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To increase the fraction of endogenous Neandertal DNA in our sequencing libraries, we used 

restriction enzymes to deplete libraries of microbial DNA. A 454 adaptor-ligated library 

molecule cannot be amplified or sequenced if it is cut by a restriction enzyme because the two 

product molecules will carry only a single 454 adaptor each. 

 To identify appropriate restriction enzymes, we analyzed the relative abundance of 

different restriction sites in 454 data from Neandertal shotgun sequencing runs, using the 

database of restriction enzyme prototypes in REBase (S1). We first excluded all restriction 

enzymes in this database that would cut the 454 adaptor sequences. The remaining enzymes 

were matched against 423,076 reads from a 454 run (NT154) using PatMaN (S2). Reads were 

not trimmed and the 454 A-adaptor sequence was appended to each read to simulate the 

original library molecule. Based on the classification from our Neandertal pipeline (see SOM 

3 for details), we divided reads further into two fractions: reads whose best alignment was to 

a primate sequence, and all other reads. For each restriction site we counted its abundance in 

each of these sequence fractions, allowing us to identify enzymes that would cut many non-

primate fragments but few primate fragments. These enzymes all contained CpG 

dinucleotides in their recognition sequences, reflecting the particularly low abundance of this 

dinucleotide in mammalian DNA. Based on these results we designed two restriction enzyme 

mixes. Mix 1, containing three enzymes, was predicted to have moderate enrichment power, 

and was predicted to cut very few of the primate sequences. Mix 2, which contained 6 

enzymes, was predicted to have a higher enrichment power than Mix 1, but was also 

predicted to cut more of the primate sequences than Mix 1. Table S1 shows the composition 

of these enzyme mixes and the predicted effect of the mixes on primate and non-primate 

reads in the sample Neandertal run NT154.  

  We experimentally tested how whole-library amplification and restriction enrichment 

affected endogenous DNA percentage, fragment length distribution and GC content in a 

Neandertal library. An aliquot of a Neandertal library, L72, was sequenced on the 454 

platform (454 Life Sciences, Branford CT, USA) (NT376: 17,352 sequences). A second 

aliquot of the same library was whole-library-amplified for 7 cycles using the 454 adaptor 

priming sites as described (S3), treated with restriction enzyme Mix 1, and subsequently 

sequenced with the library name L127 (NT454: 619,088 sequences, see SOM 2 for further 
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details on experimental methods). We found that 3.1% of reads from the untreated library 

(L72) aligned best to primate, while 13.1% of reads from the amplified and enriched library 

(L127) aligned (Table S2, Fig. S1). This represents a greater than four-fold enrichment for 

endogenous DNA. The magnitude was close to the expected value given the sequence 

composition of the untreated L72 sequences and the enzymes used, indicating a high 

efficiency of restriction digestion. 

 Amplification and restriction enzyme treatment may affect library composition in 

ways other than percentage of endogenous DNA. Therefore we also measured the sequence 

lengths and GC content of the raw (L72) versus the amplified/restricted (L127) library. First, 

we analyzed the length distribution of primate and non-primate reads (Table S2, Figure S2). 

While the lengths of primate sequences were relatively consistent between the libraries, the 

non-primate reads were considerably shorter in the treated library L127 than the untreated 

library L72, as expected since longer fragments will have an increased likelihood of 

containing at least one restriction site and thus being cut. We next analyzed the GC contents 

of reads. Primate and non-primate reads showed a lower average GC content in the treated 

library L127 than in the untreated library L72, (see Table S2, Figure S2) which is expected as 

all three restriction enzymes in Mix 1 have GC-rich recognition sites. The effect was stronger 

for the non-primate reads, which is also expected since a higher proportion of non-primate 

sequences are cut by these restriction enzymes than primate sequences.  
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Figure S1. Taxonomic content of Neandertal library before and after restriction 
enzyme enrichment treatment. Read abundance in the six most commonly hit 
taxonomic orders in the untreated library L72 (Run: NT376) are shown, as well as in 
the treated library L127 (Run: NT454). 
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Figure S2. Effect of amplification and restriction enzyme enrichment treatment on 
fragment length distributions and GC contents of Neandertal (primate) vs. 

environmental (non-primate) DNA. 
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Enzyme mix Enzymes Restriction site 

NT154 
primate 

cut 
NT154 non-
primate cut 

Predicted 
primate % 

after 
enrichment 

BstUI CGCG 
Hpy99I CGWCG Mix1 
BsiEI CGRYCG 

17.7% 73.0% 11.0% 

TaqI TCGA 
BstUI CGCG 
BsiEI CGRYCG 
MspI CCGG 
TauI GCSGC 

Mix2 

HinP1I GCGC 

31.1% 91.1% 23.1% 

Table S1: Composition of the two restriction enzyme mixes used to enrich Neandertal DNA 
libraries for endogenous DNA. The predicted effect of these mixes on the endogenous DNA 
percentage was calculated as follows: the numbers of primate and non-primate sequences 
containing at least one relevant restriction site were counted from a sample of non-treated 
Neandertal sequencing run (NT154). A total of 3.74% of reads in run NT154 had a best hit to 
a primate DNA sequence, allowing a prediction of the primate percentage if the restriction 
mixes had been used on the library prior to sequencing. 
 

Library (Run) L72 (NT376) L127 (NT454) 
Amplified? - + 

Restriction enriched? - + 

Sequences (N) 17,352 619,088 

primate sequences (%) 3.09% 13.14% 
primate sequence length (nt) 47.2 48.7 

primate GC (%) 49.8 46.5 

non-primate sequences (%) 96.91% 86.86% 
non-primate sequence length 
(nt) 56.6 46.2 

non-primate GC (%) 68.8 64.4 
Table S2: Taxonomic distribution and sequence lengths/GC contents in an untreated (L72) 
versus amplified restriction enzyme enriched (L127) Neandertal DNA library. 
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DNA extraction, initial contamination assays, library preparation and 
sequencing 
 
Martin Kircher* and Johannes Krause* 
 

* To whom correspondence should be addressed (krause@eva.mpg.de, 
martin.kircher@eva.mpg.de) 
 
Neandertal DNA extraction, library preparation and contamination assay  

To find extracts suitable for sequencing larger parts of the Neandertal genome, 89 

different Neandertal bones from 19 sites were analyzed. In total 201 DNA extracts 

were made from 5 �– 560mg of bone (Table S3) as previously described (S4), with 

slight modifications. Specifically, the DNA elution from the silica particles was done 

using TE buffer with 0.05% Tween 20, and siliconized tubes were used for long time 

storage of the extracted DNA. In initial screening, the proportion of human 

contamination in each extract was tested using a PCR based approach as described in 

refs. (S5, 6) using up to three primer pairs in a multiplex 2-step-PCR (S7) that 

targeted conserved mtDNA regions containing informative positions where humans 

and Neandertals differ in sequence. The retrieved PCR products were tagged (S8), 

and sequenced on the Roche 454 platform. 

 

We recently compared the approach for assessing contamination based on PCR to a 

targeted direct sequencing approach using Primer Extension Capture (PEC) (S3). Our 

analysis showed that PEC is more accurate for estimating the proportion of human 

contamination (S9). As the project evolved, we therefore changed the assessing 

human contamination to PEC. For the PEC analyses, 23 µl from each Neandertal 

DNA extract were made into 454 sequencing libraries as described in ref. (S3). Before 

PEC, each library was PCR amplified using 454-emulsion PCR primers (S10). The 

PEC protocol was performed as described in ref. (S3) using six biotinylated PEC 

primers that target informative differences between human and Neandertal mtDNA 

(S6). For Feldhofer 1 and 2, Mezmaiskaya 1 and Sidron 1253, contamination levels 

were estimated by capturing the entire mtDNA as described (S6). PEC products were 

quantified with qPCR and used directly as templates for emulsion PCR (S11). Results 

for PEC and PCR contamination assay can be found in Table S4. 
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As an additional estimate of the proportion of human contamination, the percentage of 

endogenous Neandertal DNA was estimated for each Neandertal extract by direct 

sequencing of amplified 454 libraries on a single 16th lane of the Roche 454 FLX 

platform. Amplification was carried out in a total volume of 100ul, containing 4 Units 

of Taq Gold polymerase, 2.5mM MgCl2, 1mg/ml BSA, 250 M of each dNTP, and 

1uM of each 454-emulsion PCR primer (S10). The annealing temperature was 60°C 

and between 7-20 cycles were performed (Table S4).  

 

Extracts that were estimated to contain more than 1.5% endogenous Neandertal DNA 

with less than 5% human contamination were considered for high throughput shotgun 

sequencing on the Roche 454 FLX/Titanium and Illumina GAII platforms. The 

samples chosen for further shotgun sequencing are listed in Table S4. 

 

To increase the proportion of endogenous Neandertal DNA vs. microbial DNA, 

amplified 454 libraries were treated with restriction enzymes as in SOM 1 (also Table 

S4).  

 

Emulsion PCR and 454 sequencing 

Emulsion PCR and 454 sequencing were carried out according to the manufacturer�’s 

instructions on the Roche 454 FLX and Titanium platforms. All Neandertal 454 

libraries were PCR amplified for at least 7 cycles before sequencing, to compensate 

for losses in emulsion PCR. The total number of PCR cycles for each library is listed 

in Table S4. 

 

454 to Illumina/Solexa library conversion 

To sequence the prepared 454 Neandertal sequencing libraries on the Illumina GAII 

platform, we converted them to Illumina/Solexa libraries. For this purpose, a PCR 

primer pair was constructed that is complementary to the 454 A and B primers on the 

3�’-end and has a tail carrying the Solexa p5 and p7 adapter sequences. The 454 library 

was than amplified in a 100µl reaction containing 50µl PhusionTM High-Fidelity 

Master Mix, and 500nM of each 454-Solexa-conversion primer (S9). The annealing 

temperature was 60°C and a total of 6-14 cycles of PCR were performed. The 

amplified products were spin column purified and quantified on an Agilent 2100 

Bioanalyzer DNA 1000 chip. 
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Illumina sequencing and primary data analysis for Neandertal libraries 

In total, 33 Solexa/Illumina-converted 454-sequencing-libraries carrying the project 

specific adapters and a converted PhiX control library carrying the 454 standard 

adapters were sequenced according to the manufacturer�’s instructions for paired end 

sequencing on the Illumina GAII platform. Instead of the standard Genomic R1 and 

Genomic R2 sequencing primers, project specific primers were used for the forward 

and the reverse sequencing read, which anneal to the 454 adaptor sequences and allow 

for sequencing a project specific key at the beginning of each read. For the PhiX 

control library, a sequencing primer covering the 454 standard key was used for the 

forward read. In total 33 flow cells have been sequenced (for details see Table S5), 24 

with 2 x 51 cycles (FC-204-20xx sequencing chemistry) and nine with 2 x 76 cycles 

(FC-103-300x sequencing chemistry). 

 

Sequencing runs were analyzed from raw images using the Illumina Genome 

Analyzer pipeline 1.0 and 1.3.2 (Table S5). To overcome analytical challenges 

introduced by identical key sequences at the beginning of the first read, we used the 

first five (instead of two) sequencing cycles for cluster identification (using the 

Genome Analyzer pipeline 1.3.2). For the earlier pipeline, the Firecrest algorithm 

(S12) was modified to perform cluster identification in cycle 4 and then extract 

intensities from the clusters identified starting with cycle 1. The source code 

modifications for the Firecrest 1.9.5 algorithm are available from the authors on 

request. 

 

After standard base calling using Bustard (S12) with parameter estimation done on 

the PhiX control sequenced in lane 4 of each flow cell, the obtained PhiX 174 reads 

were aligned to the corresponding reference sequence for creating a training data set 

for the alternative base caller Ibis (S13). Raw sequences from Ibis for the two paired 

end reads of each sequencing cluster were filtered for the 3 bases of the project 

specific key ('GAC') at the beginning of both/the second read(s) (see Table S5). The 

two reads of each cluster were then merged (including adapter removal) after 

requiring at least an 11 nucleotide overlap. For bases in the overlapping sequence, the 

consensus sequence was called by considering the base with the higher quality score 
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or, in case of agreement, summing up the quality scores. For further analysis, only 

successfully merged sequences were considered. 

 
Table S3: Information on sites, presence of Neandertal DNA, and number of 
Neandertal samples per site that we analyzed.  

Site Country Samples 
Neandertal DNA present in at 
least one sample per site 

Type site, Feldhofer Germany 2 yes 
Mezmaiskaya Russia 2 yes 
Sima de los Palomas Spain 7 no 
Salzgitter Lebenstedt Germany 1 no 
Shanidar Iraq 2 no 
El Sidron Spain 15 yes 
Okladnikov Russia 3 yes 
Regourdou France 2 no 
Hohlenstein Stadel Germany 1 yes 
Mala Balanica Serbia 1 no 
Spy Belgium 1 yes 
Teshik Tash Uzbekistan 1 yes 
St Cesaire France 1 yes 
Vindija  Croatia 44 yes 
Zaskalnaya Ukraine 2 no 
La Chapelle aux Saints France 1 yes 
Scladina France 1 no 
Zeeland ridges neandertal Netherlands 1 no 
Le Moustier France 1 no 

Table S4: Information on samples, extracts, contamination level, number of PCR 
amplification cycles, and enzyme enrichment treatment of all Neandertal sequencing 
libraries used in this study. 

PCR 
contamin. 

PEC 
contamin.  Phase 

of study Sample Extract mg Ne
a Hsa Nea Hsa Cyc. 

Treat 
ment Lib 

Phase 1  Vi33.26 E137 62 na na 66 0 10 Mix2 L262 
454 +                12 Mix2 L312 
enzyme   E138 72 na na 136 1 12 Mix2 L313 
                10 Mix2 L263 
    E139 69 na na 66 0 12 Mix2 L314 
    E141 78 na na 59 1 12 Mix2 L315 

  Vi33.16 E38 75 477 81 174 1 16 Mix2 L306 
           7 Mix1 L127 
           7 Mix1 L125 
           16 Mix2 L305 
           12 Mix2 L311 
           16 Mix2 L310 
           20 Mix2 L282 
           16 Mix2 L308 
           7 Mix1 L241 
           7 Mix1 L241 
           7 Mix1 L241 
           20 Mix2 L281 
           16 Mix2 L309 
           7 Mix1 L240 
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           7 Mix1 L240 
           7 Mix1 L240 
        16 Mix2 L307 

Phase 2  Vi33.26 E137 62 na na 66 0 16 Mix2 SL9 
Solexa +              18 Mix2 SL11 
enzyme               18 Mix2 SL24 
   E138 72 na na 136 1 18 Mix2 SL12 
               16 Mix2 SL10 
   E139 69 na na 66 0 18 Mix2 SL13 
   E111 42 0 321 37 1 20 Mix2 SL31 
   E141 78 na na 59 1 18 Mix2 SL26 
              18 Mix2 SL27 
              18 Mix2 SL14 
   E86 59 152 18 162 1 20 Mix2 SL30 
 Vi33.25 E84 70     36 1 22 Mix2 SL6 
              20 Mix2 SL7 
              22 Mix2 SL8 
    E118 50 251 94 94 1 20 Mix2 SL32 
  Vi33.16 E38 75 477 81 174 1 23 Mix2  SL22 
               33 Mix2  SL16 
               27 Mix2  SL15 
               18 Mix2 SL21 
               27 Mix2 SL29 
               22 Mix2 SL20 
               23 Mix2  SL23 
               22 Mix2 SL19 
               22 Mix2 SL17 
    E39 150 197 27 272 0 19 no SL33 
               19 no SL42 
               19 no SL46 
               19 no SL47 
  Mez1 E149 70 na na 2959 10 20 no SL39 
               20 Mix2 SL61 

  Feld1 
E142, 
E143 190 na na 1436 21 18 no SL37 

  Sid1253 
120207

.1 223 107 1 2807 7 18 no SL49 
 
 
Table S5: Information on 33 flow cells with 34 different Solexa/Illumina-
converted 454-Neandertal-sequencing-libraries libraries sequenced on the 
Illumina Genome Analyzer II platform. This table provides an assignment of lanes 
(L), library identifiers (Lib, cross reference to Table S4 for bone assignment), read 
length, sequencing chemistry (C, 1 FC-204-20xx, 2 FC-103-300x) and analysis 
pipeline version (Ver). For each lane the number of raw clusters, as well as merged 
and key passed sequences used as input for further analyses, is provided. 
Run identifier 

L Lib C Cycle Ver Raw  
clusters 

Key pass  
& Merged 

080902_BIOLAB29_Run_PE51_1 1 SL7 1 2x51 1.0 7238465 4171912 
080902_BIOLAB29_Run_PE51_1 2 SL7 1 2x51 1.0 12646584 6340911 
080902_BIOLAB29_Run_PE51_1 3 SL6 1 2x51 1.0 8123010 4734598 
080902_BIOLAB29_Run_PE51_1 5 SL6 1 2x51 1.0 11200209 6095960 
080902_BIOLAB29_Run_PE51_1 6 SL6 1 2x51 1.0 14167561 7065201 
080902_BIOLAB29_Run_PE51_1 7 SL8 1 2x51 1.0 6834065 4675106 
080902_BIOLAB29_Run_PE51_1 8 SL8 1 2x51 1.0 11369083 6852186 
081017_SOLEXA-GA02_JK_PE_SL10 1 SL10 1 2x51 1.0 8224599 6147835 
081017_SOLEXA-GA02_JK_PE_SL10 2 SL10 1 2x51 1.0 8430708 6558573 
081017_SOLEXA-GA02_JK_PE_SL10 3 SL10 1 2x51 1.0 8655595 6693209 
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Run identifier 
L Lib C Cycle Ver Raw  

clusters 
Key pass  
& Merged 

081017_SOLEXA-GA02_JK_PE_SL10 5 SL10 1 2x51 1.0 8373783 6464202 
081017_SOLEXA-GA02_JK_PE_SL10 6 SL10 1 2x51 1.0 8393335 6489995 
081017_SOLEXA-GA02_JK_PE_SL10 7 SL10 1 2x51 1.0 8431008 6502392 
081017_SOLEXA-GA02_JK_PE_SL10 8 SL10 1 2x51 1.0 8184957 6154906 
081021_SOLEXA-GA01_JK_PE_SL18 1 SL18 1 2x51 1.0 10738816 5908679 
081021_SOLEXA-GA01_JK_PE_SL18 2 SL18 1 2x51 1.0 12835407 7376933 
081021_SOLEXA-GA01_JK_PE_SL18 3 SL18 1 2x51 1.0 13997258 7870902 
081021_SOLEXA-GA01_JK_PE_SL18 5 SL18 1 2x51 1.0 13759939 7321036 
081021_SOLEXA-GA01_JK_PE_SL18 6 SL18 1 2x51 1.0 13797928 6750642 
081021_SOLEXA-GA01_JK_PE_SL18 7 SL18 1 2x51 1.0 13841989 6213884 
081021_SOLEXA-GA01_JK_PE_SL18 8 SL18 1 2x51 1.0 13444385 5161528 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 1 SL19 1 2x51 1.0 18260859 9407868 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 2 SL19 1 2x51 1.0 18885214 8025197 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 3 SL19 1 2x51 1.0 18653881 8342983 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 5 SL19 1 2x51 1.0 18245909 7248568 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 6 SL19 1 2x51 1.0 17897138 6284636 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 7 SL19 1 2x51 1.0 17876921 5499571 
081023_SOLEXA-GA04_JK_PE_SL19_repeat 8 SL19 1 2x51 1.0 17012079 6776978 
081028_SOLEXA-GA01_JK_PE_SL9repeat 1 SL9 1 2x51 1.0 11445239 6875455 
081028_SOLEXA-GA01_JK_PE_SL9repeat 2 SL9 1 2x51 1.0 11828321 7084440 
081028_SOLEXA-GA01_JK_PE_SL9repeat 3 SL9 1 2x51 1.0 11684064 7173997 
081028_SOLEXA-GA01_JK_PE_SL9repeat 5 SL9 1 2x51 1.0 11828609 7170971 
081028_SOLEXA-GA01_JK_PE_SL9repeat 6 SL9 1 2x51 1.0 11660081 6948609 
081028_SOLEXA-GA01_JK_PE_SL9repeat 7 SL9 1 2x51 1.0 11669101 7051551 
081028_SOLEXA-GA01_JK_PE_SL9repeat 8 SL9 1 2x51 1.0 11461566 6717434 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 1 SL14 1 2x51 1.0 9692908 7444547 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 2 SL14 1 2x51 1.0 11541159 9231751 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 3 SL14 1 2x51 1.0 11567491 9283862 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 5 SL18 1 2x51 1.0 1383433 129497 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 6 SL18 1 2x51 1.0 1187154 133582 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 7 SL18 1 2x51 1.0 1182456 133507 
081030_SOLEXA-GA02_JK_PE_SL14_SL18 8 SL18 1 2x51 1.0 1210050 131471 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 1 SL24 1 2x51 1.0 12870400 8074548 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 2 SL24 1 2x51 1.0 10253521 7140097 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 3 SL24 1 2x51 1.0 13064897 8244647 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 5 SL26 1 2x51 1.0 11217773 8112897 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 6 SL26 1 2x51 1.0 8986478 6774573 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 7 SL26 1 2x51 1.0 12109517 8611132 
081030_SOLEXA-GA04_JK_PE_SL24_SL26 8 SL26 1 2x51 1.0 13783056 9034466 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 1 SL11 1 2x51 1.0 10592656 8167195 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 2 SL11 1 2x51 1.0 10666540 8290272 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 3 SL12 1 2x51 1.0 10464053 8467538 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 5 SL12 1 2x51 1.0 10489021 8471243 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 6 SL12 1 2x51 1.0 10452535 8367764 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 7 SL12 1 2x51 1.0 10345766 8239727 
081111_SOLEXA-GA02_JK_PE_SL11_SL12 8 SL12 1 2x51 1.0 9970310 7671772 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 1 SL13 1 2x51 1.0 11298316 8485008 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 2 SL13 1 2x51 1.0 11583259 8798865 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 3 SL13 1 2x51 1.0 12032150 8804600 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 5 SL13 1 2x51 1.0 11959088 9090601 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 6 SL13 1 2x51 1.0 11894634 9070207 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 7 SL13 1 2x51 1.0 11958527 9070050 
081111_SOLEXA-GA04_JK_PE_SL11_SL13 8 SL11 1 2x51 1.0 9013643 6960717 
081113_SOLEXA-GA01_JK_PE_SL27 3 SL27 1 2x51 1.0 8080585 5738813 
081113_SOLEXA-GA01_JK_PE_SL27 5 SL27 1 2x51 1.0 8541184 5950190 
081113_SOLEXA-GA01_JK_PE_SL27 6 SL27 1 2x51 1.0 8608986 6177051 
081113_SOLEXA-GA01_JK_PE_SL27 7 SL27 1 2x51 1.0 8855976 6393413 
081113_SOLEXA-GA01_JK_PE_SL27 8 SL27 1 2x51 1.0 8621448 5672384 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 1 SL22 1 2x51 1.0 7599144 3399476 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 2 SL27 1 2x51 1.0 10692712 6418888 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 3 SL27 1 2x51 1.0 11273563 6917575 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 5 SL15 1 2x51 1.0 9271297 5734136 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 6 SL15 1 2x51 1.0 8813734 5367642 



 13

Run identifier 
L Lib C Cycle Ver Raw  

clusters 
Key pass  
& Merged 

081128_SOLEXA-GA01_JK_PE_SL27_22_15 7 SL15 1 2x51 1.0 9111993 5503748 
081128_SOLEXA-GA01_JK_PE_SL27_22_15 8 SL15 1 2x51 1.0 8691839 5019123 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 1 SL10 1 2x51 1.0 9835350 6528713 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 2 SL10 1 2x51 1.0 9957255 6962415 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 3 SL10 1 2x51 1.0 9981794 6213238 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 5 SL16 1 2x51 1.0 11280037 2891527 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 6 SL16 1 2x51 1.0 10468171 1874901 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 7 SL16 1 2x51 1.0 11378528 4881929 
081128_SOLEXA-GA02_JK_PE_SL16_SL10 8 SL16 1 2x51 1.0 10930940 4051693 
081128_SOLEXA-GA04_JK_PE_SL21 1 SL21 1 2x51 1.0 5188806 2136164 
081128_SOLEXA-GA04_JK_PE_SL21 2 SL21 1 2x51 1.0 4800205 2224663 
081128_SOLEXA-GA04_JK_PE_SL21 3 SL21 1 2x51 1.0 11772776 4171032 
081128_SOLEXA-GA04_JK_PE_SL21 5 SL21 1 2x51 1.0 15633538 6005389 
081128_SOLEXA-GA04_JK_PE_SL21 6 SL21 1 2x51 1.0 14953894 6008079 
081128_SOLEXA-GA04_JK_PE_SL21 7 SL21 1 2x51 1.0 16062187 6181955 
081128_SOLEXA-GA04_JK_PE_SL21 8 SL21 1 2x51 1.0 16604530 6061403 
081209_SL-XAS_0004_30N17AAXX 1 SL6 2 2x76 1.0 7474775 5828456 
081209_SL-XAS_0004_30N17AAXX 2 SL7 2 2x76 1.0 13214596 9738970 
081209_SL-XAS_0004_30N17AAXX 3 SL8 2 2x76 1.0 7329405 6155613 
081209_SL-XAS_0004_30N17AAXX 5 SL17 2 2x76 1.0 11436203 8542926 
081209_SL-XAS_0004_30N17AAXX 6 SL20 2 2x76 1.0 13139768 9872399 
081209_SL-XAS_0004_30N17AAXX 7 SL17 2 2x76 1.0 10842475 8390756 
081209_SL-XAS_0004_30N17AAXX 8 SL20 2 2x76 1.0 14452715 8821377 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 1 SL32 1 2x51 1.0 20681265 3898532 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 2 SL32 1 2x51 1.0 21046307 1154954 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 3 SL32 1 2x51 1.0 20823021 1351138 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 5 SL32 1 2x51 1.0 21035450 1016032 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 6 SL32 1 2x51 1.0 20611253 1422546 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 7 SL32 1 2x51 1.0 20373022 1404815 
081212_SOLEXA-GA04_JK_PE_SL32_2rep 8 SL32 1 2x51 1.0 20323894 768113 
081217_SOLEXA-GA02_JK_PE_SL33_SL39 1 SL33 1 2x51 1.0 10277566 5361560 
081217_SOLEXA-GA02_JK_PE_SL33_SL39 6 SL37 1 2x51 1.0 11806148 6528299 
081217_SOLEXA-GA02_JK_PE_SL33_SL39 8 SL39 1 2x51 1.0 18173821 4641436 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 1 SL29 1 2x51 1.0 13063970 7065879 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 2 SL29 1 2x51 1.0 12527020 6612962 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 3 SL30 1 2x51 1.0 13175898 7472818 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 5 SL30 1 2x51 1.0 14379430 8480860 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 6 SL30 1 2x51 1.0 14030415 8128443 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 7 SL31 1 2x51 1.0 19223063 7627382 
090102_SOLEXA-GA02_JK_PE51_SL29_SL30_SL31_rep 8 SL31 1 2x51 1.0 19276658 7214664 
090107_SOLEXA-GA04_JK_PE_SL28titr 1 SL28 1 2x51 1.0 18037617 22516 
090107_SOLEXA-GA04_JK_PE_SL28titr 2 SL28 1 2x51 1.0 17828775 10163 
090107_SOLEXA-GA04_JK_PE_SL28titr 3 SL28 1 2x51 1.0 18580699 1187592 
090107_SOLEXA-GA04_JK_PE_SL28titr 6 SL28 1 2x51 1.0 18608323 842982 
090107_SOLEXA-GA04_JK_PE_SL28titr 7 SL28 1 2x51 1.0 18300059 2362698 
090107_SOLEXA-GA04_JK_PE_SL28titr 8 SL28 1 2x51 1.0 16592082 4392867 
090108_SOLEXA-GA03_JK_PE_SL32 1 SL32 1 2x51 1.0 18992400 6336508 
090108_SOLEXA-GA03_JK_PE_SL32 2 SL32 1 2x51 1.0 18978525 5941173 
090108_SOLEXA-GA03_JK_PE_SL32 3 SL32 1 2x51 1.0 19030120 5633488 
090108_SOLEXA-GA03_JK_PE_SL32 5 SL32 1 2x51 1.0 19163886 3734368 
090108_SOLEXA-GA03_JK_PE_SL32 6 SL32 1 2x51 1.0 19047216 4030399 
090108_SOLEXA-GA03_JK_PE_SL32 7 SL32 1 2x51 1.0 19178346 3482734 
090108_SOLEXA-GA03_JK_PE_SL32 8 SL32 1 2x51 1.0 19014971 4473651 
090109_SL-XAQ_0002_FC30R0FAAXX 1 SL17 2 2x76 1.3.2 8756516 6831012 
090109_SL-XAQ_0002_FC30R0FAAXX 2 SL17 2 2x76 1.3.2 9265834 7558798 
090109_SL-XAQ_0002_FC30R0FAAXX 3 SL17 2 2x76 1.3.2 7748659 6321679 
090109_SL-XAQ_0002_FC30R0FAAXX 5 SL17 2 2x76 1.3.2 7107537 5839285 
090109_SL-XAQ_0002_FC30R0FAAXX 6 SL17 2 2x76 1.3.2 6968205 6018935 
090109_SL-XAQ_0002_FC30R0FAAXX 7 SL17 2 2x76 1.3.2 6434045 5529228 
090109_SL-XAQ_0002_FC30R0FAAXX 8 SL17 2 2x76 1.3.2 6364005 5180303 
090109_SL-XAR_0002_FC30R2NAAXX 1 SL6 2 2x76 1.3.2 7001140 5203681 
090109_SL-XAR_0002_FC30R2NAAXX 2 SL6 2 2x76 1.3.2 7036501 5675450 
090109_SL-XAR_0002_FC30R2NAAXX 3 SL6 2 2x76 1.3.2 6490248 5118008 
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Run identifier 
L Lib C Cycle Ver Raw  

clusters 
Key pass  
& Merged 

090109_SL-XAR_0002_FC30R2NAAXX 5 SL6 2 2x76 1.3.2 6595036 5138386 
090109_SL-XAR_0002_FC30R2NAAXX 6 SL6 2 2x76 1.3.2 6802654 4607428 
090109_SL-XAR_0002_FC30R2NAAXX 7 SL6 2 2x76 1.3.2 6695451 4086408 
090109_SL-XAR_0002_FC30R2NAAXX 8 SL6 2 2x76 1.3.2 6145008 3841395 
090109_SL-XAU_0001_FC30R4RAAXX 1 SL6 2 2x76 1.3.2 6968812 3722393 
090109_SL-XAU_0001_FC30R4RAAXX 2 SL6 2 2x76 1.3.2 7383657 3974975 
090109_SL-XAU_0001_FC30R4RAAXX 3 SL6 2 2x76 1.3.2 7084598 3576474 
090109_SL-XAU_0001_FC30R4RAAXX 5 SL6 2 2x76 1.3.2 9648357 1213971 
090109_SL-XAU_0001_FC30R4RAAXX 6 SL6 2 2x76 1.3.2 10311430 764208 
090109_SL-XAU_0001_FC30R4RAAXX 7 SL6 2 2x76 1.3.2 8633997 1559214 
090109_SL-XAU_0001_FC30R4RAAXX 8 SL6 2 2x76 1.3.2 7607986 3652660 
090111_SL-XAL_0003_30R1LAAXX 1 SL7 2 2x76 1.3.2 7776404 4968801 
090111_SL-XAL_0003_30R1LAAXX 2 SL7 2 2x76 1.3.2 8100092 5860653 
090111_SL-XAL_0003_30R1LAAXX 3 SL7 2 2x76 1.3.2 7940679 5488949 
090111_SL-XAL_0003_30R1LAAXX 5 SL7 2 2x76 1.3.2 7649155 4953259 
090111_SL-XAL_0003_30R1LAAXX 6 SL7 2 2x76 1.3.2 7913115 5073335 
090111_SL-XAL_0003_30R1LAAXX 8 SL7 2 2x76 1.3.2 7841487 4695851 
090111_SL-XBA_0002_30R4HAAXX 1 SL7 2 2x76 1.3.2 8183456 6025413 
090111_SL-XBA_0002_30R4HAAXX 2 SL7 2 2x76 1.3.2 8026698 5969648 
090111_SL-XBA_0002_30R4HAAXX 3 SL7 2 2x76 1.3.2 8018085 5750751 
090111_SL-XBA_0002_30R4HAAXX 5 SL7 2 2x76 1.3.2 8292310 6143699 
090111_SL-XBA_0002_30R4HAAXX 6 SL7 2 2x76 1.3.2 7863727 5939291 
090111_SL-XBA_0002_30R4HAAXX 7 SL7 2 2x76 1.3.2 8114358 6148469 
090111_SL-XBA_0002_30R4HAAXX 8 SL7 2 2x76 1.3.2 7931841 5815463 
090112_SL-XAV_0004_FC30R45AAXX 1 SL7 2 2x76 1.3.2 6554477 4606341 
090112_SL-XAV_0004_FC30R45AAXX 2 SL7 2 2x76 1.3.2 7245375 5022310 
090112_SL-XAV_0004_FC30R45AAXX 3 SL7 2 2x76 1.3.2 7992019 5580123 
090112_SL-XAV_0004_FC30R45AAXX 5 SL7 2 2x76 1.3.2 9036322 6389584 
090112_SL-XAV_0004_FC30R45AAXX 6 SL7 2 2x76 1.3.2 9030499 6195778 
090112_SL-XAV_0004_FC30R45AAXX 7 SL7 2 2x76 1.3.2 8870276 5048551 
090112_SL-XAV_0004_FC30R45AAXX 8 SL7 2 2x76 1.3.2 8496174 4553319 
090115_SL-XAK_0004_FC30R25AAXX 1 SL20 2 2x76 1.3.2 10902181 6963206 
090115_SL-XAK_0004_FC30R25AAXX 2 SL20 2 2x76 1.3.2 10754137 8381707 
090115_SL-XAK_0004_FC30R25AAXX 3 SL20 2 2x76 1.3.2 10412783 8015893 
090115_SL-XAK_0004_FC30R25AAXX 5 SL20 2 2x76 1.3.2 10504427 7041408 
090115_SL-XAK_0004_FC30R25AAXX 6 SL20 2 2x76 1.3.2 10453365 7432728 
090115_SL-XAK_0004_FC30R25AAXX 7 SL20 2 2x76 1.3.2 10675743 8009394 
090115_SL-XAK_0004_FC30R25AAXX 8 SL20 2 2x76 1.3.2 10765348 7456178 
090115_SL-XAT_0004_FC30PMDAAXX 1 SL8 2 2x76 1.3.2 16421605 10517411 
090115_SL-XAT_0004_FC30PMDAAXX 2 SL8 2 2x76 1.3.2 16324299 10454249 
090115_SL-XAT_0004_FC30PMDAAXX 3 SL8 2 2x76 1.3.2 16114818 10366563 
090115_SL-XAT_0004_FC30PMDAAXX 5 SL8 2 2x76 1.3.2 16299681 10433305 
090115_SL-XAT_0004_FC30PMDAAXX 6 SL8 2 2x76 1.3.2 15836633 9825709 
090115_SL-XAT_0004_FC30PMDAAXX 7 SL8 2 2x76 1.3.2 16895500 10744311 
090115_SL-XAT_0004_FC30PMDAAXX 8 SL8 2 2x76 1.3.2 16553181 10480963 
090115_SOLEXA-GA01_JK_PE_SL42_SL48 1 SL42 1 2x51 1.0 10233741 6485748 
090115_SOLEXA-GA01_JK_PE_SL42_SL48 6 SL46 1 2x51 1.0 10919896 7287393 
090115_SOLEXA-GA01_JK_PE_SL42_SL48 7 SL47 1 2x51 1.0 10993229 7304764 
090116_SOLEXA-GA02_JK_PE_SL39 1 SL39 1 2x51 1.0 14270186 8865201 
090116_SOLEXA-GA02_JK_PE_SL39 2 SL39 1 2x51 1.0 15117962 9998512 
090116_SOLEXA-GA02_JK_PE_SL39 3 SL39 1 2x51 1.0 15090681 10089362 
090116_SOLEXA-GA02_JK_PE_SL39 5 SL39 1 2x51 1.0 15067349 10058562 
090116_SOLEXA-GA02_JK_PE_SL39 6 SL39 1 2x51 1.0 14820369 9761315 
090116_SOLEXA-GA02_JK_PE_SL39 7 SL39 1 2x51 1.0 15106028 10051894 
090116_SOLEXA-GA02_JK_PE_SL39 8 SL39 1 2x51 1.0 15024245 10010636 
090116_SOLEXA-GA04_JK_PE_SL37_SL38 5 SL37 1 2x51 1.0 10084698 6742852 
090116_SOLEXA-GA04_JK_PE_SL37_SL38 6 SL37 1 2x51 1.0 10033074 6803106 
090116_SOLEXA-GA04_JK_PE_SL37_SL38 7 SL37 1 2x51 1.0 10271620 6899234 
090116_SOLEXA-GA04_JK_PE_SL37_SL38 8 SL37 1 2x51 1.0 9034755 5975009 
090126_SOLEXA-GA02_JK_PE_SL49 1 SL49 1 2x51 1.3.2 8510348 6033851 
090126_SOLEXA-GA02_JK_PE_SL49 2 SL49 1 2x51 1.3.2 8812646 6445976 
090126_SOLEXA-GA02_JK_PE_SL49 3 SL49 1 2x51 1.3.2 8574352 6289469 
090126_SOLEXA-GA02_JK_PE_SL49 5 SL49 1 2x51 1.3.2 8788391 6484386 
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Run identifier 
L Lib C Cycle Ver Raw  

clusters 
Key pass  
& Merged 

090126_SOLEXA-GA02_JK_PE_SL49 6 SL49 1 2x51 1.3.2 8765173 6473555 
090126_SOLEXA-GA02_JK_PE_SL49 7 SL49 1 2x51 1.3.2 8934107 6573421 
090126_SOLEXA-GA02_JK_PE_SL49 8 SL49 1 2x51 1.3.2 8914034 6492071 
090309_SOLEXA-GA03_JK_PE_SL61 1 SL61 1 2x51 1.3.2 10280804 7831441 
090309_SOLEXA-GA03_JK_PE_SL61 2 SL61 1 2x51 1.3.2 10833871 8479809 
090309_SOLEXA-GA03_JK_PE_SL61 3 SL61 1 2x51 1.3.2 10635445 8334614 
090309_SOLEXA-GA03_JK_PE_SL61 5 SL61 1 2x51 1.3.2 10689037 8431149 
090309_SOLEXA-GA03_JK_PE_SL61 6 SL61 1 2x51 1.3.2 10757033 8292442 
090309_SOLEXA-GA03_JK_PE_SL61 7 SL61 1 2x51 1.3.2 10626179 8534606 
090309_SOLEXA-GA03_JK_PE_SL61 8 SL61 1 2x51 1.3.2 10470192 8392562 
090309_SOLEXA-GA02_JK_PE_SL56_SL60-57_SL61 3 SL61 1 2x51 1.3.2 11698496 9386929 
090309_SOLEXA-GA02_JK_PE_SL56_SL60-57_SL61 5 SL61 1 2x51 1.3.2 12146794 9940651 
090309_SOLEXA-GA02_JK_PE_SL56_SL60-57_SL61 6 SL61 1 2x51 1.3.2 12349468 10132157 
090309_SOLEXA-GA02_JK_PE_SL56_SL60-57_SL61 7 SL61 1 2x51 1.3.2 12551581 10283728 
090309_SOLEXA-GA02_JK_PE_SL56_SL60-57_SL61 8 SL61 1 2x51 1.3.2 11944314 9800758 
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Alignment of 454 Reads 

Neandertal reads from the 454 instrument (see SOM 2) were processed as described 

previously (S3). All reads were aligned to the human and chimpanzee genomes (hg18 

and panTro2) using megablast (S14), and any read that aligned with an E-value better 

than 0.001 to either genome was considered to be potentially of Neandertal origin.  

It was necessary to remove from the analysis wells that appear to give a signal even 

though they contain no sequence template (i.e.: where the intensities measured are the 

result of bleed-over signal from the neighboring wells) and emulsion PCR duplicates 

(emulsion inclusions containing multiple beads). To this end, pairs of reads belonging 

to the same emulsion were aligned and joined into clusters if they were more than 

90% similar. From each cluster, only the read aligning best to each genome was 

retained (number of reads and bases retained, see Table S8). For further analyses, the 

local alignments produced by megablast to the chimpanzee genome were extended 

into semi-global alignments using our own implementation of an adapted Smith-

Waterman algorithm with affine gap scores.  Here matches score 1, mismatches cost 

3, and opening and extending gaps cost 5 and 2, respectively.  We discarded 

alignments if the semi-global alignment score was negative. To remove the 

redundancy introduced by library amplification, reads were clustered by alignment 

coordinates. Two reads from the same original library were considered duplicates if 

they aligned to the same chromosome, strand, start and end coordinate, and from each 

set of such reads, the read with the best alignment was kept for further analyses (see 

Table S9). 

 

Alignment of Illumina Reads 

Neandertal Illumina reads (see SOM 2 for details) were mapped to the human genome 

(hg18), chimpanzee genome (pantro2) as well as to the single-copy aligned human 

and chimpanzee ancestor genome extracted from the 4-way Enredo-Pecan-Ortheus 
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(EPO) alignment (S15-17) of human, chimpanzee, orangutan, and macaque (see SOM 

section 10) using a custom mapper called ANFO. This custom alignment program was 

developed to take the characteristics of ancient DNA into account and is available 

from http://bioinf.eva.mpg.de/anfo. Briefly; ANFO builds an index of short words of 

the target genome, in a fashion similar to the method described by Morgulis et al. 

(S18). Query sequences are broken up into their constituent words to look up in the 

index. Adjacent or near adjacent words are combined into longer matches, and any 

match that is considered "long enough" serves as the seed for a semi-global 

alignment. We indexed every fourth word of length 12 nt and required seeds to be at 

least 16 bases nt long, which gives sensitivity better than megablast (S14) and a useful 

compromise between sensitivity and required computational effort. 

When building alignments ANFO extends in both directions from all seeds using a 

best-first search. This takes advantage of the fact that we only need the two best 

alignments (not every alignment) for each query for calculating map quality scores 

(MAPQ). The search terminates when two alignments have been found, or when all 

remaining alignments are guaranteed to be of uninterestingly low quality. The score 

of an alignment is defined as its negative log-likelihood (i.e. better alignments have 

lower scores), so that actual differences and an understanding of damage patterns can 

be combined in a natural way. We define the mapping quality (MAPQ) to be the 

difference in score between the two best alignments. Following the observation and 

implementation by Briggs et al. (S3), ANFO uses different substitution matrices for 

DNA thought to be double stranded versus single stranded and changes between them 

if doing so affords a better score. The expected distribution of single stranded 

stretches is modeled as geometrically distributed. The full ANFO configuration file is 

given in Table S6 for the human and chimpanzee genome and in Table S7 for the 

single-copy common ancestor genome. 

 

To separate hominid sequences from random similarities, we analyzed the distribution 

of alignment scores depending on read length.  The scores are clearly a mixture of 

two distinct distributions, with the distinction becoming much less pronounced for 

shorter reads.  We therefore required a minimum read length of 30 nt and a score no 

worse than 7.5 * (length - 20) to distinguish spurious alignments of bacterial, fungal 

and non-mammalian reads from actual hominid sequences. 
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For each library, consensus sequences were constructed from multiple reads of the 

same Neandertal molecule, defined as having the same orientation, read length, 

alignment length, and alignment start coordinates.  All such clusters, regardless of 

their mapping quality, are replaced by their consensus sequence.  For each observed 

base and each possible original base, we calculated the likelihood of the observation 

from its quality score.  The base with the highest quality score (calculated by dividing 

each likelihood by the total likelihood) is used as the consensus.  The resulting quality 

scores are limited to 40, the assumed error rate for polymerases. Table S11 

summarizes the number of reads and bases obtained for each library when aligning to 

the human and chimpanzee genome. 

 

For various analyses, different alignment sets were used. Alignments against the 

human genome (hg18) were used for determining the number of Neandertal 

individuals, estimating Y-chromosome and autosomal contamination, and the 

selective sweep screen. 

Alignments to the chimpanzee (panTro2) were used for the pairwise population 

comparisons (as described in Supplemental methods section: Relationship to present-

day humans). Finally, alignments to the inferred human-chimpanzee common 

ancestor sequence were used for estimating Neandertal-modern human genome 

divergence as described in Supplemental note: Neandertal-modern human genome 

divergence.  

Downstream filtering of Illumina sequence alignments 

 

Many of the downstream analyses may be sensitive to slight imbalances in base 

composition and our base caller, Ibis (S13) reports quality scores that reflect the 

underlying and variable accuracy for each of the four bases. Therefore, a single 

quality-score cutoff for all four bases would alter the background base composition 

and may therefore bias analyses. We implemented a simple scheme that allows both 

for quality-score filtering and preservation of base composition. We examined the 

distribution of quality scores for each of the four bases for all six bones and found a 

quality score cutoff that allows a given percentage of the base under consideration to 

be included. Provided that the overall base-composition in our reads, without regard 

to quality score, is an accurate depiction of the underlying base-composition in the 
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library, this scheme will retain that true base composition. To achieve higher 

resolution than the discrete Phred scores allow, we define both quality score cutoffs 

and probabilities of accepting a base with quality equal to the cutoff that will exactly 

maintain a given percentage of the bases. The cutoffs and probabilities for each base 

that retain 95% of the Neandertal data are given in Table S12. These cutoffs were 

used for filtering low quality bases in alignments against hg18, panTro2, and the 

inferred common ancestor sequence. 

