the tests are
not likely to generate a false-positive signal of expan-
sion. On the other hand, the conservativeness also weak-
ens the tests, and it is tempting to improve their power
by estimating the quantitative extent of the deviations
and incorporating the estimates directly into the tests.
For example, Di Rienzo et al. (1998) studied colorectal
cancer cells displaying microsatellite instability and, by
observing the patterns of mutations in the tumors, in-
ferred parameters for a generalized stepwise mutation
model. While this approach is very interesting, it also
seems problematic because such estimates depend on
the assumption that the mutational process in germline
cells is the same as in somatic cancer cells where mis-
match repair enzymes may be defective. In light of the
fact that the microsatellite mutation process is currently
so poorly understood, we prefer to perform tests of de-
mographic history based on a simple mutation model
rather than on mutation models that are parameterized
in more detailed (and possible nonconservative) ways.
In this case, however, it is always necessary to evaluate
the sensitivity of the methods to a variety of departures
from these simple assumptions.

We now consider what types of data are appropriate
for use with the tests. From figure 3B, a sample size of
at least 30 seems appropriate for the within-locus test,
and a sample size of at least 15 seems appropriate for
the interlocus test. Figure 3A shows that for both tests,
at least 25 loci should be included, and of course the
tests are more powerful when mutation rates are similar
across loci. Finally, samples should be collected from as
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many isolated populations as possible, since it is pos-
sible to learn more from a comparison of populations
than from individual populations. An example of the
usefulness of a multipopulation data set is provided by
our study of human data (Reich and Goldstein 1998), in
which a significant signal of expansion was detected in
some African populations—but in no populations out-
side of Africa—resulting in an inference that a dramatic
demographic event must have occurred to separate Af-
ricans from non-Africans. This insight would not have
emerged had our study focused on African or non-Af-
rican groups exclusively. Indeed, a multipopulation data
set can sometimes give an indication of an expansion
even when no significant signal is observed. For ex-
ample, the signal of expansion that was recently detected
in Africa was corroborated using a 30 tetranucleotide
microsatellite data set for which the g values observed
in Africa were consistently lower than g values observed
elsewhere in the world—even though no single popu-
lation gave a significant signal.

We have described the properties of two tests that
use genetic data from multiple unlinked loci in order to
assess demographic history. By considering the behavior
of the tests in response to a number of demographic
scenarios, we have shown that the tests are sensitive in
different ways to various deviations from the assumed
mutation and demographic models and that they can be
used in conjunction to garner more information about
demographic history than could be obtained from either
test alone. In addition, the approaches to studying de-
mographic history described in this paper, as well as the
results concerning the behavior of the within-locus and
interlocus tests in response to different growth models,
are not restricted in principle to microsatellite variation.
For example, it should be possible to use DNA sequence
variation, as well as single nucleotide polymorphisms,
to test hypotheses about demographic history. Work
with this type of genetic data can be complementary to
work with microsatellites because of the different mu-
tation processes that are involved.
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APPENDIX 1:
Derivation of statistical estimators

The within-locus test is based on the k statistic
shown in equation (1). We construct the statistic empir-
ically, using computer simulations and a linear combi-
nation of unbiased estimators for the variance (s2), the
variance squared (s4), and the fourth central moment
(g4). To estimate the variance (s2), we use the usual
sample variance,

n1
2 2¯S 5 (X 2 X ) , (6)O in 2 1 i51

where the Xi’s represent individual allele lengths and X̄

represents the average allele length in the sample of n
chromosomes. To estimate the variance squared and the
fourth central moment, we use the following expres-
sions:

2n2(n 2 3n 1 3)
4 2¯Sig 5 (X 2 X )O i[ ]n(n 2 1)(n 2 2)(n 2 3) i51

n1
4¯2 (X 2 X ) (7)O i(n 2 2)(n 2 3) i51

n2(n 2 2n 1 3)
4¯Gam 5 (X 2 X )O4 i(n 2 1)(n 2 2)(n 2 3) i51

2n(6n 2 9)
2¯2 (X 2 X ) .O i[ ]n(n 2 1)(n 2 2)(n 2 3) i51

(8)

In order to derive the estimator equations (7) and
(8), we begin by finding expectations for E(Xi

3X̄),
E(Xi

2X̄2), and E(X̄4). Some simple manipulation produc-
es the following, with m [ E(Xi):

