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Can one learn history from the allelic spectrum?
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Abstract

It is well known that the neutral allelic frequency spectrum of a population is affected by the history of population size. A number of authors
have used this fact to infer history given observed allele frequency data. We ask whether perfect information concerning the spectrum allows
precise recovery of the history, and with an explicit example show that the answer is in the negative. This implies some limitations on how
informative allelic spectra can be.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the neutral allelic frequency spectrum
of a population is affected by the population history. A number
of authors have exploited this fact so as to infer population
history given observed allele frequency data (Przeworski et al.,
2000; Wakeley et al., 2001; Marth et al., 2004; Adams
and Hudson, 2004; Nielsen, 2004; Williamson et al., 2005;
Schaffner et al., 2005; Voight et al., 2005; Garrigan and
Hammer, 2006; Chen et al., 2007). This raises questions about
the relationship between ancient population size changes, and
the frequency spectrum at mutant sites. In particular we might
ask how much information can be obtained about ancestral
demography of a population by typing many unlinked markers
in a sample of individuals.

As more samples are gathered, in principle it is possible
to gain increasingly precise information about the frequency
spectrum. Therefore, we here examine two related questions
regarding the history of a population. First, how much
information can one obtain about population history given
a sample of n individuals? Second, suppose we knew the
frequency spectrum exactly. Is the history of past population
sizes then completely determined?
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Throughout this paper, we make two simplifying assump-
tions. First, we assume that the population is panmictic and
large enough to allow drift to be approximated by a diffusion
process. Second, we assume that mutation is rare in the popu-
lation so that the infinite sites model is appropriate, and we can
regard every segregating site as having arisen from a unique
mutation event. We consider the frequency spectrum f of the
derived (mutant) allele, where f (y) is defined as the expected
frequency of mutations of population frequency y within the
genome. All mutations and alleles in this paper are considered
to be selectively neutral, so ‘frequency spectrum’ would more
exactly be described as ‘neutral frequency spectrum’. We will
regard the frequency spectrum as only defined up to an arbi-
trary normalizing constant. This implies that the mutation rate
(assumed constant over time) is not relevant.

We ask, given the frequency spectrum f , is the history of
past population sizes determined? This question turns out to
be formally similar to the famous question Can one hear the
shape of a drum? (Gordon et al., 1992), and like that question
the answer is in the negative.

2. Preliminary theory

Consider a panmictic population, assumed for now to be
of constant large size N . Under several different population
genetic models, for example the discrete time Wright–Fisher
model, and the continuous time Moran model, the frequency
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dynamics of a mutation in the population are often modelled
using a well known diffusion process. In this setting, it
is standard to measure time in units of 2N generations.
For example, the drift in frequency of some mutation over
k (discrete time) generations in the Wright–Fisher model
corresponds approximately to drift over k/2N (continuous
time) units in the standard diffusion approximation. With this
usual diffusion approximation, define the Kimura transition
function K (x, y; τ) to be the probability density that the allele
frequency now (at time 0) is y given that the allele frequency at
time −τ was x . We assume here that 0 < x, y < 1. A theorem
of Kimura (1955) proves

K (x, y; τ) = x(1 − x)

∞∑
i=0

Ji (x)Ji (y)

X i
e−λ(i)τ (1)

with λ(i) given by:

λ(i) =
(i + 1)(i + 2)

2
(2)

where Ji are explicit polynomials (Jacobi polynomials)
orthogonal under the weight function x(1 − x) and X i is a
normalization constant so that∫ 1

0
x(1 − x)Ji (x)J j (x)dx = δi j X i (3)

and δi j is the Kronecker delta. Explicit formulae for Ji and
X i are given in the appendix of Patterson (2005) (where X i is
written as Ni ). Here our Ji are related to the Jacobi polynomials
P(1,1)

n (defined on [−1, 1]) by

Ji (x) = P(1,1)
i (2x − 1).

Write

K (x, y; τ) = x(1 − x)K0(x, y; τ)

and

lim
x→0

K0(x, y; τ) = Q(y, τ ).