 

For some analyses we also filtered data based on coverage depth. Because unusually 

high depth can be indicative of mapping problems or copy differences relative to the 

reference sequence, we excluded sites whose coverage was above the 95th percentile. 

The genome-wide distribution of coverage from each Vindija bone, unfiltered for 

map-quality is shown in Figure S3. Peri-centromeric and peri-telomeric regions are 

noticeably higher covered, presumably due to the repeat content in these regions. For 

each of the Vindija bones, the coverage cutoff for further analysis used was 2 fold, 

i.e., no position with 3 or more observations was considered. We then randomly 

sampled at most a single base from each bone that passed the coverage and base-

quality cutoffs, to represent that nucleotide. 
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Table S6: ANFO configuration file used for the alignment of Illumina Neandertal 
reads to the chimpanzee (pantro2) and human (hg18) genome. 

 
 
 
Table S7: ANFO configuration file used for the alignment of Illumina Neandertal 
reads to the single-copy common ancestor genome of chimpanzee and human. Lines 
different to the configuration in Figure 3.1 are indicated by arrows. 

policy { 
    use_compact_index { 
        name: "{hg18|pantro2}_12_4" 
        cutoff: 500 
    } 
 
    repeat_threshold: 20000 
    max_diag_skew: 2 
    max_gap: 4 
    min_seed_len: 16 
    max_penalty_per_nuc: 15 
} 
 
aligner { 
        rate_of_transversions: 0.001 
        rate_of_transitions: 0.003 
        gap_open_rate: 0.0001 
        gap_extension_rate: 0.003 
        rate_of_ds_deamination: 0.01 
        rate_of_ss_deamination: 0.9 
        mean_overhang_length: 0.5 
} 

policy { 
    use_compact_index { 
        name: "HCSCCA_12_4" 
        cutoff: 125    // <------  
    } 
 
    repeat_threshold: 5000   // <------  
    max_diag_skew: 2 
    max_gap: 4 
    min_seed_len: 16 
    max_penalty_per_nuc: 15 
} 
 
aligner { 
        rate_of_transversions: 0.001 
        rate_of_transitions: 0.003 
        gap_open_rate: 0.0001 
        gap_extension_rate: 0.003 
        rate_of_ds_deamination: 0.01 
        rate_of_ss_deamination: 0.9 
        mean_overhang_length: 0.5 
} 
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Table S8: Summary of 454 reads aligned to the human and chimpanzee genomes 
(hg18 and panTro2, resp.) using megablast after E-value filter and the removal of 
sequencing artifacts (ghost wells and emulsion PCR duplicates). Further pairs of reads 
were aligned and clustered together if they were over 90% identical (single linkage 
clustering) for all reads belonging to the same emulsion. The read aligning best to 
each genome was retained. 
 
Library Emul

- 
sions 

Pass filter  
wells 

Aligned  
(hg18) 

Bases (hg18) Aligned  
(pantro2) 

Bases 
(pantro2) 

L125 14 7916385 989,700 46,080,849 964,170 44,804,908 
L127 9 2237902 258,574 11,585,634 250,463 11,191,005 
L240+ 
L307 34 21691346 3,341,180 151,718,742 3,249,588 147,059,911 
L241+ 
L308 28 25437529 3,621,903 162,107,257 3,522,842 157,226,631 
L281 13 14877272 2,542,581 116,223,630 2,469,052 112,459,792 
L282 12 10944779 1,816,636 81,835,788 1,761,932 79,129,241 
L305 8 4082906 705,554 32,251,523 684,194 31,179,223 
L306 6 2879380 536,271 24,549,000 519,858 23,722,762 
L309 14 11076061 1,610,850 69,869,328 1,561,828 67,533,697 
L310 16 12392471 1,956,178 85,835,292 1,898,475 83,007,661 
L311 16 6896388 1,375,906 63,704,384 1,332,857 61,517,137 
L262 17 13936002 2,319,563 109,090,376 2,246,742 105,386,501 
L263 13 11660364 1,947,181 94,737,946 1,887,846 91,522,132 
L312 19 15072677 2,133,314 98,791,555 2,066,766 339,089,415 
L313 18 14555842 2,418,789 111,119,308 2,340,748 107,184,523 
L314 20 14550798 1,356,737 62,113,625 1,318,085 60,144,415 
L315 20 15353546 1,330,477 57,284,202 1,288,032 55,329,910 

Total 277 205,561,648 30,261,394 1,378,898,439 29,363,478 1,577,488,864 
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Table S9: Summary of 454 Neandertal data used for downstream analyses based on 
alignments to the chimpanzee genome (pantro2). Megablast alignments were 
extended into semi-global alignments and discarded if the semi-global alignment 
produced a negative score. Further, redundancy due to library amplification was 
removed by clustering reads based on alignment coordinates (same chromosome, 
strand, start and end coordinate) and propagating the read with the best alignment 
score. 
 

Library Bone Reads aligned  
(pantro2) 

Bases (pantro2) 

L125 Vi33.16 342,898 18,004,896 
L127 Vi33.16 87,803 4,516,506 
L240.L307 Vi33.16 1,315,026 67,058,994 
L241.L308 Vi33.16 1,340,553 67,614,304 
L262 Vi33.16 1,059,689 56,380,897 
L263 Vi33.16 978,450 53,677,554 
L281 Vi33.16 1,007,678 51,214,626 
L282 Vi33.16 773,569 38,764,436 
L305 Vi33.16 334,600 17,119,200 
L306 Vi33.16 260,021 13,294,743 
L309 Vi33.16 713,525 34,465,580 
L310 Vi33.26 816,065 39,961,222 
L311 Vi33.26 647,297 33,437,711 
L312 Vi33.26 799,171 41,572,033 
L313 Vi33.26 1,091,140 55,791,699 
L314 Vi33.26 562,407 29,917,692 
L315 Vi33.26 414,880 20,770,545 
Total - 12,544,772 643,562,638 
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Table S10: Amount of DNA sequences obtained from six Neandertal bones. 

Fossil Vi33.16 Vi33.25 Vi33.26 
Sidron 
1253 

Mezmaiskaya 
1 Feldhofer 1 Total 

Country Croatia Croatia Croatia Spain Russia Germany - 
Age 38,310 (1) - - 38,790 (2) 65,000 (3) 39,900 (4) - 

Emulsions 107 - 170 - - - 277 
Key pass 
reads 85,129,229 - 120,432,419 - - - 205,561,648 
Aligned 
reads 11,506,061 - 18,755,333 - - - 30,261,394 
Aligned 
bases [nt] 533,137,012 - 845,761,427 - - - 1,378,898,439 

45
4 

da
ta

 

Genome 
coverage 30.2 % - 19.0 % - - - 49.2 % 
Lanes 52 66 64 7 20 5 214 
Raw 
clusters 563,336,323 776,901,228 749,719,358 61,299,051 257,653,855 51,230,295 2,460,140,110 
Key pass & 
Merged 388,623,831 348,708,778 351,374,658 44,792,729 181,317,764 32,948,500 1,347,766,260 
Aligned 
reads 27,235,917 25,826,237 32,905,421 48,814 1,266,452 44,114 87,326,955 
Aligned 
bases [nt] 1,265,369,366 1,306,019,506 1,515,063,376 2,234,572 56,405,304 2,228,645 4,147,320,769 

Il
lu

m
in

a 
da

ta
 

Genome 
coverage 54.1 % 46.6 % 45.2 % 0.1 % 2.0 % 0.1 % 1.5 x 

 

(1) Serre et al. 2004, (2) Lalueza-Fox et al. 2005, (3) Skinner et al. 2005, (4) Schmitz et al. 2002 
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Table S11: Summary of Illumina Neandertal data obtained for each library (see SOM 
section 2 for details) for ANFO mappings to the human (hg18) and chimp (pantro2) 
genome. 
 

Bone Library Reads 
aligned 
(pantro2) 

Reads 
aligned 
 (hg18) 

Bases 
(pantro2) 

Bases (hg18) 

SL6 Vi33.25 5,667,061 6,101,922 286,118,877 313,155,115 
SL7 Vi33.25 9,485,209 10,159,845 507,690,512 550,909,507 
SL8 Vi33.25 6,935,598 6,802,828 338,800,303 336,786,167 
SL9 Vi33.26 3,972,346 3,848,222 174,712,624 170,093,379 
SL10 Vi33.26 5,333,181 5,174,623 248,116,819 242,155,685 
SL11 Vi33.26 1,772,112 1,717,062 81,189,777 79,145,279 
SL12 Vi33.26 3,724,261 3,609,413 170,876,344 166,559,730 
SL13 Vi33.26 2,426,391 2,356,063 112,220,644 109,682,763 
SL14 Vi33.26 972,437 940,947 42,439,636 41,378,275 
SL15 Vi33.16 2,279,429 2,213,391 103,579,624 101,106,139 
SL16 Vi33.16 1,722,726 1,666,822 73,266,006 71,208,546 
SL17 Vi33.16 5,884,950 5,780,413 281,736,583 278,685,434 
SL18 Vi33.16 5,739,845 5,563,908 261,693,679 254,963,131 
SL19 Vi33.16 4,720,118 4,602,472 210,731,145 206,296,549 
SL20 Vi33.16 4,494,321 4,589,660 213,936,750 218,335,733 
SL21 Vi33.16 4,506,450 4,391,179 207,554,885 203,170,779 
SL22 Vi33.16 407,286 401,477 20,384,178 20,137,513 
SL24 Vi33.26 1,889,692 1,842,389 90,313,875 88,479,463 
SL26 Vi33.26 1,427,667 1,390,745 67,314,502 65,944,440 
SL27 Vi33.26 3,154,498 3,074,570 150,812,120 147,807,763 
SL28 Vi33.16 1,090,466 1,050,913 47,518,666 46,080,005 
SL29 Vi33.16 1,747,057 1,703,324 79,650,411 78,029,652 
SL30 Vi33.26 1,808,221 1,764,055 90,933,081 89,230,175 
SL31 Vi33.26 755,111 744,064 36,439,944 36,076,219 
SL32 Vi33.25 3,738,369 3,647,582 173,409,814 170,683,036 
SL33 Vi33.16 89,329 88,914 4,265,107 4,292,210 
SL37 Feld1 44,114 59,058 2,228,645 3,233,921 
SL39 Mez1 625,768 611,431 27,484,145 27,164,933 
SL42 Vi33.16 82,654 82,736 3,992,773 4,042,445 
SL46 Vi33.16 77,773 77,869 3,787,041 3,832,306 
SL47 Vi33.16 63,017 63,608 2,966,528 3,036,280 
SL49 Sid1253 48,814 60,623 2,234,572 3,000,965 
SL61 Mez1 640,684 628,243 28,921,159 28,607,274 
Total - 87,326,955 86,810,371 4,147,320,769 4,163,310,811 
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Table S12: Quality score filtering parameters for Neandertal sequence data. 

Dataset Acceptance rate Base Q-cutoff P(accept|Q=cutoff) 
Vi33.16 0.95 A 27 0.476 

 0.95 C 27 0.662 
 0.95 G 27 0.20 
 0.95 T 27 0.43 

Vi33.25 0.95 A 27 0.592 
 0.95 C 26 0.449 
 0.95 G 28 0.689 
 0.95 T 26 0.190 

Vi33.26 0.95 A 27 0.729 
 0.95 C 26 0.601 
 0.95 G 26 0.808 
 0.95 T 27 0.563 

Feldhofer1 0.95 A 22 0.595 
 0.95 C 20 0.094 
 0.95 G 21 0.543 
 0.95 T 21 0.558 

Mez.1 0.95 A 25 0.622 
 0.95 C 24 0.201 
 0.95 G 24 0.283 
 0.95 T 25 0.999 

Sid1253 0.95 A 27 0.629 
 0.95 C 24 0.055 
 0.95 G 25 0.912 
 0.95 T 26 0.452 
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Figure S3: Aggregate sequence coverage depth across hg18 for the three Vindija 
Neandertal samples
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Vindija 33.26 mtDNA. In contrast to the two bones Vi33.16 and Vi33.25, for which 

complete mtDNA sequences have previously been determined (S3) and are known to 

differ from each other, the mtDNA sequence of Vi33.26 has not been determined. 

From all of the libraries of this bone used for shotgun sequencing, we identified 

24,973 mitochondrial DNA fragments, after filtering for PCR duplicates, by mapping 

against the Neandertal reference mtDNA (AM948965) using a custom alignment 

program (S3). This mapping produced a near complete mtDNA sequence to an 

average of 68.4 fold coverage. At all 10 sites where Vi33.16 differs from Vi33.25, the 

Vi33.26 consensus matches Vi33.16. This suggests that Vi33.26 may be identical to 

Vi33.16. However, a complete comparison of Vi33.26 to Vi33.16 was not possible 

due to some gaps and regions of very low coverage in the Vi33.26 assembly. These 

regions of low coverage were situated close to recognition sites for the restriction 

enzymes we used to enrich libraries for Neandertal genomic DNA (see SOM1). In 

total the consensus sequence of Vi33.26 contained 51 N bases, most of which were 

situated within ten nucleotides of an enrichment restriction enzyme site. The same 

consensus sequence showed 35 substitution differences from the Vi33.16 sequence. 

Notably, however, all of these differences were in the form Vi33.16 = C/G, Vi33.26 = 

T/A, and are therefore likely to be due to deamination-derived errors in the Vi33.26 

fragments. At all of these 35 sites of difference, at least one of the overlapping 

Vi33.26 fragments carried the C or G base, matching Vi33.16 (except for a single site 

of coverage = 1). In conclusion, since the Vi33.26 consensus sequence matches 

Vi33.16 at 99.58% of positions, with all non-matching sites most easily explained by 

gaps or cytosine deamination, we cannot distinguish the Vi33.26 from the Vi33.16 

mtDNA sequences, and the two bones are likely, although not certain, to carry 

identical mtDNA. 

Estimation of rate of sequencing errors in the Neandertal sequence 

Because the mtDNA is a single, haploid locus and is recovered in high coverage from 

most samples, it is an ideal substrate with which to measure sequencing error. The 
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known mtDNA sequence can be used to compare all reads that map against it and 

measure the rate of differences from the true state. Reads from ancient DNA contain 

error from a combination of sources: deamination-derived misincorporations and the 

error produced by the sequencing instrument in use. 

 

For each sequencing library of each bone, we compared all reads to the known 

(Vi33.16 and Vi33.25) or the newly assembled consensus (Vi33.26) sequence and 

measured the rate of each type of base mismatch. The results are shown in Figure S4. 

As expected for ancient DNA, the rate of C to T and G to A differences are much 

higher than any other category. For all other errors, the rate of errors is on the order of 

0.001. This improvement over error rates typically seen for Illumina GAII is 

attributable to the fact that many reads are, in fact, a consensus of several clonal 

copies of the same original starting molecule, merged to eliminate redundancy and 

reduce error (see SOM2). 

 

Determination of numbers of individuals.  

To determine whether the bones Vi33.26 and Vi33.16 derive from one or two 

individuals, we compared alleles at genomic positions covered by sequence from both 

bones. We then compared the rate in intra-bone allele matching to the rate of inter-

bone allele matching. Since the rate of sequencing errors in the Neandertal sequence 

(~0.1% at transversions) is likely to exceed the rate of heterozygosity in Neandertals 

(0.03-0.04% for transversions in modern humans from the analysis presented here) we 

enriched for sites that carry genuine polymorphisms rather than sequencing errors by 

limiting the analysis to sites that are known to harbor single nucleotide 

polymorphisms (SNPs) in present-day humans (dbSNP, version 130), and to 

transversions as they are known to have a lower error rate than transitions. We further 

limited the analysis to sites where exactly three Neandertals fragments were 

sequenced and two came from the same bone. We used the snp130 annotation of 

dbSNP (S19) mapped to hg18 to identify the ~4.8 million bi-allelic SNP positions in 

which the two alleles are transversions. We then examined the Neandertal data 

mapped to hg18, filtered for map quality score >= 30 and base quality cutoffs as 

described in SOM3. 
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We then made each of the three pairwise bone comparisons by the following 

methodology. We first identified each of these sites that were exactly two-fold 

covered in one individual and one-fold covered in another, filtering for map quality of 

30 and base qualities specific for each bone and base. We required that each of the 

Neandertal bases was one of the two alleles known in humans. 

 

We then calculated the rate at which the two-fold covered bases matched one another 

within each bone. However, because these are sites already known to be heterozygous 

in humans, these numbers are not directly interpretable as the rate of heterozygosity 

within Neandertals. 

 

We compared this to the rate at which two alleles matched when one was drawn from 

the 2-fold covered bone and the other from the 1-fold covered bone. Under the model 

that two bones come from the same individual, this rate of allele matching should be 

equivalent to the rate observed when both alleles come from the same bone. If we 

label the two-fold covered bone alleles A1 and A2 and the one-fold covered bone allele 

B1, then we count the rate of allele matching within bone and between bones: 

 

MA = p(A1 = A2) = hA/2 + 2eA 

MB = p(B1 = B2) = hB/2 + 2eB 

 

MAB  = p(A1 = B1 | bone A!=B) = hAB + eA + eB 

MAB  = p(A1 = B1 | bone A=B) = hA/2 + eA + eB 

 

where MA and MB are the observed rate of allele matching within bone A and B, 

respectively; MAB is the rate of matching between bones A and B; hA is the rate of 

heterozygosity (at these sites) within bone A; hAB is the rate of heterozygosity between 

bone A and B (which may come from the same individual); eA is the sequencing error 

rate in bone A and eB is the sequencing error rate in bone B; A!=B is the model where 

bone A is not from the same individual as bone B and A=B is the model where they 

are from the same individual. 

 

Under the model that bone A and bone B come from the same individual, 

hA = hB =  hAB 
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and thus, 

(MA + MB) / 2 = MAB 

 

Under the model that bone A and bone B come from different individuals A!=B, and 

thus: 

MAB -(MA + MB) / 2  = hAB  - (hA/2 + hB/2)/2  > 0 

 

The key to the comparison is that half of all alleles sampled from within a bone will 

be from the same chromosome. Alleles sampled between bones will always be from 

different chromosomes if the bones come from different Neandertal individuals. 

  

We measured MA, MB, and MAB and compared the two models. The results are shown 

in the Table S13. For each pairwise comparison, we can reject that the two bones 

came from the same individual. Notice that bones Vi33.25 and Vi33.16 gave identical 

mitochondrial sequences, which was different from that of Vi33.25. 
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Figure S4: Error rates for the three Neandertal bones as determined from each 
mtDNA. Each dot represents the indicated rate of error in one sequencing library 
made from the bone indicated.
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Table S13: Inter- and intra-bone allele matching for each pairwise bone comparison. 
The number of sites where two alleles match one another when drawn from within or 
between each bone are shown. If the two bones being compared come from the same 
individual, this rate should be equivalent. In each case, there is a significant increase 
in allelic differences between bones compared to within bones. Confidence intervals 
are one-sided, and given for 95% confidence. 

A =Vi33.16; B=Vi33.26 same different % different +(-) 95% 

conf 

MA 29,515 406 1.36% + 0.12% 

MB 22,099 332 1.48%+ 0.14% 

MAB 51,430 922 1.76%-0.09% 

MAB -(MA + MB) / 2   0.34%-0.16% 

P-value (MA + MB) / 2 = 

MAB 

6x10-6   

    

A=Vi33.25; B=Vi33.26 Same different % different 

MA 25,421 399 1.55%+0.13% 

MB 24,420 393 1.58%+0.14% 

MAB 49,707 926 1.83%-0.10% 

MAB -(MA + MB) / 2   0.26%-0.17% 

P-value (MA + MB) / 2 = 

MAB 

0.001   

    

A=Vi33.25; B=Vi33.16 Same different % different 

MA 24,799 395 1.57%+0.13% 

MB 32,364 442 1.35%+0.11% 

MAB 56,947 1,053 1.82%-0.09% 

MAB -(MA + MB) / 2   0.36%-0.15% 

P-value (MA + MB) / 2 = 

MAB 

6x10-7   
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All sequence data from each library was assembled using mia, as described previously 

(S3). For the samples whose mtDNA sequences have been previously determined, we 

used the known sequences as the assembly reference (Table S14). For Vi33.26, we 

used the Neandertal reference mtDNA (AM948965), from which Vi33.26 was found 

to be indistinguishable (see SOM 4). The sequences built into each assembly were 

filtered to remove low-quality bases (Q < 20). The remove obvious nuclear-mtDNA 

(numt) sequences, we used bwa (S20) to map all putative mtDNA sequences against 

the human genome, hg18. Any read whose best match was against the mtDNA of 

hg18 or had no significant match was included in another mia assembly. In this next 

assembly, PCR duplicate sequences were collapsed. These duplicates are recognized 

on the basis of having identical start, end, and strand coordinates. This assembly was 

then used to assess the level of human mtDNA contamination. For each fragment that 

covered a diagnostic position in which the Neandertal sequence differ from at least 

99% of a world-wide panel of 311 contemporary human mtDNAs, we examined the 

diagnostic position to infer if the sequence was Neandertal or modern human. The 

counts for each are shown in Table S15.  

 

Table S14: Sequences used as reference for each mtDNA assembly. Each mtDNA, 
except Vi33.26, has been determined previously. 

Bone Sequence ID 
Vi33.16 AM948965 
Vi33.25 FM865410 
Vi33.26 NA 
Feld1 FM865407 
Mez1 FM865411 

Sidron1253 FM865409 
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Table S15: Human mtDNA contamination estimates for each library. The number of 
inferred human and Neandertal mtDNA fragments are shown for each library and 
summarized for each bone. 

Bone Library # Neandertal # Human % human cont. 

Vi33.16 SL15 1229 4 0.32 

 SL16 866 1 0.12 

 SL17 3868 11 0.28 

 SL18 3410 5 0.15 

 SL19 2649 14 0.53 

 SL20 2668 9 0.34 

 SL21 4036 7 0.17 

 SL22 201 1 0.5 

 SL28 635 2 0.31 

 SL29 894 2 0.22 

Total  20456 56 0.27 

     

Vi33.25 SL6 326 2 0.61 

 SL7 594 3 0.5 

 SL8 460 2 0.43 

 SL32 311 0 0 

Total  1691 7 0.41 

     

Vi33.26 SL9 490 0 0 

 SL10 953 1 0.1 

 SL11 343 0 0 

 SL12 429 2 0.46 

 SL13 509 2 0.39 

 SL14 284 3 1.05 

 SL24 224 0 0 

 SL26 335 0 0 

 SL27 680 1 0.15 

 SL30 337 0 0 

 SL31 186 1 0.53 

Total  4810 10 0.21 

     

Feld1 SL37 43 0 0 

Mez1 SL39 327 3 0.91 

Sidron1253 SL49 41 0 0 
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To determine the sex of the individual who carried each of the Neandertal bones, we 

looked for Y chromosome sequences. Identifying sequences that unambiguously 

derive from the Y chromosome is a challenge for several reasons. The main difficulty 

is that the Y chromosome is homologous to the X chromosome and therefore contains 

many regions of high similarity (S21). Further, the human Y chromosome is small and 

has a unique repeat structure of ampliconic regions within the Y chromosome (S22). 

With these difficulties in mind, we devised the following strategy for identifying 

regions of the Y chromosome where sequence hits can be confidently classified as Y 

chromosome. 

 

First, for every 30mer sequence in the hg18 Y chromosome sequence, we identified 

all close matches within the rest of the human genome. We kept all Y chromosome 

30mers that differ by at least 3 mismatches from any non-Y chromosome sequence. 

These Y chromosome unique 30mers were then further filtered to remove all that 

were within an annotated repetitive element using the rmsk327 table from the UCSC 

annotation of hg18. All remaining 30mers were scanned for contiguous stretches of at 

least 500 base pairs containing all unique Y-chromosome 30mers. The total length of 

these 157 segments is 111,132 base pairs. 

 

We then counted all sequences that mapped within these regions. Under the 

assumption that sequence data derive from random sampling from a male individual, 

Y chromosome sequence should accumulate at this rate: 

 

(111,132 / 2,800,000,000) × 0.5  × 0.4175  = 0.000008285  

 

The factor of 0.5 reflects the fact that the Y chromosome is haploid and the nuclear 

genome is diploid. The factor of 0.4175 reflects the relative occurrence of the 

restriction enzymes sites (see SOM1) in these Y-unique regions (6.343 per kilobase) 

versus the rest of the nuclear genome (2.648 per kilobase). Note, however, that the 
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Sidron, Feldhofer and one of the Mezmaskaiya libraries were not treated with the 

restriction enzymes and thus this factor is not included. Thus, approximately 8 in 

1,000,000 sequences should fall within these regions when sampling from a male 

individual. Sampling Neandertal sequences is heavily biased by local GC content 

(S6). These Y unique regions are overall 51.3% GC, higher than the human genome 

average of 40.9% or the Y chromosome average of 40.0%. This test should therefore 

over-estimate the presence of male-derived sequence and thus be conservative for 

determining if these are female bones. 

 

For each Vindija bone, we calculated the total number of hits mapping to hg18 to 

arrive at an expected number, given that the individual is male, and test whether the 

observed number is different from the expectation. These data are shown in Table 

S16. In each case, we can reject that the Vindija individual is male. We note that this 

conclusion stands in opposition to that drawn previously for Vi33.16 (Vi80) from 

more limited sequence data (S5, 23). In these previous analyses, the presence of 

sequence that aligned anywhere within the Y-chromosome was taken as positive 

evidence of a male individual. The current analysis, restricted to regions that are 

unique within the Y-chromosome, illustrates the importance of requiring an 

unambiguous map position within the genome.  

 

For the additional Neandertal individuals, there is less data and therefore this test is 

less sensitive. However, we see more than the expected number of Y unique region 

hits for the two bones previously known to be male, Sidron1253 (S24) and Feldhofer1 

(S25).  

 

Given that the Vindija individuals are female, we can assume that each of these hits 

comes from male contamination. If male modern human contamination, containing Y 

chromosome sequence, is equally likely to fall anywhere in the genome, the rate of 

accumulation of male contaminating sequences within these regions can be used to 

estimate contamination: 

y = c × Y × n 

 

where y is the number of hits in the Y-unique regions, c is the percent of male 

contamination, Y is the fraction of the genome in the Y-unique regions, and n is the 
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number of reads. We note that this test provides a conservative estimate of male 

contamination for the same reason it provides a conservative estimate for the bone 

being a female. That is, GC bias in our sequence data will cause sequences in these 

regions of higher average GC content to be over-represented in our data. The male 

human contamination estimates are shown in Table 1. 

 

To further test the maleness of each Neandertal, we also compared the rate of 

sequence mappings to the X chromosome versus a similarly sized autosome, 

chromosome 8. The rate of sequence recovery and identification is complicated by 

many factors, including GC content, sequence uniqueness of the regions to which it is 

mapped, and perhaps others factors. Nevertheless, the ratio of sequences mapping to 

these two chromosomes shows a clear bi-model distribution (Table S17) with the 

bones identified as female having a consistently lower ratio of chromosome X to 

chromosome 8 sequences. 

Table S16: Y-unique region hit rate. The expected number of sequences mapping 
within the Y-chromosome unique regions is based on the fraction of the genome that 
these regions cover. For each of the three Vindija bones, the observed numbers are 
significantly lower that expected. 

Bone Total hg18 mapped 
sequences >= 30 nt 

chrY hits 
expected from 

male 

chrY hits 
observed 

P-value male 

Vi33.16 30,777,634 255.0 4 0 
Vi33.25 24,275,777 201.1 0 0 
Vi33.26 25,336,181 209.9 0 0 

Mezmaskaiya1 1,188,309 23.6 0 1.0e-6 
Sidron1253 44,936 0.9 5 1 
Feldhofer1 43,508 0.9 1 0.5 

 

Table S17: Ratio of autosomal to chrX sequences in Neandertal bones. The Vindija 
and Mexmaskaiya1 bones all have a similarly low ratio of autosomal to X 
chromosome sequence hits. These were previously identified as female by absence of 
Y unique region sequences. In contrast, Sidron1253 and Feldhofer1 both have a 
similarly high ratio of autosomal to chrX sequences, consistent with these bones 
deriving from male Neandertals carrying only 1 X chromosome. 

Bone Chr8 sequences chrX sequences 8/X 
Vi33.16 1,460,601 1,916,999 0.76 
Vi33.25 1,228,228 1,528,493 0.80 
Vi33.26 1,225,157 1,686,207 0.73 

Mezmaskaiya1 53,370 73,953 0.72 
Sidron1253 2,082 1,796 1.16 
Feldhofer1 1,815 1,533 1.18 
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Introduction 
Below we put a bound on the amount of contamination from present-day 

humans our sequences could contain. This is done using two methods. The first is a 

simple counting method that operates on sites assumed to be fixed-derived in 

contemporary humans and but does not make any further assumptions about the 

population genetics of humans or Neandertals. This method calculates an 

overestimate of contamination that also includes half the heterozygosity in 

Neandertals at the sites we test. The second method for estimating nuclear 

contamination builds a likelihood model that simultaneously estimates contamination 

as well as several nuisance parameters describing the relationship between the 

frequency of alleles in humans and in Neandertals. This method uses both segregating 

sites found in the HapMap Phase II as well the aforementioned list of fixed-derived 

sites. 

We test our methods by artificially introducing contaminating sequence from a 

present-day human using the published genome of Craig Venter (S26). Both methods 

become biased downward under extremely high levels of contamination (>50%) 

because of difficulties with parameter identifiability. However, our extremely low 

estimates of contamination (method 1: 1.4%=�ˆc ; method 2: 0.7%=�ˆc ) in 

combination with the divergence estimates (SOM 10) and the low estimates from the 

mitochondrial DNA and Y chromosome contamination tests (SOM 5) allow us to 

eliminate this region of parameter space. In general, the simulation tests confirm the 

robustness of our methods to potential violations of assumptions. 

 
``Simple'' estimate for contamination 

To calculate an estimate of contamination, we looked at sites at which humans 

are fixed derived, and we see the ancestral allele in two sequences from two different 

Neandertals. We then look at a second sequence from one of these two Neandertals, 

and ask how often we see the derived allele. Since every time we hit a contaminating 

sequence, we will see the derived allele, this number is an estimate of contamination. 
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Therefore, we will also see the derived allele if the Neandertal is heterozygous 

derived and ancestral, and we sample the other copy of the site, we will have an 

overestimate of contamination.  Because we base our characterization of a site as 

fixed in humans based on a limited sample size, our contamination estimate will be 

biased by sites that are fixed derived in our sample of humans but ancestral in the 

contaminating human. 

 
Simple upper bound 
In this method, we do not try to correct for the effect of heterozygosity. We therefore 

make all effort to reduce heterozygosity in the sites we examine. 

We followed the following scheme:  
 
1. All human sequences seen in our panel of 5 (see Supp Info 9) are derived, at 

least one from each individual, and hg18 is derived. 
2. No sequence mapped to the site has an insertion or a deletion covering the site. 
3. The change from human to chimpanzee is a transversion. 
4. No bone has coverage higher than 2 sequences for the site. 
5. One Neandertal has 2 sequences covering the site, and a second has at least 1. 
6. None of the other sequences seen in any Neandertal is derived. 
7. Quality cutoffs used are 32 for base quality in Neandertal, 30 for mapping 

quality in Neandertal, 25 for base quality in humans, 30 for mapping quality in 
humans.   

 
Our test then asks: 

Conditional on seeing an ancestral allele in one sequence each from the two 

Neandertals, we ask what the chance is to see a derived allele in the second sequence 

from the first Neandertal. 

In this scheme, the chance to see the derived allele is /2)(1 aahcc . Where 

aah  stands for the heterozygosity conditional on seeing the ancestral allele in two 

sequences of Neandertal from different individuals, and on the allele being fixed 

derived in our human samples. 

For each of the three individuals and each chromosome,  we find the following 

total number of sites, n , and the subset of these in which we see the derived allele, 

nD < . The individual listed is the individual for which we looked at two sequences. 
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Table  S18 
    n 16   D 16   n 25   D 25   n 26   D 26  
 chr1   117   1   79   0   56   2  
chr2   119   1   85   1   76   0  
chr3   82   3   75   0   77   1  
chr4   66   3   68   0   69   0  
chr5   82   1   65   2   64   0  
chr6   67   1   52   0   51   1  
chr7   68   0   43   1   57   0  
chr8   89   0   97   2   66   0  
chr9   54   0   64   0   52   0  
chr10   55   4   37   0   49   1  
chr11   56   0   41   1   62   0  
chr12   69   1   65   1   48   2  
chr13   42   2   50   2   33   2  
chr14   39   0   31   1   22   1  
chr15   36   0   30   0   26   0  
chr16   60   2   40   0   19   0  
chr17   35   1   36   0   17   0  
chr18   35   3   21   1   26   0  
chr19   20   0   16   0   22   0  
chr20   48   0   30   0   33   1  
chr21   30   0   12   0   17   0  
chr22   28   0   22   2   20   0  

  
 

Table S19 Contamination estimates and 95% upper bounds 
    n   D  contamination  upper   lower  
Vi33.16   1297   23   1.8   2.6   1.1  
Vi33.25   1059   14   1.3   2.2   0.7  
Vi33.26   962   11   1.1   2.0   0.6  
Total   3318   48   1.4   1.9   1.1  

   
 
The contamination rates in the different bones are not significantly different. 

Thus we get an upper bound based on all three bones of 1.4%, with a 95% upper 

confidence interval of 1.9%. 

 
Testing the method 

In order to test our method, and our program, we used Craig Venter's 

published genome, and replaced a percentage p  the Neandertal bases with bases 

taken from that genome at the homologous sites. Aside from potentially changing the 

base, we retained all the features for the original sequence such as quality, and 
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coverage. We then ran our procedure for p  ranging from 2% to 40%, once for each 

point:  

 
Figure S5: Introduced vs. inferred contamination. Notice that the estimate is 
conservative, so it starts above the yx =  line. The error increases with increasing 
contamination, because there are fewer and fewer sites at which we see two ancestral 
alleles. Introducing much higher levels of contamination will start to underestimate 
contamination, until at 100% introduced contamination we would estimate 0% 
contamination.  

  
 

Likelihood method for contamination estimation 
Looking only at sites known to be derived in at least some contemporary humans, we 

observe three types of sites in Neandertal: all ancestral, all derived, and mixed 

ancestral / derived. The data at each site },{1, Li  from bone {1,2,3}j  can be 

summarized by three numbers: the total number of Neandertal reads ( jin , ), the 

number of these which are derived ( djin ,, ) and the frequency of the derived allele in 

humans ( if ). 
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Assumptions  
1. All sites have the same rates of contamination and error 
 
2. Sites are independent. 
 
3. The probability of a particular derived allele frequency in Neandertals as a 

function of the allele frequency in contemporary humans can be approximated as 
linear for 1<f  and all segregating allele frequencies are equally probable. 
Simulations across a range of demographies including low levels of admixture 
support these approximations. A very high level of Neandertal to European 
admixture (higher than seen in our data) would break this approximation. Details 
in section 3.3 (`` )|(Pr HN '') below. 

 
4. The probabilities in the previous assumption remain constant across all sites. Sex 

chromosomes would likely have different probabilities, so we focus exclusively 
on autosomes. 

 
5. All Neandertal chromosomes sample from a single homogenous population (i.e. 

no inbreeding that might make the two chromosomes within a bone more similar, 
and no population subdivision separating the bones)  

 
 

Parameters 
Let },,,,,{= sdsd aappc  denote the set of all parameters, where:   

c  contamination rate. A given read will be from a contaminating human with 
probability c  and from a Neandertal with probability c1 . 

dp  probability of Neandertal having all derived alleles, given derived allele is 
fixed in humans ( 1=if ). 

sp  probability of Neandertal being segregating, given derived allele is fixed in 
humans ( 1=if ). 

da  probability of Neandertal having all derived alleles at position i  is id fa  for 
1<if . 

sa  probability of Neandertal being segregating at position i  is is fa  for 1<if . 
 probability of an error. We observe a derived allele when the truth is 

ancestral (or vice versa) with probability .  
  
For ease of notation, we define i  to be the derived allele frequency spectrum 

in Neandertal, conditional on the derived frequency in present-day humans, if : 

1=1
1<1

=,0
isd

iisid
i fpp

ffafa

 
 

1=
1<

=,2
id

iid
bi fp

ffa
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1=1)/(
1<1)/(

=2<<,0
is

iis
bti fnp

fnfa
 

where b  is the number of bones (each of which is diploid, so b2  chromosomes). 
 

Likelihood 
We write the probability of the observed numbers of derived alleles as the 

product of the probabilities of the individual sites, conditional on the number of reads 

sampled from each bone at each site, the allele frequencies in present-day humans and 

the parameters:  

 
),,|(Pr=),,,,,,|,,(Pr=)(lik {1,2,3},{1,2,3},,1,31,1,3,1,1, iidi

i
LLdLd fnnffnnnn  (1) 

Dropping the subscript i  for ease of notation, we condition on the true derived allele 

frequency in our Neandertal sample, t :  

 ),,,|(Pr=),,|(Pr {1,2,3}{1,2,3},
0=

{1,2,3}{1,2,3}, fntnfnn dt

n

t
d  (2) 

Now we further condition on the number of derived alleles in each of 3=b  bones (0 

if homozygous ancestral, 1 if heterozygous, 2 if homozygous derived) denoted with 

subscripts as 1t , 2t  and 213 = tttt . The probability of the two free parameters 

follows a hypergeometric distribution (binomial sampling without replacement):  

 =),,,|(Pr {1,2,3}{1,2,3}, fntn d  (3) 
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 ),,,|(Pr),,,|(Pr 333,222, fntnfntn dd  
Note that extending to more than three bones would simply require adding more 

summations with the appropriate bounds to ensure that the total number of derived 

alleles sums to t . 

After the above conditioning, the probability of the observed number of 

derived alleles in each bone (e.g., dn1,  for bone 1) follows a binomial distribution 

where the probability of drawing a derived allele depends on the true state of that site 

(e.g., 1t  for bone 1) and the parameters c , f  and :  

dnn
t

dn
t

d
d qq

n
n

fntn 1,1
1

1,
1

1,

1
111, )(1=),,,|(Pr   (4) 
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))(1(1)(1)(1=2 cfccfq  (5) 

/2)(1)/2)(1(1)(1)(1=1 ccfccfq  
)(1)(1)(1=0 cfccfq  

 
The binomial probabilities for the other bones follow identically to equation 4. 

We arrive at the final likelihood by assemblying all equations together -- 

starting from 1 and substituting in 2, 3, 4 and 5. 

Finally we estimate our parameter of interest ( c ) by maximizing the 

likelihood of the data over all parameters },,,,,{= sdsd aappc . However, we can 

fix one parameter, , by separately estimating it from sites in which three different 

bases are observed. Confidence intervals for c  can be generated using a likelihood 

ratio test of the global maximum likelihood to the profile likelihood 

( )](lik[max=)( ,,, sadaspdpc ) and comparing to a 2  distribution with 1 degree of 

freedom. 

 
Data and results 

We begin by identifying a list of sites in present-day humans that are fixed-

derived (using the above notation, 1=f ) by comparing the sequences of five humans 

from the HGDP project sequenced (SOM 9) and selecting those sites where all five 

humans were identical to each other but different from the homologous chimpanzee 

base. Then we supplement this list of 1=f  sites with the list of SNPs from Phase II 

of the HapMap project (S27) using frequencies found in the CEU population 

( 1<<0 f ). In all cases, we only retain sites in which the two alleles form a 

transversion rather than a transition, since the Neandertal data will frequently contain 

false transitions due to ancient DNA damage (S28). 

Given this list of human-derived sites, we extract the homologous Neandertal 

bases from the Illumina data produced from the Vindja 33.16, 33.25, 33.26 bones 

(SOM 3). Then we apply the following filters:   

Any site is discarded that either   
has a single bone with more than 3 reads 
has fewer than 2 or greater than 4 reads in total among all the 
bones (lower coverage yields little information, greater coverage 
selects duplicated regions)  

We only examine reads placed with map-quality 30  
Bases with quality 32<  are discarded  
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 From these filtered data, we first estimate the error rate from triallelic sites to 

be 0.0005=  and then calculate the profile likelihood of the contamination rate ( c ) 

by maximizing over all other parameters ( dp , sp , da , sa ). In Figure S6, we plot the 

resulting curves from using fixed sites only ( 1=f ; panel A) and from using all sites 

( 1f ; panel B). 

 

 Figure  S6: Profile likelihood curves for c  using fixed sites only (A) or all sites (B). 
Y-axis shows log likelihood relative to maximum. Dashed vertical lines indicate 
approximate 95% confidence interval. 

  
Our final contamination estimate for all data (S6B) is 0.66%=�ˆc , with an 

upper bound of 0.76%  and a lower bound of 0.56% . The global maximum 

likelihood also produced the following estimates for the nuisance parameters: 

99.0�ˆ dp , 0017.0�ˆ sp , 47.0�ˆda , 55.0�ˆ sa  
 

 
Testing the method 

We tested our method by adding known amounts of �“contamination�” from 

Craig Venter's genome to the Neandertal data and examining the effect on c�ˆ . For 

0.5<c , our estimate increased monotonically with the amount of the simulated 

contamination and linearly for 0.3<c ) (Figure S7), suggesting that we can accurately 

estimate contamination in this parameter range from an individual with background 

similar to Venter. However, as the simulated contamination exceeds 50%, our 

maximum likelihood estimate actually declines. Note that, even ignoring the 

mitochondrial and Y chromosome estimates of contamination, our estimate of 0.66% 
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contamination is only consistent with either 0.66% or essentially 100% contamination 

-- and the latter can be eliminated by many other aspects of the data such as the 

divergence estimates (SOM 10).  

Figure S7: Performance of estimator on simulationed contamination using varying 
amounts of Craig Venter's genome. Confidence intervals denoted by error bars; 
dashed line has slope=1 and intercept equal to estimate from data without simulated 
contamination. 

  
Futher investigation reveals that this underestimation arises from two sources. 

First, the likelihood must estimate both the evolutionary relationship between 

Neandertals and modern humans as well as the contamination rate. At sufficiently 

high doses of contamination, Venter is indistinguishable from a Neandertal -- both 

will mostly match the derived allele but occasionally each will have the ancestral 

allele instead (even for 1=f  sites; recall that we identify these solely on the basis of 

being fixed in our sample of 5 HGDP humans). Thus instead of estimating the 

evolutionary parameters ( dp , sp , da , sa ) relating Neanderthal to modern humans, 

we are estimating these relating Venter to modern humans. This can be seen from the 

improved performance of the estimators in Figure S8 below, in which the 

evolutionary parameters are fixed at their no-added-contamination levels. 
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Figure  S8: Performance of estimator with evolutionary parameters ( dp , sp , da , sa ) 
fixed at the values estimated for no added contamination. 

  
The second source of underestimation arises from our assumption that human 

contaminating will exactly match the frequencies specified by f . Of course, no single 

human genome will ever exactly match these frequencies at segregating sites, and 

anytime the contaminator has an ancestral allele at a 1=f  site, the likelihood will 

interpret this as non-contamination. If, instead of pulling bases from Venter's genome, 

we simulate ``ideal'' contamination by inserting the derived allele with probability cf , 

then we find the perfect estimator seen Figure S9. 
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Figure  S9: Performance of estimator with simulated contamination from the CEU 
population and evolutionary parameters ( dp , sp , da , sa ) fixed at the values 
estimated for no added contamination. 

  
 

)|(Pr HN  
 
The likelihood method described above requires the calculation of the 

evolutionary probability of the frequency of a derived allele in Neandertal given the 

frequency of that allele in present-day humans. Exact analytic computation of these 

probabilities has so far proven intractable, so we instead turn to coalescent 

simulations using the program ms (S29). The following plots give these probabilities 

for a human sample size of 100 chromosomes (50 West Africans, 50 Europeans), and 

a Neandertal sample size of 6 chromosomes (i.e. a three non-inbred diploid 

individuals from a single population) in the following four demographic scenarios:   

1. simple (all populations the same size and constant across time) 
2. model used in Wall et al. (S30), without admixture 
3. model used in Wall et al. + Neandertal to European admixture from 40kya to 

45kya with 4Nm = 1000 
4. model used in Wall et al. + European to Neandertal admixture from 40kya to 

45kya with 4Nm = 1000  
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Figure  S10  
  
While these plots are all different, the functional form of each curve is close to 

linear with a y-intercept of 0. Further, the slope of the lines for different segregating 

frequencies in the Neandertal ( 1<<0 x ) are almost identical. Thus we need only to 

estimate the slopes of these lines to arrive at a good approximation. The 1/6  line in 

the Neandertal to European admixture simulations (lower left panel, yellow dashed 

line) illustrates where how this approximation might break down; however, in our 

case, the approximation works well, as demonstrated in the simulated contamination 

results above. 



 50

Supplemental Online Material 8 
Additional Neandertal Individuals 
 

Martin Kircher, Johannes Krause, and Richard E. Green* 
 

* To whom correspondence should be addressed (green@eva.mpg.de) 
 
To further explore the genetic relationship between Neandertals and modern humans, 

three additional Neandertal bones were identified that are largely devoid of mtDNA 

contamination, but unfortunately show low amounts of Neandertal DNA relative to 

microbial sequences. DNA libraries from these bones are therefore uneconomical for 

genome-scale sequencing. However, as these bones cover much of the geographic 

range of Neandertals, they are useful for generating more modest amounts of data for 

comparison to the Vindija samples that all come from a single site. 