1
3 4 3¯E(X X ) 5 [E(X ) 1 (n 2 1)mE(X )] (9)i i in

1
2 2 4 3¯E(X X ) 5 [E(X ) 1 2(n 2 1)mE(X )i i i2n

2 21 (n 2 1)[E(X )]i

2 21 (n 2 3n 1 2)E(X )] (10)i

1
4 4 3¯E(X ) 5 [E(X ) 1 4(n 2 1)mE(X )i i3n

2 21 3(n 2 1)[E(X )]i

2 21 6(n 2 3n 1 2)E(X )i

3 21 (n 2 6n 1 11n 2 6)m]. (11)

In order to develop unbiased estimators for s4 and
g4, we now find expectations for the expressions [Sn

i51
(Xi 2 X̄)2]2 and S (Xi 2 X̄)4. In performing the algebran

i51
for these calculations, the identities (9), (10), and (11)
are used:

2nn
2¯E (X 2 X )O i[ ][ ]n 2 1 i51

2 4 35 (n 2 1) E(X ) 2 4(n 2 1)mE(X )i i

2 2 21 (n 2 2n 1 3)[E(X )]i

2 2 22 2(n 2 5n 1 6)m E(X )i

2 41 (n 2 5n 1 6)m (12)

n2n
4¯E (X 2 X )O i[ ]n 2 1 i51

2 4 2 35 (n 2 3n 1 3)E(X ) 2 4(n 2 3n 1 3)mE(X )i i

2 2 2 2 21 3(2n 2 3)[E(X )] 1 6(n 2 5n 1 6)m E(X )i i

2 42 3(n 2 5n 1 6)m . (13)
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Finally, to simplify equations (7) and (8), we use
the identities g4 5 E(Xi

4) 2 4mE(Xi
3) 1 6mE(Xi

2) 2 3m4

and s2 5 (Xi
2) 2 m2 and obtain the following results:

2nn
2¯E (X 2 X )O i[ ][ ]n 2 1 i51

2 25 (n 2 1)g 1 (n 2 2n 1 3)s (14)4

n2n
4¯E (X 2 X )O i[ ]n 2 1 i51

3 45 (n 2 3n 1 3)g 1 3(2n 2 3)s . (15)4

With this simple system of equations, we now find the
desired expressions for s4 and g4:

2n2(n 2 3n 1 3)
4 2¯s 5 E (X 2 X )O i[ ][ ]n(n 2 1)(n 2 2)(n 2 3) i51

n1
4¯2 E (X 2 X ) (16)O i[ ](n 2 2)(n 2 3) i51

n2(n 2 2n 1 3)
4¯g 5 E (X 2 X )O4 i[ ](n 2 1)(n 2 2)(n 2 3) i51

2n(6n 2 9)
2¯2 E (X 2 X ) (17)O i[ ][ ]n(n 2 1)(n 2 2)(n 2 3) i51

Equations (16) and (17) are the basis of the statistical
estimators Sig4 and Gam4 shown in equations (7) and
(8). As desired, E[Sig4] 5 s4 and E[Gam4] 5 g4.

To verify empirically that these estimators are un-
biased, we applied them to uniform and Gaussian dis-
tributions generated by computer. In addition, we tested
the statistics against the distributions expected from a
simple single-step mutation model and used simulations
to show that in the case of a constant-sized population,
the estimators are independent of sample size and agree
with the analytical predictions for s4 and g4 (Roe 1992;
Zhivotovsky and Feldman 1995).

APPENDIX 2:
Computer simulation

Our simulation is based on a coalescent algorithm
by Hudson (1990), which was modified to reflect the
stepwise mutation model as well as various deviations
from the assumed mutation and demographic models. In
a coalescent simulation, the genealogical tree is traced
backward in time from the sampled individuals to their
most recent common ancestor, and a demographic ex-
pansion or contraction has the effect of shortening or
lengthening of the branches of the tree in proportion to
the change in population size (Hudson 1990). Once the

genealogical tree is generated, mutations are distributed
along the tree according to a Poisson process. To check
the accuracy of our coalescent results, we used a con-
ventional forward simulation—a simple Wright-Fisher
model—in which members of a parent generation all
have equal probability of producing progeny, and step-
wise mutations have a fixed probability of occurring at
every generation. Computer code for the coalescent sim-
ulation (in the C programming language), which takes
into account a variety of deviations from the stepwise
mutation model, is included on the Goldstein lab web
page.
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