Then by Taylor’s theorem,

K (ε, y; τ) = εQ(y, τ ) + O(ε2). (4)

From Eq. (1)

Q(y, τ ) =

∞∑
i=0

ci Ji (y)e−λ(i)τ (5)

where

ci = Ji (0)/X i . (6)

We are interested in the more general setting where the
ancestral population size changes through time. Once again,
the Wright–Fisher process can be approximated by a diffusion.
It is well understood that by choosing the appropriate
transformation of time, from time in generations to the diffusion
timescale, this diffusion reduces to the constant-size case.
Suppose that the population size t generations ago was N (t),
and define D(x, y; t) to be the conditional probability of y
given that the frequency t generations ago was x . To simplify
subsequent equations, we abuse notation slightly by allowing
t , the time in generations, to be continuous — this can be
naturally achieved, for example, by defining N (t) at noninteger
time points using a step function N (t) = N (btc) and then
taking D(x, y, t) = D(x, y, btc). We will assume that N (t)
is bounded away from 0 and also bounded above. So there exist
Nmin, Nmax with

Nmin ≤ N (t) ≤ Nmax

for all t . We set N = Nmin. Note that t is still ‘calendar time’,
clocked by the number of generations.

To transform to the diffusion timescale, define

τ(t) =

∫ t

0

1
2N (s)

ds. (7)

It can be shown that the following equation is approximately
true for large N :

D(x, y; t) = K (x, y; τ(t)). (8)

This approximation becomes exact in the limit as N → ∞,
in the following sense. Suppose that after a linear rescaling of
time, the (relative) population size changes remain fixed as N
increases, so that we may write N (t) = N G(t/2N ) for some
bounded function G. Now setting t = 2Nα, where α remains
constant, gives

τ(t; N ) =

∫ t

0

1
2N (s)

ds =

∫ α

0

1
G(v)

dv

so τ is independent of N . Finally, allowing N → ∞,
D(x, y; t) → K (x, y; τ). Eq. (8) is implicit in Slatkin and
Hudson (1991, Equation (4)) and explicit in Griffiths and Tavaré
(1994, Equation (3)). Throughout the remainder of this paper,
we assume that N is large enough that Eq. (8) can be considered
an identity. Note that

∂τ

∂t
=

1
2N (t)

. (9)

For the simple case that N (t) is the constant N then Eq. (7)
shows that τ measures time in units of 2N generations, the
standard normalization.

Considering time rescaled in this way, it is possible to
obtain the frequency spectrum at segregating sites. We take
an approach used by Kimura and Maruyama (1975), clarified
in Watterson (1976) and Sawyer (1977). This is discussed in
detail in Patterson (2005).

For a constant size population, take a time T , much larger
than N generations, where N is the population size. In this
case, mutations occur in the population at a constant rate per
generation, and when a new mutation occurs it has initial
frequency 1/2N . Now and later, we will assume a unit mutation
rate in the diffusion time scale for definiteness. Then the density
of alleles in the population at frequency y is proportional to∫ T

0
D(1/2N , y, t)dt.
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Letting T → ∞, and transforming to units of genetic time, the
frequency spectrum P(y) of the derived allele is

P(y) ∝

∫
∞

0
2N K (1/2N , y, τ )dτ

=

∫
∞

0
Q(y, τ )dτ + O(1/N ).

Taking the limit as N → ∞, Ewens (1963) showed that∫
∞

0
Q(y, t)dt =

2
y
. (10)

We now generalize this argument to the case of a changing
population size. If the population size t generations ago is N (t)
then the rate at which mutations occur in the population at time
t is proportional to N (t), and if a mutation occurs, then the
allele has frequency 1/2N (t).

Since N (t) is of order N = Nmin, which is large, we will
assume that under our diffusion approximation we only need to
retain the term of lowest order in 1/N (t). Thus

P(y) ∝

∫
∞

0

N (t)

N
D(1/2N (t), y; t)dt.