 

We generated sequencing libraries from DNA extracts from Sidron1253 (S31), 

Feldhofer1 (S25), and Mezmaiskaya1 (S32) (Supplementary Table S20). The five 

sequencing libraries described in this table have been sequenced on 36 Illumina lanes 

(Supplementary Table S21). Library preparation and sequencing was performed as 

described in SOM Section 2 DNA extraction, contamination assays, library 

preparation and sequencing of Neandertal libraries and the alignment to the human 

and chimpanzee genome as described in SOM 3 Neandertal DNA sequence alignment 

and filtering. The total amount of raw sequence data generated and the fraction of 

Neandertal data in each is shown in Supplementary Table S22. 

 

Using these data, we calculated average human-Neandertal genome divergence as 

discussed in the SOM Section: 10. Neandertal-modern human genome divergence.  

 
Table S20: Information on samples, extracts, contamination level as well as number 
of PCR amplification cycles for the four Neandertal sequencing libraries 

   
PCR 

contamination 
PEC 

contamination Amplification  

Sample Extract mg Nea 
Huma

n Nea Human Cycles (PCR) Lib 
Mezmaiskaya

1 E149 70 na na 2959 10 20 SL39 
             20 SL61 

Feldhofer 1 
E142, 
E143 190 na na 1436 21 18 SL37 

Sidron 1253 120207.1 223 107 1 2807 7 18 SL49 
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Table S21: Sequencing runs for the four Neandertal sequencing libraries. This table 
provides an assignment of lanes, library identifiers (cross reference to Table S20 for 
bone assignment), read length, chemistry and analysis pipeline used. For each lane the 
number of raw clusters obtained, as well as the number of merged and key passed 
sequences used as input for further analyses is provided. 
Run identifier 

Lane Library 
identifier 

Chemistry
1 FC-204-
20xx, 
2 FC-103-
300x 

Cycles 
GA 
Pipeline 
version 

Raw 
clusters 

Key pass 
& 
Merged 

090116_SOLEXA-
GA02_JK_PE_SL39 

1 SL39 1 2x51 1.0 14270186 8865201 

090116_SOLEXA-
GA02_JK_PE_SL39 

2 SL39 1 2x51 1.0 15117962 9998512 

090116_SOLEXA-
GA02_JK_PE_SL39 

3 SL39 1 2x51 1.0 15090681 10089362 

090116_SOLEXA-
GA02_JK_PE_SL39 

5 SL39 1 2x51 1.0 15067349 10058562 

090116_SOLEXA-
GA02_JK_PE_SL39 

6 SL39 1 2x51 1.0 14820369 9761315 

090116_SOLEXA-
GA02_JK_PE_SL39 

7 SL39 1 2x51 1.0 15106028 10051894 

090116_SOLEXA-
GA02_JK_PE_SL39 

8 SL39 1 2x51 1.0 15024245 10010636 

090116_SOLEXA-
GA04_JK_PE_SL37_SL38 

5 SL37 1 2x51 1.0 10084698 6742852 

090116_SOLEXA-
GA04_JK_PE_SL37_SL38 

6 SL37 1 2x51 1.0 10033074 6803106 

090116_SOLEXA-
GA04_JK_PE_SL37_SL38 

7 SL37 1 2x51 1.0 10271620 6899234 

090116_SOLEXA-
GA04_JK_PE_SL37_SL38 

8 SL37 1 2x51 1.0 9034755 5975009 

090126_SOLEXA-
GA02_JK_PE_SL49 

1 SL49 1 2x51 1.3.2 8510348 6033851 

090126_SOLEXA-
GA02_JK_PE_SL49 

2 SL49 1 2x51 1.3.2 8812646 6445976 

090126_SOLEXA-
GA02_JK_PE_SL49 

3 SL49 1 2x51 1.3.2 8574352 6289469 

090126_SOLEXA-
GA02_JK_PE_SL49 

5 SL49 1 2x51 1.3.2 8788391 6484386 

090126_SOLEXA-
GA02_JK_PE_SL49 

6 SL49 1 2x51 1.3.2 8765173 6473555 

090126_SOLEXA-
GA02_JK_PE_SL49 

7 SL49 1 2x51 1.3.2 8934107 6573421 

090126_SOLEXA-
GA02_JK_PE_SL49 

8 SL49 1 2x51 1.3.2 8914034 6492071 

090309_SOLEXA-
GA03_JK_PE_SL61 

1 SL61 1 2x51 1.3.2 10280804 7831441 

090309_SOLEXA-
GA03_JK_PE_SL61 

2 SL61 1 2x51 1.3.2 10833871 8479809 

090309_SOLEXA-
GA03_JK_PE_SL61 

3 SL61 1 2x51 1.3.2 10635445 8334614 

090309_SOLEXA-
GA03_JK_PE_SL61 

5 SL61 1 2x51 1.3.2 10689037 8431149 

090309_SOLEXA-
GA03_JK_PE_SL61 

6 SL61 1 2x51 1.3.2 10757033 8292442 

090309_SOLEXA-
GA03_JK_PE_SL61 

7 SL61 1 2x51 1.3.2 10626179 8534606 

090309_SOLEXA-
GA03_JK_PE_SL61 

8 SL61 1 2x51 1.3.2 10470192 8392562 

090309_SOLEXA-
GA02_JK_PE_SL56_SL60-57_SL61 

3 SL61 1 2x51 1.3.2 11698496 9386929 

090309_SOLEXA-
GA02_JK_PE_SL56_SL60-57_SL61 

5 SL61 1 2x51 1.3.2 12146794 9940651 
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Run identifier 

Lane Library 
identifier 

Chemistry
1 FC-204-
20xx, 
2 FC-103-
300x 

Cycles 
GA 
Pipeline 
version 

Raw 
clusters 

Key pass 
& 
Merged 

090309_SOLEXA-
GA02_JK_PE_SL56_SL60-57_SL61 

6 SL61 1 2x51 1.3.2 12349468 10132157 

090309_SOLEXA-
GA02_JK_PE_SL56_SL60-57_SL61 

7 SL61 1 2x51 1.3.2 12551581 10283728 

090309_SOLEXA-
GA02_JK_PE_SL56_SL60-57_SL61 

8 SL61 1 2x51 1.3.2 11944314 9800758 

 
 
Table S22: Amount of sequencing data obtained for the three additional Neandertal 
samples 

Neandertal 
bone 

Lanes Raw reads Merged 
reads 

Total unique 
Neandertal reads 
(mapped to hg18)

Neandertal 
sequence (bp, 

mapped to 
hg18) 

Mezmaiskaya1 20 257,653,855 181,317,764 1,266,452 56,405,304 
Sidron 1253 7 61,299,051 44,792,729 48,814 2,234,572 
Feldhofer 1 5 51,230,295 32,948,500 44,114 2,228,645 
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Matthias Meyer, Nancy Hansen, and Martin Kircher 

 
Library Preparation for HGDP individuals 
 
One microgram of DNA was obtained for each of the five individuals HGDP00778 

(Han Chinese), HGDP00542 (Papuan), HGDP00927 (Yoruba), HDGP01029 (San) 

and HGDP00521 (French) from the HGDP-CEPH panel. DNA was sheared into small 

fragments (200 �– 400 bp) using the Bioruptor UCD-200 (Diagenode). Shearing was 

performed four times for seven minutes at �“HIGH�” setting with an ON/OFF interval 

of 30 seconds. Illumina sequencing libraries were prepared from the sheared samples 

according to the 454 protocol described in Supplementary Material 2 with the 

following modifications for creating Illumina sequencing libraries without 

conversion: (i) Blunt end ligation of short adapters was followed by amplification 

with 5�’-tailed primers, but different adapter and PCR primer sequences were used (see 

Table S23); (ii) for each sample a narrow band around 300 bp was excised from a 2 % 

agarose gel after adapter ligation to obtain inserts of optimal size for sequencing. 

DNA was extracted from the gel slices using the QIAquick Gel Extraction kit 

(Qiagen).  

 
Table S23: Oligonucleotide sequences used in library preparation (PTO bonds 
indicated by *) 
 

Name Sequence 
Adapter P5 oligo 1 5'-A*C*A*C*TCTTTCCCTACACGACGCTCTTCCG*A*T*C*T-3' 

Adapter P5 oligo 2 5'-A*G*A*T*CGGAA*G*A*G*C-3' 

Adapter P7 oligo 1 5'-Biotin-G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTCCG*A*T*C*T-3' 

Adapter P7 oligo 2 identical to Adapter P5 oligo 2 

PCR primer P5 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT-3' 

PCR primer P7 5'-CAAGCAGAAGACGGCATACGAGATgatgctGTGACTGGAGTTCAGACGTGT-3' 

 
Illumina sequencing of HGDP individuals 
 
Each of the five human Illumina libraries has been sequenced with 2 x 76 cycles on 

one flow cell according to the manufacturer�’s instructions for Multiplex sequencing 

on the Genome Analyzer II platform (FC-103-300x sequencing chemistry). The 

protocol was followed with one exception being that no index read was performed. 

Due to low cluster densities for the run of the French individual (HGDP00521), 
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another 4 lanes have been sequenced from this library on an additional sequencing run 

(same chemistry and protocols) for which the index read was performed, but not 

evaluated for these four lanes. 

 

The runs were analyzed starting from intensity files (CIF format) using the Illumina 

Genome Analyzer Pipeline 1.4.0. Base calling parameter estimation for the Illumina 

base caller Bustard (S12) was done on a PhiX control lane sequenced in lane 4 of 

each run. The Bustard-called PhiX 174 reads were aligned to the corresponding 

reference sequence to obtain a training data set for the alternative base caller Ibis 

(S13). Raw sequences called from Ibis for the two paired end reads of each 

sequencing cluster were aligned separately with BWA (S33) to the human (hg18) and 

chimpanzee (pantro2) genome with default parameters. Using BWA's sampe 

command the alignments for two reads were combined and converted to SAM/BAM 

format (S20). In this step, missing paired alignments were searched within a window 

of 800nt around one aligned read (BWA sampe parameter -a 800). Subsequently, the 

BAM output files of all lanes from the same library were merged and the resulting 

files filtered by removing read pairs for which either the forward or reverse read 

failed one of the following criteria: (a) Missing the "properly paired" bit in the BAM 

file. (b) Mapping quality < 30. (c) "Duplicated", i.e. read pairs for which another, 

higher or equal quality, read pair had boundaries that map to the same outer 

coordinates (samtools rmdup command). (d) Reads with sequence entropy < 1.0, 

where entropy is calculated by summing -p*log2(p) for each of the four nucleotides. 

Table S24 summarizes the number of raw reads obtained for each library, the fraction 

aligned as well as the fraction passing the described filter. 
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Table S24: Sequence data obtained for the five HGDP individuals. The table 
summarizes the number of raw reads for each library, the fraction aligned (S33) to the 
human (hg18) and chimp reference (pantro2) genome as well as the fraction of paired 
end reads obtained after removing pairs for which at least one of the reads failed one 
of the following filter criteria: (1) Missing the "properly paired" bit in the BAM file. 
(2) Mapping quality < 30. (3) "Duplicated", i.e. read pairs for which another, higher 
or equal quality, read pair had boundaries that map to the same outer coordinates. (4) 
Reads with sequence entropy < 1.0, where entropy is calculated by summing -
p*log2(p) for each of the four nucleotides. 
 
Sample HGDP00778 HGDP00542 HGDP00927 HDGP01029 HGDP00521 
Name Han Chinese Papuan Yoruba San French 
Raw reads 203,092,890 201,695,232 234,562,514 322,490,746 245,570,296 

174,666,290 164,630,156 198,199,303 266,555,406 205,523,864 Chimpanzee 
(pantro2) (86.0%) (81.6%) (84.5%) (82.7%) (83.7%) 

138,448,786 131,635,040 159,019,706 215,603,094 162,032,716 filtered 
(68.2%) (65.3%) (67.8%) (66.9%) (66.0%) 

184,070,514 177,444,185 210,052,921 282,364,120 217,075,840 Human 
(hg18) (90.6%) (88.0%) (89.6%) (87.6%) (88.4%) 

154,826,008 150,620,614 177,997,474 240,522,810 181,488,714 filtered 
(76.2%) (74.7%) (75.9%) (74.6%) (73.9%) 
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To estimate the average genome divergence between Neandertals and modern 

humans, we generated 3-way alignment between these two and the chimpanzee 

(panTro2). We then counted the number of differences that are unique to each of the 

three lineages: modern human (nH), chimpanzee (nC), and Neandertal (nN). Assuming 

constant evolutionary rates along lineages, modern human-Neandertal divergence can 

be reported as a ratio of the branch length leading to modern humans since Neandertal 

divergence and half the total distance between chimpanzees and modern humans: 

 

nH / ((nC + nH)/2) 

 

The accuracy of such an estimate depends critically on correctly identifying 

orthologous segments and accurately aligning them (S34). Because the amount of 

sequence data available is not limiting for such an analysis, we stringently filtered the 

data to ensure 3-way orthology using the following methodology. 

 

We began by extracting all regions of single-copy aligned human and chimpanzee 

sequence from the 4-way alignment of human, chimpanzee, orangutan, and macaque 

as provided by the Enredo-Pecan-Ortheus (EPO) whole-genome multiple sequence 

alignment of these genomes (S15-17). We took only aligned blocks that were 

represented by a single human and chimpanzee segment to avoid human-lineage or 

chimpanzee-lineage duplicated segments. We also required at least one segment from 

orangutan or macaque to be present to ensure reasonable inference of the human-

chimpanzee ancestral state. We used the inferred human-chimpanzee single copy 

ancestral sequence (HCSCCA) for all such regions to align the Neandertal reads using 

ANFO, (see SOM 3). We note that ANFO makes use of DNA ambiguity codes during 

alignment, minimizing the loss in sensitivity that occurs when mapping against a 

more distant reference, such as the common ancestor sequence. For each read 

mapping to an unambiguous position within the HCSCCA (map-quality >= 30), we 
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compared the separate ANFO mapping coordinates to the human and chimpanzee 

genomes. We required unambiguous best alignment positions within each of these 

genomes (map-quality >=30) that are compatible with one another via the 

hg18topanTro2 whole genome alignment and the panTro2tohg18 whole genome 

alignment from UCSC. Because each aligned segment in the HCSCCA comes from a 

discrete segment of the human and chimpanzee genome, we also required that these 

alignment positions were equivalent to the position in the HCSCCA. In summary, 

there were independent, direct mappings of Neandertal sequence to three genome 

sequences: the human genome, N(hg18), the chimpanzee genome, N(pt2), and the 

inferred single-copy common ancestor sequence, N(HCSCCA). There were three 

further, indirect mappings inferred via whole genome alignments, N(hg18-via-pt2), 

N(pt2-via-hg18), and N(hg18-via-HCSCCA). Our unambiguous orthology filter 

required equivalent coordinates between: 

N(hg18) and N(hg18-via-pts); 

N(hg18) and N(hg18-via-HCSCCA); 

N(pt2) and N(pt2-via-hg18) 

 

This strategy is shown schematically in Figure S14. 

 

We used a similar strategy for the five HGDP current human samples. However, in 

this case we used the bwa(S20) mappings instead of ANFO mappings. Furthermore, 

we filtered these reads for consistent paired-end coordinates on the hg18 mappings. 

 

For all reads passing this filter, we then generated a human/Neandertal/chimpanzee 3-

way alignment. At each HCSCCA genomic position, we randomly sampled a single 

allele, if any, passing the base- and library-specific quality cutoffs. We ignored sites 

where the data coverage was higher than the 95th percentile for that sample, as 

coverage outlier sites could be symptomatic of regions of mapping problems. These 

coverage cutoffs are shown in Table S25. We then used the HCSCCA-chimpanzee-

human (EPO) alignment to extract the corresponding human and chimpanzee base at 

each position. This strategy circumvents the bias inherent in progressive multiple 

sequence alignment (S16). 
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From these alignments, we counted the number of lineage-specific differences 

between chimpanzee, the reference human genome, and the Neandertal. We summed 

over all autosomes and considered the X chromosome separately. Because of the high 

rate of misincorporation-induced transitions in the Neandertal sequence, we restricted 

the divergence estimation to only transversion sites. This has the additional benefit of 

avoiding parallel substitutions in any of the three lineages as transversions accumulate 

more slowly than transitions. 

 

The reference human genome is a mosaic of BAC sequences whose ancestry can be 

inferred (S35), which presents an opportunity to explore the genetic relationship 

between Neandertals and current human populations. We focused on regions of the 

reference human genome contributed by the BAC library RPCI-11 as it has been 

shown to be contributed by an individual with both African and European ancestry 

(S35). Using only regions of the reference human genome derived from confidently 

assigned ancestry, we partitioned the human reference into regions of inferred African 

and European ancestry. We then calculated the Neandertal/reference human 

divergence in each partition separately. The divergence data for each individual at all 

sites, and by these partitions is shown in Figure S11 and Table S26. The substitution 

spectra for the three, lower-coverage Neandertals is shown in Figure S12. Note that 

the extreme excess of C to T and G to A substitutions, typical for ancient DNA, is 

seen in each of these Neandertal datasets. In contrast, Figure S13 shows the 

divergence estimate and substitution spectra for the five HGDP individuals. 

 

This partitioning of the reference human genome into regions of European and 

African ancestry provides a convenient way to cross-check our human divergence 

estimates. Because the filtering and analysis methodology presented here was 

developed specifically to deal with the peculiarities of ancient DNA sequence, its 

applicability to modern DNA sequence is not obvious.  

 

Prior estimates of Yoruban divergence have been presented (S36). An estimate from 

the Illumina sequencing of about 40 fold coverage of a Yoruban individual (S37) and 

further estimates generate Yoruban/Yoruba divergence estimates that range between 

8.00% and 8.30%. The divergence estimate presented here between the Yoruban 

sample and the inferred African portions of the reference genome, 9.17%, we note is 
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10 to 15% higher than these previous estimates. What follows is an exploration of the 

effects of differences in the methodology applied to arrive at these estimates. 

 

The discrepancy between the estimate here and these external estimates are partially 

explicable by methodological differences used to arrive at these numbers. The 

divergence estimate methodology designed for ancient Neandertal DNA is necessarily 

restricted to transversion differences because of the high rate of erroneous transitions 

in ancient DNA (S38). We apply this restriction to the HGDP individual divergences 

as well, in the interests of generating comparable numbers. However, previous 

estimates of Yoruba divergence do not include this restriction. Therefore, we removed 

this filter and examined both transitions and transversions, but excluding CpG sites 

and estimate a Yoruba divergence of 9.09%, lower than the 9.17% when examining 

only transversions. 

 

Another difference between then input sequence data analyzed here and that used for 

previous estimates concerns sequencing error rates. Sampling a single base at each 

position renders the data effectively 1x coverage. We estimate the error rate of the 

human sequencing data in this analysis by considering the excess of substitutions 

localized to the HGDP individual lineage as shown in Figure S13. 

 

Sequencing error in the HGDP individuals will bias the divergence. The basis for this 

effect can be demonstrated by considering the effect of sequencing error in the HGDP 

sequence when aligned to the reference human and reference chimpanzee, which are 

considered here to be error-free. Each position in the reference chimpanzee (c), 

reference human (h), and HGDP human (s) alignment can be classified into one of 

five possible categories: 

a1 = sites where c, h, and s are identical, i.e., no substitutions have occurred 

a2 = sites where  h and s are identical but different from c, (nC sites) 

a3 = sites where c and h are identical, s is different (combination of sequencing error 

and sites of divergence in the HGDP individual) 

a4 = sites where c and s are identical, h is different (nH sites) 

a5 = sites where c, h, and s are all different 
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Assuming equal branch lengths of the reference human and the HGDP individual, the 

relative number of each category of sites is expected to be: 

a1 >>> a2 >> a3 > a4 > a5 

Note, however, that only a2 and a4 sites are used to calculate divergence. Therefore, 

we consider the effect of sequencing error in falsely inflating or reducing these 

numbers. If we assume that sequencing error will cause sites to be misclassified 

randomly the overall effect is a function only of the overall sequencing error rate, e, 

and the number of actual counts in each category. The largest overall effect of 

sequencing error will be that a1 sites are falsely classified as a3 sites. That is, sites 

where no actual divergence has occurred will appear as diverged in the HGDP 

sample. The largest effect of consequence for divergence estimation occurs when sites 

that are actually a2 have a sequencing error in the HGDP base. In this case, two-thirds 

of the errors will cause this position to be falsely classified as a5. One-third, however, 

will cause these sites to be falsely classified as a4. In other words, sites where an 

actual substitution separating chimpanzees from the humans occurred will appear as 

sites on the reference human lineage. This misclassification increases the numerator 

and decreases the denominator of the divergence equation: 

nH / ((nC + nH)/2) 

To formalize the effect of sequence error in our counts, we set up this matrix 

transformation to learn the actual numbers in each category (a1, a2, a3, a4, a5) given a 

rate of sequencing error, e, and the observed numbers in each category (b1, b2, b3, b4, 

b5): 

5

4

3

2

5

4

3

2

11

3/213/203/20
3/103/0

003/10
3/3/010
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eee
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eee

ee

 

We can then solve this matrix for (a1, a2, a3, a4, a5) to neutralize the effect of 

misclassification due to sequencing error. Using the rate of sequencing error 

estimated from the increased number of Yoruban lineage differences relative to that 

of the reference human, 0.005059, we arrive at a Yoruban divergence estimate of 

8.78%. 
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We note that this estimate, 8.78% still represents a 7%-10% increase relative to the 

mean of previous Yoruba divergence estimates. The source of this residual increase 

may lie in differences in filtering for unambiguous orthology that are necessary for 

accurate Neandertal divergence estimation that less tractable to explore using 

comparison, high coverage datasets. In any case, we note that the HGDP divergence 

estimates presented here may be systematically biased to be deeper than previous 

estimates. They are presented for comparison to the Neandertal divergence estimates, 

using the Neandertal divergence estimate methodology. Table S27 shows the 

divergence estimates for each of the five HGDP individuals relative to the reference 

human genome and to the inferred European and African portions under these two 

modifications. 

 

To investigate the regional variation in divergence, we calculated divergence, nH / ((nC 

+ nH)/2), between Neandertals and each HGDP individual and the reference human in 

non-overlapping 100kb segments across the genome. The distribution of this regional 

divergence for each 100kb segment for which there were at least 50 counts of nH + nC 

is shown in Figure 3. 
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Table S25: Sequence coverage cutoffs at the 95th percentile of the distribution of 
coverage depth. These cutoffs were used to exclude sites of high-coverage. 

Individual Coverage cutoff (95th 
percentile) 

Vi33.16 2 
Vi33.25 2 
Vi33.26 2 

Feldhofer1 1 
Mezmaiskaya1 1 

Sidron1253 1 
French 10 

San 12 
Han 8 

Papuan 8 
Yoruban 9 
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Table S26: Divergence to the reference human genome. 95% confidence intervals are 
calculated using a block-jackknife over 10Mb segments of the indicated segments of 
the genome. 
Individual category nC nN nH nH / ((nC + nH)/2) 

[95% CI] % 
autosomes 449,619 129,103 30,413 12.67 [12.45-12.90] 

X chromosome 20,106 7,158 1,297 12.12 [11.49-12.75] 
Eur. autosomes 121,614 35,567 7,863 12.15 [11.78-12.51] 

Vi33.16 

Afr. autosomes 66,603 19,062 4,688 13.15 [12.68-13.62] 
autosomes 478,270 204,845 32,347 12.67 [12.45-12.89] 

X chromosome 22,823 12,392 1,507 12.39 [11.53-13.25] 
Eur. autosomes 129,882 56,995 8,510 12.30 [11.93-12.66] 

Vi33.25 

Afr. autosomes 72,346 31,015 5,091 13.15 [12.67-13.62] 
autosomes 451,459 111,215 30,548 12.68 [12.45-12.90] 

X chromosome 21,661 6,343 1,367 11.87 [11.12-12.62] 
Eur. autosomes 122,611 30,561 8,097 12.39 [12.02-12.76] 

Vi33.26 

Afr. autosomes 68,540 16,841 4,767 13.01 [12.45-13.56] 
autosomes 1,022 693 66 12.13 [5.94-18.33] 

X chromosome 15 24 5  
Eur. autosomes     

Feldhofer1 

Afr. autosomes     
autosomes 22,497 9,499 1,527 12.71 [12.08-13.35] 

X chromosome 937 541 71  
Eur. autosomes 6,058 2,589 416  

Mez1 

Afr. autosomes 3,172 1,386 217  
Sidron1253 autosomes 950 700 81 15.71 [9.05-22.38] 

 X chromosome 34 121 3  
 Eur. autosomes     
 Afr. autosomes     

French autosomes 1,600,826 872,504 66,709 8.00 [7.78-8.22] 
 X chromosome 20,106 7,158 1,297 5.28 [4.63-5.94] 
 Eur. autosomes 459,724 252,265 16,741 7.03 [6.68-7.37] 
 Afr. autosomes 232,630 126,336 11,325 9.28 [8.93-9.64] 

Han autosomes 449,619 129,103 30,413 8.45 [8.23-8.67] 
 X chromosome 74,286 49,247 2,015 5.84 [5.03-6.65] 
 Eur. autosomes 121,614 35,567 7,863 7.69 [7.38-8.01] 
 Afr. autosomes 66,603 19,062 4,688 9.59 [9.21-10.00] 

Papuan autosomes 1,620,290 3,163,531 79,201 9.32 [9.09-9.55] 
 X chromosome 72,844 173,944 2,255 6.01 [5.53-6.48] 
 Eur. autosomes 464,691 922,939 20,913 8.61 [8.26-8.97] 
 Afr. autosomes 239,988 458,472 12,820 10.14 [9.77-10.52] 

Yoruban autosomes 1,660,528 1,570,486 82,123 9.43 [9.22-9.63] 
 X chromosome 77,606 88,963 3,097 7.68 [7.04-8.31] 
 Eur. autosomes 474,635 544,854 23,075 9.27 [8.94-9.59] 
 Afr. autosomes 245,851 225,165 11,817 9.17 [8.85-9.50] 

San autosomes 1,729,241 1,573,773 94,126 10.32 [10.12-10.53] 
 X chromosome 85,438 95,905 4,055 9.06 [8.48-9.64] 
 Eur. autosomes 494,310 457,706 26,225 10.08 [9.73-10.42] 
 Afr. autosomes 256,784 227,963 13,787 10.19 [9.86-10.53] 
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Table S27: Divergence estimates of HGDP samples using all sites except CpG sites 
and error neutralization. Confidence intervals are calculated here using the binomial 
variance. 
Individual category error rate for 

error 
neutralization 

nC nH nH / ((nC + nH)/2) 
[95% CI] % 

French autosomes none 3,588,873 147,691 7.91 [7.87-7.94] 
 autosomes 0.003007 3,599,550 144,515 7.72 [7.68-7.76] 
 European 

autosomes 
none 1,039,766 36,921 6.86 [6.79-6.93] 

 European 
Autosomes 

0.003007 1,042,870 35,983 6.67 [6.60-6.74] 

 African 
Autosomes 

none 527,189 25,258 9.14 [9.03-9.25] 

 African 
autosomes 

0.003007 528,754 24,802 8.96 [8.85-9.07] 

Han autosomes none 3,693,544 160,908 8.35 [8.31-8.39] 
 autosomes 0.004931 3,711,590 155,571 8.05 [8.01-8.09] 
 European 

autosomes 
none 1,068,160 42,150 7.59 [7.52-7.66] 

 European 
Autosomes 

0.004931 1,073,390 40,585 7.29 [7.22-7.36] 

 African 
Autosomes 

none 548,542 27,313 9.49 [9.38-9.60] 

 African 
autosomes 

0.004931 551216 26,537 9.19 [9.08-9.29] 

Papuan autosomes none 3,668,521 176,932 9.20 [9.16-9.24] 
 autosomes 0.010793 3,707,940 165,366 8.54 [8.50-8.58] 
 European 

autosomes 
none 1,061,023 46,598 8.41 [8.34-8.49] 

 European 
Autosomes 

0.010793 1,072,440 43,204 7.75 [7.67-7.82] 

 African 
Autosomes 

none 548,732 28,914 10.01 [9.90-10.12] 

 African 
autosomes 

0.010793 554,619 27,211 9.35 [9.24-9.46] 

Yoruban autosomes No 3,742,642 183,373 9.34 [9.30-9.38] 
 autosomes 0.005205 3,761,910 177,767 9.02 [8.98-9.07] 
 European 

autosomes 
none 1,078,460 51,874 9.18 [9.10-9.26] 

 European 
Autosomes 

0.005205 1,084,010 50,254 8.86 [8.79-8.94] 

 African 
Autosomes 

none 559,961 26,657 9.09 [8.98-9.20] 

 African 
autosomes 

0.005205 562,845 25,814 8.77 [8.67-8.88] 

San autosomes none 3,903,203 209,704 10.20 [10.15-10.24] 
 autosomes 0.004960 3,922,310 204,266 9.90 [9.86-9.94] 
 European 

autosomes 
none 1,125,410 58,709 9.92 [9.83-9.99] 

 European 
Autosomes 

0.004960 1,130,920 57,121 9.62 [9.54-9.69] 

 African 
Autosomes 

none 585,168 
 

31,114 10.10 [9.99-10.21] 

 African 
autosomes 

0.004960 588,034 30,291 9.80 [9.69-9.91] 
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Figure S11: Divergence of Neandertal and human genomes. The average genome 
divergence is shown between the reference human genome (hg18) and the genomes of 
Neandertals from Croatia (Vindija), Germany (Feldhofer1), Russia (Mezmaiskaya1), 
and Spain (Sidron1253), as well as the five present-day humans sequenced in this 
study. For each individual, divergence is expressed as a percentage of the hominin 
lineage, i.e., the time since human-chimpanzee divergence. The genome-wide average 
is shown in red. The average for segments of the genome with inferred ancestry of 
European (green) and African (blue) ancestry are shown separately. Error bars are 
95% confidence intervals calculated using a block-jackknife over 10 megabase 
segments of the genome and are especially large for the Feldhofer1 and Sidron1253 
samples for which little data was collected 
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Figure S12: Divergence estimate and lineage substitution spectra of three 
Neandertals from Russia, Germany and Spain. nC, nN, and nH values are for 
transversion sites only, i.e., those used to calculate divergence. 
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Figure S13: Divergence estimate and lineage substitution spectra of five HGDP 
individuals relative to the reference human sequence. 
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Figure S14: Filter for unambiguous orthology mapping of reads. Each Neandertal 
read was independently mapped to the human genome (hg18), the chimpanzee 
genome (pt2), and the inferred common ancestor sequence (HCSCCA). The 
concordance of all alignment positions was checked via the whole-genome 
alignments of genomes. Any discordantly mapped read was not considered in 
divergence calculations.
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Identification of changes on the whole human lineage 

We identified positions that have changed on the human lineage using whole genome 

alignments of human (hg18), chimpanzee (pantro2), orangutan (ponabe2) and rhesus 

macaque (rhemac2). Multi-species whole genome alignments were created from pair-

wise alignments available from the UCSC Genome browser 

(http://hgdownload.cse.ucsc.edu/downloads.html) using autoMultiZ from the UCSC 

Kent-tools (http://hgdownload.cse.ucsc.edu/admin/exe/). Whole genome alignments 

differentiate between a reference and a target genome. While each position of the 

reference genome appears at most once in the alignment, sequences from the target 

genome can be used multiple times. This causes whole genome alignments to be non-

symmetrical. We therefore used two multi-species whole genome alignments, one 

based on hg18 as reference and the other based on pantro2 as reference. These 

alignments were screened for differences between the human and chimpanzee 

sequences, and the lineage on which the change occurred was assigned based on two 

out-group sequences (orangutan and rhesus macaque). We identified 15,216,383 

single nucleotide changes (SNCs) and 1,364,433 insertion or deletion changes 

(InDels) from the human-based alignment and 15,523,445 SNCs and 1,507,910 

InDels from the chimpanzee-based alignment. We filtered these datasets, requiring 

that positions be identified in both human-based and chimpanzee-based alignments. 

We also required (1) that no gaps be present within a 5nt-window of the event; (2) 

that there is sequence available for both out-groups and that they are identical; (3) that 

InDel length does not vary between species; and (4) that an InDel sequence is not 

marked as a repeat. This generates a set of 10,535,445 SNCs and 479,863 InDels 

inferred to have occurred on the human lineage.  

 

Identification of positions with Neandertal sequence coverage 

We aligned all Neandertal sequence reads from Vi33.16, Vi33.25 and Vi33.26 to the 

human (hg18) and chimpanzee genomes (pantro2) using ANFO (SOM 3). To reduce 
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the effects of sequencing error, we used the alignments of Neandertal reads to the 

human and chimpanzee reference genomes to construct human-based and 

chimpanzee-based consensus �“minicontigs�” (SOM File 11.1). To generate the 

consensus, we selected uniquely placed, overlapping alignments (ANFO MAPQ  90) 

and merged these into a single multi-sequence alignment using the common reference 

genome sequence. At each position in the resulting alignment, for each observed base, 

and for each possible original base, we calculate the likelihood of the observation, 

estimate the likely length of single stranded overhangs, and consider the potential for 

ancient DNA damage using the Briggs-Johnson model (S28). If most observations in 

a given position show a gap, the consensus becomes a gap, otherwise the base with 

the highest quality score (calculated by dividing each likelihood by the total 

likelihood) is used as the consensus. At the current coverage, heterozygous sites will 

appear as low quality bases with the second base having a similar likelihood to the 

consensus base. Likewise, heterozygous InDels are included only by chance or may 

show up as stretches of low quality bases. 

We extracted the Neandertal sequence for the identified human-lineage-specific 

changes from minicontig alignments to both the human and the chimpanzee genomes. 

To ensure consistency in the alignment process, we further filtered the data:  

(1) The Neandertal sequence at the same position in both human and 

chimpanzee-based alignments was required to be identical and to have a 

PHRED quality score > 30. 

(2) All positions that fall within 5 nucleotides of the ends of minicontigs were 

excluded to minimize alignment errors and substitutions due to the nucleotide 

misincorporations, which are frequent close to the ends of ancient DNA 

molecules. 

(3) Positions that fall within 5 nucleotides of insertions or deletions (i.e. gaps) in 

the minicontig alignments were excluded. 

Using this filtered dataset, we have Neandertal sequence coverage for 3,202,190 of 

the 10,535,445 substitutions and 69,029 of 479,863 InDels inferred to have occurred 

on the human lineage, respectively (SOM File 11.2). 

 

Annotation 

We annotated all SNC and InDel events using the Ensembl v54 annotation for hg18 

and Ensembl v55 for pantro2 (in cases where no human annotation was available). A 
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set of 16,762 human CCDS genes, each representing the longest annotated coding 

sequence for the respective gene, was used for downstream analyses.  

Using the latter annotation, we identified SNC and InDel events in CCDS for 

which we have reliable Neandertal sequence coverage, and assigned them to the 

lineage on which they occurred (Figure S15). We discuss below each class of 

substitutions and highlight features of interest. 

 

Changes in protein coding sequence 

Amino acid substitutions 

We identified 19,780 SNCs in the coding regions of the human CCDS set. Six of 

these occur in two overlapping transcripts, while one occurs in three overlapping 

transcripts. These positions result in 11,337 synonymous substitutions and 8,451 non-

synonymous substitutions. Non-synonymous amino acid substitutions that have 

become fixed in modern humans since the separation from Neandertals might be of 

special interest. We therefore excluded all non-synonymous substitutions where 

current humans are known to vary (dbSNP v130), and identified 78 fixed, non-

synonymous amino substitutions from a total of 2,910 positions where the Neandertal 

carries the ancestral (chimpanzee) allele (Table S28 and SOM File 11.2). 

We identify five genes affected by two substitutions that either change amino 

acids or introduce a stop codon, and that have become fixed among humans since the 

divergence from Neandertals: 

(1) DCHS1 (CCDS7771), which encodes fibroblast cadherin-1, a calcium-

dependent cell-cell adhesion molecule that may be involved in wound healing;  

(2) RPTN (CCDS41397), which encodes repetin, an epidermal matrix protein 

that is expressed in the epidermis and particularly strongly in eccrine sweat glands, 

the inner sheaths of hair roots and the filiform papilli of the tongue.  

(3) SPAG17 (CCDS899) sperm-associated antigen-17 that is thought to be 

important for the structural integrity of the central apparatus of the sperm axoneme, 

which is important for flagellar movement. 

(4) TTF1 (CCDS6948), a terminator of ribosomal gene transcription and 

regulator of RNA polymerase I transcription, and 

(5) SOLH (CCDS10410), which encodes a protein of unknown function.  
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It is striking that two of these genes are expressed primarily in the skin. This may 

suggest that modern humans and Neandertals differed with respect skin morphology 

and physiology.  

Besides the number of changes in each gene, the potential physicochemical 

impact of exchanging an amino acid in a protein is relevant for prioritizing these 78 

positions. We have categorized the amino acid replacements into classes of chemical 

similarity (Table S28 and Table 2 of the main text) using Grantham scores (S39). 

Based on the classification proposed by Li (S40) scores from 0-50 are considered 

conservative, 51-100 are moderately conservative, 101-150 moderately radical and 

>151 are considered radical. 

On this basis, only one of the substitutions in the five genes with multiple 

SNCs is considered radical, resulting in the change of codon 431 in sperm associated 

antigen 17 from the ancestral aspartic acid to the derived tyrosine. 

A further four of the complete list of 78 nucleotide substitutions result in 

radical amino acid changes, 7 in moderately radical changes, 33 in moderately 

conservative, 32 in conservative changes and a single one affects a stop-codon (Table 

S28). The genes showing radical amino acid substitutions are involved in 

reproduction, hormone response, olfaction, and immunity - groups which have been 

shown in human-chimpanzee genome comparisons to have undergone positive 

selection (S41). 

(1) GREB1 (CCDS42655, Gene regulated in breast cancer 1), an estrogen-

responsive gene which is an early response gene in the estrogen receptor-regulated 

pathway. The amino acid substitution in GREB1 occurs in a serine-rich region of the 

protein.  

(2) OR1K1 (CCDS35132, olfactory receptor, family 1, subfamily K, member 

1), an olfactory receptor, has an exchange of arginine to cysteine in one of the 

extracellular domains of the protein.  

(3) NLRX1 (CCDS8416, nucleotide-binding oligomerization domain, leucine 

rich repeat containing X1) acts as a modulator of the innate immune response elicited 

from the mitochondria in response to viral challenge. Expression of NLRX1 results in 

inhibition of the RLH and MAVS-mediated interferon-beta promoter activity and in 

the disruption of virus-induced RLH-MAVS interactions. The amino acid substitution 

is in the NACHT domain of the protein which is thought to interact with MAV in order 

to bring about the innate viral response.  
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(4) NSUN3 (CCDS2927, NOL1/NOP2/Sun domain family 3) is a protein of 

unknown function which seems to have S-adenosyl-L-methionine-dependent methyl-

transferase activity. 

Each of the rather small number of amino acid substitutions that have become 

fixed in humans since the divergence from Neandertals, particularly those with 

potentially radical effects on the protein structure, may be of sufficient interest to 

investigate functionally. For example, in the 19,780 SNCs falling in coding sequences 

in the present genome analysis, we find 175 changes in signal peptides, 106 are non-

synonymous. For 91 of these positions Neandertal shows the derived state, and for 15 

sites Neandertal shows the ancestral state. All the latter changes are known to be 

polymorphic in modern humans (dbSNP 130) and are therefore possibly functionally 

equivalent and may not have been relevant in modern human evolution. 

 

Stop/Start codon substitutions 

We identified only one gene (RPTN, CCDS41397) in which a fixed, non-synonymous 

substitution introduces a stop codon in the human protein which is not seen in 

Neandertal. We examined the Neandertal minicontigs in the region surrounding the 

position of the human stop codon and identified only one stop codon - 108 amino 

acids downstream of the position at which the human stop codon is observed. The 

earlier mentioned human RPTN protein is thus shortened by 108 amino acids - from 

892 amino acids in Neandertal to 784 amino acid residues in humans. A second gene 

(KIAA1751, CCDS3097) carries a stop codon showing a non-synonymous change 

which is known to be polymorphic in modern humans.  

We identified no fixed, non-synonymous changes in start codons where 

Neandertal shows the ancestral allele. Just one non-synonymous change which is not 

fixed in modern humans was identified in the melastatin gene (TRPM1). Functional 

variants of the TRPM1 (CCDS10024) that use alternative start positions have been 

described in human tissues and may be able to compensate for the loss of the specific 

transcript variant (S42). TRPM1 encodes an ion channel with the function of 

maintaining normal melanocyte pigmentation.  

 

Indels in coding sequence 
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We identified 36 insertion/deletion events within coding sequences. In four cases the 

Neandertal is ancestral, and in all of these cases are modern humans known to be 

polymorphic for the position (SOM File 11.2). 

 

Gene ontology analysis 

We tested the set of the 78 genes with fixed, human-specific amino acid changes for 

enrichment in specific categories of the Biological Process division of the Gene 

Ontology (S43). We used the GOstats package from the Bioconductor project (S44) 

together with the statistical software package R (S45). The Bioconductor project 

includes GO annotation data for Entrez Gene identifiers as well as mappings to 

Ensembl Gene identifiers, which have been used as input. As the background set, we 

used all 16,762 CCDS annotated Ensembl Genes. Significant associations (p < 0.01) 

were found to genes associated with mesoderm development, transcriptional pre-

initiation, sterol and lipoprotein metabolism (Table S29). 

 

Changes in non protein-coding sequences 

5�’-UTR substitutions and insertion/deletions 

We have reliable Neandertal sequence data for 2,616 of the 12,045 substitutions in 5�’-

UTRs occurring on the human lineage. Of these, 42 affect positions where the 

ancestral allele is observed in Neandertals, and humans are fixed derived. Two genes 

show multiple changes. TMEM105 (CCDS11781), a transmembrane protein with no 

known function, has three changes in the 5�’UTR, and SLC25A2 (CCDS4258), which 

is thought to have a role in metabolism as a mitochondrial transport protein, has two 

such changes. Neandertal state information was also obtained for 71 of 810 InDels in 

5�’UTRs; three of them show the ancestral state retained in Neandertals 

(ARHGEF11/CCDS1163, ZNF564/CCDS42505, RIBC2/CCDS14066) while present-

day humans are fixed derived. 

When testing all 42 genes with substitution or InDel changes for enrichment in 

GO terms of the Biological Process category (as described before), a diverse set of 

terms associated with development, gene expression regulation, cell division and 

DNA replication/repair, lipid metabolism and other metabolic processes was obtained  

(Table S30). 

 

3�’-UTR substitutions and insertion/deletions 
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We have reliable Neandertal sequence data for 18,909 of 55,883 substitutions in 3�’-

UTRs. Among these, there are 190 positions where Neandertal shows the ancestral 

state and modern humans are fixed derived. Twelve genes show multiple 

substitutions, with one gene having four substitutions (CCDC117/CCDS13846) and 

three genes having three substitutions each (ATP9A/CCDS33489, 

LMNB2/CCDS12090, RCOR1/CCDS9974). We also identify 784 of 5,972 InDels in 

3�’-UTRs, 33 of which show the ancestral state in Neandertals while modern humans 

are fixed derived. Each of the 33 InDels is found in a different gene. 

When testing all 173 genes with substitution or InDel changes in their 3'-UTR 

sequence for enrichment in GO terms of the Biological Process category (as described 

above), dendrite morphogenesis, mitochondrial membrane organization, adult 

locomotory behavior, insulin receptor signaling pathway and camera-type eye 

development are over-represented (Table S31). 

 

miRNAs 

MiRNAs are small non-coding RNAs that regulate gene expression by mRNA 

cleavage or repression of mRNA translation. MiRNAs have been shown to have 

important role in mammalian brain and embryonic development. We have Neandertal 

sequence data for 103 of the 357 single nucleotide changes in 1,685 miRNAs 

annotated in Ensembl 54 (including 670 miRBase-derived microRNAs). In 88 cases 

the Neandertal carries the derived allele. The remaining 15 alleles are ancestral. In 

only one case, ENSG00000221170 (hsa-mir-1304), is the Neandertal state ancestral 

and human state fixed derived (Figure S16A). For hsa-mir-1304, the substitution 

occurs in the seed region of the mature miRNA, suggesting that it is likely to have 

altered target specificity in present-day humans relative to Neandertals and the 

outgroups. However, folding is unlikely to be changed since base pairing is 

unaffected by the substitution. Reliable Neandertal sequence data is also available for 

two of the seventeen insertion/deletion events in miRNAs that occurred on the human 

lineage. In ENSG00000211530 (AL354933.8) the Neandertal has the derived allele, 

while in ENSG00000212045 (AC109351.3) the allele is ancestral while modern 

humans are fixed derived. ENSG00000211530 has a large loop that is one base 

shorter in Neandertal than in human (Figure S16B). This change is not expected to 

alter folding of the miRNA or to change target specificity of the putative miRNA. 

 



 76

Human Accelerated Regions 

Human Accelerated Regions (HARs) are defined as regions of the genome conserved 

throughout vertebrate evolution, but which have changed radically since humans and 

chimpanzees split from their common ancestor. Whether the acceleration is 

functionally relevant and driven by positive selection or a byproduct of biased gene 

conversion is a matter of intense debate (S46-50). In order to determine whether the 

acceleration took place before or after the human-Neandertal split, we examined a 

total set of 2,613 Human Accelerated Regions (HARs) identified in five different 

studies (S51-55). 

We are restricted in our coverage of the HAR regions due to the filtering of 

the whole-genome alignments (see above) and by the Neandertal coverage within 

each HAR region. We identified a total of 8,949 single nucleotide changes and 213 

InDels on the human lineage in these HARs. Reliable Neandertal sequence was 

available for 3,259 (3,226 substitutions + 33 InDels). If we calculate the percentage of 

positions showing the derived state (2,977; 91.35% [90.32%, 92.28%] - 95% Wilson 

two-sided confidence interval for a proportion including continuity correction), we 

observe that this is considerably higher than for the complete set (87.86% [87.82%, 

87.90%]) of all derived substitutions (2,813,802) and all derived deletions (60,248). 

When we count the percentage of positions in which Neandertal shows the derived 

state only at the positions which may be the sites of biased gene conversion (A/T in 

chimp to G/C in human, 62% of the positions under consideration), we find that this 

effect is even more extreme (derived 96.84% [97.49%, 96.03%]) whereas the 

incidence of changes from G/C in human to A/T in Neandertal is 77.6% derived 

[80.54%, 74.50%]. The fact that the vast majority of A/T to G/C changes are shared 

between Neandertal and human suggests that positions affected by biased gene 

conversion probably predate the human/Neandertal split considerably. 

However, there are 51 positions (in 45 HARs) where Neandertal is ancestral 

and humans are derived and not known to vary (SOM File 11.3). These are likely to 

represent very recent changes that have occurred since the human-Neandertal split.  

 

Highly-cited genes 

A number of genes and genomic features are proposed to have been important in the 

evolution of human-specific traits. These have been identified through various 

methods including functional analyses (S24, 31, 56, 57), genome-wide comparisons 
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with other primates (S51-55) and variation in present-day human populations (S58).  

Genes frequently identified include those for brain size, speech and language, 

olfaction, pigmentation, skeletal development and metabolism. 

We have previously shown that it is possible to target specific loci in order to 

determine their state in Neandertals (S24, 57, 59). However, probing for individual 

variants is sample and time consuming. Whole genome sequencing data is an efficient 

means to address this challenge genome-wide.  

The literature contains many such lists of genes and regions. We compiled a 

set of 253 frequently cited CCDS genes and examined their state in the Neandertal 

sequence data. None of these genes is included in the 78 fixed amino acid 

substitutions described above. We note that there may be some bias towards these 

genes having more SNPs in dbSNP than randomly selected genes, due to the intense 

interest in these as important and interesting genes for modern human evolution. We 

may therefore be less likely to identify those genes with fixed, derived changes on the 

human lineage. 

When screening the total list of 1,254 segregating non-synonymous changes 

(which have been excluded for the set of 78 fixed non-synonymous changes) for 

which Neandertal shows the ancestral state, we identify 69 genes which have a radical 

non-synonymous change based on their Grantham score (Table S32). Eleven of the 

253 "interesting genes" are found in this list. Among these are positions in two genes, 

ASPM and MCPH1, involved in microcephaly. In ASPM, we observe that the 

Neandertal carries the ancestral alleles at both rs61249253 and rs62624968 SNP 

positions. This is also the case for the position identified in MCPH1. The human-

derived D-haplogroup in MCPH1 has been hypothesized (S56) to have entered 

modern humans by gene flow from Neandertals based on it�’s present-day pattern of 

variability. Our whole genome data suggests that introgression from Neandertals 

seems unlikely as we do not see the derived allele in the Vindija Neandertals at the 

diagnostic SNP position (rs930557). However, only a high coverage Neandertal 

genome or multiple individual data can resolve whether these sites might also have 

been polymorphic in Neandertals. 

 

Conclusion 

Further work is needed to elucidate the physiological consequences of each of these 

changes. We note that once the Neandertal genome is sequenced to higher coverage, 
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we expect to approximately triple the number of amino acid sequence changes that 

rose to fixation in the modern human lineage after divergence from Neandertals. All 

such changes may be of sufficient interest to investigate functionally in the future.  
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Figure S15: Single nucleotide changes (SNC) and insertion/deletion changes (InDels) 
on the human lineage inferred from whole genome alignments and their state obtained 
from the minicontigs created from all Vi33.16, Vi33.25 and Vi33.26 reads. 
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Figure S16: RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) output for the 
two microRNAs showing the ancestral state in Neandertal while being fixed derived 
in modern humans with respect to dbSNP. For hsa-mir-1304 (A) the ancestral 
cytosine is observed in Neandertal while modern humans are fixed derived for 
thymine (uracil in the microRNA transcript). The change is located in the seed of the 
mature microRNA, thus it likely to alter target specificity of derived version present 
in modern humans. In AC109351.3 (B), Neandertal shows an ancestral adenosine as 
an additional base in the big bulge. This change is not likely to effect folding and 
function of this putative microRNA. 
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Table S28: Table of 78 single nucleotide differences in coding sequences of CCDS genes for which Neandertal shows the ancestral state while 
modern humans are fixed for the derived state. The table is sorted by Grantham scores (GS). Based on the classification proposed by Li (S40), 5 
amino acid substitutions are considered radical (> 150), 7 moderately radical (101-150), 33 moderately conservative (51-100), 32 conservative 
(1-50) and one change in stop-codon falls out of this scoring scheme. Genes showing multiple substitution changes are marked with colored 
database identifiers. 

Human (derived) Chimpanzee (ancestral) Nea. Database identifier Amino acid information 
Base Chr +/- Pos Base Chr +/- Pos Base EnsemblTranscript CCDS ID SwissProt Pos Base AA GS 
A chr1 + 150393846 G chr1 + 131234541 G ENST00000316073 CCDS41397 RPTN 785 1 */R - 
C chr2 + 11675942 T chr2a + 11846259 T ENST00000381486 CCDS42655 GREB1 1164 1 R/C 180
C chr9 + 124603021 T chr9 + 122451445 T ENST00000277309 CCDS35132 OR1K1 267 1 R/C 180
A chr1 + 118435820 C chr1 - 119478811 C ENST00000336338 CCDS899 SPG17 431 1 Y/D 160
T chr11 + 118550510 G chr11 + 118054004 G ENST00000292199 CCDS8416 NLRX1 330 1 Y/D 160
C chr3 + 95285751 T chr3 + 97827124 T ENST00000314622 CCDS2927 NSUN3 78 2 S/F 155
T chr1 + 180836069 G chr1 + 162274446 G ENST00000367558 CCDS1348 RGS16 197 2 D/A 126
C chr4 + 13206636 G chr4 + 13452091 G ENST00000040738 CCDS3411 BOD1L 2684 1 G/R 125
T chr6 + 121644484 A chr6 + 123350109 A ENST00000368464 CCDS43501 CF170 505 1 S/C 112
G chr7 + 89631971 C chr7 + 89789078 C ENST00000297205 CCDS5614 STEA1 336 2 C/S 112
C chr11 + 6195544 A chr11 + 6063773 A ENST00000265978 CCDS7760 F16A2 630 3 R/S 110
G chr15 + 39585013 T chr15 + 38515020 T ENST00000263800 CCDS10077 LTK 569 1 R/S 110
A chrX + 18131667 C chrX + 18244953 C ENST00000380033 CCDS14184 BEND2 261 2 V/G 109
C chr11 + 6177181 T chr11 + 6045584 T ENST00000311352 CCDS31407 O52W1 51 2 P/L 98
T chr16 + 538119 C chr16_r. + 5709532 C ENST00000219611 CCDS10410 CAN15 427 2 L/P 98
A chr3 + 47444153 G chr3 + 48489458 G ENST00000265565 CCDS2755 SCAP 140 2 I/T 89
A chr9 + 134265413 G chr9 + 132451336 G ENST00000334270 CCDS6948 TTF1 474 2 I/T 89
C chr3 + 99555910 G chr3 + 102255730 G ENST00000354924 CCDS33802 OR5K4 175 1 H/D 81
C chrX + 17678236 T chrX + 17782496 T ENST00000380041 CCDS35210 SCML1 202 2 T/M 81
A chr1 + 1110351 C chr1 + 1106337 C ENST00000400931 CCDS8 TTL10 394 2 K/T 78
A chr2 + 99577084 G chr2a + 100577578 G ENST00000356421 CCDS33258 AFF3 516 1 S/P 74
T chr20 + 45078304 C chr20 + 44410094 C ENST00000360649 CCDS42887 EYA2 131 1 S/P 74
G chr4 + 2919072 C chr4 + 3060926 C ENST00000314262 CCDS33945 NOP14 493 2 T/R 71
T chr11 + 129277503 G chr11 + 128968019 G ENST00000360871 CCDS8484 PRDM10 1129 2 N/T 65
T chr3 + 113671299 G chr3 + 116666154 G ENST00000334529 CCDS33819 BTLA 197 2 N/T 65
A chr11 + 74477736 G chr11 + 73459069 G ENST00000305159 CCDS31639 O2AT4 224 2 V/A 64
T chr16 + 537906 C chr16_r. + 5709319 C ENST00000219611 CCDS10410 CAN15 356 2 V/A 64
T chr2 + 220087788 C chr2b + 225458007 C ENST00000358078 CCDS33384 ACCN4 160 2 V/A 64
T chr22 + 39090924 C chr22 + 39366824 C ENST00000216194 CCDS14001 PUR8 429 2 V/A 64
G chr6 + 100475589 A chr6 + 101531965 A ENST00000281806 CCDS5044 MCHR2 324 2 A/V 64
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T chr7 + 17341917 C chr7 + 17496236 C ENST00000242057 CCDS5366 AHR 381 2 V/A 64
C chr1 + 46650472 G chr1 + 47202157 G ENST00000243167 CCDS535 FAAH1 476 2 A/G 60
T chr1 + 118360155 C chr1 - 119555018 C ENST00000336338 CCDS899 SPG17 1415 1 T/A 58
C chr15 + 40529604 T chr15 + 39548722 T ENST00000263805 CCDS32208 ZF106 697 1 A/T 58
T chr16 + 65504565 C chr16 + 66617267 C ENST00000299752 CCDS10823 CAD16 342 1 T/A 58
T chr17 + 37020864 C chr17 - 15934889 C ENST00000301653 CCDS11401 K1C16 306 1 T/A 58
T chr2 + 128113346 C chr2b + 128489293 C ENST00000324938 CCDS2147 LIMS2 360 1 T/A 58
A chr3 + 44737863 G chr3 + 45716980 G ENST00000296091 CCDS2719 ZN502 184 1 T/A 58
G chr4 + 88986215 A chr4 + 90763412 A ENST00000361056 CCDS3625 MEPE 391 1 A/T 58
T chr5 + 132562844 C chr5 + 134834351 C ENST00000265342 CCDS34238 FSTL4 791 1 T/A 58
C chr8 + 51628204 G chr8 + 48568603 G ENST00000338349 CCDS6147 SNTG1 241 2 T/S 58
T chr1 + 150393996 C chr1 + 131234775 C ENST00000316073 CCDS41397 RPTN 735 1 K/E 56
T chr11 + 118278035 C chr11 + 117781441 C ENST00000334801 CCDS8403 BCL9L 543 1 S/G 56
T chr17 + 24983160 C chr17 - 27682886 C ENST00000269033 CCDS11253 SSH2 1033 1 S/G 56
T chr19 + 62017061 C chr19 + 62668946 C ENST00000326441 CCDS12948 PEG3 1521 1 S/G 56
T chr21 + 33782703 G chr21 + 33236795 G ENST00000381947 CCDS13626 DJC28 290 1 K/Q 53
T chr13 + 48179102 G chr13 + 48595018 G ENST00000282018 CCDS9412 CLTR2 50 1 F/V 50
A chr3 + 44831503 G chr3 + 45821006 G ENST00000326047 CCDS33744 KIF15 827 2 N/S 46
T chr1 + 32052458 C chr1 + 32221622 C ENST00000360482 CCDS347 SPOC1 355 2 Q/R 43
C chr9 + 134267344 T chr9 + 132453251 T ENST00000334270 CCDS6948 TTF1 229 2 R/Q 43
T chr9 + 139259702 G chr9 + 137500097 G ENST00000344774 CCDS35186 F166A 134 1 T/P 38
C chr12 + 62873951 G chr12 - 25278113 G ENST00000398055 CCDS41803 CL066 426 1 V/L 32
C chr11 + 6611387 G chr11 + 6490781 G ENST00000299441 CCDS7771 PCD16 763 1 E/Q 29
T chr11 + 2383887 C chr11 + 2449712 C ENST00000155858 CCDS31340 TRPM5 1088 1 I/V 29
T chr11 + 92535568 C chr11 + 91690970 C ENST00000326402 CCDS8291 S36A4 330 2 H/R 29
C chr14 + 104588537 G chr14 + 105590623 G ENST00000392585 CCDS9997 GP132 328 1 E/Q 29
T chr14 + 67344044 C chr14 + 67361749 C ENST00000347230 CCDS9788 ZFY26 237 2 H/R 29
A chr7 + 134293531 G chr7 + 135457097 G ENST00000361675 CCDS5835 CALD1 671 1 I/V 29
A chr8 + 25416950 G chr8 + 21955896 G ENST00000330560 CCDS6049 CDCA2 606 1 I/V 29
G chr8 + 145211313 C chr8 + 144064958 C ENST00000355091 CCDS43776 GPAA1 275 1 E/Q 29
A chrX + 3012475 G chrX_r. + 1786421 G ENST00000381127 CCDS14123 ARSF 200 1 I/V 29
G chr11 + 59039869 A chr11 + 57731876 A ENST00000329328 CCDS31564 OR4D9 303 2 R/K 26
G chr18 + 2880589 A chr18 - 13843773 A ENST00000254528 CCDS11828 EMIL2 155 2 R/K 26
T chr9 + 124622444 C chr9 + 122471604 C ENST00000259467 CCDS6845 PHLP 216 2 K/R 26
G chrX + 153196802 A chrX + 153627492 A ENST00000369915 CCDS35448 TKTL1 317 2 R/K 26
C chr1 + 12012533 G chr1 + 12228263 G ENST00000235332 CCDS143 MIIP 280 3 H/Q 24
T chr1 + 156914834 C chr1 + 137934885 C ENST00000368148 CCDS41423 SPTA1 265 1 N/D 23
C chr11 + 6611345 T chr11 + 6490739 T ENST00000299441 CCDS7771 PCD16 777 1 D/N 23
C chr19 + 3498315 G chr19 + 3591211 G ENST00000398558 CCDS42464 CS028 326 3 L/F 22
G chr3 + 198158892 A chr3 + 202594008 A ENST00000238138 CCDS3324 PIGZ 425 1 L/F 22
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G chr1 + 221244597 A chr1 + 203711670 A ENST00000284476 CCDS1536 DISP1 1079 1 V/M 21
A chr14 + 20581121 G chr14 + 19941316 G ENST00000298690 CCDS41914 RNAS7 44 1 M/V 21
C chr21 + 30576509 T chr21 + 30082864 T ENST00000340345 CCDS42915 KR241 205 1 V/M 21
A chr20 + 31275867 G chr20 + 30217610 G ENST00000375454 CCDS13216 SPLC3 108 3 I/M 10
A chr20 + 32801190 C chr20 + 31822769 C ENST00000374796 CCDS13241 NCOA6 823 3 I/M 10
G chr4 + 184423847 T chr4 + 187919923 T ENST00000281445 CCDS34109 WWC2 479 3 M/I 10
T chr10 + 73557900 A chr10 + 71258470 A ENST00000394919 CCDS31219 ASCC1 301 3 E/D 0
C chr2 + 95309419 G chr2a + 96196093 G ENST00000317668 CCDS2012 PROM2 458 3 D/E 0
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Table S29: GO analysis (biological process) of genes with non-synonymous coding sequence 
changes on the human lineage for which Neandertal shows positions with the ancestral state, 
while modern humans are fixed derived. 
  GOBPID P-value Odds 

Ratio Exp Count Count Size Term 

1 GO:0006994 0.004518938 Inf 0.004518938 1 1 

positive regulation of sterol 
regulatory element binding 
protein target gene  
transcription involved in sterol 
depletion response 

2 GO:0007501 0.004518938 Inf 0.004518938 1 1 mesodermal cell fate 
specification 

3 GO:0032933 0.004518938 Inf 0.004518938 1 1 SREBP-mediated signaling 
pathway 

4 GO:0045716 0.004518938 Inf 0.004518938 1 1 
positive regulation of low-density 
lipoprotein receptor biosynthetic 
process 

5 GO:0006506 0.007029479 17.54717 0.126530277 2 28 GPI anchor biosynthetic process 
6 GO:0006991 0.009017826 224.35185 0.009037877 1 2 response to sterol depletion 

7 GO:0045541 0.009017826 224.35185 0.009037877 1 2 negative regulation of cholesterol 
biosynthetic process 

8 GO:0045899 0.009017826 224.35185 0.009037877 1 2 
positive regulation of 
transcriptional preinitiation 
complex assembly 

9 GO:0045939 0.009017826 224.35185 0.009037877 1 2 negative regulation of steroid 
metabolic process 

 

Table S30: GO analysis (biological process) of genes with 5' UTR changes on the human 
lineage for which Neandertal shows positions with the ancestral state, while modern humans are 
fixed derived. 
  GOBPID Pvalue OddsRatio ExpCount Count Size Term 

1 0001701 0.001418183 15.195378 0.224139348 3 88 in utero embryonic 
development 

2 0006683 0.002547038 Inf 0.002547038 1 1 galactosylceramide 
catabolic process 

3 0015919 0.002547038 Inf 0.002547038 1 1 peroxisomal membrane 
transport 

4 0033595 0.002547038 Inf 0.002547038 1 1 response to genistein 

5 0033600 0.002547038 Inf 0.002547038 1 1

negative regulation of 
mammary gland 
epithelial cell 
proliferation 

6 0000910 0.003156008 26.938821 0.084052255 2 33 cytokinesis 

7 0051345 0.004029231 10.382488 0.323473831 3 127 positive regulation of 
hydrolase activity 

8 0007200 0.005556965 19.865353 0.112069674 2 44

activation of 
phospholipase C activity 
by G-protein coupled 
receptor protein 
signaling pathway 
coupled to IP3 second 
messenger 

9 0006350 0.005961565 2.842535 5.651877414 12 2219 transcription 
10 0006936 0.006288117 8.801859 0.379508668 3 149 muscle contraction 
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11 0010468 0.007375581 2.753573 5.79960562 12 2277 regulation of gene 
expression 

12 0006978 0.007622293 202.3 0.007641114 1 3

DNA damage response, 
signal transduction by 
p53 class mediator 
resulting in transcription 
of p21 class mediator 

13 0019374 0.007622293 202.3 0.007641114 1 3 galactolipid metabolic 
process 

14 0048478 0.007622293 202.3 0.007641114 1 3 replication fork protection 

15 0035264 0.007691322 16.675862 0.132445978 2 52 multicellular organism 
growth 

16 0010863 0.008274197 16.03183 0.137540054 2 54 positive regulation of 
phospholipase C activity 

17 0010517 0.008876384 15.435504 0.14263413 2 56 regulation of 
phospholipase activity 

 

Table S31: GO analysis (biological process) of genes with 3' UTR changes on the human 
lineage for which Neandertal shows positions with the ancestral state, while modern humans are 
fixed derived. 
  GOBPID Pvalue OddsRatio ExpCount Count Size Term 

1 0048813 0.003042538 32.475676 0.08627064 2 7
dendrite 
morphogenesis 

2 0007006 0.003071339 11.661808 0.29578506 3 24

mitochondrial 
membrane 
organization 

3 0008344 0.005837668 9.06576 0.36973133 3 30
adult locomotory 
behavior 

4 0008286 0.007636895 8.157143 0.40670446 3 33
insulin receptor 
signaling pathway 

5 0043010 0.007944817 5.461644 0.78876017 4 64
camera-type eye 
development 

 

Table S32: Table of 11 non-synonymous and non-fixed substitution changes in coding 
sequences of genes hypothesized to be important in human evolution for which Neandertal (Nt) 
shows the ancestral state, i.e., matches the chimpanzee, while the human reference genome 
shows the derived state. The table is sorted by Grantham scores (GS). 

Human (derived, but not 
fixed) Nt Database identifier Amino acid information 

 Chr +/- Pos  Ensembl 
CCDS 
ID 

Swiss 
Prot Codon Pos AA 

G 
Score 

A chr1 + 195339182 G 00000367409 1389 ASPM 1940 1 C/R 180 
T chr21 + 46660549 C 00000359568 33592 PCNT 2096 2 L/P 98 
A chr8 + 6289825 G 00000344683 43689 MCPH1 391 2 D/G 94 
G chr1 + 195339940 A 00000367409 1389 ASPM 1687 2 T/I 89 
C chr4 + 5806442 A 00000382674 3383 EVC 448 2 T/K 78 
A chr1 + 103126725 G 00000358392 779 COBA1 1546 1 S/P 74 
C chr8 + 6466449 T 00000344683 43689 MCPH1 760 2 A/V 64 
G chr17 + 17637255 C 00000353383 11188 RAI1 89 2 G/A 60 
T chr7 + 42054746 C 00000395925 5465 GLI3 182 1 T/A 58 
C chr4 + 141708517 T 00000262999 3753 UCP1 63 1 A/T 58 
A chr2 + 215584410 T 00000272895 33372 ABCAC 776 1 S/T 58 
A chr21 + 46676180 G 00000359568 33592 PCNT 2791 2 Q/R 43 
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T chr17 + 1320267 C 00000359786 42226 MYO1C 825 2 Q/R 43 
A chr21 + 46646015 G 00000359568 33592 PCNT 1638 1 I/V 29 
G chr8 + 31118821 T 00000298139 6082 WRN 1073 3 L/F 22 
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METHODS: The whole-genome shotgun sequence detection (WSSD) method identifies regions 

>10 kb in length with a significant excess of read depth within 5 Kbp overlapping windows 

(S60). WSSD analysis was performed using 79 million �“Illuminized�” (36 bps) reads from a 

combination of three Neandertal individuals (sequences were retrieved from the  alignments 

from SOM S.3, thus bacterial contamination was eliminated), following correction methods 

specific to next-generation sequencing data (such as biases in the GC distribution) as previously 

described (S61). This sequence library showed a good correlation with a training set of BAC 

clones with known copy number in humans (Figure S17). 20.6 million reads were mapped to a 

repeatmasked version of the human genome using mrFAST (microread fast alignment search 

tool) within an edit distance of 2, an algorithm that tracks all read map locations allowing read-

depth to be accurately correlated with copy number in duplicated regions (S61).  

 

We first compared a known human segmental duplication (SD) map (NA18507) (S62) (>10 kb) 

to Neandertal SDs (Table S33, Figure S18 and S19) and we found that 77/87 Mb (88.9%) of the 

Neandertal duplications were shared (compared to only 57 Mb (65.5 %) that are shared with the 

published chimpanzee genome (S63)). Only 1.3 Mb of the shared duplications between 

Neandertal and chimpanzee were single copy in human. We next compared annotated 

duplication maps for four human genomes (JDW (S64), NA18507 (S62), YH (S65)) and the 

Celera WGS database (S60, 66). From this comparison, we detected 111 potential Neandertal-

specific sites (average size=22,321 bps and total length 1,862 Kbps) that did not overlap with the 

previous dataset (Figure S20). In the absence of an external validation of Neandertal 

duplications, we calculated the single-nucleotide diversity (differences supported by at least two 

reads) in all these regions (Figure S21). We permuted the distribution of sizes of the regions 

queried to a set of control regions (regions in which no human or non-human primate SDs have 

been detected). Potential Neandertal-specific SDs with a nucleotide diversity beyond 3 standard 

deviations of the control regions were considered for further analysis (N=90; 1,480 Mbps). A 
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visual inspection of the data revealed that almost all of them correspond to putative human 

segmental duplications that were below our threshold of detection (see Figure S22 an example of 

a false positive Neandertal duplication). Only three regions remained as potential Neandertal-

specific duplications (with nucleotide diversity higher than control regions, highlighted in red in 

Figure S21, see Figure S23), (hg17: chr20:59041000-59055370, chr4:7273000-7286673, 

chr6:100123000-100138118), but none of them overlap with a known gene. 

 
Genome Resampling Comparison 
Two limitations of the genome comparisons are the low sequence coverage (Neandertal 1X) and 

the heterogeneity of the sample (i.e. Neandertal sequence data are derived from a pool of three 

individuals). To correct for this, we resampled sequence from three human genomes generated 

using the Illumina sequencing platform.  We selected three individuals from different geographic 

origins and randomly selected sequence to match the coverage and diversity of the Neandertal 

dataset (1.3 X coverage obtained equally from HGDP samples French (HDGP00521), Han 

(HGDP00778), and Yoruba (HGDP00927)) (Table S34 and Figure S24). The duplication map of 

the human resampling was found to be slightly smaller than the Neandertal duplication map 

(88,869 Kbps; N=1,129 versus 94,419 Kbps; N=1,194) (Figure S25) but copy number 

estimations were comparable to previously published genomes (Figure S26). We repeated the 

experiment using a second resampled human genome dataset at low coverage to eliminate 

potential bias in the resampling process. The second subset gave similar results. Both resampled 

sets showed excellent correlation (Figure S27) and none of them showed any bias in terms of GC 

content (SOM S3) in any category that would explain our results (Figure S28). 

Gene Analysis  
We estimated the copy number of each unique autosomal RefSeq gene (N=17,601) in the 

Neandertal genome and compared it to the copy number estimate from the resampled human 

genome. We saw an excellent correlation in copy number (R2=0.91) between human and 

Neandertal (Figure S29). We searched for genes with potential copy number differences between 

humans and Neandertal (Table S35, S36). Interestingly, 29/43 (67%) of the most differentiated 

genes (more than five copies) had higher copies in Neandertal than in humans. Most of these 

corresponded to genes mapping to core duplicons (S67)�—genes of considerable variation in copy 

number among extant human populations (S61). The global analysis of genes with more than two 

copy number differences (N=295) did not show any bias in the distribution having 52% 



 89

(153/295) higher copy in humans and 48% (142/295) in Neandertal but increased variance is 

expected in the copy number estimation because of the 1X coverage of the Neandertal genome 

and in the human resampling. 

 
17q21.31 Haplotype Analysis: We find no evidence of the 17q21.31 H2 haplotype or the 

associated segmental duplication prevalent in Europe today, suggesting that the Neandertal 

carries the more common H1 haplotype (S58, 68) (Figure S30). We remapped the Neandertal 

reads to human reference genome using mrFAST and tracked the underlying sequence variation 

in the mapping data. We then compared the mapping information with 381 SNPs that are 

informative of the H2 haplotype in the 17q21.31 region (S58). We observed that the sequence 

reads mapping to the 17q21.31 region supported only 2 possible SNPs (rs4074462, and 

rs1467969) diagnostic of the H2 allele, whereas 130 SNPs were consistent with the H1 

haplotype.  These findings do not support the proposed introduction of the H2 haplotype into 

human populations from Neandertals (S58, 69).  
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FIGURES 

  
Figure. S17: Correlation of Neandertal read-depth with BAC sequences of known human copy 
number (R2=0.80). 
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Figure S18: Genomic distribution of Neandertal SDs (>10 kb) in comparison to other humans 
and chimpanzees. 
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Figure S19: Comparison of Neandertal (3 individuals, 1X coverage) with the known duplication 
of a human (NA18507) and chimpanzee (Clint).   
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Figure S20: Venn diagram with the comparison of Neandertal (>10 kb) with a union of four 
humans (Celera WGS, JDW, YH and NA18507 genomes).  
 
 

 
Figure S21: Excess Single Nucleotide Diversity for Predicted Neandertal-Specific 
Duplications.  We identified regions showing excess read-depth and computed single-nucleotide 
diversity for each Neandertal-specific duplication comparing them  to control regions (regions in 
which no known duplication in any human or primate has been previously detected). Error bars 
in the control regions correspond to the 3 standard deviations from the permuted sample set. 
Notice the general trend of higher nucleotide diversity consistent with true duplicated sequences. 
While not classified as human-specific duplications, we note that many of these regions also 
show evidence of increased read-depth in one or more human genomes.  We have highlighted in 
red the three unique sites that after visual inspection where we have found no evidence of 
duplication in human.  This small subset likely corresponds to true Neandertal-specific SDs. 
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Figure S22: Visual inspection of putative neandertal-specific SD identifies a potentially 
false negative in other humans. This site was predicted as a Neandertal-specific SD (red 
denotes an excess read depth > average+3std, criterion to select SDs), but grey regions (intervals 
with > average+2std read depth) reveals that they might be potential real duplications in other 
humans. We reason that in this case, the three human genomes (JDW, NA18507 and YH) likely 
carry a corresponding small duplication that was not called because of size and read-depth 
thresholds applied in previous  human analyses therefore this region is not likely  a Neandertal-
specific SD. �“Human Depth of coverage�” track was generated from Celera WGS data using 
Sanger-based sequencing. 
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Figure S23: Neandertal-specific SDs. Screenshots of the three loci (total 40 Kbps) containing 
Neandertal-specific SDs. Red denotes regions with excess of depth-of-coverage (in this case only 
Neandertal). Notice that none of the humans or primates show any evidence of  duplications 
based on read-depth. 

  
Figure S24: Correlation read depth calculated from the resampling of three humans and 
comparing predicted copy based on read-depth to experimentally determined copy number for 
known segmental duplications  (Rsq=0.81). Correlation of copy numbers predicted from the 
resampling of three humans with previously detected copy numbers in JDW (Rsq=0.94). 
 



 97

 
Figure S25: Comparison of Neandertal with a resampled set of three human genomes (1X 
coverage) (> 10 Kbp). 
 

 
Figure S26: Correlation of copy numbers predicted from the resampling of three humans with 
previously detected copy numbers in JDW (Rsq=0.94). 
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Figure S27: Correlation of copy number (and depth of coverage) between two resampled human 
genome datasets (independent samples of 1X sequence coverage from a pool of human genomes: 
(HGDP French (HDGP00521), Han (HGDP00778), and Yoruba (HGDP00927)).  
 
 

 
Figure S28: GC content of the predicted duplications stratified by category. Data shows no 
bias in the GC composition because of the statistical corrections applied before duplication 
detection. 
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Figure S29: Correlation of predicted copy numbers between three humans at low coverage 
(1X) and Neandertal genomes (R2=0.91). Genes showing the greatest differences in copy-
number are labeled. .  

  
Figure S30: MAPT locus. Notice the extension of the duplication (black circle) denotes an H2 
haplotype specific duplication. 
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TABLES 
Table S33: Summary statistics of Neandertal Duplications.  

Chr Length #N 
chr1 7,687,906 115
chr2 8,841,275 94
chr3 1,837,167 36
chr4 3,502,073 56
chr5 4,169,350 45
chr6 1,990,803 46
chr7 9,399,493 128
chr8 2,966,042 46
chr9 10,719,274 69
chr10 5,987,718 65
chr11 3,059,084 43
chr12 1,552,231 37
chr13 1,724,565 40
chr14 1,970,750 26
chr15 6,767,207 66
chr16 7,418,118 60
chr17 4,958,599 90
chr18 1,519,719 11
chr19 2,469,874 58
chr20 1,100,364 13
chr21 1,722,537 14
chr22 3,055,087 36
Grand 
Total 94,419,236 1194



 101

Table S34: Summary statistics of the resampling of three humans at 1X coverage. 

  
# reads (36 bp 

each) 
Mapped to 

repeatmasked hg17
French 23,000,000 6,980,173
Han 23,000,000 7,224,219
Yoruba 23,000,000 7,370,157
Sum 69,000,000 21,574,549

 
Table S35: Genes with high copy number difference between Neandertal and human 
(resampled at 1X). Only genes with absolute copy number >5 reported. 

GeneName RefSeq ID CN 
Neand 

CN HSA*  Copy 
number 
(HSA-
NEAND) 

MAX(  
Copy 
number 4 
HSAs)** 

MIN(  
Copy 
number 4 
HSAs)** 

 Copy 
number 
Chimpanzee 

NBPF14 NM_015383 357.58 272.24 -85.35 55.09 3.65 304.19 

DUX4 NM_033178 134.44 212.53 78.10 151.14 28.38 44.45 

PRR20 NM_198441 67.85 16.27 -51.58 17.15 1.15 9.35 

DUB3 NM_201402 225.16 178.41 -46.76 64.29 17.57 252.90 

REXO1L1 NM_172239 148.45 180.34 31.90 53.74 4.98 12.42 

NBPF16 NM_001102663 87.63 64.20 -23.42 6.51 0.39 22.73 

TBC1D3 NM_032258 17.70 38.21 20.51 13.19 1.74 5.86 

LOC200030 NM_183372 76.54 57.50 -19.04 5.35 0.23 17.10 

NBPF11 NM_001101663 74.59 56.40 -18.19 6.30 0.24 15.91 

TCEB3C NM_145653 16.91 34.41 17.51 15.79 1.27 42.11 

NBPF10 NM_001039703 73.17 56.05 -17.12 3.04 0.23 0.39 

NBPF20 NM_001037675 74.04 57.74 -16.29 6.32 1.50 16.06 

FAM90A7 NM_001136572 54.93 39.07 -15.87 44.20 6.64 8.25 

HSPA1B NM_005346 21.95 6.86 -15.08 2.03 0.64 15.67 

LOC339047 NM_178541 37.48 26.14 -11.33 5.72 0.41 5.02 

NBPF1 NM_017940 61.51 50.57 -10.94 4.61 0.27 2.44 

HSPA1A NM_005345 17.40 6.47 -10.94 2.29 0.56 14.00 

FRG1 NM_004477 24.53 14.33 -10.21 7.14 0.96 2.19 

NBPF7 NM_001047980 30.65 20.50 -10.15 6.30 0.72 5.55 

PPIAL4A NM_178230 51.99 41.96 -10.03 8.10 0.20 19.72 

FOXD4L5 NM_001126334 40.46 32.10 -8.35 5.55 0.33 15.07 

FOXD4L4 NM_199244 40.46 32.10 -8.35 5.55 0.33 15.07 

LOC100132247 NM_001135865 42.68 35.26 -7.43 3.55 0.16 5.85 

FOXD4 NM_207305 7.60 15.00 7.41 5.86 0.17 8.29 

LOC729617 NM_001101668 34.72 27.38 -7.33 9.23 0.06 11.36 

CLPS NM_001832 9.67 2.45 -7.23 0.42 0.10 7.25 

HIST1H2BB NM_021062 0.00 6.96 6.96 3.19 0.20 0.92 

LOC100132832 NM_001129851 29.79 22.98 -6.81 2.79 0.12 7.62 

LOC650293 NM_001040071 64.79 58.00 -6.79 7.27 0.32 20.71 

NPIP NM_006985 46.90 40.15 -6.75 3.59 0.75 6.94 
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MGC70863 NM_203302 44.72 38.16 -6.57 6.66 0.78 30.98 

NBPF15 NM_173638 67.91 61.46 -6.45 3.47 0.48 14.41 

POLR2J NM_006234 7.28 13.57 6.28 2.56 0.02 0.43 

RASA4 NM_001079877 5.34 11.58 6.24 1.70 0.15 0.68 

LOC441956 NM_001013729 8.10 14.11 6.02 5.94 0.60 2.22 

KIR2DS4 NM_012314 14.06 8.29 -5.77 2.48 0.29 10.18 

PCDHB2 NM_018936 6.49 12.13 5.64 8.88 0.42 7.09 

PCDHB15 NM_018935 3.55 9.05 5.50 8.62 1.10 9.63 

HIST1H2BN NM_003520 2.65 7.97 5.33 4.28 0.52 6.89 

TUBB8 NM_177987 15.33 20.61 5.29 4.89 0.99 4.89 

GOLGA6 NM_001038640 12.64 17.80 5.16 9.57 0.48 6.31 

PSG9 NM_002784 17.88 12.80 -5.08 5.06 0.22 6.44 

FLG NM_002016 16.19 11.15 -5.04 5.80 0.71 3.73 
* Copy number estimated from resampling at low coverage 3 human from 
HGDP    

 

** Copy number estimated from 4 humans (JCV, JDW, NA18507 and YH) sequenced at 
high coverage  

 

 
Table S36: Genes (>10 kb) with the greatest copy number difference between Neandertal and 
humans (resampled at 1X). Only genes with absolute copy number >5 reported. +only one 
representative of the gene family reported. 

GeneName RefSeq ID CN 
Neand 

CN 
HSA* 

 Copy 
number 
(HSA-
NEAND) 

MAX( C
opy 
number 4 
HSAs)** 

MIN(  
Copy 
number 4 
HSAs)** 

 Copy 
number 
Chimpa
nzee 

NBPF16+ NM_001102663 87.63 64.20 -23.42 6.51 0.39 22.73 
TBC1D3 NM_032258 17.70 38.21 20.51 13.19 1.74 5.86 
LOC200030 NM_183372 76.54 57.50 -19.04 5.35 0.23 17.10 
FAM90A7 NM_001136572 54.93 39.07 -15.87 44.20 6.64 8.25 
LOC339047 NM_178541 37.48 26.14 -11.33 5.72 0.41 5.02 
FRG1 NM_004477 24.53 14.33 -10.21 7.14 0.96 2.19 
LOC100132247 NM_001135865 42.68 35.26 -7.43 3.55 0.16 5.85 
LOC100132832 NM_001129851 29.79 22.98 -6.81 2.79 0.12 7.62 
NPIP NM_006985 46.90 40.15 -6.75 3.59 0.75 6.94 
MGC70863 NM_203302 44.72 38.16 -6.57 6.66 0.78 30.98 
RASA4 NM_001079877 5.34 11.58 6.24 1.70 0.15 0.68 
KIR2DS4 NM_012314 14.06 8.29 -5.77 2.48 0.29 10.18 
GOLGA6 NM_001038640 12.64 17.80 5.16 9.57 0.48 6.31 
PSG9 NM_002784 17.88 12.80 -5.08 5.06 0.22 6.44 
FLG NM_002016 16.19 11.15 -5.04 5.80 0.71 3.73 
* Copy number estimated from resampling at low coverage 3 human from HGDP    
** Copy-number estimated from 4 humans (JCV, JDW, NA18507 and YH) sequenced at high 
co erage
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A selective sweep occurs when a genetic variant is increased in frequency due to a fitness 

advantage relative to other genetic variants at that locus. As a selective sweep occurs, a 

region of the genome linked to the selected variant, the haplotype on which the selected 

variant originated, also comes to high frequency or fixation. Present-day human 

populations still harbor a large fraction of the polymorphisms that were present when the 

ancestral population of modern humans and Neandertals split. However, in regions of the 

genome that fixed because of a selective sweep in modern human ancestors that occurred 

since the modern human/Neandertal population split all such shared polymorphism will 

have been lost. That is, in these regions the variation present within modern humans will 

not be shared with Neandertals. We would therefore like to search for regions of the 

genome where the allelic variation among modern humans is not shared with 

Neandertals. 

We searched for regions of the reference human genome that are especially 

reduced in Neandertal derived sites at current human polymorphic positions. These 

regions could arise under at least two plausible evolutionary scenarios: (1) an instance of 

positive selection in modern human ancestors or (2) continuous or recent purifying or 

positive selection such that few derived alleles are seen even in current humans. As we 

are interested in the first case, and especially interested in instances of positive selection 

that occurred early in modern human evolution, we conditioned our Neandertal 

expectation for derived alleles on the frequency of human derived alleles. In this way, we 

enrich for selective sweeps in which the allele frequency spectrum in modern humans has 

largely recovered since the sweep by accumulation and drift of new mutations. By 

simulating both neutral sequence evolution and positive selection we demonstrate the 

power of this method under various selection coefficients and across a range of local 

recombination rates. 
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Description of the method  

To discover human SNP sites, genome-wide, we randomly sampled the BWA mappings 

of the HGDP data at each genomic position for the first read passing the map-quality and 

base quality criteria as described above. This sampling strategy, while discarding 

potentially useful information about heterozygous sites in these individuals, has the 

benefit of not biasing towards or against heterozygous sites as happens when attempting 

to call a genotype in low-coverage data. Chimpanzee aligned sequence was extracted 

from whole-genome alignment as provided by UCSC 

(http://hgdownload.cse/ucsc/edu/goldenPath/hg18/vsPanTro2/). 

 

We filtered these data for sites that passed the following criteria: 

1. No CpG sites 

2. Observed to be bi-allelic among the 5 HGDP and 1 reference human 

3. At least one Neandertal observation of one of the two human alleles 

4. The chimpanzee base was one of the two human alleles (and used to infer the 

ancestral allele) 

 

At these sites, we then calculated the fraction of Neandertal alleles that were observed in 

the derived state as a function of the derived allele frequency in humans (Fig. S31A). As 

expected, there is a strong correlation between seeing an allele in the high-frequency 

derived state in humans and finding it in the derived state in Neandertals. For example, at 

polymorphic positions where 5 of the 6 humans show the derived allele, there is >50% 

chance of observing the Neandertal base in the derived state. For comparison, we made 

the same measurement for the Craig Venter genome (S26). In this case, the derived allele 

frequency in the other humans was nearly perfectly predictive of the probability of seeing 

the Venter base in the derived state (Fig. S31B). 

To maximize the predictive power of the human allele states, we further 

characterized the probability of observing a Neandertal allele under each configuration, g, 

of ancestral and derived alleles in the human data. The observed rate of Neandertal 

derived alleles at each g is shown in panel C of Fig. S31. The human reference allele is 



 105

the most predictive of the Neandertal state, indicating increased mapping sensitivity when 

a Neandertal read matches the human reference sequence. Using the exact configuration 

of human derived alleles to train the Neandertal expectation circumvents the need to 

develop a demographic model of the five humans and the reference genome for this 

experiment. Because of the abundance of polymorphism data, good estimates of the 

fraction of Neandertal derived alleles can be trained for each g. For example, the least 

abundant configuration (derived allele in the reference and Han, ancestral in the French, 

and missing data for the 3 other human samples) is observed 658 times and we see 

Neandertal derived at 46.7% of these sites. The most abundant configurations are 

observed more than 500,000 times. We use these genome-wide averages to calculate an 

expected number of Neandertal derived alleles within regions under consideration. 

We investigated the interaction between local recombination rate and the human 

derived allele frequency and its predictive power for Neandertal alleles. We used a 

recently published high-density recombination map (S70) to calculate the local 

recombination rate within 100kb of each human polymorphic position. As shown in Fig. 

S32, the frequency spectrum is skewed towards more low frequency derived alleles in 

regions of low recombination. This may be due to tighter linkage to genomic features 

under purifying selection in regions of low recombination (S71). The salient question for 

our purposes is whether this phenomenon affects the predictive power of Neandertal 

derived alleles. 

To determine if local recombination rate interferes with the ability of human 

derived alleles to predict Neandertal derived alleles, we performed the same analysis 

described above, but this time binning by local recombination rate in humans. As shown 

in Figure S33 the human derived allele frequency spectrum retains its predictive power 

for Neandertal derived alleles across the range of recombination rates. In summary, 

recombination rates skew the human allele frequency spectrum making it less likely to 

see high frequency (and hence older alleles) in regions of low recombination. However, 

when high frequency derived alleles are seen, regardless of the local rate of 

recombination, they are predictive of the Neandertal state. That is, they contain 

equivalent information about the age of the allele. 
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Our scan for positive selection relies on identifying regions of the human genome 

with a dearth of Neandertal derived alleles at human polymorphic positions. To do this, 

we rely on the observed human derived allele configurations at each polymorphic 

position, gi. In regions of the genome that are under strong purifying selection or that 

have undergone a recent selective sweep, the allele frequency spectrum may be skewed 

towards lower frequency human alleles (S72). In such regions, where the human gene 

trees are shallow, human variation will less often be old enough to include Neandertals. 

Thus, we would not expect to see Neandertal derived alleles. Generating an expected 

number of Neandertal derived alleles based on the genome-wide averages for each 

configuration of observed human derived alleles, naturally disregards regions of recent 

selection or strong purifying selection. On the other hand, in regions of older selective 

sweeps, in which the human allele frequency spectrum has recovered, we will have 

maximum power to detect sweeps. 

For each polymorphic position, we calculated the expected number of Neandertal 

derived alleles )|()( ,, iD

e

si
esD gNpNE  within a window of 100 kilobases, given the 

configuration of human derived alleles at each polymorphic position in the window. 

While a 100 kilobase window size is arbitrary, we note that our aim is to detect strong 

selective sweeps and the strength of selection will be proportional to the width of the 

signal. Given that the size of a swept window is approximated  0.01s/r base pairs (S73), a 

100kb window would correspond to strong selection (s = 0.01 for r = 1E-8). Further, 

given the age of the split and the transit time of beneficial mutations, -log(1/2Ne)/s in 

generations, we are by definition looking for signals of very strong selection (i.e., s > 

0.001) to have fixed since the split for Ne=10,000. And while 100 kilobases may preclude 

detection of sweeps whose signals are significantly narrower than this, it does not 

preclude the detection of regions with wider window-sizes. We then counted the 

observed number of Neandertal derived alleles )( ,, esDNO  in each window for 

comparison. 

 

The difference between )( ,, esDNE and )( ,, esDNO  was normalized by the variance of 

esDN ,,  to arrive at a measure S, that we analyze to find regions of Neandertal derived 
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allele depletion. We then identified each region of at least 25kb in which all polymorphic 

sites were at least 2 standard deviations below the expected value. We then recalculated S 

for each identified region by re-computing )( ,, esDNE and )( ,, esDNO  using for s and e the 

start and end polymorphic site of the region, respectively.  