We will change variables from t to τ using Eq. (7).
It is convenient to define

Ñ (τ (t)) = N (t). (11)

Also, using Eq. (9) we have

t (τ ) =

∫ τ

0
2N (τ )dτ

and so

N (t (τ )) = Ñ (τ ). (12)

Eqs. (11) and (12) show a (1, 1) correspondence between
functions N and Ñ . We describe time indexed by τ as ‘genetic
time’ in which population frequencies diffuse at a constant rate.
This is in contrast to calendar time, indexed by generations.

Let n(t) = N (t)/N , and ñ(τ ) = n(t (τ )). Set

P?(y) =

∫
∞

0
n(t)D(1/2N (t), y; t)dt.

Retaining terms of lowest order in 1/N , then the frequency
spectrum P(y) has

P(y) ∝ P?(y)

where

P?(y) =

∫
∞

0
n(t)D(1/2N (t), y; t)dt

= 2
∫

∞

0
ñ(τ )Ñ (τ )K (1/2Ñ (τ ), y; τ)dτ

=

∫
∞

0
ñ(τ )Q(y, τ )dτ + O(1/N )

≈

∫
∞

0
ñ(τ )Q(y, τ )dτ. (13)
From this last expression, and using (10) we see that to order
1/N

2 ≤ y P?(y) ≤ 2
Nmax

Nmin

so that we have indeed retained the leading term of P?(y).
Eq. (13) which is Eq. (52) of Griffiths (2003) in a different

notation, generalizes Eq. (10).
Now, using Eq. (5) we find:

P(y) ∝

∞∑
i=0

ci Ji (y)

∫
∞

0
ñ(τ )e−λ(i)τ dτ. (14)

In this paper we will only consider the frequency spectrum as
scaled by an arbitrary constant (that is we do not consider the
overall polymorphism rate). P(y) is an improper distribution
(with a simple pole at 0). We choose to scale P so that∫ 1

0
y(1 − y)P(y)dy = 1/6. (15)

It follows from Eqs. (14) and (15) that there exists some
constant C so that

P(y) =

∞∑
i=0

di Ji (y) (16)

where

di = Cci

∫
∞

0
ñ(τ )e−λ(i)τ dτ.

Further, from the orthogonality of the Ji (y), Eq. (15) implies
that∫ 1

0
d0 y(1 − y)J0(y)dy = 1/6.

As J0(y) = 1, it follows that d0 = 1. So di may be computed
from ñ by setting

d ′
i = ci

∫
∞

0
ñ(τ )e−λ(i)τ dτ

and then setting

di =
d ′

i

d ′
0
.

Eq. (16) is the key to much of what follows and demonstrates
that even when the population size varies, the frequency
spectrum can be written as a sum of ‘harmonics’ (in this
case Jacobi polynomials) that decay with time, the high order
harmonics decaying rapidly. This reduction of the effect of a
given population demography to a countable set of coefficients
di immediately implies that any two demographies producing
the same coefficients must result in the same population
frequency spectrum.

Let us suppose that we have ascertained K unlinked
polymorphic biallelic markers (such as SNPs) and observe
allele counts (ak, bk) for marker k where ak is the count for
the derived allele. We can assume from the ascertainment, that
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ak, bk > 0. Then the likelihood of the observations for marker
k is

L(k) =

∫ 1

0
yak (1 − y)bk P(y)dy (17)

=

∞∑
i=0

di

∫ 1

0
y(1 − y)yak−1(1 − y)bk−1 Ji (y)dy. (18)

Properties of the Jacobi polynomials show that all terms of this
sum vanish for i > (ai + bi − 2). Define

X (a, b, i) =

∫ 1

0
ya(1 − y)b Ji (y)dy

then the log likelihood for our observations is given by

L =

∑
k

log
ak+bk−2∑

i=0

di X (ak, bk, i). (19)

3. Consequences

Eq. (19) may be interesting in analysing SNP data for
information about demographic history. Here we simply remark
that by the likelihood principle all information concerning N (t)
available from the data is encoded in the coefficients di of
Eq. (19). Further, even as the number of observed mutations
tends to infinity, any real sample of finite size n only provides
information about the first n coefficients d1, d2, . . . dn . In
practice many fewer such di are likely to be usefully estimated,
because the higher order ‘harmonics’ decay rapidly. [Here the
sample size n may be taken as the largest size available at any
locus.]

Now suppose that we know all the di exactly, an
unrealistically favourable assumption. A natural question to ask
is: does this determine the function ñ(τ )? In the remainder of
the paper we show the answer is negative.

Since ci is independent of the data, we can answer our
question by exhibiting a nonzero function D(τ ) on [0, ∞) that
is bounded and for which∫

∞

0
D(τ )e−λ(i)τ dτ = 0 (20)

for every i = 0, 1, . . . . To avoid trivialities we require that∫
∞

0
D2(τ )dτ > 0.

Then if we take Ñ (τ ) to be a constant N a second function with
the same frequency spectrum will be a demography X (t) such
that X̃(τ ) = N + αD(τ ) where we choose α small enough so
that X̃(τ ) is positive everywhere.

4. Müntz–Szasz theory

Thus we seek a nonzero function D(τ ) such that∫
∞

0
D(τ )e−

k(k+1)τ
2 dτ = 0
for every k = 1, 2, . . . . Change variables by u = e−τ . Then we
need a nonzero function f (u) = D(− log u) such that∫ 1

0
f (u)u

k(k+1)
2 −1du = 0

for every k = 1, 2, . . . .

Given a set E of nonnegative exponents ei (i = 1, 2, . . .),
then it follows from the Müntz–Szasz theorem (see for
example DeVore and Lorentz (1993, Chapter 11)) that a
necessary and sufficient condition that there exists a square-
integrable f with

∫ 1
0 f 2(u)du > 0 and∫ 1

0
f (u)uedu = 0

for every e ∈ E is that
∑

e∈E,e 6=0 1/e converges. This genera-
lizes the Weierstrass approximation theorem which in effect
takes E to be the set of positive integers, and states that any
continuous function on the unit interval can be approximated
arbitrarily well by polynomials. In our case

E = {k(k + 1)/2 − 1}, k = 1, 2, . . . .

Then
∑

e∈E,e 6=0 1/e converges, and hence a function f
satisfying the required conditions can be found.

Indeed choose an integer m > 0 6∈ E . If h is an integrable
function on [0, 1] set ‖h‖ (the L2 norm) to be

‖h‖ =

(∫ 1

0
h2(x)dx

) 1
2

.

Now define fn =
∑n

k=1 ck xk(k+1)/2−1 so as to minimize
‖xm

− fn‖. We can show:

1. limn→∞ fn(x) → f (x) ∀x ∈ [0, 1].

2. f (x) is continuous, bounded and infinitely differentiable in
[0, 1).

3. g(x) = xm
− f (x) has a norm greater than 0.

4.
∫ 1

0 g(x)xedx = 0 for every e ∈ E .

(Numerical evidence strongly suggests that f is in fact well-
behaved also at x = 1, but the convergence is delicate and we
do not claim a proof. If necessary we can modify f by a suitable
convolution, forming f ?, using an argument given below, and
take g to be xm

− f ?). Thus we can take D = g to be the
function that we seek. However, the details of our argument are
complicated, and we prefer to give a simpler example.

5. An explicit example

Let

f1(t) =
cos(π2/t) exp(−t/8)

√
t

.

Then the Laplace transform

f̂1(s) =

∫
∞

0
f1(t)e

−st dt (s > 0)

= cos
(π

2

√
(1 + 8s)

)
A(s) (21)
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where:

A(s) =

23/2√π exp
(
−

√
(1+8s)π

2

)
√

1 + 8s
. (22)

A(s) > 0 for every s ≥ 0. The integral is not an easy one, and
in the appendix we prove∫

∞

0

e−t cos(a2/t)

t
1
2

dt =
√

π exp(−a
√

2) cos(a
√

2) (23)

from which Eqs. (21) and (22) follow readily. This is
also an entry in standard tables (Gradshteyn and Ryzhik,
1979, Equation 3.967(2)).