This first-pass screen identified 4,235 regions of at least 25 kilobases in which the 

observed number of Neandertal derived alleles is depleted relative to the expectation. To 

prioritize these regions for further analysis, we sorted them by S and took the top 5% of 

these, a total of 212 discrete regions spanning a total of 53,103,538 base pairs. This 

corresponds to an S cutoff of -4.3202. We also sorted this list of 212 regions by genetic 

width.  S is related to the statistical depletion of Neandertal alleles within a region. It can 

thus be considered a ranking of confidence that there is a signal for a selective sweep at 

all. Genetic width, calculated using the recombination map of Myers and co-workers 

(S70), should be proportional to the strength of the selective sweep, if one occurred. This 

is because a stronger sweep will pass through a population in fewer generations, and thus 

fewer recombinations, than a slower sweep. The top candidate by genetic width 

prioritization, containing the gene THADA is shown in Figure 4C. The top candidate by S 

contains the gene AUTS2 as shown if Figure S34. The 212 regions and the genes 

contained within them, sorted by genetic width are listed in Table S37. 

One class of genetic changes that may cause a selective sweep is amino acid 

substitutions in proteins. We thus asked if derived substitutions that are fixed in present-

day humans and change amino acids in proteins occur in any of the 212 regions. There 

are 139 such substitutions discovered here (see above) and in an accompanying study 

where non-synonymous substitutions in protein-coding genes on the human lineage were 

specifically captured and sequenced in a Spanish Neandertal. Four genes (MRPL53, 

SSH2, ZFYVE26, and, C19orf52) were found to be both in regions of a putative selective 

sweep and have a fixed amino acid difference between Neandertals and humans, whereas 

between zero and seven would be expected by chance if these regions were arranged 

randomly in the genome Table S38. There is, therefore, no significant increase of amino 

acid substitutions in these regions. Thus, although the list of fixed amino acid 

substitutions that occurred in modern humans after their divergence from Neandertals is 

not yet exhaustive, there is no indication that such substitutions underlie a large 
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proportion of the regions where selective sweeps might have occurred early during 

modern human evolution.   

Another class of genetic changes that may cause a selective sweep is changes in 

gene expression. We thus asked if genes which show expression differences between 

humans and chimpanzees in five tissues (S74) or genes that changed their timing of 

expression during human development (S75) occur in the 212 regions more often than 

expected by chance. Again, there is no statistically significant enrichment for these genes 

within the candidate regions of selective sweeps.  

We note that outlier approaches to identify positive selection such as the method 

developed here suffer from low power and high false positive rates (S76, 77), to an extent 

that depends on many factors that are generally unknown (S78). Nevertheless, this 

approach potentially identifies positive selection in a time period that is crucial for 

modern human origins and where other approaches have no or very limited power (S79). 

To explore this, we compared the overlap between the 212 regions identified here to the 

previously identified regions compiled in a recent review of positive selection (S78) No 

significant overlap between regions identified in these previous scans was detected 

compared to placing them randomly across the genome. The Tajima�’s D based method of 

Carlson et al. (S80) showed the highest enrichment, 9 of 58 autosomal regions 

overlapping. Randomly placing these regions 200 times indicates that 7.62 overlapping 

regions can be expected by chance (5 - 9; 95% confidence interval). We hope that further 

methodological development in conjunction with sequencing of the Neandertal genome 

to higher accuracy as well as a comprehensive knowledge of the variation among present-

day humans (S81) will allow refined versions of the analyses presented here. 

 

Power of selective sweep screen as determined by simulations 

To measure the power of these two methods, we simulated various neutral and selective 

scenarios using a modified version of the �“sweep_der�” program from Thornton and 

Jensen 2007, (S82),  

downloaded from http://www.molpopgen.org/software/ThorntonJensen2007/ . 

The program was modified to allow us to run selective and neutral scenarios under 

otherwise identical conditions. We used a simple split between modern humans and 
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Neandertals that occurred 300ky ago. We simulated a region of the genome of size 

300kb, which in the selected case always had a selective event happen in the middle, or 

for neutrality a region of the same size, without a sweep. We simulated a sample of 12 

human chromosomes, and 6 Neandertal chromosomes, from each diploid we sampled one 

base at each site, and for Neandertal we further sampled from the three Neandertals one 

single base for each site. The effective population size of humans was fixed to 17,000 to 

match the level of observed derived alleles in Neandertal at human polymorphic sites, 

without invoking a model that involves both selection and growth. The conditional 

probabilities for seeing a Neandertal derived allele at a polymorphic site with a certain 

frequency among six chromosomes, which is used for calculating the S score, was 

calculated based on a neutral simulation. We note that these demographic parameters 

may differ from reality in important ways that are not currently knowable. Therefore, 

these results must be interpreted with appropriate caution. 

Figure S35 shows region width vs. S score for all significant regions that were 

detected under various conditions. Shown are significant regions for a neutral simulation 

with recombination rates from 1cM/Mb to 0.1 cM/Mb, and for selection simulations with 

a recombination rate of 1cM/Mb with a selection pressure of s=0.2% to 2%. In each case 

we simulated around 1% of the total length of the human genome, and for selection, a 

total of 200 events. Figure S35 can be compared to Figure 4B in the main paper, and one 

can see that wide regions with high S score are highly enriched for selection. 
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Table S37: Top five percent S score regions ranked by genomic width in centimorgans 
position (hg18) S width 

(cM) 
gene(s) 

chr2:43265008-43601389 -6.04 0.5726 ZFP36L2;THADA 
chr11:95533088-

95867597 
-4.78 0.5538 JRKL;CCDC82;MAML2 

chr10:62343313-
62655667 

-6.1 0.5167 RHOBTB1 

chr21:37580123-
37789088 

-4.5 0.4977 DYRK1A 

chr10:83336607-
83714543 

-6.13 0.4654 NRG3 

chr14:100248177-
100417724 

-4.84 0.4533 MIR337;MIR665;DLK1;RTL1;MIR431;MIR493; 
MEG3;MIR770 

chr3:157244328-
157597592 

-6 0.425 KCNAB1 

chr11:30601000-
30992792 

-5.29 0.3951  

chr2:176635412-
176978762 

-5.86 0.3481 HOXD11;HOXD8;EVX2;MTX2;HOXD1;HOXD10; 
HOXD13;HOXD4;HOXD12;HOXD9;MIR10B;HOXD3 

chr11:71572763-
71914957 

-5.28 0.3402 CLPB;FOLR1;PHOX2A;FOLR2;INPPL1 

chr7:41537742-41838097 -6.62 0.3129 LOC285954;INHBA 
chr10:60015775-

60262822 
-4.66 0.3129 LOC728640;BICC1 

chr6:45440283-45705503 -4.74 0.3112 RUNX2;SUPT3H 
chr1:149553200-

149878507 
-5.69 0.3047 SELENBP1;POGZ;MIR554;RFX5;SNX27;CGN;TUFT1;P

I4KB;PSMB4 
chr7:121763417-

122282663 
-6.35 0.2855 RNF148;RNF133;CADPS2 

chr7:93597127-93823574 -5.49 0.2769  
chr16:62369107-

62675247 
-5.18 0.2728  

chr14:48931401-
49095338 

-4.53 0.2582  

chr6:90762790-90903925 -4.43 0.2502 BACH2 
chr10:9650088-9786954 -4.56 0.2475  
chr7:18345533-18552832 -4.57 0.2407 HDAC9 

chr2:144413853-
144892859 

-6.57 0.2404 ZEB2;GTDC1 

chr5:17957038-18092279 -4.68 0.2313  
chr10:74945897-

75146102 
-4.56 0.2279 AGAP5;USP54;MYOZ1;SYNPO2L;BMS1P4 

chr4:172667677-
172874237 

-4.5 0.2244  

chr6:49896913-50209330 -5.04 0.2129 DEFB110;DEFB133;DEFB114;CRISP1; 
DEFB112;DEFB113 

chr8:19429699-19541950 -4.39 0.2107 CSGALNACT1 
chr4:81396953-81916240 -7.43 0.208 FGF5;C4orf22 
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chr5:27051867-27187162 -4.34 0.2074 CDH9 
chr15:62380190-

62739939 
-5.33 0.2005 KIAA0101;ZNF609;CSNK1G1;TRIP4 

chr1:198167237-
198296992 

-4.78 0.2002 NR5A2 

chr8:92722769-92975785 -4.54 0.196  
chr5:71492503-71683233 -4.78 0.1844 MAP1B;PTCD2;MRPS27 
chr5:19644379-20016964 -6.66 0.1842 CDH18 

chr18:39554551-
39819494 

-4.62 0.1836  

chr2:103122470-
103338449 

-5.54 0.1762  

chr3:71482762-71697708 -5.16 0.1749 MIR1284;FOXP1 
chr4:67100391-67305566 -4.65 0.1702  

chr16:60402585-
60655562 

-4.66 0.1656 CDH8 

chr1:97826151-98217969 -6.57 0.1636 DPYD 
chr15:81807775-

82015388 
-5.01 0.1636 SH3GL3 

chr18:29811830-
30121233 

-4.39 0.1609 NOL4 

chr2:98551855-98844723 -5.46 0.1605 C2orf64;INPP4A;C2orf55;MGAT4A;UNC50 
chr14:104707157-

104828815 
-4.52 0.1589 BTBD6;NUDT14;BRF1 

chr8:34717797-34950744 -6.41 0.1575  
chr1:97002477-97282169 -5.18 0.1568 PTBP2 

chr3:183178200-
183393223 

-5.2 0.1474  

chr12:87533879-
87890894 

-5.03 0.1451  

chr5:43925639-44140841 -4.98 0.1383  
chr3:178188759-

178323090 
-4.38 0.1382 TBL1XR1 

chr5:109063395-
109262205 

-5.12 0.1352 MAN2A1;MIR548C 

chr12:15297164-
15463435 

-4.44 0.131 PTPRO 

chr6:128152465-
128347581 

-4.65 0.1306 THEMIS;PTPRK 

chr11:45281604-
45469462 

-4.91 0.1262  

chr8:58590492-58766200 -5.03 0.1257  
chr20:29711520-

29944293 
-4.41 0.1207 MYLK2;TPX2;BCL2L1;TTLL9;FOXS1;DUSP15 

chr13:83030002-
83319286 

-5.31 0.1191  

chr5:160719697-
160959255 

-4.69 0.1182 GABRB2 

chr9:101374549-
101669700 

-5.52 0.1175 NR4A3 

chr2:148263712-
148719018 

-7.46 0.1171 ACVR2A;ORC4L 

chr5:45086344-45429511 -5.32 0.1153 HCN1 
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chr11:45702865-
45867881 

-4.76 0.1129 DKFZp779M0652;MAPK8IP1;SLC35C1;CRY2 

chr1:84839222-84950292 -4.59 0.1125 C1orf180;SSX2IP 
chr4:45867870-46251900 -5.78 0.1096 GABRA2 

chr7:114198584-
114416858 

-4.68 0.1083 MDFIC 

chr2:145309061-
145508148 

-4.74 0.1083  

chr12:85802694-
86029908 

-4.53 0.1083  

chr1:63634658-63864734 -4.81 0.1077 ALG6;PGM1;ITGB3BP;EFCAB7;DLEU2L 
chr6:84355396-84538906 -4.32 0.1071 SNAP91 
chr4:75202676-75367373 -4.87 0.1062 MTHFD2L 

chr2:205129991-
205360069 

-4.49 0.103 PARD3B 

chr2:74302337-74568746 -5.91 0.1027 C2orf81;LOC100189589;WDR54;CCDC142;MOGS; 
INO80B;SLC4A5;WBP1;TTC31;RTKN;MRPL53;DCTN1 

chr15:82110672-
82287115 

-4.56 0.1013 ADAMTSL3 

chr8:28829534-29210051 -5.99 0.1009 KIF13B;HMBOX1 
chr7:98359455-98551217 -4.39 0.0955 TRRAP;SMURF1 

chr17:65441257-
65529179 

-5.19 0.0943  

chr8:65031265-65286479 -5.11 0.0936  
chr6:132144446-

132238150 
-4.33 0.0919 ENPP1 

chr8:116428760-
116638732 

-4.69 0.0888 TRPS1 

chr20:11371195-
11503408 

-4.33 0.0883  

chr2:151955667-
152143530 

-5.43 0.0879 NEB;RIF1 

chr2:22515667-22682347 -4.32 0.0846  
chr14:58745905-

58892484 
-4.85 0.0833 DAAM1 

chr11:41612105-
41740879 

-5.01 0.0816  

chr3:95848272-96105925 -5.21 0.0812  
chr7:48625255-48798384 -4.82 0.0809 ABCA13 
chr2:32572353-32771275 -4.83 0.0792 BIRC6;MIR558;TTC27 

chr3:157975708-
158226727 

-4.99 0.0786 LEKR1;PA2G4P4 

chr2:15330431-15504097 -5.04 0.0786 NBAS 
chr10:103696031-

103997252 
-4.58 0.0764 GBF1;LDB1;ELOVL3;NOLC1;PITX3;HPS6; 

C10orf76;PPRC1 
chr16:45363049-

45702326 
-5 0.076 GPT2;NETO2;DNAJA2;C16orf87 

chr2:142676611-
142845194 

-4.51 0.0743  

chr8:49415454-49640151 -4.63 0.0729  
chr11:56383816-

56653224 
-4.77 0.0722 OR5AK2 

chr4:98433976-98748547 -5.13 0.0717 C4orf37 
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chr8:63894744-64036436 -4.53 0.0689 NKAIN3 
chr3:79287548-79620463 -5.57 0.0678 ROBO1 

chr1:114917957-
115180316 

-4.33 0.067 AMPD1;BCAS2;CSDE1;NRAS;SIKE1;DENND2C 

chr10:50344537-
50485591 

-4.49 0.0602 PGBD3;ERCC6 

chr12:16776014-
16991152 

-5.16 0.0599  

chr8:35892186-36187045 -4.8 0.0597  
chr8:66469790-66571309 -4.39 0.0595  
chr6:99092000-99250034 -4.53 0.0594  

chr17:30145601-
30423028 

-4.75 0.0591 CCT6B;LIG3;ZNF830;RFFL 

chr10:106703798-
106838410 

-4.72 0.0577 SORCS3 

chr5:61717832-61996376 -4.4 0.0563 DIMT1L;KIF2A;IPO11;LRRC70 
chr8:127160081-

127242303 
-4.49 0.0559  

chr5:127026941-
127270624 

-5.33 0.0556  

chr12:64081271-
64211458 

-4.52 0.0536 MSRB3 

chr11:27442372-
27677598 

-5.03 0.0526 BDNFOS;BDNF;LIN7C;LGR4 

chr7:132638934-
132840070 

-4.38 0.0482 EXOC4 

chr14:67346003-
67533244 

-4.54 0.0472 ZFYVE26;RAD51L1 

chr3:13944056-14192304 -5.22 0.0467 TPRXL;XPC;TMEM43;CHCHD4 
chr18:32649779-

33078352 
-6.75 0.0464 BRUNOL4;KIAA1328;C18orf10 

chr16:34127293-
34595203 

-6.69 0.0455 LOC146481;LOC283914;UBE2MP1 

chr11:31018381-
31627465 

-6.89 0.0448 DCDC1;IMMP1L;DNAJC24;ELP4 

chr3:48588024-48870224 -4.67 0.0431 UQCRC1;PRKAR2A;SLC26A6;TMEM89;CELSR3; 
IP6K2;COL7A1;NCKIPSD;SLC25A20;MIR711 

chr1:113859346-
114182823 

-5.28 0.043 PTPN22;RSBN1;PHTF1;MAGI3 

chr1:46327105-46490961 -5.3 0.0428 PIK3R3;RAD54L;TSPAN1;POMGNT1;C1orf190 
chr13:67521482-

67822858 
-5.93 0.0423  

chr3:25772581-25951561 -4.59 0.0407 OXSM;NGLY1 
chr2:36949298-37111916 -4.53 0.0402 STRN;HEATR5B 

chr6:140379904-
141018010 

-7.63 0.0382  

chr7:126965775-
127449571 

-6.4 0.0379 GCC1;C7orf54;ARF5;SND1;FSCN3;PAX4 

chr3:121457784-
121597604 

-4.32 0.037 FSTL1;MIR198;LRRC58 

chr22:26905509-
27244746 

-5.28 0.037 TTC28 

chr7:40016635-40158534 -4.43 0.0367 C7orf10;CDC2L5;C7orf11 
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chr5:114144540-
114378603 

-6.02 0.0363  

chr20:13336947-
13608066 

-4.4 0.0348 TASP1 

chr2:57801690-57969981 -4.5 0.0347  
chr20:33889382-

34074304 
-4.4 0.0343 SCAND1;PHF20;C20orf152 

chr17:27971458-
28238024 

-5.36 0.0338 MYO1D 

chr11:55404491-
55652591 

-5.16 0.0329 OR10AG1;OR8H3;OR5W2;OR7E5P;OR5F1;OR5AS1; 
SPRYD5;OR8I2;OR8H2;OR5I1 

chr8:53602010-53801129 -4.76 0.0322 RB1CC1;FAM150A 
chr12:88771521-

89023115 
-5.19 0.0318  

chr17:24434840-
24619077 

-4.81 0.0312 CRYBA1;MYO18A;NUFIP2 

chr2:31587161-31824722 -4.9 0.031 SRD5A2 
chr10:24947714-

25071096 
-4.44 0.0305 ARHGAP21 

chr1:29123223-29454711 -5.76 0.0302 EPB41;SFRS4;TMEM200B;PTPRU;MECR 
chr5:81320640-81673716 -5.53 0.0301 ATG10;ATP6AP1L;RPS23 
chr8:49757256-49991278 -4.62 0.0285 EFCAB1 

chr1:208202965-
208435865 

-4.76 0.0283 SYT14 

chr2:145851338-
146053880 

-4.35 0.0282 MIR548Q 

chr13:50842278-
50980438 

-4.54 0.028 INTS6 

chr5:86585148-86880429 -5.02 0.0275 CCNH;RASA1 
chr2:123291693-

123431971 
-4.33 0.0272  

chr2:232543676-
232888785 

-5.85 0.0269 DIS3L2 

chr14:82678608-
82846353 

-4.65 0.026  

chr6:79583236-79877504 -5.01 0.025 PHIP;IRAK1BP1 
chr11:59613965-

59797766 
-5.37 0.025 MS4A2;MS4A6A 

chr1:94411925-94611718 -4.66 0.0246 ARHGAP29 
chr3:182447686-

182606512 
-4.57 0.0236  

chr14:70819866-
71281353 

-6.09 0.0222 SIPA1L1;SNORD56B;LOC145474 

chr2:73403433-73647717 -4.85 0.0217 ALMS1 
chr3:58816825-59112587 -5.85 0.0216 C3orf67 
chr7:43572180-43854900 -5.38 0.0214 STK17A;BLVRA;C7orf44 

chr11:108048953-
108305665 

-4.91 0.0213 DDX10 

chr4:124179502-
124320006 

-4.48 0.0207 SPATA5 

chr1:77825306-78062178 -5.47 0.0201 USP33;FAM73A;ZZZ3 
chr1:241728677-

241961996 
-5.03 0.0201 SDCCAG8;AKT3 
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chr8:71166934-71357997 -4.61 0.0199 NCOA2 
chr7:68662946-69274862 -8.7 0.0199 AUTS2 

chr14:74496358-
74716061 

-4.67 0.0199 EIF2B2;FAM164C;TMED10;ACYP1;NEK9;MLH3 

chr5:37416335-37685205 -5.65 0.0185 WDR70 
chr8:99702821-

100083787 
-5.86 0.0183 STK3;OSR2 

chr9:37775699-37917533 -4.91 0.0179 MCART1;SHB;DCAF10 
chr2:61278408-61596041 -5.4 0.0179 XPO1;USP34;SNORA70B 

chr4:128839023-
129212754 

-5.07 0.0171 C4orf29;SLC25A31;LARP1B;INTU;PLK4;HSPA4L;MFS
D8 

chr19:10792684-
11008333 

-4.64 0.0171 C19orf52;TMED1;C19orf38;CARM1;SMARCA4;YIPF2;D
NM2 

chr2:62835302-63143312 -4.5 0.0168 EHBP1;LOC100132215;OTX1 
chr3:100977224-

101317172 
-5.4 0.0166 COL8A1;C3orf26;FILIP1L 

chr3:96721658-96906463 -4.4 0.0165  
chr2:155409169-

155646459 
-5.35 0.0163 KCNJ3 

chr9:83984606-84225041 -4.68 0.0161  
chr11:54780414-

55198258 
-6.23 0.0151 OR4S2;OR4A15;OR4C15;OR4A16;OR4C11;OR4C6; 

OR4P4;OR4C16;TRIM48 
chr13:59438447-

59687908 
-5.19 0.0147 DIAPH3 

chr3:44300268-44638217 -4.87 0.0146 C3orf23;C3orf77;ZNF445;ZNF167;ZNF660 
chr11:56765112-

56857424 
-4.54 0.0143 SSRP1;TNKS1BP1 

chr3:161462587-
161761512 

-4.71 0.0142 MIR15B;MIR16-
2;KPNA4;TRIM59;SMC4;SCARNA7;IFT80 

chr8:47827581-48223238 -6.14 0.0131 BEYLA 
chr20:32937878-

33108019 
-4.68 0.0125 TRPC4AP;GSS;ACSS2;MIR499;MYH7B 

chr2:63781390-64042155 -4.57 0.0122 VPS54;UGP2 
chr3:112102198-

112387037 
-5.42 0.0116 PVRL3 

chr17:59899486-
60137336 

-4.43 0.0115 DDX5;POLG2;SMURF2;CCDC45 

chr5:93076209-93576784 -6.15 0.0114 POU5F2;C5orf36;FAM172A 
chr3:116166959-

116388836 
-4.52 0.0112 ZBTB20 

chr7:106797749-
106964241 

-4.63 0.011 GPR22;COG5 

chr2:98940428-99199203 -5.21 0.0106 C2orf15;MITD1;MRPL30;TSGA10;LIPT1 
chr2:187605993-

187813463 
-4.39 0.0104  

chr11:72195016-
72440608 

-4.49 0.0099 FCHSD2;ATG16L2 

chr10:74083477-
74337153 

-4.8 0.0098 OIT3;CCDC109A 

chr9:124758063-
125065903 

-5.68 0.0097 MIR600;STRBP;GPR21;C9orf45;RABGAP1 

chr2:135561601-
135841635 

-5.5 0.0095 ZRANB3;RAB3GAP1 
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chr20:32451776-
32699045 

-4.76 0.0093 PIGU;MAP1LC3A;DYNLRB1;MIR644;ITCH 

chr15:47463250-
47649741 

-4.52 0.0082 FGF7;C15orf33 

chr3:132117783-
132343447 

-4.64 0.0079 ATP2C1;NEK11;ASTE1 

chr2:72544029-72706415 -4.56 0.0074 EXOC6B 
chr17:55626114-

55863364 
-4.79 0.0073 SCARNA20;C17orf64;USP32 

chr3:49072090-49374867 -6.02 0.0056 RHOA;LOC646498;GPX1;USP19;KLHDC8B; 
C3orf62;LAMB2L;CCDC71;QARS;USP4; 

CCDC36;LAMB2;QRICH1 
chr10:32919972-

33181723 
-5.01 0.0055 C10orf68 

chr17:25248108-
25537005 

-5.15 0.0048 SSH2;EFCAB5;MIR423;CCDC55 

chr13:19432302-
19555647 

-5.05 0.0047 ZMYM2 

chr1:50780760-51008404 -4.42 0.0045 FAF1 
chrX:63432354-63720324 -4.64 0.0042 MTMR8 
chr1:45799119-45986770 -4.84 0.0039 GPBP1L1;AKR1A1;NASP;IPP;RPS15AP10;TMEM69;C

CDC17 
chr4:33686539-33924340 -4.39 0.0035  

chr15:69929973-
70183174 

-4.55 0.0025 MYO9A 

chr3:137691478-
137912085 

-4.74 0.0024 STAG1 

chr5:131041314-
131291254 

-4.65 0.0023 FNIP1 

chr6:126709867-
127030785 

-5.47 0.0018 C6orf173 

chr16:34775211-
35006524 

-5.27 0.0015  

chr8:100187079-
100377442 

-4.44 0.0001 VPS13B 

 

Table S38: Specific categories of genes are not enriched in regions of putative positive selection. 
1Genes identified in this report and in the accompanying paper, Burbano et al., to have fixed non-
synonymous changes in modern humans since Neandertal divergence. 2Genes with a human-
chimpanzee expression difference (p<0.05) identified by Khaitovich et al. 3Genes with an age-
related expression trajectory that differs in humans compared to chimpanzees and rhesus. 

Gene category number 
of genes 

observed is SS 
regions 

Expected 
[95% CI] 

Fixed non-synonymous difference1 139 4 3.4 [0-7] 
Human/chimpanzee expression change2 9,370 119 112.3 [99-127] 
Human-lineage age-related expression 

change3 
442 19 12.9 [6-20] 
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Figure S31: Human derived allele frequency is predictive of Neandertal derived alleles. A. For 
each human derived allele frequency bin, we calculated the fraction of derived Neandertal alleles. 
The chrX, with a smaller Ne than the autosomes, is expected (and observed) to share a smaller 
fraction of derived alleles. B. The same analysis using Craig Venter�’s genome instead of the 
Neandertals. As expected, human data are more predictive of Craig Venter derived alleles than 
Neandertal derived alleles. C. The specific configuration of human derived alleles is informative 
about the fraction of Neandertal derived alleles. 
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Figure S32: The derived allele frequency spectrum as a function of local recombination rate. 
Three bins of derived allele frequency were made. At high rates of recombination, there is a higher 
concentration of alleles in the low-frequency derived bin. As recombination rate increases, more 
derived alleles are observed to be at higher frequency derived state. 
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Figure S33: The fraction of Neandertal and Craig Venter derived alleles as a function of local 
recombination rate and human derived allele frequencies. A. The human derived allele frequency 
spectrum remains predictive of Neandertal derived alleles across the range of recombination rates. 
B. The same analysis for Craig Venter alleles shows an equivalent pattern. 
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Figure S34: Selective sweep screen region of top S score. This region of chromosome 7 contains 
the gene AUTS2. The red line shows the log-ratio of the number of observed Neandertal derived 
alleles versus the number of expected Neandertal derived alleles, within a 100 kilobase window. 
Above the panel, in blue is the position of each human polymorphic site. Green indicates 
polymorphic position where the Neandertal carries derived alleles. The region identified by the 
selective sweep screen is shown highlighted in pink. 
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Figure S35: Width of region in centi-Morgan, vs S score of region, for significant regions resulting 
from coalescent simulation under a neutral and selective scenario. The horizontal line corresponds 
to the 95% quantile of S of the neutral simulation with a recombination rate of 1cM/Mb.
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In what follows, we estimate that the ancestral populations of Neandertals and modern humans diverged 
272,000-435,000 years ago. West Africans are used to represent modern humans in this analysis because in 
SOM 15-17, we find no evidence for gene flow between Neandertals and the ancestors of West Africans 
after their initial divergence. This makes interpretation of the population divergence date much simpler. 
 

A panel of 2,192,854 SNPs heterozygous between the two chromosomes of a Yoruba individual 
We discovered 2,192,854 SNPs as differences between the two chromosomes of a single Yoruba individual 
(NA18507) who had been sequenced to 40-fold coverage using paired end 35-41 base pair reads via the 
Illumina technology (S62). We mapped all reads from this individual to the human genome reference 
sequence (Build 36) using the BWA software with default parameters (S33). We called SNPs using 
SAMtools (S20) using the default configuration. The software for calling SNPs automatically removes loci in 
repetitive regions and with unusually high or low coverage, thus minimizing false-positive SNPs due to 
repeats, structural variation or mismapping. We further restricted to sites where we were able to obtain both a 
chimpanzee and orangutan allele based on Ensembl�’s EPO alignment (S16). SNPs aligning to paralogous 
regions were also removed from our analysis. 
 

Table S39 Percent of SNPs discovered in two Yoruba for which another population X has the derived allele 

 

Fchimp 
% derived alleles determined by 

comparison to chimpanzee 

Fchimp+orang 
% derived alleles determined by 

comparison to chimp & orangutan 

Fcorrected-1  
% derived alleles corrected for 

recurrent mutation 
 Transversions Transitions Transversions Transitions Transversions Transitions 

Yoruba 31.1% 31.8% 30.8% 31.1% 30.5% 30.4% 
Han 30.3% 31.0% 30.0% 30.4% 29.7% 29.8% 

French 30.4% 31.2% 30.0% 30.5% 29.6% 29.9% 
Papuan 30.1% 30.7% 29.7% 30.1% 29.3% 29.5% 

San 26.9% 27.6% 26.5% 26.8% 26.2% 26.0% 
Vi33.16 19.2% 22.3% 18.7% 21.2% 18.2% 20.2% * 

Vi33.25 19.1% 21.6% 18.5% 20.3% 17.9% 19.1% * 

Vi33.26 19.1% 22.0% 18.4% 20.7% 17.7% 19.5% * 
 

* There is a discrepancy in the estimate of Fcorrected-1 for transitions and transversions for the three Neandertal bones, which we hypothesize 
reflects the fact that ancient DNA degradation primarily affects transition sites. We restrict to transversions for our analyses below. 
 

Proportion of SNPs for which a third sample from population X carries the derived allele 
We measured the proportion of SNPs discovered in two Yoruba chromosomes at which a random sample 
from another population X carries the derived allele. Here, X is one of the 5 humans we sequenced (Yoruba, 
Han, French, Papuan and San) or one of the Vindija Neandertal bones (Vi33.16, Vi33.25 and Vi33.26). We 
randomly drew one read to represent each sample at sites with multiple coverage. The proportion of sites at 
which population X carries the derived allele is highest for Yoruba, declines for the three non-African 
populations, declines further for San, and is lowest for the Neandertal bones (Table S39). This decline is 
expected for populations with increasing divergence from Yoruba, since the more ancient the divergence, the 
greater the probability that the SNP occurred in present-day humans after divergence. 
 

The proportion of sites that are estimated to be derived varies depending on which group of SNPs we 
analyze. Taking X=Neandertal as an example, 21.6% of alleles at transitions and 19.1% at transversions 
match chimpanzee, and 20.7% at transitions and 18.5% at transversions match both chimpanzee and 
orangutan. We hypothesize that the differences in these rates are due to recurrent mutation, which can cause 
mislabeling of the derived allele and is most effectively excluded when both the chimpanzee and orangutan 
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are required to match, and when we restrict to transversions with their low mutation rate. Recurrent mutation 
on the hominin lineage since the divergence from chimpanzees, however, cannot be detected by using the 
orangutan sequence. We therefore developed a computational correction for recurrent mutation. 
 

Correcting the estimated proportion of derived alleles for the effect of recurrent mutation 
To estimate the proportion of sites where population X carries the derived allele, accounting for the process 
of recurrent mutation, we make several simplifying assumptions: 

1. We assume that exactly one mutation has occurred since the common genetic ancestor of the two 
Yoruba samples and the sample from population X (at time tH; Figure S36). 

2. We assume that no more than two mutations have occurred since humans and chimpanzees diverged 
(at time tHC; Figure S36). 

3. We assume that no mutations have occurred on the orangutan lineage at the site. 
 
 
Figure S36: Genealogical tree relating two present-day 
Yoruba, a third sample X (Neandertal or another present-day 
human), chimpanzee and orangutan. (We show a trifurcation 
in this figure, but in fact several topologies are possible 
relating Y1, Y2 and X.) We define the time since the most 
recent common genetic ancestor of all the humans as tH, and 
the time since the most recent common genetic ancestor of 
humans and chimpanzees as tHC.  
 
 
 

We now define the following quantities, which we can estimate empirically from the data: 
 

Fchimp    Proportion of Yoruba SNPs where X does not match chimpanzee. 
Fchimp+orang   Proportion of Yoruba SNPs where X does not match chimpanzee and orangutan 

(we filter out sites where chimpanzee and orangutan are discrepant). 
Fcorrected-1   Proportion of Yoruba SNPs where X has the new mutation, correcting for recurrent mutation. 
P   Proportion of SNPs affected by recurrent mutation on the lineage leading from chimpanzee to 

the ancestor of Neandertals and present-day humans (total branch length = 2tHC-tH) 
Q Proportion of recurrent mutation SNPs that are expected to have occurred on the lineage 

leading to present-days humans, equal to (tHC-tH)/(2tHC-tH). 
 

With these definitions, we can write down a system of two equations corresponding to the expected values of 
Fchimp and Fchimp+orang, which takes into account the fact that a proportion of the sites that are analyzed in the 
data are inevitably due to recurrent mutation: 
 

 )1)(())(1(][ 11 correctedcorrectedchimp FPFPFE      (S14.1) 

 
QPP

QFPFPFE correctedcorrected
orangchimp )()1(

)1)(())(1(][ 11      (S14.2) 

 

Here, Q is the proportion of recurrent mutations that cannot be detected by the inclusion of orangutan. 
Although we cannot identify these mutations directly as they occurred on the lineage leading to modern 
humans, we can estimate how often they occur. Specifically, Q is expected to equal the historical opportunity 
for mutations on the human side of the tree in Figure S36 (proportional to tHC-tH), divided by the opportunity 
on the chimpanzee side (proportional to tHC): Q = (tHC-tH)/(2tHC-tH) = (1-tH/tHC)/(2-tH/tHC). From the 
divergence estimates from SOM 10, tH/tHC is empirically about 0.1 for present-day humans, and hence we 
estimate that Q = (1-0.1)/(2-0.1) = 47%. We also explored the effect of varying tH/tHC over a wide range that 
more than spans the values in Neandertals and present-day humans, and found that when we varied it 
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between 0-0.2, Q varied between 44-50%. This degree of uncertainty in Q has a negligible effect on our 
correction for recurrent mutation, and thus our inferences are insensitive to the exact value of Q. 
 

We solved the system of equations to estimate Fcorrected-1 and P. Encouragingly, Fcorrected-1 estimates are 
indistinguishable for transitions or transversions for the 5 present-day humans (Table S39), and we correctly 
estimate a much higher recurrent mutation rate for transitions (P = 3.2%) than transversions (P = 1.7%). For 
Neandertal, by contrast, the transition- and transversion-based estimates are very different (Table S39). This 
is likely to reflect the high rate of DNA degradation that is known to occur at transitions in Neandertals 
(C T and G A mutations). In what follows, we therefore restrict our analysis to transversions. Averaging 
across three Neandertal bones, we estimate that Fcorrected-1 = 17.9%. 
 

False-positive SNPs in Yoruba individual NA18507 have a negligible effect on our inferences 
The Yoruba individual in whom we discovered SNPs, NA18507, was sequenced to approximately 40-fold 
coverage on the Illumina/Solexa Genome Analyzer. While this in principle provides the basis for confident 
identification of the great majority of SNPs, we were nevertheless concerned that false-positive SNPs might 
bias our inferences. At a site that is called as a SNP in NA18507 but that is in fact not heterozygous in that 
individual, the new sample from a population X would have a very high probability of carrying the ancestral 
allele (since about 99% of sites in the genome are concordant between humans and chimpanzees). Thus, the 
presence of false-positive SNPs in the Yoruba in our data set would result in overestimation of the proportion 
of ancestral alleles and an underestimation of the proportion of derived alleles. 
 

To estimate a false-positive SNP rate from the sequencing of individual NA18507, we took advantage of the 
fact that a whole-genome SNP array was also run on this individual (S62). Comparing sequencing calls to 
calls from SNP array-based genotyping, Bentley et al. estimated a false-positive rate of R = 0.5%. Defining 
the further-corrected proportion of derived alleles as Fcorrected-2, we obtain:  
 

 ))(1(][ 21 correctedcorrected FRFE         (S14.3) 
 

Solving for Fcorrected-2, we obtain a minor upward correction of the estimated proportion of derived alleles by 
0.09-0.15% depending on the population (Table S40).  
 

Error from our Illumina sequencing is expected to have a negligible effect on our inferences 
We also considered the rate at which sequencing error in the read from population X will cause it to be 
misread as the alternate allele at the SNP at that nucleotide. We can estimate the substitution-specific 
transversion error rate based on the numbers derived in SOM 10. Suppose that we have nall nucleotides 
aligned for three samples: chimpanzees, the human reference sequence, and sample X. We now define allele 
B as the one carried by chimpanzee (which can be any of A, C, G or T). Let nH

B D denote the number of 
sites where the reference human sequence is unique in having the alternate allele D, and nX

B D the number of 
sites where X is unique in having D. Under the simplifying assumptions that the chimpanzee and human 
reference sequences have no errors, and that the same number of true substitutions have occurred in the two 
hominin samples since their divergence (that is, a molecular clock applies), we can estimate the B D 
specific error rate as the increased number of substitutions on the X lineage compared with the human 
reference sequence lineage since they diverged: 
 

 all
DB

H
DB

X

n
nnDBrateError        (S14.4) 

 

We computed the substitution-specific error rate for each of the 8 possible transversions classes (A C, 
A T, C A, C G, G C, G T, T A, and T G) and averaged them to provide a single transversion-
specific error rate ERRtransversions for each sample X (Table S40). The error rate ERRtransversions in the present-
day humans (0.19%) is substantially higher than in the Neandertal (0.04%). This is not surprising given that 
each nucleotide in the present-day human samples was read only once, whereas in Neandertal, many were 
read multiple times due to bi-directional sequencing of each clone and the fact that some of the clones were 
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sequenced multiple times (SOM 2). To infer the proportion of Yoruba SNPs where population X has the 
derive allele, correcting for errors in the Illumina reads from population X, we can now write the corrected 
proportion Fcorrected-3 as: 
 

 )1)(())(1(][ 223 correctedontransversicorrectedontransversicorrected FERRFERRFE    (S14.5) 
 

Solving for Fcorrected-3, we obtain a slight downward correction of the proportion of derived alleles, which 
varies depending on the sample from 0.03-0.15%. 
 

We conclude that sequencing error in NA18507, or in the read from population X, has a negligible effect on 
the inferred proportion of derived allele in each population (Fcorrected-1, Fcorrected-2, and Fcorrected-3 are similar in 
Table S40). Nevertheless, to be maximally careful, we use the Fcorrected-3 estimates in what follows. 
 

Table S40: Proportion of transversion SNPs where population X is derived for all estimates 

 

ERRtransversion 
Transversion 
substitution 
error rate 

estimated for this 
sample 

Fchimp,transversion  
% derived alleles 
at transversions 
using  chimp to 
determine the 
ancestral allele 

Fchimp+orang, 
transversion 

         
% derived alleles 
at transversions 

using chimpanzee 
and orangutan 

Fcorrected-1 
% derived alleles 
at transversions 

corrected for 
recurrent 
mutation 

Fcorrected-2 
% derived alleles at 

transversions 
corrected for recurrent 

mutation and 0.5% 
false-positive SNPs 

Fcorrected-3 
% derived alleles at transversions 
corrected for recurrent mutation, 

false-positive SNPs, and 
empirically estimated rate of 
allele calling error in pop. X 

Yoruba 0.17% 31.1% 30.8% 30.5% 30.7% 30.6% 
Han 0.16% 30.3% 30.0% 29.7% 29.8% 29.8% 
French 0.10% 30.4% 30.0% 29.6% 29.7% 29.7% 
Papuan 0.36% 30.1% 29.7% 29.3% 29.4% 29.3% 
San 0.16% 26.9% 26.5% 26.2% 26.3% 26.3% 
Neandertal pool 0.04% 19.1% 18.5% 17.9% 18.0% 18.0% 
 
Translating from F to a population divergence date  
The proportion of sites at which a random sample from population X carries the derived allele at a SNP 
discovered between two Yoruba chromosomes contains information about the date of population divergence 
of X and Yoruba. Importantly, complexities in the demographic history of population X after its final 
divergence from Yoruba do not affect the estimate of the final divergence time using this approach. In 
particular, changes in population size in X do not affect the expected proportion as long as population X did 
not continue to exchange genes with other populations on the lineage leading to present-day Yoruba. 
 
To understand why complexities in the demographic history of population X since its split from Yoruba do 
not affect inferences, denote an allele�’s frequency at the time of tX of divergence from Yoruba as pi. In this 
case, the probability of a single randomly chosen allele from population X being derived today is also pi.  
Although subsequent demographic events may dramatically increase or decrease its frequency, they will do 
so with equal probability so that the expected value is unchanged, a phenomenon that we confirmed by 
simulations. Thus, we only need to accurately model the demographic history of Yoruba in order to estimate 
this population�’s divergence time from a range of other populations. 
 
To build a calibration curve relating the observed proportion of derived alleles in a population X to the 
divergence time of that population from Yoruba, we carried out coalescent simulations of Yoruba 
demography using four models that have been fitted to different aspects of data from present-day humans.  
  

 Schaffner et al. Genome Research 2005 (S83). This model is based on fitting sequence divergence, 
linkage disequilibrium, and allele frequency differentiation patterns across populations to data from 
three present-day human populations (West Africans, European Americans, and East Asians). We 
used the cosi simulation software provided with that paper to make inferences about the proportion of 
derived alleles in population X assuming different times of population divergence from Yoruba. 
 

 Wall et al. Mol. Biol. Evol. 2009 (S30). This model was developed to search for a signal of ancient 
substructure in Europeans (possibly due to gene flow from Neandertals). We used the command line 
calls to the Hudson�’s ms coalescent simulator (S29) given in the supplementary materials for that 
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paper. For population X, we used a constant-sized population and varied the population divergence 
time. We rescaled the mutation rate to give the same average time since the most recent common 
ancestors as in the two simulations above. 
 

 Keinan et al. Nature Genetics 2007 (S84): This model was fitted to allele frequency spectrum data 
from the Yoruba population, using SNPs discovered in two chromosomes of West African ancestry, 
and then genotyped in a much larger number of Yoruba samples. The simulation involves a single 
expansion from a population size of N=7,197 to N=12,855 at a time 5,903 generations ago. We 
assumed that population X diverged instantaneously from the Yoruba, and was constant in size at 
12,855 individuals since that time (as described above, the demography of population X since its 
divergence from Yoruba does not affect results). Simulations were carried out using Hudson�’s ms. 

 
 Pairwise Sequential Markovian Coalescent model (PSMC): This model has been developed by author 

Heng Li to infer the distribution of the times since the most recent common ancestor of two 
haplotypes from a single individual, genome-wide. The model was fit to sequence data from Yoruba 
individual NA18507, the very individual used to identify the SNPs analyzed here. This distribution 
was converted into an inference about the changes in Yoruba effective population size over 60 
piecewise constant intervals of time. The inferences based on this model, as shown in Figure S37, are 
consistent with the above three models and support their robustness.  

 
Neandertal-Yoruba population divergence time is estimated to be 272,000-435,000 years ago 
To estimate the Neandertal-Yoruba population divergence time XY, we simulated models 1-4 for a range of 
population divergence times to generate the expected proportion of SNPs where population X has the derived 
allele under this model. We chose to express this proportion as a function of the ratio XY/tYY, where tYY is the 
time since the genetic ancestor of two Yoruba. The value of studying this ratio is that it is not affected by 
assumptions about mutation rate and generation time, which is valuable as these vary somewhat across the 
four models above. 
 

We can now convert to an estimate of XY/tHC, where tHC is human-chimpanzee average genetic divergence. 
To do this, we multiply XY/tYY by the ratio tYY/tHC = 8.77%, which we measured empirically from an 
alignment of two West African sequences and a chimpanzee in SOM 10. Figure S37 plots the expected value 
of XY/tHC corresponding to an observed value of Fcorrected-3, for each of models 1-4. For the empirically 
observed Fcorrected-3 = 18.0% for Neandertal, this leads to XY/tHC

 = 0.0488-0.0526 Importantly, the mutation 
rate and the generation time do not enter into this analysis. By expressing the simulation results as a ratio 

XY/tYY, uncertain quantities like the mutation rate and generation time cancel and do not affect the inference. 
 
Figure S37: Computer simulations of the proportion of 
SNPs for which a population X has the derived allele, for 
SNPs discovered in two Yoruba chromosomes and 
simulated models of Yoruba demographic history that 
have been fitted to various aspects of Yoruba data. The 
four previously reported models all predict that a 
proportion of derived alleles Fcorrected-3 = 18.0% for 
Neandertals corresponds to a divergence time of 0.0488 
(tHC) - 0.0526(tHC). 
 

 
 
 
 
 
 

18.0%

.0488 .0526
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Population divergence time of Neandertals and Yoruba in years  
To translate the inference of XY/tHC into an absolute time, we assumed 15-20 Mya for human-orangutan 
speciation time, obtained by assessment of the fossil record relevant to human-orangutan divergence (S36). 
Assuming that human-orangutan autosomal genetic divergence time is not more than 2 Mya greater than 
speciation time, this translates to 15-22 Mya range for human-genetic autosomal geneic divergence time, 
which in turn translates to tHC = 5.6-8.3 Mya for human-chimpanzee autosomal genetic divergence based on 
the inference that human-chimpanzee genetic divergence time is 2.66-times less than human-orangutan 
genetic divergence time (S36). 
 

Using the lower bound of tHC
years = 5.6 Mya and multiplying by the lower bound of NY

years/tHC
years = 0.0488 

from our modeling in Figure S37, we obtain a lower bound of 272,000 years for Neandertal-Yoruba 
population divergence time. Using the upper bound of tHC

years = 8.3 Mya and multiplying by the upper bound 
of NY

years/tHC
years = 0.0526, we obtain an upper bound of 435,000 Mya for Neandertal-Yoruba population 

divergence time (Table S41). 
 