It follows that:∫
∞

0
f1(t)e

−λ(i)t dt = 0

for every i = 0, 1, . . . . Evidently, f1(t) is badly behaved near
t = 0. To fix this, define f0(t) = exp(−1/t2) and

F(t) =

∫ t

0
f0(t − u) f1(u)du. (24)

Then by the convolution property of Laplace transforms∫
∞

0
F(t)e−λ(i)t dt = 0.

Define F(0) = 0. It is easy to check that F is continuous and
indeed infinitely differentiable on the nonnegative reals.

By taking convolutions of arbitrary functions with f1(τ ) it is
possible to generate a diverse family of bounded functions, each
of which is orthogonal to the family e−λ(i)τ , i = 0, 1, . . . . For
any member D of this family (for instance taking D(τ ) = F(τ )

above), we can add a small multiple of D to any population
history H̃ , (defined in genetic time) and produce an alternative
history with the same allelic spectrum as H̃ . As the map H̃ →

H is one-to-one this constructs families of population histories
in calendar time all with the same spectrum.

[Explicitly define

k(u) = 1 + αD(u)

and

h(t) = k(τ (t)) = 1 + αD(τ (t))

Then∫ τ(t)

0
(1 + αD(y))dy = t

so that τ(t) is the inverse function of the integral of 1+αD(y).].
Frequency spectrum data can therefore never fully specify

population history.

6. Discussion and conclusion

We show in Fig. 1 a function F(τ ) (see Eq. (24)) such that
all integrals∫

∞

0
F(τ ) exp(−λ(i)τ )dτ = 0.
Fig. 1. We show a function F(t) such that all integrals
∫

∞

0 F(τ ) exp(−λ(i)τ )

dτ = 0.

Fig. 2. Form Ñ (τ ) = 2N (1 − 9F(τ )) where F is the function of the previous
figure, and N is some baseline population size. Ñ is always positive. We show
genetic time (τ ) as a function of calendar time t .

Given allele frequency data, it is in principle impossible to
distinguish from allele frequency data a history Ñ (τ ) and an
alternate history Ñ ′(τ ) = Ñ (τ )+αF(τ ) provided that for every
τ , Ñ ′(τ ) > 0. As an example, choose a population size X and
set Ñ (τ ) = X (1−9F(τ )). Ñ is positive, bounded and bounded
away from zero. In Fig. 2 we plot genetic time τ as a function of
calendar time t , where we use Eq. (7) for the calculations. Then
we show in Fig. 3, the corresponding population size history as
a function of calendar time. Informally, changes in population
size at some past time are cancelled out by other changes in the
opposite direction. The population size is reasonably constant
at first, but there is a a strong bottleneck later that is completely
invisible in the frequency spectrum. It is possible to construct
alternative histories (not shown) with more recent ‘invisible’
bottlenecks or expansions.

By measuring the frequency spectrum, we gain information
about the coefficients di . This is equivalent to measuring the
projections of the population history onto the function space
spanned by the basis functions e−λ(i)τ , i = 0, 1, . . . .

We can never gain information about that component of
population history which is orthogonal to this basis set, and
which we have shown here to be nonzero in general. Further, in
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Fig. 3. In the top figure we show population size for a history corresponding
to Ñ (τ ) of Fig. 2. Most of the interesting structure is for relatively small times,
and so we also show an expansion of the figure for time t ≤ 3.5.

practice we anticipate that only a limited number of coefficients
{di } are likely to strongly contribute to the observed spectrum.
This suggests a natural way to perform inference about
history based on the frequency spectrum, concentrating on
that component of past ancestry about which the data provide
information. We might consider only histories expressible in
terms of an orthonormal basis (in the L2 norm) of functions,
constructed from the original basis above. Such an approach
would be sensible in cases where limited prior knowledge about
population history exists, or to enable inference that does not
depend on specific assumptions about historical events.