Table S41: Yoruba - Neandertal population divergence times vs. genetic divergence times 
 Category Lower bound Upper bound 

Fossil 
calibration 

 (A) Human-orangutan speciation time from fossils used for calibration 
(using a range of speciation times consistent with the fossil record) 

15 Mya 20 Mya 

 (B) Human-chimpanzee genetic divergence time (calibrated) 
(assuming human-orangutan genetic divergence  is at most 2 Mya greater than speciation time, and human-chimpanzee  autosomal 
genetic divergence time is 2.66-times less than human-orangutan divergence time, from (S36)) 

5.6 Mya 8.3 Mya 

 (C) Neandertal-Yoruba population divergence time as a fraction of 
human-chimpanzee genetic divergence from modeling 
(we quote the full range from the modeling of Figure S37)  

0.0488-0.0526 0.0488-0.0526 

 (D) Neandertal-Yoruba population divergence time in years 
(obtained by multiplying B×C) 

272,000-293,000 403,000-435,000 

 (E) Neandertal-Yoruba genetic divergence time in years 
(obtained by using the estimate of 13.1% = (Neandertal-African)/(Human-chimpanzee) genetic divergence time from SOM 10)  

734,000 1,087,000 

Autosomal 
inferences 

 (F) Ancestral diversity of Neandertals and modern humans  
(average time since the most recent common genetic ancestor in the ancestral population, obtained by subtracting E-D) 441,000-462,000 652,000-684,000 

 

Comparisons of genetic and population divergence times for Yoruba and Neandertal 
It is illuminating to compare our estimate of Neandertal-Yoruba population divergence time to Neandertal-
Yoruba genetic divergence time. 
 

Autosomes: Assuming times of human-chimpanzee genetic divergence of 5.6-8.3 Mya, and the ratio of 
(Neandertal-West African genetic divergence)/(Human-chimpanzee genetic divergence) = 13.1% from SOM 
10, we obtain an estimate of 734,000-1,087,000 for the genetic divergence of Neandertals and present-day 
humans. Subtracting the population divergence from the genetic divergence, we estimate 441,000-684,000 
years for the average time since the most recent common ancestor (tMRCA) in the ancestral population.  
 

Mitochondrial DNA: We were curious about how our estimates of population divergence times from the 
autosomes reconcile with mtDNA genetic divergence estimates, when the same fossil calibration times are 
used. To convert the estimate of autosomal genetic divergence time of humans and chimpanzees of 5.6-8.3 
Mya to mtDNA genetic divergence, we used the estimates of parameters in the ancestral population of 
humans and chimpanzees from Burgess and Yang (S85), in which the ratio of the average time to the most 
recent common autosomal genetic ancestor (tMRCA) in the ancestral population of humans and chimpanzees 
to human-chimpanzee speciation time was inferred to be 4.1:3.9. We conservatively considered a range of 0-
67% for mtDNA to autosomal tMRCA as potentially consistent with our data (the population genetic 
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expectation is 25%). This led to an estimate of human-chimpanzee genetic divergence in mtDNA between 
48-83% of the autosomes; that is, (3.9)/(3.9+4.1) to (3.9+4.1×0.67)/(3.9+4.1). 
(i) Assuming 5.6 Mya for human-chimpanzee autosomal divergence, this inference corresponds to 2.7-4.6 

Mya for mtDNA divergence, which we truncated to 4.5-4.6 Mya based on the consideration that the 
fossil record of australopithecines makes a divergence of <4.5 Mya unlikely.  

(ii) Assuming 8.3 Mya for human-chimpanzee divergence, this inference corresponds to 4.5-6.9 Mya. 
 

We used these calibration times to estimate plausible times for human-Neandertal mtDNA genetic 
divergence time that are consistent with our data. A recent study of the (Neandertal-modern 
human)/(Human-chimpanzee) genetic divergence time ratio in mtDNA has estimated a 95% confidence 
interval of 5.5-9.4% (S3). Multiplying this by the 4.5-4.6 Mya and 4.5-6.9 Mya ranges above, we obtain the 
inference that Neandertal-mtDNA genetic divergence occurred 250,000-650,000 years ago. By subtraction 
these numbers, we infer that the mtDNA tMRCA within the ancestral population is 0-210,000 years ago. This 
is a broad interval, but is entirely plausible. 

 

Estimate of the population divergence time of Yoruba from other present-day humans  
We also applied the same analysis to the divergence of other present-day humans we sequenced. We infer 
that the San diverged from Yoruba between 67,000-164,000 years ago, while all three non-African 
populations diverged from Yoruba <73,000 years ago, taking into account the full uncertainty of 5.6-8.3 Mya 
for human-chimpanzee genetic divergence time (Table S42). We caution that our inferences are only as 
precise as the accuracy of the models we explored. The models produce estimates for the divergence from 
the three non-African populations that are very imprecise; the difference between the largest and smallest 
estimate is at least 76% of the largest estimate, as shown in Table S42. Encouragingly, however our 
estimates for the Neandertal divergence are fairly similar across models (varying by only 7%). Thus, for 
Neandertal, almost all the uncertainty is due to calibrations against the fossil record. 

 

Table S42: Estimate of population divergence time between Yoruba and each other population X 

 
Range of tXY/tHC 

across models 
 

Range of tXY/tHC across models 
as a fraction of the largest estimate 

HCXYHCXYHCXY tttttt /max/min/max  

Estimated value of tXY in years  
(taking into account model-based estimated as well 

as fossil uncertainty in tHC of 5.6-8.3 Mya) 

Han* 0.0008 - 0.0073 89% 5,000 - 60,000 
French* 0.0012 - 0.0076 85% 7,000 - 63,000 
Papuan* 0.0022 - 0.0088 76% 12,000 - 73,000 
San 0.0120 - 0.0198 39% 67,000 - 164,000 
Neandertal pool 0.0486 - 0.0524 7% 272,000 - 435,000 
 

* The inferred Neandertal-to-non-African human gene flow from SOM 15-17 means that our results for the Han, French, and Papuan actually reflect an average of 
the divergence time of Yoruba from the modern human and Neandertal-related ancestors of non-Africans. However, as show in SOM 18-19, the Neandertal mixture 
proportion is only likely to be a couple of percent, and thus results in only a negligible bias to the inference. 
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To test whether Neandertals share more alleles with some present-day human populations than with others, 
we compared the Neandertal sequence that we generated to sequence from present-day human samples of 
diverse ancestry. Specifically, we discovered single nucleotide polymorphisms (SNPs) by comparing exactly 
two chromosomes from different individuals (H1 and H2). We then assessed whether a test individual (H3, 
e.g. Neandertal) tended to match either H1 or H2 more often at sites where H3 has the derived allele relative 
to chimpanzee. Under the null hypothesis that H3 belongs to an outgroup population, it should match H1 and 
H2 equally often. In contrast, if gene flow has occurred, H3 may match one more than the other. For these 
analyses, we used Neandertal data generated using both the Illumina GAII and Roche 454 technologies, and 
present-day human data generated using both the ABI3730 and Illumina GAII technologies. 

 

Processing of the ABI3730 data from 8 present-day humans 
We first analyzed data from 8 present-day humans (4 West Africans, 2 East Asians, and 2 European 
Americans) that had been generated using an ABI3730 sequencer using a protocol that produced pairs of 
long reads (average of 752 bp) with an approximate spacing of 40 kb. A range of 1.9-3.3 million sequencing 
reads were generated from these samples (S86).  

 

We next applied a series of read and nucleotide filters to the data, producing 0.67-1.42 Gb of nucleotides of 
sufficient quality to call SNPs for each sample (Table S43): 

1. We restricted to reads from fosmid clones that mapped to the PanTro2 chimpanzee sequence. For all 
the analyses that follow, reads were mapped to chimpanzee to avoid a bias toward matching the 
samples used to generate the human reference sequence. 

2. We used SSAHA SNP to identify single nucleotide polymorphisms (SNPs), applying the criterion 
that each SNP had a quality score of at least Q 40 and 5 flanking bases on either side had quality 
scores of Q 15 (S87). 

3. For each present-day human (i = 1�…8) we identified a cutoff Xi such that 99.5% of nucleotides in the 
chimpanzee reference sequence had read coverage of less than Xi. We removed nucleotides with 
coverage greater than this to filter out potential sites of copy number variation and poor mapping. 

A summary of the data we analyzed from these 8 present-day humans is presented in Table S43. 
 

Table S43: ABI3730 sequencing data from 8 present-day humans  

Sample ID 
Our 
label Population 

ABI 3730 
Reads* 

Number of nucleotides 
analyzed to discover SNPs 

NA18517 YRI Yoruba 2,076,237 744,994,084 
NA18507  Yoruba 3,331,676 1,410,858,692 
NA19240  Yoruba 2,118,546 910,314,367 
NA19129  Yoruba 2,053,392 672,021,814 
NA18956 ASN Japan 2,076,828 895,269,089 
NA18555  China 1,966,644 825,605,562 
NA12878 CEU CEPH 2,168,656 870,647,385 
NA12156  CEPH 2,021,844 1,027,157,061 
s 

* Numbers reproduced from Kidd et al. Nature 2008. 
 

Processing of the Illumina GAII data from 5 present-day humans 
For each of the 5 males from the CEPH-Human Genome Diversity Project panel (French, Han, Papuan, San 
and Yoruba group), we only used data that passed the following filters: 

1. We only used paired-end reads where both ends of the clone were available and mapped to the 
PanTro2 chimpanzee sequence with opposite orientation and the expected spacing. 

2. We required that there were no insertion/deletion polymorphisms when aligned to chimpanzee. 
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3. We required that all reads be exactly 76 bp in length. 
4. We removed bases with quality scores Q>40, since at sites with higher quality scores we found that 

divergence was significantly elevated relative to chimpanzee. We could not discern a cause for this, 
but we note that it affected a small fraction of bases, and had a negligible effect on our analyses. 

5. We restricted to sites from the 5 present-day humans where we had coverage from at least one 
Neandertal read with a base of good quality (next section). �“Duplicate reads�” with the same endpoints 
on the reference were removed, and low complexity read pairs (entropy < 1.0) were also removed.  

6. For the Papuan sample we found that base 34 of each read had significantly higher divergence with 
chimpanzee and other humans than other positions in the read. This is likely due to sequence error, 
and we dropped these bases from the analysis. This only makes a small difference to the results. 

 

Processing of the Illumina GAII data from Neandertal 
For the comparison of the Neandertal Illumina data to the Illumina data from 5 present-day humans, we 
applied several additional filters to the Neandertal data: 

1. We required that all reads map to the PanTro2 chimpanzee genome sequence. 
2. We required there to be no insertion/deletion polymorphisms when aligned to chimpanzee. 
3. We restricted to autosomal reads. 
4. We required that no more than 10% of bases in the reads disagree with chimpanzee. 
5. We only accepted nucleotides with a map quality (MAPQ) of at least 43 as assessed by the ANFO 

software, which is specialized for mapping ancient DNA reads (S13).  
6. We did not analyze nucleotides within 5bp of either end of the Neandertal read, because it is known 

that sequence quality is lower in these regions (S28). 
 

Calibration curves used to make allele calls in the Illumina GAII data 
An important feature of Illumina GAII data is that each sample has its own subtle biases in terms of which 
sequencing errors are most common. These biases vary according to which nucleotide type and strand is 
being examined. Thus, a potential source of false-positives could be that samples H1 and H3 have a correlated 
error process, which could make them artifactually match at a higher rate than H2 and H3, even though in fact 
H1 and H2 are a clade and there has been no history of gene flow to or from H3. 

 

To minimize these biases, we built calibration curves in a base-, sample-, and strand-specific manner, and 
discarded half the data (the lower quality half) for each combination of these three categories. The goal was 
to ensure that samples with a bias toward lower quality scores at particular classes of alleles did not have a 
higher rate of data dropout. Briefly, for each base a  {A,C,G, T}, each strand of the chimpanzee reference 
sequence to which a read mapped s  {forward, reverse}, and each present-day human sample x  {French, 
Han, Papuan, San, Yoruba}, we computed a quality score threshold T(a, s, x) such that the probability of 
acceptance > 1/2.  For bases with quality scores that exactly overlapped the 50th percentile, we randomly 
chose nucleotides for inclusion in our analysis, such that the probability of acceptance was exactly 1/2. 

 

Statistical details of the test for gene flow  
We developed a statistical test to assess whether two samples H1 and H2 are consistent with descending from 
a common ancestral population, which diverged at an earlier time from the ancestors of a third sample H3. In 
the basic version of this test, for each position in the genome where we have coverage from three samples 
H1, H2 and H3, we chose one allele from each sample. For the ordered set {H1, H2, H3, Chimpanzee}, we 
denote the chimpanzee allele as �“A�”, and restrict our analysis to biallelic sites at which H1 and H2 differ and 
the alternative allele �“B�” is seen in H3. At these sites, we have observed two copies of both alleles, making it 
unlikely that the base substitutions we are analyzing have arisen due to sequencing error. 

 

We call the two possible patterns of SNPs �“ABBA�” or �“BABA�”. If H1 and H2 descend from a common 
ancestral population that diverged at an earlier time from the ancestral population of H3, then we expect 
ABBA and BABA to occur with exactly equal frequencies. Alternatively, if H1 and H2 do not form a clade 
vis-à-vis H3, they can occur at different rates. We note that differing mutation rates in the H1 and H2 
populations since their divergence are not expected to contribute to a false-positive deviation from 0%. The 
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reason for this is that by restricting to sites where H3 is derived relative to chimpanzee, we are almost 
certainly restricting to mutations that arose prior to divergence of the ancestral populations of H1, H2 and H3. 
Figure S38 illustrates why a test for an equal rate of ABBA and BABA sites provides a formal test of the null 
hypothesis that populations H1 and H2 form a clade in a phylogenetic tree relative to H3. 
 

NH2H1 NH2H1 NH2H1

Genealogical tree 1
BBAA sites occur more because

this corresponds to the genealogy
matching the phylogeny

Genealogical trees 2 and 3 expected at equal rates
ABBA and BABA sites are expected to occur at equal rates since if H1 and
H2 lineages go back to the time of divergence from Neandertal without
sharing an ancestor, there is an equal probability of each joining H3.

NH2H1

H1 H2 Neandertal Chimp BBAA

Phylogenetic
tree

H1 H2 N population divergence

H1 H2 population divergence

ABBA BABA  
 

Figure S38: Comparing ABBA and BABA counts provides a test for whether Neandertals are an outgroup to modern humans. We test 
the null hypothesis that H1 and H2 form a clade, with Neandertals more distantly related. If we look at a single sample from each population, 
there are three possible trees relating the three hominins and chimpanzees, as explored in more detail in SOM 19. (Tree 1) The most common is a 
tree in which H1 and H2 are most closely related, matching the phylogeny. Mutations ancestral to H1-H2 divergence (red mark) will leave a 
BBAA pattern. (Trees 2 and 3) If the H1 and H2 lineages go back to divergence from Neandertal without coalescing, there is an equal probability 
of each joining N, resulting in an equal rate of ABBA and BABA sites. Differences in the demographic history of the H1 and H2 populations have 
no affect on the prediction of an equal rate of ABBA and BABA sites (despite the profound demographic differences between some human 
populations, e.g. non-Africans than Africans, that have resulted in substantial differences across populations like differences in the averaged 
derived allele frequency). By picking a single sample from each population, the lineages are guaranteed to go back to the common ancestral 
population without coming together. Thus demography after the H1-H2 split does not affect the relative rates of ABBA and BABA sites. 
  

We developed a formal test for a difference between the rates of ABBA and BABA sites. To do this, we 
computed a statistic corresponding to the difference in the count of ABBA and BABA sites across the n base 
pairs in the autosomes for which we have alignment of all four samples, normalized by the total number of 
observations. In this statistic, CABBA(i) and CBABA(i) are indicator variables; they can be 0 or 1 depending on 
whether an ABBA or BABA pattern is seen at base i. 
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To evaluate the D statistic in the Illumina data at sites with multiple read coverage in a sample, we picked 
one read at random to represent the sample. To evaluate D in the ABI3730 data, we pooled reads at sites with 
multiple read or sample coverage, allowing us to measure D with higher precision. To summarize the data 
from each population, we estimated the derived allele frequency ijp�ˆ  of SNP i in population j. For a single 
sample, ijp�ˆ was estimated by examining all reads mapping to the nucleotide; if all reads match chimpanzee, 

ijp�ˆ =0%; if only some do, ijp�ˆ =50%; and if all are derived, ijp�ˆ =100%. For a pool of m samples (e.g. 4 West 
Africans, 2 East Asians, 2 European Americans, or 3 Neandertal bones), we weighted the individual 
estimates by the expected number of that individual�’s two chromosomes that were sampled:  wik=0 with no 
coverage, and wik = 2-0.5r-1 with r 1 read covered. Then, m

k ik
m

k ikikij wwqp
11

�ˆ�ˆ , where ikq�ˆ  are the 
frequency estimates per sample. We can now write a generalized equation that allows us to combine data 
sites with multiple coverage in a population, which allows us to measure the D-statistic more precisely. 
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Mathematically, Equation S15.2 reduces to Equation S15.1 for random sampling of one allele from each 
individual at sites that are multiply covered. 
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Block jackknife to compute standard errors 
To compute a standard error on the D-statistic as well as other statistics in this study, we used a Weighted 
Block Jackknife (S88). Briefly, we divided the genome into a number M of contiguous stretches (non-
overlapping) that are chosen to be many Mb in size (chosen to be larger than the extent of linkage 
disequilibrium). By computing the variance of the statistic over the entire genome M times leaving each 
block of the genome in turn, and then multiplying by M and taking the square root, we can obtain an 
approximately normally distributed standard error using the theory of the jackknife. For the genome-wide 
analysis of the ABI3730 data, we divided the genome into M=100 contiguous blocks with an equal number 
of divergent sites, and for chromosome-specific analyses, use M=20 contiguous blocks. For the analysis of 
the Illumina data, we divided the genome into M=604 contiguous 5 Mb blocks, and weighted their 
contribution to the jackknife to account for the variable number of SNPs (S89). We found in practice that the 
standard error of our jackknife was stable as long as blocks were set to be at least 2 Mb (Table S44), a 
threshold that was met for all the computations that follow. 
 

Table S44: Standard errors for the block jackknife analysis are reliable as long as blocks are 2 Mb 
  D(YRI,CEU,Neandertal,Chimp) D(YRI,ASN,Neandertal,Chimp) D(ASN,CEU,Neandertal,Chimp) 
Blocks D std.err. Z D std.err. Z D std.err. Z 
50 4.57% 0.40% 11.4 4.81% 0.39% 12.5 -0.35% 0.48% -0.7
100 4.57% 0.36% 12.7 4.81% 0.39% 12.2 -0.35% 0.46% -0.8 
200 4.57% 0.34% 13.3 4.81% 0.38% 12.6 -0.35% 0.50% -0.7 
400 4.57% 0.34% 13.6 4.81% 0.35% 13.6 -0.36% 0.49% -0.7 
800 4.57% 0.33% 13.8 4.81% 0.35% 13.7 -0.36% 0.48% -0.7 
1600 4.57% 0.33% 13.8 4.81% 0.35% 13.7 -0.36% 0.48% -0.7 
3200 4.57% 0.31% 14.8 4.81% 0.32% 15.0 -0.36% 0.44% -0.8 
6400 4.57% 0.31% 14.8 4.81% 0.32% 15.0 -0.36% 0.44% -0.8 

 

Note: Results for different jackknife block sizes on the ABI3730 present-day human data, pooling 4 West Africans, 2 European 
Americans, 2 East Asians, and 3 Neandertal bones. Standard errors are stable as long as the number of blocks is 1600 (span of 2 Mb).  
 

Neandertals are more closely related to non-Africans than to Africans 
We computed D(H1,H2,Neandertal, Chimpanzee) for all 28 pairs of present-day humans in the ABI3730 data 
(Table 4). Neandertal matches the 4 non-Africans significantly more than the 4 Africans in all 16 
comparisons (3.6 < Z < 9.9 standard deviations), but all comparisons of pairs of African samples or of pairs 
of non-African samples are non-significantly deviated from 0 after correcting for 12 hypotheses tested 
(|Z|<<2.7). Pooling samples from each ancestry, the African-to-non-Africans difference increases in 
significance (Z = 12.2-12.7), and we continue to observe no European-East Asian difference (Z = -0.8).  
 

Table S45: Consistency of D(YRI,CEU,Neandertal,Chimpanzee) for various subsets of data 

 
 
 
 
 
 
 
 
 
 
 
 

Note: All analyses are restricted to SNPs discovered in the ABI3730 fosmid data, pooling the data from 4 YRI to represent West 
Africans and 2 CEU samples to represent Europeans. The P-values for heterogeneity are obtained by a block jackknife of the 
Category 1 - Category 2 difference across the genome, and reporting the number of standard deviations from 0. 
* The first 3 rows combine Illumina and 454 Neandertal data; the later rows are all Illumina. 
 

We repeated the analysis in various subsets of the data. We found no statistically significant difference 
between results on the Illumina and 454 Neandertal data, transitions and transversions, hypermutable CpG 
dinucleotides and all other sites, and the three Vindija bones (Vi33.16, Vi33.25 or Vi33.26). We did find that 

Category 1 vs. Category 2  Category 1 Category 2 2-sided P-value for heterogeneity 
454 vs. Illumina Neandertal* 4.86 ± 0.51% 4.50 ± 0.38% 0.37 
Transversions vs. Transitions* 4.54 ± 0.49% 4.58 ± 0.38% 0.92 
Non-CpG vs. CpG sites * 4.63 ± 0.37% 4.39 ± 0.58% 0.69 
<50 bp vs. 50 bp Neandertal read 3.80 ± 0.38% 4.51 ± 0.40% 0.021 
>5bp vs. 5 bp from end of read 4.50 ± 0.38% 3.25 ± 0.42% 0.0010 
Vi33.16 vs. Vi33.25 bone  4.48 ± 0.45% 3.82 ± 0.38% 0.11 
Vi33.16 vs. Vi33.26 bone  4.48 ± 0.45% 3.95 ± 0.42% 0.19 
Vi33.25 vs. Vi33.26 bone  3.82 ± 0.38% 3.95 ± 0.42% 0.76 
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shorter Neandertal reads have significantly smaller D-statistics than longer (3.80% for <50bp vs. 4.51% for 
50bp; P=0.021), which may reflect a higher rate of read mapping errors in shorter reads. We also found that 

nucleotides within 5bp of the ends of Neandertal reads produce smaller D-statistics than nucleotides in the 
interior (3.25% vs. 4.50%; P=0.0010), probably reflecting the high error rate at the ends of reads (S28). In all 
other analyses reported below and in the main manuscript, we filter sites 5bp from the end of each 
Neandertal read. 
 

We computed D-statistics for all possible nucleotide substitution classes to explore the consistency of our 
results. While there is significant heterogeneity across substitution types, when we pool the data into 6 
classes that are symmetric by strand (e.g. pooling C A and G T), there is no longer substantial evidence 
of heterogeneity (Table S46). We also computed D statistics by chromosome, and found that while the signal 
is widespread across chromosomes, there is also significant heterogeneity across chromosomes (Table S47). 
We hypothesize that this reflects variability in the sequencing error process across chromosomes and 
samples that is not captured by the jackknife analysis. There is no evidence of particular loci that are 
contributing to most of the signal; when we analyzed the most outlying chromosome (chromosome 12: 
D(YRI,ASN,Neandertal,Chimpanzee) = 13.0 ± 2.5%), there is no single locus driving the signal.  
 

Table S46: Signal of gene flow is widespread across substitution classes 
Mutation Excess matching to CEU 

at CEU �– YRI sites 
Excess matching to ASN 

at ASN �– YRI sites 
Excess matching to CEU 

at CEU �– ASN sites 
 % 

match 
Std. 
err. 

Normal 
Z score 

% 
match 

Std. 
err. 

Normal 
Z score 

% 
match 

Std. 
err. 

Normal 
Z score 

A C 3.4% 1.2% 2.8 5.6% 1.2% 4.6 -3.3% 1.8% -1.8 
A G 5.6% 0.6% 9 7.0% 0.7% 9.8 0.0% 0.8% 0 
A T 3.5% 1.3% 2.8 3.9% 1.4% 2.8 -1.1% 2.1% -0.6 
C A 5.7% 1.2% 4.9 4.0% 1.3% 3 -5.6% 1.6% -3.6 
C G 7.4% 1.2% 6.2 2.7% 1.3% 2.1 4.9% 1.6% 3 
C T 3.2% 0.6% 5.6 3.2% 0.6% 5.1 0.9% 0.9% 1.1 
G A 5.4% 0.6% 9.3 5.4% 0.6% 9 -1.3% 0.9% -1.3 
G C 3.3% 1.2% 2.8 5.7% 1.2% 4.6 1.4% 1.8% 0.8 
G T 2.0% 1.2% 1.6 4.6% 1.3% 3.6 0.1% 1.8% 0 
T A 5.5% 1.4% 4 5.8% 1.6% 3.7 -0.1% 1.9% 0 
T C 4.3% 0.7% 6.3 4.2% 0.7% 6 -1.3% 0.9% -1.4 
T G 5.5% 1.3% 4.4 5.3% 1.4% 3.9 1.4% 2.0% 0.7 
Heterogeneity?  P = 0.0072  P = 0.017  P = 0.0014 
A C or T G 4.5% 0.9% 5 5.4% 0.9% 6 -0.9% 1.4% -0.6 
A G or T C 4.9% 0.5% 9.8 5.6% 0.6% 9.7 -0.7% 0.7% -1 
A T or T A 4.5% 1.0% 4.4 4.9% 1.0% 4.7 -0.6% 1.4% -0.4 
C A or G T 3.8% 0.8% 4.7 4.3% 1.0% 4.5 -2.8% 1.2% -2.3 
C G or G C 5.3% 0.9% 6 4.2% 0.9% 4.7 3.1% 1.3% 2.5 
C T or G A 4.3% 0.4% 9.9 4.3% 0.5% 9.2 -0.2% 0.7% -0.2 
Heterogeneity?  P = 0.51  P = 0.78  P = 0.032 

 

Note: We calculate P-values for heterogeneity using 2 tests with 11 and 5 degrees of freedom. 
 

European contamination cannot explain the skew of the D-statistics 
We considered the possibility that the skew we detect could be due to European contamination in the 
Neandertal extract, which might reflect contamination from laboratory personnel or archaeologists (S34, 
90). While there are multiple lines of evidence against contamination based on mtDNA, Y chromosome, 
and autosomes (Table 1 and SOM 5-7), and the consistency of D across bones (Table S45), we 
nevertheless considered this possibility in further detail. 
 

Under the hypothesis that all the skew in the D statistics is due to European contamination, we expect that  
Neandertals will be more closely to related to Europeans than to East Asians, just as they are more closely 
related to Europeans that to West Africans. However, in our data, D(YRI,CEU,Neandertal,Chimpanzee) = 
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4.57 ± 0.36%, whereas D(ASN,CEU,Neandertal,Chimpanzee) = -0.35 ± 0.46%, a skew that is (non-
significantly) in the opposite direction from what is expected from contamination. We conclude, there is no 
evidence at all for Neandertals being more closely related to Europeans than to East Asians, and hence 
there is no evidence for European contamination in these data. 
 

Replication of the finding that Neandertal is closer to non-Africans in Illumina data 
We next calculated the D statistics for all 10 pairs of present-day human samples sequenced using the 
Illumina technology. Neandertal is more closely related to non-Africans than to Africans in all 6 pairwise 
comparisons of African and non-African populations (7.1 < Z < 10.8 standard deviations), producing 
consistent values of the D statistics when compared with the ABI3730 data (Table 4). A particularly 
important result is that we find no statistically significant difference in the relationship of the three non-
African populations to Neandertal (|Z|<<1.7), and no statistically significant difference in the relationship of 
San and Yoruba to Neandertal (|Z|=0.3). These results suggest that the skews in the D statistics reflects an 
event that occurred before non-African populations separated from each other, and either (a) after the 
separation of non-Africans from all Africans, or (b) before the separation of Yoruba and San. 
 

Table S47: Signal of gene flow affects many chromosomes although there is heterogeneity 
Chro-
mosome 

Excess matching to 
CEU at CEU-YRI sites 

Excess matching to ASN 
at ASN-YRI sites 

Excess matching to CEU+ASN 
at CEU+ASN-YRI sites 

Excess matching to 
CEU at CEU-ASN sites 

 D Std err Z score D Std err Z score D Std err Z score D Std err Z 
1 4.3% 1.2% 3.6 6.4% 1.2% 5.2 6.1% 1.1% 5.8 -2.3% 1.4% -1.6 
2 5.7% 1.3% 4.6 5.2% 1.4% 3.7 5.3% 1.0% 5.1 0.3% 1.7% 0.2 
3 3.7% 1.4% 2.7 6.0% 1.6% 3.8 5.2% 1.2% 4.3 -3.6% 2.0% -1.8 
4 3.2% 1.3% 2.4 2.3% 1.8% 1.3 3.3% 1.3% 2.5 -5.3% 2.3% -2.4 
5 5.9% 1.6% 3.6 5.2% 2.3% 2.3 5.3% 1.3% 4.1 -0.7% 2.4% -0.3 
6 5.6% 1.7% 3.3 6.7% 1.4% 4.7 5.9% 1.2% 4.9 2.6% 1.9% 1.4 
7 5.1% 1.2% 4.2 2.5% 1.4% 1.8 3.9% 1.2% 3.2 0.8% 1.7% 0.5 
8 3.9% 1.7% 2.2 2.7% 2.1% 1.3 3.7% 1.6% 2.3 -1.2% 2.8% -0.4 
9 5.0% 1.3% 3.9 7.8% 1.5% 5.4 6.9% 1.1% 6.3 -1.5% 2.0% -0.8 
10 3.1% 1.7% 1.8 6.5% 1.8% 3.6 4.5% 1.6% 2.9 -0.9% 2.1% -0.4 
11 4.9% 1.5% 3.2 6.1% 1.5% 4.1 4.8% 1.2% 3.9 -2.7% 2.1% -1.3 
12 8.4% 2.2% 3.8 13.0% 2.5% 5.3 10.3% 1.9% 5.4 1.9% 2.1% 0.9 
13 5.5% 1.9% 2.8 7.6% 2.4% 3.2 7.1% 1.7% 4.3 3.3% 1.8% 1.8 
14 7.5% 1.4% 5.4 2.4% 1.7% 1.4 5.0% 1.3% 3.8 1.4% 2.3% 0.6 
15 4.0% 1.8% 2.3 1.3% 1.7% 0.7 2.1% 1.5% 1.5 3.1% 2.1% 1.5 
16 5.0% 1.4% 3.7 3.4% 1.2% 2.8 5.0% 1.0% 5.1 1.8% 2.4% 0.8 
17 -0.9% 2.4% -0.4 2.9% 1.5% 2 1.0% 1.7% 0.6 -8.1% 2.3% -3.6 
18 5.1% 1.6% 3.2 5.4% 1.6% 3.4 4.9% 1.1% 4.7 2.5% 2.9% 0.9 
19 7.1% 1.5% 4.7 1.9% 1.8% 1.0 4.8% 1.2% 4.1 5.2% 2.6% 2.0 
20 4.4% 2.3% 2 1.0% 3.1% 0.3 3.0% 2.2% 1.4 7.1% 2.9% 2.4 
21 0.4% 2.9% 0.1 -1.4% 2.3% -0.6 0.3% 2.4% 0.1 1.3% 3.4% 0.4 
22 0.5% 2.3% 0.2 0.6% 3.0% 0.2 2.5% 2.3% 1.1 0.6% 4.1% 0.2 
1-22  4.57% .30% 12.7 4.81% . 39% 12.2 4.82% . 32% 14.9 - .46% -0.8 
X 3.6% 2.6% 1.4 11.1% 2.8% 4.0 5.9% 1.6% 3.7 -2.4% 2.9% -0.8 
Heterogeneity? P = 1.0×10-4 P = 4.9×10-8 P = 2.9×10-8 P = 1.3×10-4 
 

Note: For each chromosome-specific jackknife analysis we use 20 blocks (rather than 100 as in the genome-wide analyses) to ensure that 
each block contains at least several Mb. P-values for heterogeneity across chromosomes are from a 2 test with 22 degrees of freedom. 
 
The significant skews in the D-statistics cannot be due to modern-human-to-Neandertal gene flow  
The analyses above are based on computing the statistic D(H1,H2,H3,Chimpanzee) using H3 = Neandertal. 
However, additional information can be obtained by using other present-day humans in place of Neandertal. 
Table S48 reports D(H1,H2,H3,Chimpanzee) statistics for all 60 informative combinations of H1, H2 and H3 in 
the Illumina present-day human data. (There are actually fewer than 60 independent D statistics here, as 
some of them are linear combinations of the others.)  
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Table S48: Symmetry tests for all combinations of 5 HGDP present-day humans and Neandertal  
D=(ABBA-BABA)/ 
    (ABBA+BABA)H1 H2 H3 

Number 
ABBA 
sites 

Number 
BABA 
sites Value% Std.err% 

Z-score 
for D 0 

Interpretation 
(  indicates same as previous row) 

San Yoruba Neandertal 99,515 99,788 -0.1 ± 0.3 -0.4 Neandertal equally close to Africans
French Han Neandertal 74,477 73,089 0.9 ± 0.5 1.7 Neandertal equally close to non-Africans
French Papuan Neandertal 70,094 70,093 0 ± 0.5 0.0  
Han Papuan Neandertal 67,022 68,260 -0.9 ± 0.6 -1.4  
French San Neandertal 95,347 103,612 -4.2 ± 0.5 -9.3 Neandertal gene flow with non-Africans
French Yoruba Neandertal 84,025 92,066 -4.6 ± 0.4 -10.5  
Han San Neandertal 94,029 103,590 -4.8 ± 0.5 -9.9  
Han Yoruba Neandertal 82,575 91,872 -5.3 ± 0.5 -10.5  
Papuan San Neandertal 90,059 97,088 -3.8 ± 0.5 -7.0  
Papuan Yoruba Neandertal 79,529 86,570 -4.2 ± 0.6 -7.5  
French Neandertal Han 74,477 364,200 -66 ± 0.4 -148 Han closer to present-day humans than to Neand.
Papuan Neandertal Han 68,260 327,968 -66 ± 0.5 -138  
San Neandertal Han 103,590 293,958 -48 ± 0.5 -105  
Yoruba Neandertal Han 91,872 308,073 -54 ± 0.5 -117  
French San Han 86,228 188,799 -37 ± 0.5 -76 Han closer to non-Africans than to Africans
French Yoruba Han 90,557 157,229 -27 ± 0.5 -55  
Papuan San Han 82,405 176,072 -36 ± 0.6 -65  
Papuan Yoruba Han 86,436 146,942 -26 ± 0.6 -46  
San Yoruba Han 142,189 108,897 13.3 ± 0.5 29 Han closer to Yoruba than to San
French Papuan Han 101,021 101,445 -0.2 ± 0.6 -0.4 Han equally close to French and Papuan
Han Neandertal French 73,089 364,200 -67 ± 0.4 -164 French closer to present-day humans than to Neand.
Papuan Neandertal French 70,093 324,631 -65 ± 0.4 -153  
San Neandertal French 103,612 303,340 -49 ± 0.4 -119  
Yoruba Neandertal French 92,066 319,721 -55 ± 0.4 -134  
Han San French 88,271 188,799 -36 ± 0.5 -72 French closer to non-Africans than to Africans
Han Yoruba French 93,140 157,229 -26 ± 0.5 -50  
Papuan San French 87,390 170,225 -32 ± 0.5 -60  
Papuan Yoruba French 92,602 141,892 -21 ± 0.6 -37  
San Yoruba French 146,387 111,576 13.5 ± 0.5 30 French closer to Yoruba than to San
Han Papuan French 91,693 101,445 -5 ± 0.6 -8.5 French closer to Han than to Papuan
Han Neandertal Papuan 67,022 327,968 -66 ± 0.5 -138 Papuan closer to present-day humans than to Neand.
French Neandertal Papuan 70,094 324,631 -65 ± 0.5 -134  
San Neandertal Papuan 97,088 265,775 -47 ± 0.5 -92  
Yoruba Neandertal Papuan 86,570 277,960 -53 ± 0.5 -103  
French San Papuan 79,253 170,225 -37 ± 0.5 -75 Papuan closer to non-Africans than to Africans
French Yoruba Papuan 82,610 141,892 -26 ± 0.5 -51  
Han San Papuan 75,849 176,072 -40 ± 0.5 -79  
Han Yoruba Papuan 78,898 146,942 -30 ± 0.5 -55  
San Yoruba Papuan 129,364 99,763 12.9 ± 0.5 28 Papuan closer to Yoruba than to San
French Han Papuan 101,021 91,693 4.8 ± 0.6 8.3 Papuan closer to Han than to French (!)
Han Neandertal Yoruba 82,575 308,073 -58 ± 0.4 -147 Yoruba closer to present-day humans than to Neand.
French Neandertal Yoruba 84,025 319,721 -58 ± 0.4 -156  
Papuan Neandertal Yoruba 79,529 277,960 -56 ± 0.4 -132  
San Neandertal Yoruba 99,515 304,399 -51 ± 0.4 -139  
French San Yoruba 107,418 146,387 -15.4 ± 0.4 -35 Yoruba closer to non-Africans than to San
Han San Yoruba 106,701 142,189 -14.3 ± 0.5 -30  
Papuan San Yoruba 104,863 129,364 -10.5 ± 0.5 -22  
Han Papuan Yoruba 78,898 86,436 -4.6 ± 0.5 -9.0 Yoruba closer to Han+French than to Papuan (!)
French Papuan Yoruba 82,610 92,602 -5.7 ± 0.5 -11.4  
French Han Yoruba 90,557 93,140 -1.4 ± 0.4 -3.1 Yoruba closer to French than to Han (!)
Han Neandertal San 94,029 293,958 -52 ± 0.4 -133 San closer to present-day humans than to Neand.
French Neandertal San 95,347 303,340 -52 ± 0.4 -132  
Papuan Neandertal San 90,059 265,775 -49 ± 0.4 -119  
Yoruba Neandertal San 99,788 304,399 -51 ± 0.4 -128  
Han Yoruba San 106,701 108,897 -1 ± 0.4 -2.6 San closer to Han+French than to Yoruba (!)
French Yoruba San 107,418 111,576 -1.9 ± 0.4 -5.0  
Han Papuan San 75,849 82,405 -4.1 ± 0.5 -8.8 San closer to Han+French than to Yoruba (!)
French Papuan San 79,253 87,390 -4.9 ± 0.4 -11.1  
Papuan Yoruba San 104,863 99,763 2.5 ± 0.4 5.9 San closer to Yoruba than to Papuan (!)
French Han San 86,228 88,271 -1.2 ± 0.4 -2.8 San closer to French than to Han (!)

Note: Z-scores are calculated by using a weighted block jackknife over 5 Mb blocks (a naïve binomial test for a difference in the rates of ABBA 
and BABA counts is incorrect because of linkage disequilibrium). We highlight in bold |Z|-scores less than 2 standard deviations from 0. 
!  An exclamation point denotes a pattern that is not predicted under current models of human history.  
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To test whether Table S48 is consistent with entirely by Neandertal to modern human gene flow, we 
considered the hypothesis that the positive D(African,non-African,Neandertal,Chimpanzee) statistic is due to 
flow from a non-African-related modern human population OOA1 into Neandertals. In this scenario, 
Neandertal sequence can be thought of as a mixture of a proportion  of OOA1 ancestry and (1- ) of 
�“Outgroup�” ancestry: 
 

OutgroupOOANeandertal 11        (S15.3) 
 

Let OOA2 denote a present-day human non-African population, and AFR denote a present-day African 
population. The expected value of D(OOA2,AFR,Neandertal,Chimpanzee) is then: 
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The second term has an expected value of 0, since all present-day humans form a clade relative to the 
Outgroup component of Neandertal ancestry under our null hypothesis. Equation S15.4 allows us to estimate 
the mixture proportion  by a ratio that should be the same whether AFR = San or AFR = Yoruba assuming 
that the hypothesis of gene flow from a modern non-African related population to Neandertal is correct. 
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To test this expectation in our data, we defined the statistic: 
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From Equation S15.5, we see that the expected value E[C(OOA2,OOA1)]=0. We computed C(OOA2,OOA1) 
for all six possible permutations of French, Han and Papuan to represent the non-African samples OOA1 and 
OOA2 (Table S49). This quantity is significantly different from zero (3.7 < |Z| < 4.5 standard deviations), 
rejecting the hypothesis that our results can be explained by gene flow from a modern human population 
related to non-Africans into Neandertal (or contamination from any present-day non-African population, 
which would have the same effect on this statistic).  
 

While our finding that C(OOA2,OOA1) is inconsistent with 0 rejects the hypothesis that the observed skews 
in the D-statistics can entirely be explained by modern human-to-Neandertal gene flow, it is important to 
recognize that these results do not preclude the possibility that a proportion of the putative gene flow was in 
that direction. Additional haplotypes-based analysis, however, shows that there is no evidence at all in our 
data for gene flow from modern humans into Neandertals (presented in SOM 16). 
 

Table S49: Data are inconsistent with modern human-to-Neandertal gene flow 

OOA2 OOA1 
No. of stand. dev. from 
0 of  C(OOA2, OOA1) ),,(

),,(

,12

,12

ChimpOOAYorubaOOAD
ChimpOOASanOOAD  

),,(
),,(

,12

,12

ChimpNeandertalYorubaOOAD
ChimpNeandertalSanOOAD  

French Han -4.0 1.54 ± 0.02 1.03 ± 0.10 
French Papuan -4.0 1.53 ± 0.02 1.03 ± 0.10 
Han French -4.5 1.57 ± 0.03 1.03 ± 0.09 
Han Papuan -4.0 1.47 ± 0.02 1.03 ± 0.09 
Papuan French -4.2 1.68 ± 0.03 1.00 ± 0.11 
Papuan Han -3.7 1.55 ± 0.02 1.00 ± 0.11 
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Neandertal-to-modern-human gene flow is consistent with the data 
To test the null hypothesis that gene flow occurred in the reverse direction, from Neandertals to non-Africans 
after the non-Africans / African divergence, we denote a non-African population OOA as a mixture between 
a Neandertal-related population N1 and a population AFR1 that is in a clade with present-day Africans:  
 

11 1)( AFRNOOA          (S15.7) 
 

It is now of interest to calculate the expected value of D(OOA,AFR2,Neandertal,Chimpanzee), where AFR2 is 
a present-day sub-Saharan African population that is different from AFR1. This quantity partitions into two 
terms, one of which has an expected value of 0 since Neandertal is an outgroup to AFR1 and AFR2: 
 

)],,,([
)],,,([)1()],,,([

)],,,([

21

2121

2

ChimpanzeeNeandertalAFRNDE
ChimpanzeeNeandertalAFRAFRDEChimpanzeeNeandertalAFRNDE

ChimpanzeeNeandertalAFROOADE
 (S15.8) 

 

The expected value of D(N1,AFR2,Neandertal,Chimpanzee) is independent of which AFR2 population we 
choose under the null hypothesis that present-day African populations do not inherit any Neandertal gene 
flow. Thus, for all 12 possible choices of populations OOAi, OOAk, AFRj and AFRl, we can compute 
D(OOAi,AFRj,Neandertal,Chimpanzee)-D(OOAk,AFRl,Neandertal,Chimpanzee), and assess the number of 
standard deviations that this quantity is from 0 using the weighted block jackknife. We find that our data are 
consistent with Neandertal gene flow into the ancestors of non-Africans (Table S50). In particular, |Z|<<2.4 
for all 12 comparisons, which is not significant after correcting for 12 hypotheses tested. 
 

Table S50: Consistency of data with Neandertal-to-modern human gene flow 

  OOA1    AFR1     OOA2    AFR2 
Number of std. dev. from 0 of  

D(OOA1,AFR1,Neandertal,C) - D(OOA2,AFR2,Neandertal,C) 
French San French Yoruba 0.3
French San Han San -1.3
French San Han Yoruba -0.8
French Yoruba Han Yoruba -1.4
French San Papuan San 1.2
French San Papuan Yoruba 1.0
French Yoruba Papuan Yoruba 1.0

Han San Han Yoruba 0.3
Han San Papuan San 2.4
Han San Papuan Yoruba 2.0
Han Yoruba Papuan Yoruba 2.2

Papuan San Papuan Yoruba 0.0
 

We conclude that the observed D statistics for many pairs of populations are consistent with Neandertal gene 
flow into the common ancestors of non-Africans, but are inconsistent with gene flow in the reverse direction.  
 

Appendix 1: Sequencing errors are insufficient to explain the significantly non-zero D statistics 
To test whether differential rates of sequencing error in the Illumina present-day human samples could 
explain the degree of greater genetic proximity of Neandertals to non-Africans than to Africans that we 
measure, we focused on the alignment of {French,San,Neandertal,Chimpanzee}, and designated each allele 
by a different letter (including multiallelic sites). Table S51 shows the counts for 834 million nucleotides that 
passed our data quality filters. The �‘AAAA�’ entry corresponds to cases where all 4 bases agree. The �‘ABBA�’ 
entry corresponds to cases where French=Chimpanzee, and San=Neandertal. The BCDA entry, with only 36 
counts, corresponds to bases where all four samples disagree. 
 

Our null model in the absence of a history of Neandertal-to-modern human gene flow is that (French, San) 
are phylogenetically symmetric with respect to (Neandertal, Chimpanzee). If the phylogeny is symmetric, 
and assuming that mutation rates have been constant on both the French and San lineages since their 
divergence, the difference in the rates of ABAA and BAAA counts (689,594 and 756,324 respectively) must 
be due to a difference in the error rate of the sequencing for French and San. Writing lower case letters for 
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the true pattern in the absence of sequencing error, abaa denotes the case where the San carries the allele not 
observed in the other samples. We then see that: 
 

)()()()( 2 BamaaaaPabaaPABAAP        (S15.9) 
 

where m2(a B) is the probability that a San base was sequenced in error. We ignore cases such as 
P(bbaa ABAA) , where the true pattern is bbaa and the French base was incorrectly sequenced, because the 
total count of P(BBAA) is much less than P(AAAA), and thus contributes negligibly to the expectation. 
 

Table S51: Counts of all possible allele patterns in a French-San-Neandertal-Chimpanzee alignment 
French-San-  
Neandertal-Chimpanzee 

 
Counts 

AAAA 818,322,920 
AABA 5,827,247 
ABAA 689,594 
ABBA 95,347 
ABCA 2,995 
BAAA 756,324 
BABA 103,612 
BACA 3,544 
BBAA 303,340 
BBBA 8,156,936 
BBCA 32,607 
BCAA 972 
BCBA 6,147 
CBBA 6,264 
BCDA 36 
 
Our null hypothesis is that P(abaa)-P(baaa) = 0 (assuming here that the French and San are a clade and that 
they have had the same mutation rate since their divergence). Thus: 
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where m1 is the probability that a French base was read in error. We can then use our observed counts in 
Table S52 to compute the sequencing error rate difference between French and San averaged over all sites 
contributing to the counts. We find that the estimate is less than 1 in 10,000: 
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To compute the expected contribution of this error to the D statistics, we focus on ABBA and BABA counts: 
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We are interested in E[P(ABBA-BABA)]. Under the null hypothesis that French and San are a clade, 
P(baba) = P(abba) and P(abaa) = P(baaa). Further, allele label does not matter so m(a b) =m(b a). Thus:  
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Thus, the numerator of the statistic D(French,San,Neandertal,Chimpanzee) is only expected to be inaccurate 
by 190 counts due to sequencing error. This translates to a bias in the D-statistic (without gene flow) of: 
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We note that the observed value of D(French,San,Neandertal,Chimpanzee) = -0.0415 from the counts in 
Table S51. This is many standard deviations away from the skew of 0.00095 expected from sequencing 
error. Thus, the difference in ABBA and BABA counts for San and French as a representative pair of non-
African and African populations cannot be due to sequencing error. 
 
Appendix 2: Comparison of HGDP sequencing and genotyping further supports results  
The 5 present-day human samples that we studied were all from the CEPH-HGDP panel, and all were 
therefore genotyped at ~650,000 SNP sites on an Illumina 660Y array (S91). By comparing our allele calls 
from sequencing to these genotypes, we could assess the quality of our data and search for biases. We note 
that we only analyzed HGDP genotyping data over sections of the genome that were not inverted between 
humans and chimpanzees. This avoided some bioinformatic difficulties, and we do not expect our results to 
be affected by removing the regions of the genome affected by these inversions. 
 
A small bias toward matching the chimpanzee reference in HGDP present-day human sequencing data 
We first restricted our analysis to autosomal SNPs that were heterozygous in the SNP array data. If there is 
no differential rate in sequencing error across samples, it should be equally probable that our Illumina 
sequencing matches or mismatches chimpanzees at sites that were also genotyped. Table S52 shows that 
there is a significant but small bias for the allele of the heterozygous pair to match the chimpanzee, probably 
reflecting bias due to aligning of short reads to the chimpanzee reference genome sequence. However, there 
is no reason a priori that this should cause a skew in the D-statistics. 
 

Table S52: Probability of sequencing data matching chimpanzee at heterozygous sites 

 
Matching 

chimpanzee 
Mismatching 
chimpanzee 

% matching 
chimpanzee 

French 72,443 69,735 51.0%
Han 65,147 62,228 51.2%
Papuan 49,989 45,420 52.4%
San 63,179 60,474 51.1%
Yoruba 72,487 68,877 51.3%
 
Error rate in the sequencing data from 5 present-day humans of <1/1,000 
To place an upper bound on the error rate in the Illumina present-day human data, we restricted our analysis 
to homozygous sites in the HGDP genotyping data. Ideally there would be no mismatches between the 
genotyping and sequencing data at these sites. In fact, we obtain a discrepancy rate of about 1/1,000 per base. 
Some of this must be due to HGDP genotyping error, and hence this is an upper bound on sequencing error. 
 
 
 
 
 



 140

Table S53: Probability of sequencing data matching genotyping data at homozygous sites 
 Matching Mismatching % mismatching 
French 327,298 324 0.10%
Han 337,203 344 0.10%
Papuan 344,140 323 0.09%
San 385,090 410 0.11%
Yoruba 339,810 309 0.09%
 
Study of the D statistic skews in the HGDP genotyping data 
We directly computed the D statistics in the genotyping data, examining all autosomal SNPs from the HGDP 
in which our randomly chosen Neandertal base differed from chimpanzee. For any pair of present-day 
human samples H1, H2, we then computed the probability that the 4 alleles (h1, h2, Neandertal, Chimpanzee) 
from our sequencing data are ABBA vs. BABA, and compared it to our genotyping data (Table S54). 
Adding the counts for all the (non-African,African) pairs in Table S54, and computing a standard error by a 
block jackknife, we found that D = -0.024 ± 0.005 (Z = -4.87) , which is lower than in our main analysis of 
the sequencing data, but still highly significant. The absolute values of the D statistics should not be taken as 
unbiased, as the SNPs in HGDP are affected by ascertainment bias. However, we believe that it is unlikely 
that differences in D between genotyping and sequencing would be affected by ascertainment bias. 
 
To perform a formal test for a difference between the genotyping and sequencing results in a way that 
maximizes the information from our limited amount of data, we computed the deviation of the sequencing 
data from the �‘gold standard�’ expectation from the genotyping data. Specifically, we computed the deviation 
X averaging the numerator and denominator across the genome: 
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i
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i
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X    (S15.15) 

We carried out a weighted block jackknife in 5 Mb blocks using the ABBA+BABA values from the HGDP 
genotyping as weights for each block.  We find that X = -0.4 ± 0.3%. A 2-sided test gives a P-value of 0.18 
against the null hypothesis that X = 0, indicating no evidence of bias. 
 
Table S54: Symmetry Test statistics comparing genotyping and sequencing data 
  Expected values HGDP genotyping Observed values from our sequencing 
S1 S2 ABBA BABA D ABBA BABA D 
San Yoruba 8,059 8,227 -1.0% 7,979 8,183 -1.3%
French Han 6,967 6,987 -0.1% 6,866 7,039 -1.2%
French Papuan 6,467 6,472 0.0% 6,301 6,567 -2.1%
Han Papuan 6,007 6,004 0.0% 5,921 5,890 0.3%
French San 8,477 8,840 -2.1% 8,374 8,890 -3.0%
French Yoruba 7,861 8,344 -3.0% 7,658 8,405 -4.7%
Han San 8,201 8,557 -2.1% 8,138 8,489 -2.1%
Han Yoruba 7,602 8,059 -2.9% 7,516 7,995 -3.1%
Papuan San 7,658 7,946 -1.8% 7,643 7,876 -1.5%
Papuan Yoruba 7,121 7,481 -2.5% 7,136 7,494 -2.4%
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Overview 
In this section, we present an independent line of evidence for Neandertals being unusually closely related to 
the ancestors of non-Africans. Our idea is to take advantage of the very different prediction about the pattern 
of genetic divergence in the case of gene flow and non-gene-flow scenarios.  
 

Gene flow: In the case of Neandertal-to-non-African human gene flow, present-day non-African haplotypes 
that are observed to have an unusually low divergence from Neandertal are also predicted to have an 
unusually high divergence with most other present-day humans. 
 

No gene flow: If all present-day humans descend from a homogeneous ancestral population that diverged at 
earlier time from Neandertals, present-day non-African haplotypes with an unusually low divergence 
between from Neandertal are predicted to tend to have low divergence from other present-day humans. The 
reason for this is that in the absence of gene flow, low divergence is expected to be due to a stochastically 
short gene tree, a low mutation rate since the split from chimpanzee, or a high human-chimpanzee time 
divergence that affects the normalization. All these effects will result in low estimates of divergence for all 
pairs of samples, which will not be restricted to Neandertals. 
 

In what follows, we capitalize on these qualitatively different predictions to search for an unambiguous 
signal of Neandertals being genetically closer to non-Africans than to Africans: (a) an excess of haplotypes 
of low nucleotide divergence to Neandertals in non-Africans compared with Africans, and (b) a concomitant 
observation that these haplotypes tend to have high divergence from other present-day humans.  
 

An excess of low divergence haplotypes to Neandertals in non-Africans (compared to Africans) 
If there has been gene flow between Neandertals and the ancestors of non-Africans, then non-Africans are 
expected to harbor an excess of low divergence segments compared with Africans. 
 

To identify haploid present-day human sequences of known ancestry in which to implement this test, we 
took advantage of the fact that the human reference sequence is haploid over substantial scales, because it is 
comprised of a tiling-path of Bacterial Artificial Chromosomes (BACs) that are of typical size 50-150 kb 
(S92). About two thirds of the human genome reference sequence is comprised of clones from a single 
individual (RPCI-11), which we have determined is likely to be an African American (S93). We have now 
carried out further analysis to show that this individual has about 50% European and 50% sub-Saharan 
African ancestry, and that we can identify multi-megabase segments (admixture linkage disequilibrium 
blocks) where RPCI-11 is confidently inferred to have both their chromosomes being of European or African 
ancestry (SOM16 Appendix). In such multi-megabase sections of the genome of RPCI-11, there is 
essentially no ambiguity in clone ancestry assignment. A particular advantage of this procedure is that it 
provides us with a list of European and African ancestry clones that are ascertained in the same way, in 
which we are able to carry out a rigorous comparison to Neandertal (Supplemental Data File). After 
restricting to clones of 50 kb for which at least 40% of nucleotides are covered in present-day human, 
Neandertal and chimpanzee, we had 2,825 RPCI-11 clones of confident West African ancestry and 2,797 
RPCI-11 clones of confident European ancestry for our analysis. 
 

To compare our Neandertal data to present-day humans, we pooled data from the three Vindija Neandertal 
bones. This pooling meant that our Neandertal data was effectively hexaploid instead of haploid, which 
weakens our power to detect low divergence regions since we are averaging over the divergence between the 
human reference sequence and six Neandertal haplotypes. However, it was necessary in order to increase the 
amount of coverage we had from our limited amount of Neandertal sequence data. At sites where we had 
coverage from multiple Neandertal reads, we randomly sampled one allele. 
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Within each clone i, we tabulated three classes of sites: �“nC
i�” Chimpanzee-only, �“nH

i�” Human-only, and �“nN
i�” 

Neandertal-only. The ratio (nH
i+nN

i)/(nH
i+nC

i) estimates the divergence time ratio between human and 
Neandertal at the locus, but because of the high rate of error and misincorporation affecting Neandertal 
sequence, we focused on only using substitutions on the human side of the tree, and thus used the statistic 
2nH

i/(nH
i+nC

i) (as discussed in SOM 10).  
 

We ordered all the clones of each ancestry by this statistic, and plotted them in Figure S39a normalized by 
the genome average. We observe an excess of European clones of very low divergence to Neandertal 
compared with African clones. For example, if we count the proportion of clones of each ancestry with a 
ratio less than 30% of the genome-wide average, there are 23 European vs. 10 African clones, which is a 
moderately significant excess (P=0.016 by a one-sided Fisher�’s exact test). However, the significance 
depends on the threshold we choose, and hence this analysis does not provide clear evidence of gene flow. 

Figure S39: We examined 2,825 segments in the human reference genome that are of African ancestry and 2,797 that are of 
European ancestry. (A) Rank-ordering by their divergence from Neandertal, we observe a suggestive excess of regions of low 
divergence between Neandertal and European  segments compared with Neandertal and African segments (P=0.016). (b,c) 
European segments with few differences to Neandertal also tend to have many differences to other present-day humans, a non-
monotonic pattern that is consistent across bones and is highly statistically significant (P<10-9). The same pattern is not seen in 
present-day African segments, and hence there is no evidence for Neandertal gene flow into the ancestors of sub-Saharan Africans. 
(d) An important observation that rules out substantial modern human gene flow into the ancestors of the Neandertals (or 
contamination) is that at segments of low Neandertal-human reference sequence divergence, we do not tend to observe 
extraordinarily low divergence of Neandertals and other modern humans. 
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Theoretical predictions at segments of low Neandertal-human divergence for different demographies 

At loci where Neandertal-human reference sequence divergence is very low, there is expected to be a 
characteristic pattern of divergence to other present-day humans, which will be qualitatively different 
depending on the demography, allowing us to distinguish among these scenarios (see also Table S55). 
 

(A) Prediction without gene flow: At clones showing unusually low divergence between the human reference 
sequence and Neandertal, the divergence of both the human reference and Neandertal from other humans is 
expected to be slightly reduced because there is an ascertainment bias toward loci with short hominid gene 
trees, high human-chimpanzee divergence, or mutation rate slowdown in hominids relative to chimpanzees. 
 

(B) Prediction of Neandertal-to-modern human gene flow: In the context of Neandertal-to-modern human 
gene flow, segments of the human reference sequence that have unusually low divergence from Neandertal 
are expected to be Neandertal-like. We therefore expect the divergence of the human reference sequence 
from other humans at these loci to be very high. 
 

(C) Prediction of modern human-to-Neandertal gene flow: In the context of modern human-to-Neandertal 
gene flow, segments of the Neandertal sequence that have very low divergence from present-day humans are 
expected to be closely related to other present-day humans. We therefore expect very low divergence of the 
Neandertal from other humans at this locus (not just from the reference sequence). 
 
We validated these expectations by simulating each scenario using Hudson�’s �“ms�” software (S29). 
 
Table S55:  Expected pattern at loci where the human reference and Neandertal have low divergence  
 

 Divergence of human reference genome 
sequence from other present-day humans 

Divergence of Neandertal from present-day 
humans other than the reference sequence 

Scenario A 
No gene flow  

 
Slightly reduced relative to average 

(low divergence between human reference and 
Neandertal may reflect a short human tree, high chimp 
divergence time, or hominin mutation rate slowdown) 

 
Slightly reduced relative to average 

(low divergence between Neandertal and other modern 
humans may reflect a short human tree, high chimp 

divergence time, or hominin mutation rate slowdown) 

Scenario B 
Neandertal-to-
modern human 
gene flow 

 
Greatly increased relative to average 

(the divergence of the human reference from other 
humans at this locus is expected to be very high: 

typical of Neandertal-human divergence) 

 
Slight increase relative to expectation 

(loci with low Neandertal-present-day human divergence 
will be genuinely due to gene flow, and hence not 

affected by the same ascertainment bias as Scenario A)  

Scenario C 
Modern human-
to-Neandertal 
gene flow 

 
Slightly reduced relative to average 

(same reason as Scenario A) 
 

 
Greatly reduced relative to average 

(since Neandertal is similar to present-day humans, it will 
have a reduced divergence to other present-day humans) 

Scenario D 
No  gene flow, 
non-African 
contamination 

 
Slightly reduced relative to average 

(same reason as Scenario A) 
 

 
Greatly reduced relative to average 

(since Neandertal has modern human ancestry at this 
locus, it will have a reduced divergence to other present-

day humans) 
 
 

Further evidence that loci of low European-Neandertal divergence are due to gene flow 
To test the predictions of the different gene flow models against real data, we computed the divergence of 
each clone from not only to the Neandertal data, but also to the diploid genome sequence of Dr. Craig Venter 
(S26). We find a clear signal of the pattern expected due to gene flow from Neandertals into the ancestors of 
present-day non-Africans, but no evidence of other gene flow. 
 

African segments provide no evidence for gene flow: We rank-ordered �“African�” segments of the human 
reference genome sequence by their divergence from Neandertal, grouped them into 100 bins, and 
calculated the divergence of each bin from the Venter sequence. We found that divergence from other 
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present-day humans increases monotonically with the divergence from Neandertal (Figure S39b), 
consistent with no gene flow into African ancestors.  

 

European segments provide powerful evidence for gene flow: We rank-ordered �“European�” segments of the 
human reference genome sequence by their divergence from Neandertal, and grouped them into 100 bins. 
We find that divergence to the Venter sequence shows an initial rise to 1.4-times the genome-wide 
average, followed by a fall to around 0.65 before rising again. This non-monotonic behavior is only 
expected for a scenario of Neandertal-to-modern-human gene flow (Table S55), and is significant based 
on an analysis where we test for an elevation of the lowest bin vs. the genome average (P<10-9). The 
finding is replicated for each individual Neandertal bone (Figure S39c). 

 

A remarkable feature of our results is that simply by restricting to segments of the human reference sequence 
with unusually low divergence to Neandertal and unusually high divergence to other present-day humans, we 
can identify segments of the genome that are highly likely to contain Neandertal genetic material. As shown 
in Figure 5b, if we focus on RPCI-11 segments that have a divergence from Neandertal of <60% of the 
genome-wide average combined with a divergence from Venter of >150% of the genome average, there are 
30 Europeans segments and 2 African segments (P<10-6 for enrichment). The posterior probability of 
Neandertal ancestry at these segments is very high, although it is not 100% certain. It should be possible to 
further increase the precision of our identification of Neandertal segments in the ancestry of present-day 
humans by (a) using more Neandertal data once more sequencing data are available; (b) averaging 
divergence to a larger number of present-day humans; and (c) using a method like a Hidden Markov Model 
that screens for subsections of non-African sequence where the signal is strongest.  

 
Novel findings compared with our other tests of gene flow  
This analysis provides an independent line of evidence for gene flow compared with SOM 15 and SOM 17, 
and also produces two insights that are not obtained in those other analyses.  
 

(A) No evidence for non-African-to-Neandertal gene flow. If there had been substantial gene flow from the 
ancestors of non-Africans into Neandertals (or contamination), then at loci of very low divergence between 
Neandertals and European segments of the human reference sequence, we would expect to see unusually low 
divergence to other non-Africans (Table S55). However, we see no such signal in Figure S39d. Thus, a test 
for gene flow in the reverse direction (into Neandertal) provides no evidence of gene flow. 
 

(B) No evidence for Neandertal-to-African gene flow: Our analysis shows that there is no evidence of gene 
flow between Neandertals and the ancestors of present-day sub-Saharan Africans. The evidence for this is 
the fact that the African curves in Figures 39b (sensitive to Neandertal-to-African gene flow) and Figure 
S39d (sensitive to African-to-Neandertal gene flow) are monotonic, providing no evidence of gene flow. 

 
A smaller amount of gene flow of type (A) or (B) that falls below the limits of our resolution cannot be ruled 
out by our analysis. However, our results show that the magnitude of such gene flow is likely to be much less 
than the signal of Neandertal-to-non-African gene flow in Figure S39b,c, which we estimate in SOM 18 
accounts for 1.3-2.7% of the genetic material in the ancestry of present-day non-Africans.  
 
Replication of the findings in data from the 1000 Genomes Project 
To replicate these findings in an independent present-day human data set, we used data from two mother-
father-child trios from the 1000 Genomes Project of European (CEU) and West African (YRI) ancestry. The 
children from these trios have been sequenced to high coverage using a variety of sequencing technologies, 
and the parents have been sequenced at lower coverage. We downloaded the data from 
ftp://share.sph.umich.edu/1000genomes/pilot2/trioAware/highQualityVariants on October 5th, 2009. After 
excluding sites from analysis that were heterozygous in all three members of a trio making it impossible to 
infer phase based solely on the data from the trios, we had two phased haploid genomes from the CEU child 
and two phased haploid genomes from the YRI child. 
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Analysis of the 1000 Genomes phased data provided similar results to what we found in analyses of the 
human reference genome sequence. Focusing on YRI haploid data in sliding 100 kb windows across the 
genome, we found a monotonic relationship between the divergence of the Neandertal to these segments and 
the YRI-YRI divergence over the same window. In contrast, for CEU, windows of very low divergence to 
Neandertal tended to have very high CEU-CEU divergence, followed by a non-monotonic behavior as 
Neandertal-CEU divergence became higher. These patterns are qualitatively similar to Figure S51.  
 
We do not report the details of the 1000 Genomes data analysis here, both because the 1000 Genomes Data 
are not fully curated, and because we were concerned that the data analysis would be complicated by the 
removal of the triply heterozygous sites from analysis. Nevertheless, we were encouraged with the 
qualitative consistency of the results. It is worth pointing out that there is substantially more haploid 
sequence data available from the 1000 Genomes haploids than from the human reference sequence clones, in 
principle permitting a more powerful analysis. By analyzing this signal in detail in the 1000 Genomes data, it 
should be possible to detect more subtle patterns and make more refined inferences about the history of 
Neandertal-to-modern human gene flow than we did with the BAC clone analysis. 
 
Appendix: Identifying the ancestry of segments of the human genome reference sequence 
To compare Neandertal to present-day human haplotypes for the purpose of population genetic analysis, we 
needed to have long haploid sequences from present-day humans that were of known ancestry. To identify 
such segments, we took advantage of the fact that the human  reference sequence is haploid over scales of 
tens of kilobases, because it is comprised of a tiling-path of Bacterial Artificial Chromosomes (BACs) or 
other clone types that are of typical size 50-150 kb (S92). We do not know of any other substantial source of 
high quality human haploid sequences of the requisite size. 
 

Determining the ancestries of the libraries in the human genome reference sequence using HAPMIX 
It is crucial to know the �‘ancestry�’ of a clone to use it in a meaningful population genetic analysis. In what 
follows, we define �‘ancestry�’ as the geographic region in which a clone�’s ancestor lived 1,000 years ago, 
inferred based on its genetic proximity to other individuals from that region today. This definition allows us 
to classify clones from Chinese Americans as �“East Asian,�” from European Americans as �“European�”, and 
from African Americans as either �“West African�” or �“European�”. 
 

To identify the ancestries of the libraries comprising most of the human genome reference sequence, we used 
a list of 26,558 clones tiling the great majority of the genome, most of which we were able to assign to a 
library of origin. Restricting to the autosomes, we identified 21,156 clones that seemed to fall into 9 libraries 
based on the naming scheme: CTA (n=199), CTB (n=356), CTC (n=452), CTD (n=1,426), RPCI-1 (n=740), 
RPCI-3 (n=456), RPCI-4 (n=716), RPCI-5 (n=802) and RPCI-11 (n=16,009). (In a subsequent re-
examination, we identified additional clones that we likely could have classified into libraries, including 953 
from RPCI-11, 632 from RPCI-1, and 490 from another library RPCI-13.) The median span of the 21,156 
clones we analyzed was 112 kb, and 80% are >50kb in size. About 2/3 came from a single library, RPCI-11.  
 

To make an inference about the ancestry of each clone, we used the HAPMIX software, which makes 
inferences about the probable ancestry of any haploid (or diploid) segment of DNA based on modeling the 
observed alleles  over that segment as mixtures of two panels of samples that are assumed to represent the 
ancestral populations (S35). HAPMIX then calculates the posterior probability that the clones�’s haplotype is 
drawn from each of these proposed ancestral populations. We ran HAPMIX using HapMap YRI and CEU, 
and HapMap CHB+JPT=ASN and CEU, as proposed ancestral populations. For all runs, we assumed a prior 
probability of a 50-50% mixture of ancestry from the two populations, and no possibility of recent 
recombination within the clone. 
 
We ran HAPMIX on clones for which there were a substantial number of SNPs genotyped in HapMap. For 
many clones, HAPMIX provided a confident assignment of one ancestry over another, although there were 
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also clones for which the ancestry assignment was less confident, reflecting various levels of haplotype 
frequency differentiation across the genome (results by clone are given in Supplemental Data File). 
Examining the ensemble of clones from each of the nine libraries, we find that they fall into three clusters 
(Figure S40a), which we hypothesize correspond to three different ancestries: 

 

1. RPCI-11 is an African American: RPCI-11, the individual who contributed most of the human 
genome reference sequence, is consistent with having African American ancestry, with 42% of the 
clones of confident West African ancestry and 42% of the clones of confident European ancestry, and 
the ancestry of the remaining clones less confidently inferred. The finding of likely African American 
ancestry for RPCI-11 was previously reported in a study of the ancestry of RPCI-11 clones spanning 
the Duffy blood group locus (S93), and here we confirm this finding, and also expand the inference to 
the whole genome. 
 

2. CTD is an East Asian: The majority of clones from CTD, the second largest library in its contribution 
to the human genome sequence, is likely an East Asian. In a HAPMIX analysis with CEU (European) 
�– CHB+JPT (East Asian) as the proposed ancestral populations, the majority of clones are of 
confident East Asian origin, and there is no secondary mode of confident European ancestry, as might 
be expected from a Latino or South Asian individual. 
 

3. The remaining 7 libraries are European: The remaining libraries (CTA, CTB, CTC, RPCI-1, RPCI-3, 
RPCI-4 and RPCI-5) are inferred to be of European ancestry, since they all have consistent 
distributions of inferred clone ancestries, with the majority of clones of confident European ancestry 
in both our HAPMIX analyses and no secondary modes. 
 

Based on these analyses summarized in Figure S40, we classified all the clones from CTD as being of East 
Asian ancestry, and all the clones from CTA, CTB, CTC, RPCI-1, RPCI-3, RPCI-4 and RPCI-5 as being of 
European ancestry (�‘Confident Ancestry (>99%)�’ column in Supplemental Data File). 
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Figure S40: HAPMIX inferences of 
ancestry for 50kb clones in the 
reference sequence. (a) With CEU 
and YRI as the ancestral 
populations, we find three patterns, 
suggesting three ancestries. (b) With 
CEU and CHB+JPT as the proposed 
ancestral populations, CTD and the 
other 7 non-RPCI libraries remain 
distinct. (c) A histogram of ancestry 
inferences for RPCI-11 clone shows 
that it has large numbers of clones 
with >90% confident African (42%) 
and European (42%) ancestry, 
consistent with African American 
origin, whereas there is no peak of 
clones of likely African origin in the 
other libraries. (d) The CEU-
CHB+JPT analysis shows that all 
libraries have their mode at >90% 
confidence of either one or the other 
ancestry. CTD seems likely to be 
East Asian, and the other seven seem 
likely to be European. We do not see 
libraries with two peaks, as might be 
expected for a Latino or South Asian 
individual. 
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We can assign West African or European ancestry to 41% of clones in RPCI-11 with >99% confidence 
RPCI-11, the library that comprises about 2/3 of the human genome reference sequence, is of crucial value 
for our analyses, since it is the only library that harbors substantial amounts of African sequence (Figure 
S40).  However, the assignment of ancestry to the clones from this individual required more analysis than for 
the 8 other libraries, since this individual harbors substantial numbers of clones of likely European as well as 
African ancestry, and hence all clones cannot simply be assigned to one ancestry from their library 
membership. We considered the strategy of restricting analysis of RPCI-11 to the clones from RPCI-11 
where we were able to obtain a >95% confident ancestry inference from HAPMIX. However, we were 
concerned that this strategy would result in biased inferences, as restricting only to clones where we could 
confidently infer ancestry based on genetic data from the clone itself would restrict to haplotypes with high 
frequency differentiation across populations. It seemed plausible to us that these haplotypes might not be 
representative of the average pattern of genetic differentiation to other humans. 
 

 
Figure S41: Local 
ancestry estimates from 
HAPMIX for RPCI-11, 
the African American 
sample that contributes 
about 2/3 or the human 
reference sequence. (a) 
HAPMIX estimates by 
individual clone. (b) We 
used a Hidden Markov 
Model (HMM) to 
integrate information 
over many clones to 
assign loci of 0, 1 or 2 
European origin 
chromosomes. (c) The 
product of the HMM 
inference and the local 
clone ancestry estimate. 
We only use clones with 
>99% confidence of 
either West African or 
European ancestry, 
which excludes loci 
where African 
Americans are inferred 
to have both African 
and European ancestry. 
 
 
 
 
 
 
 
 
 

To obtain ancestry inferences of clones from RPCI-11 that were not biased by the genetic patterns present in 
the clone itself, we took advantage of the fact that African Americans are known to harbor long contiguous 
segments of European or African ancestry that are typically tens of megabases, about two orders of 
magnitude longer than the individual clones (S94). Figure S41 confirms that this pattern is present in RPCI-
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11 by plotting the positions of individual clones against their posterior estimate of probability of European 
ancestry from HAPMIX.  We find three classes of multi-megabase loci: 

 

1. Loci where the great majority of clones are of confident West African ancestry, reflecting a locus 
where RPCI-11 likely has entirely African ancestry from both parents. 

2. Loci where the great majority of clones are of confident European ancestry, reflecting a locus where 
RPCI-11 likely has entirely European ancestry inherited from both parents. 

3. Loci containing substantial proportions of clones of confident West African as well as substantial 
proportions of clones of confident European ancestry. This is what is expected if RPCI-11 inherited 
one chromosome each of West African and European ancestry. The fact that there are few clones 
with intermediate ancestry in these segments reflects the fact that the clones are haploid (sampling 
only one of the two ancestral chromosomes) and so are usually all of one ancestry or the other. 

 
We wrote a Hidden Markov Model (HMM) that uses the probability of European ancestry estimates from 
HAPMIX as input, and then provides a posterior estimate of local ancestry by integrating information from 
many neighboring clones, assuming that nearby loci have the same ancestry state. Briefly, the HMM 
considers three possible states, in which the true ancestries are either 100% West African, 50% European and 
50% West African, or 100% European. The prior probabilities of these states are ¼, ½, and ¼ respectively. 
Transitions between states are modeled as following an exponential process in which either chromosome had 
an expected length of 20 Mb before switching ancestries. The �‘observed�’ data used in the HMM are the 
HAPMIX inferences of probability of European ancestry for each clone (Pi). To be conservative (to prevent 
us from being overconfident about the estimates), we �‘flattened�’ these ancestry estimates by 5%, using the 
equation Fi = 5%×(0.5) + 95%×(Pi). This had the effect that even if HAPMIX was confident of ancestry at a 
clone, we treated the inference as at most 97.5% confident, to account for the possibility that HAPMIX was 
erroneously inferring ancestry due to not having sampled the relevant haplotype from the ancestral CEU and 
YRI population panels.  Details of the HMM are available from DR on request. 
 
Figure S41b shows the output of the HMM, indicating many regions of confident European or African 
ancestry. The HMM identifies 21% of the human genome reference sequence as being from RPCI-11 clones 
that are of >99% confident African ancestry, and 20% as being of >99% confidence European ancestry. We 
only compared Neandertal to RPCI-11 data from the segments that are inferred to be confidently of all 
African or all European ancestry, because at these loci we expect that the particular haplotype structure 
within the clone itself will not substantially bias the ancestry inference. Figure S41c shows the product of the 
HMM posterior estimate of each ancestry and the ancestry estimate from HAPMIX using only the data from 
the clone itself. In analyses where we compared segments of the genome that were entirely of African or 
entirely of European ancestry, we restricted to clones from RPCI-11 that were >99% confident of all of one 
ancestry after this multiplication, allowing us to exclude the few clones with a highly discrepant HAPMIX 
and HMM ancestry inference, and loci that are heterozygous for African and European ancestry. 
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In what follows we describe a scan for �“candidate Neandertal gene flow regions�” in present-day non-
Africans: loci at which there is a much deeper coalescence time in chromosomes of non-African than sub-
Saharan African ancestry. The strength of this analysis is that the identification of candidate regions is 
entirely based on studying present-day human variation, using an algorithm that is blinded to data from our 
Neandertal genome sequencing. We then �“lift the curtain�” on the Neandertal sequence and compare the 
alleles that are candidates for gene flow to Neandertal. If Neandertal matches the alleles at a rate that is 
greater than 50%, the only possible explanation is gene flow from Neandertal.  
 
Methods 
Our screen for candidate Neandertal gene flow regions relies on searching for 50 kilobase (kb) loci in which 
the inferred Time since the Most Recent Common Ancestor (TMRCA) is much older in a non-African 
(OOA, or out-of-Africa) than in a West African popualtion. We can then test whether the deeply diverged 
haplotype that is unique to non-Africans matches Neandertal at an unexpected rate, a phenomenon that is 
only expected to occur in the case of Neandertal gene flow. 
 
Candidate regions 
We analyzed �“Perlegen Class A SNPs�” that were discovered with a uniform ascertainment scheme genome-
wide (S95), and were then genotyped in 24 European Americans (CEU), 24 East Asians (ASN), and 23 
African Americans (AFR). We used the Perlegen data set rather than HapMap, because the SNP 
ascertainment does not have regional variation like HapMap. We note that a potential concern about using 
Perlegen data is that the AFR samples consist of African Americans, who have a small percentage of 
European ancestry making it more difficult to discover regions where the TMRCA in non-Africans is much 
higher than in Africans. While the presence of European lineages in African Americans may weaken 
statistical power to detect regions within higher non-African than African TMRCA, it should not cause false-
positives, as we verified by simulations (below).  
 
In each 50kb sliding window in the genome, we estimated the TMRCA for the African (AFR) and out-of-
Africa (OOA) population using a tree-based approach that estimates the average number of SNPs since the 
root. Specifically, we used a UPGMA algorithm (S96) to construct a tree for the OOA and AFR samples 
separately assuming no within-locus recombination. This provides an estimate of the time to the root for the 
out-of-Africa (OOA = CEU+ASN, CEU or ASN) and African (AFR) populations ( �ˆ T OOA  and �ˆ T AFR  
respectively), scaled by the number of mutations. A statistic, ST = �ˆ T OOA / �ˆ T AFR  was then calculated for each 
50kb locus sliding along the genome with a step size of 10 kb. Regions in which 6 consecutive windows 
were all among the highest 0.5% of ST values in the genome were chosen as candidate regions. The largest 
region in which all windows were among the 0.5% most extreme in the genome was chosen. We repeated 
this analysis using Europeans (CEU), East Asian (ASN), or Europeans and East Asian (CEU+ASN) as OOA. 
We also performed a reciprocal analysis using �ˆ T AFR / �ˆ T OOA  to identify candidate gene flow regions into 
Africans. A potential pitfall for this analysis is that it assumes no within-locus recombination to build the 
UPGMA trees. However, if recombination has occurred, it is expected to have a conservative effect on our 
analysis, because it will make it more difficult to detect loci that stand out genome-wide. 
 
Selection of tag SNPs and comparison to Neandertal data 
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To facilitate comparison with Neandertal and other present-day humans, we identified tag SNPs for each 
candidate Neandertal gene flow region. First, we estimated a joint tree, again using UPGMA, combining the 
data from the OOA and AFR samples in the same window. We then identified mutations on the root lineages 
using parsimony. These root lineages separate a joint (OOA, AFR) �“cosmopolitan�” clade from a divergent 
clade containing only OOA individuals in most instances. For the few cases in which AFR individuals 
appeared on both sides of the root, no tag SNPs were chosen. 
 
The tag SNPs fall into four groups, depending on whether the Neandertal is derived or ancestral relative to 
chimpanzee, and whether Neandertal matches the deeply divergent clade. We use the term �“Derived Match�” 
(DM) to indicate that the allele in the Neandertal is derived relative to chimpanzee and matches the clade that 
is deeply diverged and only present in the OOA population. �“Derived Non-match�” (DN) denotes tag SNPs at 
which the Neandertal is derived but does not match the deep lineage in the OOA population (that is, the 
Neandertal carries the cosmopolitan allele). Ancestral Match (AM) and Ancestral Non-match (AN) are 
defined similarly. If the source of the deep haplotypes in non-Africans is gene flow from Neandertals, we 
expect to observe a majority of Derived Match (DM) and Ancestral Match (AM) tag SNPs at a locus. DM 
SNPs are particularly informative because a subset of OOA individuals share a derived allele with 
Neandertals that is not found in Africans. A substantial rate of such SNPs is diagnostic of Neandertal gene 
flow, as such SNPs are expected to be very rare in the absence of Neandertal gene flow (see simulations 
below). 
 
Statistical test for contamination 
To test whether the excess of matching over non-matching tag SNPs that we detect in candidate Neandertal 
gene flow regions can be explained by contamination, we take advantage of the fact that at most of the tag 
SNPs, the allele tagging the clade restricted to non-Africans is much rarer than the allele tagging the clade 
that is cosmopolitan (the allele frequency is 13% on average for the 13 regions in Table 5). Thus, even in the 
worst case of 100% contamination by non-African DNA, we do not expect that the OOA-specific allele will 
be observed in the Neandertal extract at a rate higher than its empirically observed frequency in the OOA 
sample. To be conservative, we tested this worst case scenario of 100% contamination, which could in 
principle occur if contamination rates varied across the genome in a locus-specific way. 
 
To implement this idea, for each candidate gene flow region we chose the tag SNP with the lowest frequency 
in the OOA sample, as this was a tag SNP in which we expected a minimal rate of matching to the OOA-
specific clade in the confounding case of contamination.  Let the frequency of the allele found in the 
exclusive OOA clade at SNP i be pi, i=1,2,..,k. If pi is an accurate estimate of the allele frequency in SNP i, 
and if the candidate regions we find are all contaminants from the OOA group, the probability of an allele of 
type �“matching�” being observed is pi (pooling across AM and DM sites). Now, let the indicator function xi 
take on the value 1 if the SNP is of type �”matching�”, and 0 if it is of type �”non-matching�”. We define a test 
statistic k

i ixt
1

 (the observed number of matches between the OOA private allele and the Neandertal). 
The observed value is tobs, and we evaluate its distribution under the null hypothesis of 100% OOA 
contamination as: 
 

Pr(t tobs) ... I
I i tobs

i

pi
xi (1 pi )1 xi

i 1

k

xk 0

1

x2 0

2

x1 0

1

    (S17.1) 

The quantity in Equation S17.1 is the probability of observing as many or more matches between the 
exclusive OOA allele and the Neandertal as is observed in the real data under the null hypothesis of 100% 
contamination. Equation S17.1 is evaluated using a dynamic programming algorithm. 
 
Simulation framework 
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We performed simulations using a previously described family of demographic models (S30), with and 
without Neandertal gene flow. Because genome-wide simulations with recombination are extremely slow, 
we simulated data sets of whole genomes in disjoint 100kb segments under the Wall et al. 2009 model using 
Richard Hudson�’s ms coalescent simulator (S29). The model was modified to take into account the fact that 
the African Americans represented in the Perlegen data have inherited both African and European ancestry. 
Specifically, we simulated 20% of their genetic ancestry to be non-African. We also explored modified 
versions of the model with a modern human-Neandertal divergence time of 480,000 years and a generation 
time of 20 years, in addition to the default of 320,000 years (Figure S42).  
 

Figure S42: We used the ms software to simulate scenarios 
with and without Neandertal gene flow and to explore the 
expected behavior of the statistics in scenarios without gene 
flow and with gene flow. In the simulations without Neandertal 
gene flow, time is measured in units of 4N generations, with N 
= 1,000,000 for current Africans. Additional parameters are: 
(g1) Growth in Africans starting 0.00035 4 1,000,000=1,400 
generations ago from 10,000 to 1,000,000 with a growth rate = 
13157.6. (g2) No growth in Non-Africans, and current size 
10,000. (m) Migration between Africans and non-Africans is 
assumed to be constant at 4Nm = 280 since the separation of 
the two populations. (b, tb) As variations on the demography, 
we also simulate a bottleneck 0.00036 4 1,000,000=1,440 
generation ago in Europeans, which reduced the population 
size from 10,000 to 50 for 40 generations, before recovery to 
its former size. (T) The African / non-African divergence time 
is simulated to be 0.0006 4 1,000,000=2,400 generations. For 
the Neandertal gene flow models, we add the following 
additional parameters: (1) Neandertal gene flow into modern 
humans 0.0005 4 1,000,000=2,000 generations ago. At that 
time point we then simulate an instantaneous mixing of 
populations leading to a group of 86% modern human and 14% 
Neandertal ancestry. (2) The Neandertal population size is 
10,000. (3) Modern humans diverged from Neandertal 
0.004 4 1,000,000=16,000 generations ago. We make no 
claim that these parameters are accurate, but show in this note 
that they can produce patterns that qualitatively match some 
features of our data (figure adapted from Wall 2009). 
 

Tailoring the simulations to match the 
ascertainment of our data 
To simulate a pattern of variation similar to that 

in the Perlegen SNP array data, we used a rejection algorithm to fit the two-dimensional (OOA and AFR) 
simulated Site Frequency Spectrum (SFS) to the observed SFS, an approach that was previously applied by 
Voight and colleagues in a scan to detect outlying regions of the genome (S97). This correction for 
ascertainment bias is imperfect: while it captures the genome-wide joint OOA-AFR frequency distribution 
perfectly, it may not model locus-specific effects particularly well. However, we used this procedure as the 
best available approach to match our simulations to a uniformly ascertained SNP variation data set. 
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Results 
 
An excess of candidate Neandertal gene flow regions compared with expectations from simulation 
We carried out simulations in the absence of gene flow and compared them to the real data as shown in 
Figure S43. While our simulated distributions show some sensitivity to recombination rate assumptions, we 
were not able to generate a tail of high ST values as extreme as we observed, encouraging us to go further and 
compare our candidate gene flow regions to the Neandertal sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Candidate gene flow alleles match Neandertal at a much higher rate than is expected without gene flow 
We identified tag SNPs at the candidate gene flow regions and assessed the rate of matching to Neandertal 
for both the simulated and the real data. We note that in the simulations without Neandertal gene flow, there 
were few or no segments with as extreme a value of ST as in the real data in most genome-wide simulations. 
We therefore had to generate many genomes�’ worth of data to produce a sufficient number of candidate 
Neandertal gene flow regions to compare to the real data. 
 
Table S56: Empirically observed tag SNP patterns in candidate Neandertal gene flow regions 

Data type Focal populationa Paired populationb No. segments 
identified 

Tag SNP site patternc 

      AN               DN                AM               DM       

Simulated data Without Neandertal gene flow 33% 27% 34% 5% 

 With Neandertal gene flow 37% 9% 23% 31% 

Real data OOA=CEU+ASN African Americans 13 25 (15%) 8 (5%) 57 (34%) 76 (46%) 

 OOA=CEU African Americans 13 20 (14%) 8 (6%) 44 (31%) 68 (49%) 

 OOA=ASN African Americans 11 32 (24%) 9 (7%) 42 (31%) 53 (39%) 

 African American 
A i

CEU+ASN 25 66 (43%) 26 (17%) 38 (25%) 25 (16%) 
 

a: focal population is the population where we scanned for deep lineages as compared to the paired population. 
b: paired population is the population that is used to pair with the focal population to calculate an ST score.  
c: tag SNP patterns, AN(Ancestral Non-match), DM(Derived Match), AM(Ancestral Match), DN(Derived Non-match).  
Table S56 shows that in simulations without gene flow, �“DM�” sites where Neandertal matches the deep 
OOA-specific clade are expected to be greatly outnumbered by �“DN�” sites where Neandertal matches the 
cosmopolitan clade. However, the reverse pattern is expected in the presence of gene flow. 
 

Figure S43: A histogram of ST scores in 
simulated data with various recombination 
rates. In the Perlegen data, we find an excess 
of candidate Neandertal gene flow regions 
compared to simulations without gene flow 
(inset shows the tail of the distribution). 
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Table S57: Candidate Neandertal gene flow regions obtained by using OOA=CEU and OOA=ASN 

Site Patterns# 

COS-type OOA-type 
Chro-
mo-
some 

Start of 
candidate 
region in 
Build 36 

End of 
candidate 
region in 
Build 36 

Span 
(bp) 

 

ST (est. 
ratio of 

OOA/AFR 
tree depth) 

Mean freq. 
of tag 

SNPs in 
OOA clade AN DN AM DM 

Qual-
itative 
assess-
ment* 

Thirteen candidate regions found by using 24 European Americans (CEU) to represent non-Africans 
1 168110000 168220000 110000 2.93 10.4% 1 0 5 10 OOA 
1 223760000 223920000 160000 2.78 8.3% 0 0 1 4 OOA 
4 171180000 171280000 100000 1.85 10.4% 0 0 1 2 OOA 
6 66160000 66260000 100000 5.66 41.7% 0 0 6 6 OOA 
9 32940000 33040000 100000 2.83 8.3% 0 0 7 14 OOA 
9 114270000 114390000 120000 2.87 10.4% 0 0 3 5 OOA 
10 4820000 4920000 100000 3.49 6.3% 0 0 9 5 OOA 
10 38000000 38160000 160000 2.61 16.7% 2 0 5 9 OOA 
10 69630000 69740000 110000 4.19 20.8% 0 1 2 2 OOA 
15 45250000 45350000 100000 2.53 20.8% 1 0 5 6 OOA 
17 35500000 35600000 100000 2.93 20.8% 1 0 0 3 OOA 
20 20030000 20130000 100000 6.31 91.7% 10 5 0 0 COS 
22 30690000 30820000 130000 3.46 8.3% 5 2 0 2 COS 
Eleven candidate regions found by using 24 East Asians (ASN) to represent non-Africans 
1 168110000 168210000 100000 2.82 20.8% 1 0 5 10 OOA 
1 196790000 196890000 100000 2.25 89.6% 6 2 0 0 COS 
1 223760000 223910000 150000 2.76 4.2% 0 0 1 4 OOA 
5 28950000 29070000 120000 3.76 6.3% 6 0 16 16 OOA 
6 66160000 66260000 100000 5.66 14.6% 0 0 6 6 OOA 
6 93290000 93390000 100000 2.31 27.1% 0 0 0 7 OOA 
6 116310000 116410000 100000 2.03 79.2% 9 1 0 0 COS 
9 114270000 114370000 100000 3.21 10.4% 0 0 3 3 OOA 
10 4820000 4920000 100000 3.49 12.5% 0 0 9 5 OOA 
10 69630000 69740000 110000 4.19 18.8% 0 1 2 2 OOA 
20 20030000 20150000 120000 3.69 37.5% 10 5 0 0 COS 

Mean site frequencies when simulated without Neandertal gene flow 33% 27% 34% 5% - 
Mean site frequencies when simulated with Neandertal gene flow 37% 9% 23% 31% - 

 

Notes: We identified candidate regions of Neandertal gene flow from Neandertal by using either 24 CEU or 24 ASN to represent the OOA population, and 
23 African Americans to represent the AFR population. (Table 5 in the main text presents the equivalent analysis for 48 CEU+ASN for the OOA 
population.) It is possible for there to be both OOA-type and COS-type tag SNPs in a candidate region, reflecting the fact that mutations do not always 
occur in exactly the same branch of the gene tree and the same genealogy may not apply over the whole region.  
 