Our frequency spectrum findings relate only to the use of
unlinked neutral loci to infer population histories. Unlinked
markers might at first appear to be most informative (because
each marker contributes independent information), but in
fact the correlation between linked loci provides additional
information in inferring population size histories. Indeed, if it
were possible to observe full genealogies at many loci rather
than just SNP frequencies, we believe it would in theory be
possible to accurately reconstruct such histories. Although we
cannot directly observe a genealogy, this does suggest that
utilizing joint variation patterns at groups of tightly linked
markers will substantially improve ancestry inference, at the
cost of introducing additional methodological challenges.
Appendix

Theorem 1. Let a > 0 and

X (a) =

∫
∞

0

e−t cos(a2/t)

t
1
2

dt.

Then

X (a) =
√

π exp(−a
√

2) cos(a
√

2).

Proof. We need the following lemma:

Lemma 1. Let a > 0, u ≥ 0 and define

V (a, u) =

∫
∞

0

e−t

t
1
2

exp(−ua2/t) exp(ia2/t)dt

so that X (a) is the real part of V (a, 0). Then

V (a, u) =
√

π exp(−2a
√

u − i)

where on taking square roots we choose the root with positive
real part.

Proof. Assume u > 0. Define for s > 0

V̂ (s, u) =

∫
∞

0
as−1V (a, u)da. (A.1)

This is the Mellin transform of V . We will need repeatedly the
standard integral∫

∞

0
x p−1e−zx dx =

Γ (p)

z p (A.2)

valid for the real part of z being > 0, which is the integral
yielding the characteristic function of the gamma distribution.

Now

V̂ (s, u) =

∫
∞

0
as−1

∫
∞

0

e−t

t
1
2

exp(−ua2/t) exp(ia2/t)dtda.

The integral is absolutely convergent and so by Fubini’s
theorem we can interchange the order of integration. Thus

V̂ (s, u) =

∫
∞

0

e−t

t
1
2

∫
∞

0
as−1 exp(−ua2/t) exp(a2i/t)dadt

=

∫
∞

0

e−t

2t
1
2

∫
∞

0
bs/2−1 exp(−ub/t) exp(ib/t)dbdt

=

∫
∞

0

e−tΓ (s/2)t s/2

t
1
2 (u − i)s/2

dt

=
Γ (s/2)Γ ((s + 1)/2)

2(u − i)s/2

where we apply Eq. (A.2) to evaluate the inner integral, then
recognize the outer integral as the standard Gamma integral.
Now we apply the Legendre duplication formula

Γ (2z) =
1

√
2π

Γ (z)Γ (z +
1
2
)22z− 1

2

to obtain:

V̂ (s, u) =
√

π
Γ (s)

2s(u − i)s/2 .
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Write

(u − i)s/2
= (

√
u − i)s

where we take the square root with positive real part. Then,
applying Eq. (A.2) again, we see that

V̂ (s, u) =
√

π

∫
∞

0
as−1 exp

(
−2a

√
u − i

)
da.

By the uniqueness of the Mellin transform, this is enough to
prove our lemma for u > 0. Now let u tend to 0 from above.

The integrand of V (a, u) is dominated by e−t/t
1
2 and thus

V (a, u) → V (a, 0). This shows that∫
∞

0

e−t

t
1
2

exp(ia2/t)dt =
√

π exp(−2a
√

−i)

=
√

π exp
(

−2a(1 − i)
√

2

)
=

√
π exp(−

√
2a) exp(

√
2ai).

Taking real parts this proves our theorem. �

A related, somewhat easier argument for the integral∫
∞

0

e−(ut+x2/4t)

t
1
2

dt

is given in Bellman (1961, Page 30).
[The introduction of u may seem an unnecessary

complication, but at u = 0 the integral is only conditionally
convergent, and it is not clear how to justify the change in
the order of integration. This way we can interchange the
integration order when u > 0, and then let u → 0.]
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