* To make a qualitative assessment of the regions in terms of which clade the Neandertal matches, we classified all tag SNPs according to whether the 
Neandertal matches the cosmopolitan clade (COS) or out-of-Africa specific clade (OOA), and whether the allele is ancestral or derived in Neandertal (we 
do not list the sites where the matching is ambiguous). If the proportion matching the OOA-specific clade is much more 50%, we classify it as an OOA 
region, and otherwise COS. 
 

�† We present data for loci where we were had Neandertal coverage and found a OOA-unique clade at the root of the tree.  
 

# Site patterns: �“Match�” denotes sites where the Neandertal matches the OOA-specific haplotype, and �“Non-Match�” where it matches the cosmopolitan 
type: AN(Ancestral Non-match), DM(Derived Match), AM(Ancestral Match) and DN(Derived Non-match).  
 
Examining our real data, we find that at a majority of tag SNPs, the Neandertal matches the OOA-specific 
clade. Table 5 gives the results when CEU+ASN are combined to represent the OOA population, and Table 
S57 gives the results for CEU and OOA separately. When CEU+ASN are combined to represent the OOA 
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population (Table 5), there are 76 DM tag SNPs where Neandertal is derived and matches the OOA private 
allele, and only 8 DN tag SNPs where Neandertal is derived and matches the cosmopolitan allele. Out of the 
12 regions where we had tag SNPs, all showed a pattern of either all, or almost all, tag SNPs matching the 
Neandertal, or no tag SNPs matching the Neandertal. We find that 10 segments have an almost complete 
match to Neandertal and only 2 show the opposite pattern (these latter two have no evidence of Neandertal 
gene flow, and are likely to be false-positives). 
 
Contamination cannot explain these observations 
To evaluate whether contamination could account for the high rate of matching of the OOA-specific clade to 
Neandertal, we focused on tag SNP where the OOA-specific clade is rarest in each of the 13 candidate 
Neandertal gene flow regions in Table 5. We then asked whether the rate of observation of the OOA-specific 
allele at these tag SNPs is significantly elevated compared with the worst case scenario of 100% 
contamination at these loci (see the Methods above). By this analysis, we reject the hypothesis that our 
results can be explained by contamination from Europeans (P=0.0025.) 
 
Simulations show that Neandertal-to-modern human gene flow can produce patterns like we observe 
To test if skews in the ratio of (DM and AM SNPs) to (AN and DN SNPs) as extreme as we observe can 
occur in the absence of Neandertal gene flow, and to further test whether they are expected in some scenarios 
of Neandertal gene flow, we performed coalescent computer simulations of gene flow. The distribution of 
patterns observed in these simulations is presented in Figure S44. 

 
 
 

Figure S44: The distribution of 
the four tag SNP patterns in 
simulated data under the Wall et 
al. demographic model. a. The 
observed distribution in the 
Perlegen+Neandertal data using 
CEU+ASN as the OOA group. b. 
Neandertal gene flow model 
(default settings). c No 
Neandertal gene flow model. d 
Modified Neandertal gene flow 
model assuming Neandertals and 
present-day humans diverged 
480,000 years ago.  
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A key observation is that the pattern of shared derived alleles between Neandertals and the OOA group (DM) 
rarely occurs in simulations without Neandertal gene flow. Simulating under the Wall et al. model with 
Neandertal gene flow, however, we observe the distributions in Figure S44b and S44d. Sites of type Derived 
Match (DM) now frequently occur, whereas the Derived Non-match (DN) pattern is rare, as in the observed 
data (Figure S44a). We also repeated the simulations with a lower rate of Neandertal gene flow (4%). The 
results are qualitatively similar. 
 
Caveat about simulations: A wide range of gene flow scenarios are consistent with the data 
Although we have shown that there are demographic scenarios that involve gene flow that are consistent 
with the data, the specific demographic parameters that we have used for simulating Neandertal gene flow 
may not correspond to the true history. Our simulations only explore a fraction of parameter space, and there 
are likely to be many other parameter combinations involving Neandertal gene flow that are as plausible 
based on the data we have presented. The focus of the simulations is simply to show that there are 
Neandertal gene flow scenarios that can produce high rates of AM and DM sites (compared to AN and DN 
sites), as we observe. Likewise, we find no demographic models without Neandertal gene flow that can 
explain the large proportion of DM sites. The observation of a large proportion of DM sites, appears to be a 
unique feature of Neandertal gene flow models. 
 
Natural selection in present-day humans since Neandertal divergence would not produce false-positives 
The inferences of gene flow that we have made are based on the extreme tail of a genome-wide distribution 
(Figure S45), which raises the possibility that our ascertainment procedure may have enriched for loci under 
natural selection in modern humans. Examining these loci more closely, we find that due to ascertainment 
for a high value of the ratio ST = �ˆ T OOA / �ˆ T AFR , they are characterized both by a high average value of �ˆ T OOA  
(10.69 for CEU vs. the genome average of 6.69) and a low average value of �ˆ T AFR  (2.89 at these loci vs. the 
genome average of 6.28). The low value of �ˆ T AFR could be due to stochastic variation, but could also be 
hallmark of a locus that has experienced a complete selective sweep in the history of West Africans since 
their divergence from Neandertal. 

 
 
 
Figure S45: Characteristics of the candidate 
Neandertal gene flow regions in terms of TMRCA in 
the AFR and OOA samples. We present the number 
of mutations from the root of the UPGMA trees in 
AFR and CEU, for loci with ST in the top 0.5% of the 
genome, with the x and y axes scaled in units of 
number of mutations.  
 
 
 
 
 
 
 
 
 
 

Although it is plausible that the regions we examined are enriched in signals for selection, we do not see how 
a selective sweep in West Africa could generate a rate of matching of the OOA-specific clade to Neandertal 
that is significantly above 50%. We emphasize that selective sweeps at a locus in modern humans since 
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divergence from Neandertal is in fact expected to increase power to detect gene flow at a locus, instead of 
the opposite. The reason is that at loci with low �ˆ T AFR  (either due to a selective sweep or a stochastically short 
tree), the average coalescence time in the nuclear human genome is expected to be lower than average 
human/Neandertal genetic divergence time. By contrast, in regions in which the coalescence time in present-
day humans is typical, it is difficult to distinguish human-Neandertal genetic identity due to shared ancestral 
lineages, from a signature of Neandertal to human flow. 
 
No signal of gene flow from Neandertal into Africans 
We performed the reciprocal analysis in a sample of West African ancestry, using �ˆ T AFR / �ˆ T OOA  as a test statistic 
based and using CEU+ASN as the OOA population. As seen in Figure S46 and Table S56, the results are 
radically different. A caveat, however, is that this analysis does not have much power to detect Neandertal 
gene flow. The power to detect regions of gene flow is lower in Africa because �ˆ T AFR / �ˆ T OOA  in general tend to 
be >1, reflecting higher diversity in African than non-African populations. 

 
Figure S46: No. signal of Neandertal gene 
flow from Neandertal into West Africans. a. 
Observed Perlegen+ Neandertal data when 
AFR is the focal populations (searching for 
deeply diverged lineages in AFR that are not 
present in OOA). b. Expected pattern from the 
default Wall demographic model with 
Neandertal flow into modern humans. We 
observe no signal even with gene flow, 
showing that we have little power to detect the 
signal using AFR as the focal population. 
 
 
 
 

No evidence for these results being an artifact of structural variation 
To examine if the regions we identify are enriched for structural variants, we examined the overlap between 
known structural variants and target regions by comparing to the Database of Genomic Variants (DGV) 
(http://projects.tcag.ca/variation/). We used randomization to examine if the regions are enriched by 
randomly choosing loci in the genome of the same length as our candidate regions (Figure S47a). The 
observed number of hits to entries in the DGV is close to the median of the simulated distribution, suggesting 
that our target regions are not enriched for structural variants.  
 
Higher power to detect candidate gene flow regions at loci of low recombination  
In contrast to the absence of an association with structural variants, the candidate regions are strongly 
associated with low recombination rate (Figure S47b) (using rate estimates from (S70)). The mean 
recombination rate in the genome is approximately 1.26 cM/Mb, whereas the mean recombination rate in the 
candidate segments is 0.56 cM/Mb. Random re-sampling of 13 regions with the same lengths as in the real 
candidate regions indicates that the observed reduction in mean recombination rate is unlikely to occur by 
chance (P<0.01). This association between regions of low recombination and candidate regions is in fact 
expected under the scenario of Neandertal-to-modern human gene flow, as haplotypes that have arisen 
through gene flow are expected to be maintained for a longer period in regions of low recombination than in 
regions of high recombination. 
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Figure S47. Screens for 
enrichment of the candidate 
Neandertal gene flow regions 
shows a. no enrichment for 
structural variation, but b. strong 
enrichment for regions of low 
recombination. 
 
 
 
 
 
 
 
 

 
Conclusions 
The deeply diverged haplotypes that are unique to non-Africans that we identified through our scan show a 
rate of matching to Neandertal that is well above 50%, a phenomenon that we were not able to explain by 
any scenario in the absence of gene flow. Moreover, we were not able to identify any simulation scenario 
that did not involve gene flow from Neandertal that predicts a rate of private derived alleles in OOA 
populations matching Neandertals that is as high as we observe. By contrast, when we simulate scenario with 
gene flow, we obtained a qualitative match to these observations. 
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Model-free estimate of the proportion of Neandertal ancestry in present-day non-Africans 
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Overview: 
In this section, we extend ideas from SOM 15 to show that the proportion of Neandertal ancestry in present-
day non-Africans is between 1.3-2.7%. Specifically, we define f precisely as the proportion of the genome in 
present-day non-Africans that traces its genealogy through the Neandertal side of the phylogenetic tree, just 
after the Neandertal-modern human population divergence. Our estimate is robust to assumptions about 
effective ancestral population sizes and how they have changed over time, as well as assumptions about 
population divergence times. We only make two assumptions: 
 
Assumption 1: Neandertals formed a clade. The Neandertals who we sequenced and the Neandertals who 
contributed ancestry to present-day humans are assumed to form a clade relative to present-day sub-Saharan 
Africans and chimpanzee. In other words, they are assumed to descend from a homogeneous ancestral 
population that diverged at an earlier time from the ancestors of present-day sub-Saharan Africans.  
 
Assumption 2: Neandertals were homogeneous. We assume for our basic analyses that the Neandertals we 
sequenced and the Neandertals who contributed ancestry to present-day non-Africans can effectively be 
treated as a homogeneous population. In fact, however, we are able to obtain meaningful bounds on f even 
allowing for the fact that Neandertals could have been inhomogeneous. 
 
An estimator for the proportion of Neandertal alleles in present-day non-Africans 
We extend ideas from SOM 15 to infer f in present-day non-Africans. To estimate the proportion of 
Neandertal ancestry in the genomes of present-day non-Africans, we define the following population names: 
 

C  = Chimpanzee. 
AFR  = Yoruba or San 

  OOA  = French, Papuan, or Han 
  OOAA  = the modern human ancestral population of present-day non-Africans 

NA  = the Neandertal population that contributed genes to present-day non-Africans 
N1  = A Neandertal bone that we sequenced 

  N2  = A different Neandertal bone that we sequenced 
 
For the ordered set of populations {X,AFR,N,C}, we denote the chimpanzee allele as �“A�”, and restrict our 
analysis to biallelic sites at which X and AFR differ and the alternative allele �“B�” is seen in N.  Thus, the two 
possible patterns of SNPs are �“ABBA�” or �“BABA�”. We further define the indicator variables CABBA(i) and 
CBABA(i), which can be 0 or 1 depending on whether an ABBA or BABA pattern is seen at base i.: 
 

n

i BABAABBA iCiCCNAFRXS
11 )()(),,,(        (S18.2) 

 
We note that the difference S(X,AFR,N1,C) is just the numerator of the D-statistic in SOM 15. It measures 
the relative rate of matching of the samples X and AFR to the Neandertal N1 that we sequenced. 
 
We now model OOA as a linear mixture of ancestral non-Africans and ancestral Neandertal. Thus: 
 

AA NfOOAfOOA 1 ,        (S18.1) 
 
Combining Equation S18.2 and Equation S18.3, we obtain: 
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The first term E[S(OOAA, AFR,N1,C)] = 0, since in our model, the unmixed modern human ancestral 
population of non-Africans OOAA and present-day Africans AFR form a clade relative to Neandertal. 
 

We now algebraically manipulate Equation S18.3 to obtain a ratio that is expected to equal the gene flow 
proportion: 
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Intuitive interpretation of Equation S18.4 
To understand Equation S18.4 intuitively, it is helpful to consider the meaning of both the numerator and 
denominator of Equation S18.4: 
 
Numerator: The numerator measures how much closer the Neandertal bone we sequenced is to the OOA than 
to the AFR population (it is exactly the same numerator as the D-statistic in Equation 1 of the main text). It is 
significantly skewed from 0, due to gene flow from Neandertals in the ancestors of non-Africans (SOM 15). 
 
Denominator: The denominator is the difference in the rate of matching of the Neandertal we sequenced to 
NA and AFR, restricting to sites where the Neandertal we sequenced is derived. This gives this skew that 
would be expected of the OOA population was entirely of Neandertal ancestry. 
 
Thus, the ratio in S18.4 is measuring what percentage of the way the OOA population is toward having the 
phylogenetic relationships to Africans that the Neandertal does. It is clear why this is the mixture proportion. 
 
Practical estimation of f 
Although Equation S18.4 provides a way to estimate the mixture proportion, in practice we cannot estimate 
it directly. The reason for this is that we do not have access to a sample from NA, the Neandertal population 
that actually contributed genetic material to the ancestors of non-Africans. We therefore use a second 
Neandertal bone N2 as a surrogate for NA in Equation S18.4, and empirically explore whether our inferences 
are consistent when we choose Neandertal bones over a wide geographic and temporal distribution.  
 
We estimated f using the same Illumina present-day human and Neandertal data set described in SOM 15, 
restricting our analysis to autosomal nucleotides that satisfied the following conditions: 

1. We required the availability of the chimpanzee reference sequence PanTro2. 
2. We required at least one present-day human from outside Africa (French, Han or Papuan). 
3. We required at least one sub-Saharan Africans (Yoruba or San). 
4. We required two Neandertal bones (Vi33.16, Vi33.25, Vi33.26, Mezmaiskaya, Feldhofer, El Sidron).   
5. We used a quality threshold for Neandertal data of 32 rather than 40, to maximize the data. 
6. We only analyzed nucleotides where we had coverage from exactly two Neandertal reads passing our 

quality filters. We further required that these reads came from different bones. We excluded 
nucleotides with 3-fold coverage to minimize artifacts from structural variation 

 

We write (ooai, afri, n1i, n2i, ci) as the alleles we sampled at nucleotide i in OOA, AFR, the two Neandertal 
bones n1 and n2, and the chimpanzee. We note that both S(OOA,AFR,N1,C)/S(N2,AFR,N1,C) and 
S(OOA,AFR,N2,C)/S(N1,AFR,N2,C) are both valid estimators of the gene flow proportion according to 
Equation S18.4, and hence we average these two quantities over all m aligned nucleotides: 
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We compute a standard error by a weighted block jackknife (SOM 15). 
 
In practice, we estimated f�ˆ  using any of (French, Han, Papuan) for OOA, and any of (Yoruba, San) for AFR 
(Table S58). We chose pairs of Neandertal bones for analysis in two ways: 
 

a. �“Full analysis�”. We required that n1 and n2 came from two different bones, which in practice meant 
that they almost always came from two different Vindija bones. 
 

b. �“Restricted analysis�”. We required that one bone we analyzed was not from Vindija. The 
Mezmaiskaya infant contributed 93% of the non-Vindija data and hence the vast majority of the 
comparisons are of Vindija and Mezmaiskaya bones.  
 

Combining the �“full�” and �“restricted�” analyses is useful for constraining our estimate of the mixture 
proportion f. As described above, since we cannot directly sample from the Neandertal population that 
contributed genetic material to non-Africans NA, we have to replace it with another Neandertal. Our �“full�” 
analysis is comparing Neandertals that are more closely related than Vindija-NA, since the comparisons are 
mostly Vindija-Vindija. Our �“restricted�” analysis is likely to be comparing Neandertals that are distantly 
related, as the Vindija and Mezmaiskaya fossils are from geographically dispersed locations (Croatia and the 
Caucasus) and the two fossils have very different dates (about 40,000 years vs. 60,000-70,000 years). Thus, 
the �“full�” and �“restricted�” span a wide range of relatedness among Neandertals, which hopefully bracket the 
true level of N and NA relatedness, and thus hopefully provide estimates of f that bracket the truth. 

 
An encouraging aspect of our results (see below) is that we obtained very similar estimates of f for both types 
of comparison (Vindija-Vindija and Vindija-Mezmaiskaya). Thus, the quantitative value of the denominator 
of Equation S18.4 seems to be similar whatever pair of Neandertals we use, suggesting that the lack of 
availability of a sample from NA may not be too much of a problem.  
 
Results 
We obtained consistent estimates of f�ˆ  for each choice of OOA and AFR, for both the �“full analysis�” and the 
�“restricted analysis�” (Table S58). Combining across all pairs of OOA and AFR samples to increase precision, 
the estimates of the proportion of Neandertal genetic material in the ancestry of non-Africans was f�ˆ  = 1.7 ± 
0.2% for the �“full�” and  f�ˆ  = 1.1 ± 0.8% for the �“restricted�” analysis. 
 

The �“full analysis�” combined result ( f�ˆ  = 1.7 ± 0.2%) provides a conservative minimum of f > 1.3% on the 
proportion of Neandertal genetic material in the ancestry of non-Africans (2 standard deviations below 
1.7%). To understand why this is a minimum, we note that the denominator in the estimator of f�ˆ in Equation 
S18.4 is S(NA,AFR,N,C): the difference in the rate of matching of the Neandertal N  to NA vs. AFR. Since two 
Vindija samples are almost certain to be more closely related than a Vindija sample N and the Neandertal 
who contributed ancestry to modern humans NA, we are estimating a too-high a rate of matching between NA 
and N, resulting in an over-inflation in S(NA,AFR,N,C), and a systematic underestimate of f�ˆ . 
 

The �“restricted analysis�” result ( f�ˆ  = 1.1 ± 0.8%) provides a likely upper bound of f<2.7% on the proportion 
of Neandertal genetic material in the ancestry of non-Africans (2 standard deviations above 1.1%). Since N 
and NA are now being represented primarily by Vindija and Mezmaiskaya�—which based on geographic and 
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temporal considerations are potentially as distantly related as Vindija and the Neandertal we sequenced�—we 
may be systematically underestimating S(NA,AFR,N,C) and thus overestimating f by using Mezmaiskaya to 
represent NA, the Neandertal population that actually contributed genetic material to non-Africans. 
 
Table S58: Model-free estimate of the Neandertal ancestry proportion in present-day non-Africans 

Full analysis  
(primarily Vindija-Vindija comparisons) 

Restricted analysis  
(primarily Vindija-Mezmaiskaya comparisons) 

OOA AFR f�ˆ  std.err. ( f�ˆ ) OOA AFR f�ˆ  std.err. ( f�ˆ ) 

French San 1.7% 0.3% French San 0.4% 1.3% 
French Yoruba 1.7% 0.3% French Yoruba 1.3% 1.3% 
Han San 2.0% 0.3% Han San 1.0% 1.3% 
Han Yoruba 2.0% 0.3% Han Yoruba 2.5% 1.3% 
Papuan San 1.4% 0.3% Papuan San -0.4% 1.3% 
Papuan Yoruba 1.5% 0.3% Papuan Yoruba 1.4% 1.3% 
 combined 1.7% 0.2%  combined 1.1% 0.8% 

Note: The estimator of f�ˆ  is computed as in Equation S18.5. 

 
We confidently infer f > 1.3%, even in the presence of possible confounders 
We considered four possible confounders that could bias our estimate of f, but found that none of them were 
consistent with a mixture proportion of less than 1.3% 
 

1. The estimate of 1.3% < f < 2.7% is robust to the presence of sequencing error: The numerator of our 
estimator of f�ˆ  in Equation S18.4 is accurately estimated even in the presence of sequencing error, as 
shown in SOM 15. The denominator S(NA,AFR,N,C), is likely to be even more accurately estimated, 
since it is of even larger magnitude than the numerator, and hence less affected by error.  
 

2. The estimate 1.3 < f < 2.7% is robust to the presence of contamination: Although substantial levels of 
contamination in the Neandertal sequence could affect our inferences, our many analyses of mtDNA, 
Y chromosome and autosomal data suggest that contamination rates are <0.5% in this data set (SOM 
5-7). We also showed in SOM 15 that whatever contamination rates do exist are unlikely to explain 
the major skews we observe in the D-statistics (the D-statistics are very similar to the statistics here). 
 

3. f  is conservatively estimated be at least 1.3% even if Assumption 1 is violated: If the Neandertal who 
contributed genetic material to non-Africans NA had some modern human ancestry, a given mixture 
proportion would have less of an effect in skewing the numerator of Equation S18.4 than if it had 
entirely Neandertal ancestry. Thus, this effect would cause us to systematically underestimate f. 
 

4. f  is conservatively estimated be at least 1.3% even if Assumption 2 is violated: Even if Neandertals 
are not homogeneous, our �“full analysis�” provides a minimum for f. The reason is that as discussed 
above, N and NA in Equation S18.4 are supposed to represent the Vindija Neandertal we sequenced 
and the Neandertals who contributed ancestry to modern non-Africans. If we use two Vindija bones 
as surrogates for N and NA, we will be guaranteed to be using two bones that are more closely related 
than the truth. This will overestimate the denominator of Equation S18.4, and underestimate f. 
 

We conclude that f >1.3% from the �“full analysis�” is a likely minimum estimate on the proportion of 
Neandertal ancestry in present-day non-Africans, and that 1.3% < f < 2.7% is a realistic range. 
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In this section, we develop a mathematical model that allows us to quantify the amount of gene flow from 
Neandertals into the ancestors of present-day non-Africans. We analyze the simplest possible model that is 
consistent with what is known about the history of humans and Neandertals and is consistent with the genetic 
data, namely, a model in which the gene flow occurred after the divergence of the population ancestral to 
non-Africans from the population ancestral to sub-Saharan Africans but before the divergence into Han, 
Papuans and French (Figure S48). A potential time during which this gene flow could have occurred is 
between 50,000�–80,000 years ago, when the archaeological evidence shows that Neandertals and modern 
humans were both present in the Middle East. This time period is also consistent with the constraints 
presented in Supplementary Note 15, which show that gene flow occurred before the divergence of the non-
African Papuan, Han and French populations. We caution that this is only the simplest model consistent with 
our observations. 
  

In what follows, we begin by 
estimating the fraction f of 
Neandertal ancestry in the genome 
of present-day non-Africans that is 
necessary in order to produce the 
observed value of the test statistic 
D(African, non-African, 
Neandertal, Chimp). We further 
constrain the parameters by using 
our observations of the proportion 
of sites where Neandertal and 
Europeans carry the derived allele 
at SNPs discovered in two Yoruba, 
and measurements of Neandertal-
European and Neandertal-West 
African divergence. Defining tN as 
the number of generations ago 
when the ancestors of the 
Neandertal we sequenced and sub-
Saharan Africans last exchanged 
genes, we can then define f as the 
proportion of alleles in non-

Africans whose ancestors were in 
Neandertal more recently than tN. 

Figure S48: Model of Neandertal-modern human ancestry that we fit to the data. We 
assume Neandertals and modern West Africans (H1) split at time tN, that the 
ancestors of West Africans and modern non-Africans split at time tH, and that a 
single pulse of gene flow contributed a proportion f of Neandertal ancestry to modern 
non-Africans (H2) at a time tGF in the past. All population sizes are assumed constant. 
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Analytical expectation for the value of the D statistic for a given gene flow proportion f 
We assume that we have one nucleotide site sampled from modern human population 1 (H1), one from 
modern human population 2 (H2), one from a Neandertal (N), and from a chimpanzee (C). By assumption, 
the chimpanzee carries the ancestral nucleotide (denoted A), and we restrict to biallelic polymorphisms 
where Neandertal carries the derived nucleotide (denoted B). There are two cases of interest: H1 has the 
ancestral nucleotide and H2 has the derived (denoted ABBA) or the reverse (denoted BABA). 
 
We found that ABBA is significantly more frequent than BABA for H1=modern sub-Saharan Africans and 
H2=modern non-Africans. We measure the excess by the Symmetry Test statistic D(West African, non-
African, Neandertal, Chimpanzee) = [Pr(ABBA)-Pr(BABA)]/[Pr(ABBA)+Pr(BABA)], which has an 
observed value of 4-5% empirically (Table 4; SOM 15). We use a value of 4.6% in the model fitting that 
follows. 
 
A genealogical argument for the expected frequencies of ABBA and BABA sites  
We calculated the probabilities of ABBA and BABA under the assumption that only a single nucleotide 
substitution occurred on the gene genealogy representing the ancestry of the four samples (H1, H2, N and C). 
Figure S49 presents the three possible topologies of the gene genealogy, assuming that C is always the 
outgroup. For each of these topologies, there are 4 branches on which a substitution can create a derived 
allele polymorphic within H1, H2 and N (denoted by an arrow in Figure S49). The pattern BABA (H1 and N 
have the derived nucleotide) is consistent only with Tree IIc. The length of the internal branch is the 
historical opportunity for a mutation to occur to produce the BABA pattern, averaged across all bases of the 
genome in which tree topology II applies. Similarly, the pattern ABBA (H2 and N have the derived 
nucleotide) is consistent only with tree IIIc, and the length of that internal branch is the time during which 
mutation can occur to create ABBA, averaged over the bases in the genome over which topology III applies. 
The probability that a randomly chosen site will have either pattern is the probability of the appropriate 
topology multiplied by the expected branch length multiplied by the mutation rate, µ. Thus, our problem is to 
compute the probabilities of the tree topologies and average lengths of the relevant branches under the 
assumptions of our model. Other trees do not matter because mutations cannot create either the ABBA or 
BABA pattern. 

 
Figure S49: There are three possible topologies of the gene genealogies, I, II, and III, that can relate samples H1, H2 and N and the 
outgroup C. Assuming that any polymorphisms reflect a single historical mutation, ABBA sites can occur only on a Type III gene 
genealogy due to a mutation that occurs on the branch ancestral to samples H2 and N (IIIc), and BABA sites can occur only on a Type 
III gene genealogy due to a mutation on the branch ancestral to samples H1 and N (IIc). The probability of occurrence of these 
mutations is expected to be proportional to the lengths of the relevant internal branches of IIc and IIIc, averaged across the genome. 
We can calculate the expected values of these quantities analytically under the demographic model of Figure S48 
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Model of gene flow from Neandertals to H2 
In the model, we assume that there was a single episode of gene flow at time tGF in the past (t=0 being the 
present) from population N to H2 after the separation of populations H1 and H2 (Figure S48). With 
probability f, H2 was derived from a Neandertal lineage and, with probability 1-f, H2 was derived from an H1-
related modern human group. We also considered a slightly more complicated model that assumes a period 
of ongoing one-way gene flow from N to H2. We found that this model leads to the same estimate of the 
mixture proportion. Hence, we just present the simpler model in what follows. 
 
Our model in Figure S48 also requires several other demographic parameters. We define the divergence time 
of the two modern human lineages as tH>tGF, and the modern human-Neandertal divergence time as tN>tH. 
The effective population size of the Neandertal lineage is NN; the effective size of the modern human lineage 
ancestral to H1-H2 divergence is NH; and the effective size of the population ancestral to Neandertals and 
modern humans is NA. All population sizes are assumed to be constant over time and the populations are 
assumed to be unstructured (i. e. they are randomly mating).  
 
Expected values of ABBA and BABA under the model  
There are three genealogical scenarios under the model of Figure S48 that can create either ABBA or BABA 
sites. The first two produce ABBA and BABA sites with equal probability and the third produces only 
ABBA sites, contributing to the excess of ABBA over BABA sites that we observe empirically. 
 

1. The H2 lineage traces its ancestry through the modern human side of the phylogeny (probability 1-f), 
and between tH and tN, the H1 and H2 lineages do not coalesce (probability 1 1 / (2NH ) tN tH ). 

In this case, the H1 and H2 lineages trace their ancestry all the way back to the modern human-
Neandertal ancestral population without coalescing, so that there are three lineages in the ancestral 
population (H1, H2 and N) that coalesce. The expected time between the first and second coalescent 
events (which can produce ABBA or BABA sites) is 2NA. With probability 1/3 each, the first 
coalescence is between H1 and N or H2 and N, producing the two sites of interest. Thus: 

Pr1(ABBA) Pr1(BABA) 1
1

2NH

tN tH 2NA

3
1 f .     (S19.1) 

 
2. The H2 lineage traces its ancestry through the Neandertal side of the phylogeny (probability f), and 

between tGF and tN the two Neandertal lineages do not coalesce (probability 1 1 / (2NN ) tN tGF ). 
In this case, the H1 and H2 lineages trace their ancestry all the way back to the modern human-

Neandertal ancestral population without coalescing, so that there are three lineages in the ancestral 
population (H1, H2 and N) that coalesce. The expected time between the first and second coalescent 
events (which can produce ABBA or BABA sites) is 2NA. With probability 1/3 each, the first 
coalescence is between H1 and N or H2 and N, producing the two sites of interest. Thus: 

Pr2 (ABBA) Pr2 (BABA)
2NA f

3
1

1
2NN

tN tGF

.     (S19.2) 

 
3. The H2 lineage traces its ancestry through the Neandertal side of the phylogeny (probability f), and 

between tGF and tN the two Neandertal lineages coalesce. This history creates gene genealogies only 
of type III and results only in ABBA sites (never BABA sites in the absence of recurrent mutation in 
the same genealogy). The probability that there is a coalescence before tN is 1 1 1 / (2NN ) tN tGF . 

Once the coalescence occurs, the ancestral lineage cannot coalesce with H1 before tN. After tN, the 
average coalesce time is 2NA. Therefore, the expected length of the internal branch is 
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tN 2NA tGF t ,where t  is the expected coalescence time in the Neandertal lineage, given that 
the coalescence occurs before tN. A little analysis shows that: 

t 2NN

(tN tGF ) 1 1
2NN

tN tGF

1 1 1
2NN

tN tGF

.       (S19.3) 

 
Thus: 

 

Pr3(ABBA) µf 1 1
1

2NN

tN tGF tN tGF

1 1 1
2NN

tN tGF
2(NA NN )

µf tN tGF 2(NA NN ) 1 1
1

2NN

tN tGF

.  (S19.4) 

 
The overall probability of ABBA and BABA is obtained by adding the three contributions. The mutation rate 
parameter  cancels, and the overall expectation is 
 

E(D)
Pr(ABBA) Pr(BABA)
Pr(ABBA) Pr(BABA)

3 f tN tGF 2(NA NN ) 1 1 1
2NN

tN tGF

3 f tN tGF 2(NA NN ) 1 1 1
2NN

tN tGF

4NA(1 f ) 1 1
2NH

tN tH

4NA f 1 1
2NN

tN tGF

 (S19.5) 

If there is no gene flow, (f=0) then E(D)=0. 
 
We carried out simulations using the ms software (S29) that matched the results of Equation S19.5. 
 
Exploration of parameter space 
Figure S50 shows the dependence of E(D) on f when tH=3,000, tGF=2,500, tN=10,000, and 

NH=NN=NA=10,000, where all times are 
measured in generations. A value of f=0.0603 
corresponds to D=0.046, which is the average 
observed in our real data.  
 
Figure S50: Plot of mixture proportion f against the expected 
value of D(H1,H2,N,C), assuming tGF=2,500 generations 
(70,000 years assuming 28 years per generation), tH=3,000 
generations (84,000 years), and tN=10,000 generations 
(280,000 years). 
 

 
It is important to recognize that inferences about the gene flow proportion f are sensitive to the choices of the 
other parameter values in the model. 
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Sensitivity to times of demographic events: The inference of f is relatively insensitive to choices of tH 
and tGF, but that it is highly sensitive to changes in tN. For example, if tN=20,000 generations instead of 
10,000, f=0.0157. However, other features of the data described in Note S14 and below constrain tN to be 
relatively close to 10,000. 
 Sensitivity to ancestral population sizes: We found that the inference of f is also dependent on 
assumptions about population size, and especially on NN. For example, for a 20% decrease in population 
size, the effect on the inference of f is 8% for NH, 4% for NA, and 17% for NN. We note that NN is also the 
only parameter that we have no estimate of from studies of population genetic patterns in present-day 
humans, and thus uncertainty in this parameter is particularly crucial issue for our inferences. We conclude 
that by itself, the observed value of D can only broadly constrain f. However, by placing additional 
constraints on the model using other features of our data, we can tighten the constraints. 
 
Expected fraction of SNPs discovered between two Yoruba chromosomes where Neandertal is derived 
The next statistic that we used to constrain the model was the proportion RN of sites where Neandertal carries 
the derived allele at SNPs discovered as differences between two Yoruba chromosomes. We present 
analytical expectations for this proportion in the analyses that follow, and a more extensive exploration of 
this statistic for more complex demographic models is presented in SOM 14. 
 
We assume that two chromosomes are sampled from one human population, H1 (e.g. Yoruba West Africans). 
We then restrict our analysis to sites at which one of them carries and ancestral nucleotide and the other 
carries the derived allele. In other words, a SNP in H1 is ascertained by comparing two chromosomes from 
Yoruba. The problem is to compute the proportion of sites where a Neandertal chromosome carries the 
derived nucleotide. This model is the same as was simulated in SOM 14 in which the Yoruba population was 
assumed to be of constant size (cf. Figure S37). The set of trees in Figure S48 illustrate the events of interest, 
but with the modification that H1.1 and H1.2 replace H1 and H2 (representing the two chromosomes sampled 
from H1). If we write the aligned bases at a given nucleotide in the order H1.1, H1.2, X, C, we are interested in 
the expected value of the ratio: 
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To allow additional flexibility in the model, we allow the effective population size of H1, denoted by NY, to 
differ from NH after the divergence of H1 and H2 from each other. The denominator is equal to the probability 
that the two nucleotides sampled in H1 differ. If µ is small, the denominator is equal to: 
 
 

4 NY 1
1

2NY

tH

NH NY 1
1

2NH

tN tH

NA NH .     (S19.7) 

 

We now derive the numerator of E(RN). The only scenario that contributes to ABBA and BABA is the one in 
which H1.1 or H1.2 first coalesce with N (topologies II or III). The contribution to ABBA and BABA is then 
proportional to the length of the internal branch:  

 

PrN (ABBA) PrN (BABA) 1
1

2NY

tH

1
1
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tN tH 2NA

3
.     (S19.8) 

 
The expected proportion of alleles where Neandertal is derived is then twice the right hand side of Equation 
S19.8 divided by the expression in Equation S19.7. Therefore, 
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E(RN )
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Note that this result does not depend on the gene-flow parameters, tGF and f, or the effective population size 
of Neandertals, NN. With the parameter values used to generate Figure S50, we find that E(RN)=20.2%, 
which is slightly larger than the observed value of RN=18.0%.  
 
Exploration of parameter space 
We explored the sensitivity of the expected value of RN to varying different parameters in the model (this is 
further explored in simulation-based studies in SOM 14). 
 
We find that E(RN) is highly informative about tN as well as the effective population sizes.  For example, if tN 
is increased from 10,000 to 15,000 generations, E(RN)=15.7%. If the population sizes are all increased from 
10,000 to 15,000, E(RN)=23.9%. We note that previous studies have carefully fit models for the demographic 
history of Yoruba, thereby placing meaningful constraints on the effective population sizes. Thus, we can use 
the observed RN in conjunction with these demographic models to place constraints on tN, as we do in SOM 
14 to show that the divergence time of Neandertals and present-day humans tN is less than about 12,000 (cf. 
Figure S37). 
 
It is important to note that our analytical model is simplified compared with the simulation-based models of 
SOM 14. In particular, population growth in recent Yoruba history�—which we did not incorporate in the 
models we explored our model but which we do explore in SOM 14�—does have a modest effect, and is able 
to reduce E(RN) to the observed value of 18.0% while keeping tN at around 10,000 generations (cf. Figure 
S37) 
 
Expected values of three ratios of divergence times 
To further constrain our model, we can also take advantage of three ratios of various genetic divergence 
times that we have measured empirically from the data in this study: 
 
(Neandertal-H2)/(Chimpanzee-H2) per base pair divergence ratio 
We denote by tC the average genetic divergence time of chimpanzees and modern humans averaged across 
the genome (it is important to recognize that this is a genetic divergence time, which is guaranteed to be 
older than human-chimpanzee speciation time). We assume that tC is large enough so that coalescence 
between H2 and N is certain to occur more recently than tC. The expected ratio is then: 
 

Div(N, H2 )

(1 f ) tN 2NA f tGF 2NN 2 NA NN 1 1
2NN

tN tGF

tC

.   (S19.10) 

 
(Neandertal-H1)/(Chimpanzee-H1) per base pair divergence ratio 
Under the recent gene flow model, the H1 and Neandertal lineages are guaranteed to coalescence at least as 
old as time tN, with an expected TMRCA of 2NA above that point: 
 

Div(N, H1)
tN 2NA

tC          
(S19.11) 
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(H2-H1)/(Chimpanzee-H1) per base pair divergence ratio 
Under the recent gene flow model, the ratio is expected to equal: 
 

  Div(H2 , H1)

1 f tH 2NH 2 NA NH 1 1
2NN

tN tH

f tN 2NA

tC

.   (S19.12) 

 
Using the same parameter values as in Figure S50, we obtain Div(N,H1)=0.129, Div(N,H2)=0.127 and 
Div(H1,H2)=0.101 if we set tC=232,143 generations (corresponding to a divergence time of 6.5 million years 
if the average generation time is 28 years). These divergence ratios are sensitive to changes in all the 
parameters. In fact, they are almost linear functions of all the parameters except tC and they are all inversely 
proportional to tC. They are especially sensitive to changes in tN. However, as described in SOM 14, tN 
appears to be strongly constrained by RN. 
 
Combining measurements to constrain the proportion f of Neandertal ancestry in non-Africans 
We next compared the analytical expectations of all the quantities we measured to the observed values, to 
constrain the demographic parameters consistent with the data (in particular, the mixture proportion f). To 
take account of the uncertainty in the observed values, we generated combinations of the 9 parameters of our 
model, NY, NN, NH, NA, tGF, tH, tN, tC and f and kept combinations that resulted in expected values in the 
following ranges: 
 
0.04<D(H1, H2, N, C)<0.05 
0.17<RN<0.2 
0.129<Div(N, H1)<0.131          (S19.13) 
0.123<Div(N, H2)<0.127 
0.080<Div(H1, H2)<0.093 
 
Some results are shown in Figure S51. They confirm the numerical results presented above that the effective 
size of Neanderthals is the primary determinant of f. Effective sizes of 5,000 or less are consistent with the 
estimates of f obtained in SOM 18. 

 
 
 

Appendix 1: Effect of more complex demographic models on inferences 
 
We have assumed as simple a demographic model as possible that still allows for gene flow from 
Neandertals to the ancestors of modern non-African populations. 
 

Figure S51: Graphs showing dependence of f on other parameters when the 5 observed quantities in Expression (S19.3) are satisfied. 
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A potential concern with the procedure that we have used to constrain the mixture proportion f is that the 
apparent precision of our constraints on f could be an artifact of having oversimplified the model. However, 
we note that many of the simplifications are not likely to affect our ability to constrain f. 

1. Our analyses only analyzed one chromosome from each population. As a result, many demographic 
details do not matter. In particular, the population sizes and changes in population sizes of both H1 
(Africans) and H2 (non-Africans) more recently than tH make no difference to inferences, except in 
computing RN (in which a history of population growth in Yoruba affects results; SOM 14).  

2. We assume constant effective population sizes NH, NN, and NA. However, if we had allowed them to 
fluctuate over time, it would not change the generality of our results, as these quantities can be 
viewed as effective sizes that account for fluctuations in population size.  

3. We assumed that the cessation of gene flow between H1 and H2 or between the population ancestral 
to modern humans and the Neandertal population was instantaneous. However, if it as gradual, it 
would not be problematic for our inferences. A gradual population separation is relatively well 
captured for our purposes in terms of a change in the effective population size. Only the expected 
coalescence times of two or three lineages affect our results, and these quantities can be adequately 
capture by a modification in the effective population size. 

 
We also considered the issue of how gene flow between African and non-African populations after their 
separation could affect our inferences. In theory, gene flow can have a substantial effect on D, because it 
creates additional opportunities for coalescence between African and Neandertal lineages implying that the 
value of f that corresponds to an observed D from our analysis is a minimum. In particular, substantial gene 
flow between Africans and non-Africans after their initial divergence would require higher influx of genes 
from Neandertals to non-Africans to produce the same D. Empirically, however, there is evidence that such 
continued gene flow has not affected our inferences. All three groups of non-Africans (X = French, Han and 
Papuan) show indistinguishable D-values in the statistic D(African,X,Neandertal,Chimpanzee). Thus, gene 
flow after the historical divergence of these populations does not appear to have affected the D-statistics. 
 
Our model in Figure S48 assumes for simplicity that the population that contributed genetic material to the 
ancestors of non-Africans falls in a clade with the Neandertal we sequenced. However, if that population 
instead was itself already mixed with modern humans, each unit of gene flow would have less of an impact 
on the D-statistics, and we would be underestimating the gene flow proportion. We have no way of 
discerning whether the population(s) contributing ancestry to non-Africans did in fact fall into a clade with 
Neandertals. Thus, our analyses should be viewed as providing a minimum on f. 
 
Appendix 2: Expectation of S(N1, AFR, N2, C) used in SOM 18 
 
The method used above to derive the expectation of the D statistic can, with minor modification, be adapted 
to compute the model-based expectation of the closely related S(N1, AFR, N2, C) statistic, which is the basis 
for estimating the admixture fraction, f, in Supplement 18.  
 
Assume that N1 and N2 are two Neanderthal lineages. The two cases of interest are (i) N1 and N2 are two 
different Neanderthal bones that have been sequenced and (ii) N1 is the Neanderthal lineage that entered 
Europeans as a result of admixture and N2 is a lineage in one of the bones being sequenced. 
 
For both (i) and (ii), let T be the most recent time at which N1 and N2 had the opportunity to coalesce. In case 
(i), T is the age of the older of the two bones, tFossil. In case (ii), T=tGF, the time of the admixture event. Using 
the above argument for computing E(D), the only genealogy that results in an excess of ABBA over BABA 
is the one in which N1 and N2 coalesce in the Neanderthal population more recently than it joins with the 
ancestor of humans at tN (cf. Figure S49). The contribution to the expectation of S(N1, AFR, N2, C) is the 



 170

length of the branch connecting the MRCA of the human and Neanderthal lineages to the two Neanderthal 
lineages. That expected length of that branch is 
 

(T ) tN 2NA T t (T )          (S19.14) 
 
where t (T )  is the expected time to coalescence of N1 and N2, given that they start at T and coalesce before 
tN. That time is given by Eq. (S19.3) with T replacing tGF: 
 

t (T ) 2NN

tN T 1 1
2NN

tN T

1 1 1
2NN

tN T .       (S19.15) 

 
Taking the expected values in Eq. (S18.3) yields 
 

E(S(OOA, AFR, N ,C) µf (tGF ) .        (S19.16) 
E(N1, AFR, N2 ,C) µ (tFossil ) .        (S19.17) 

 
Therefore, the expected value of the right hand side Eq. (S18.5) is 
 

E( �ˆf ) f (tGF )
(tFossil )           (S19.18)

 

 
where tFossil is the age of the older of the two fossils from which sequence data is available. 
 
The ratio depends on the times, but necessarily tGF>tFossil because the fossils are from after the admixture 
event. The ratio is close to 1 for reasonable parameter values. For example, E( �ˆf ) / f 0.974  for tGF=2,500 
generations, tFossil=1,500 generations, tN=10,000 generations, NN=5,000 and NA=10,000. Thus, the correction 
to the estimate of the mixture proportion is no more than a few percent. 
 
We conclude that SOM 18�’s estimate of the mixture proportion of 1.3-2.7% is entirely consistent with our 
model-based analysis. 
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