
3 lectures on Gunter Lunter’s fastLS

Nick Patterson

Reich Lab (virtually)

October/November 2020

In a remarkable paper Haplotype matching in large cohorts . . . (Bioinfor-

matics, 2019)

Lunter gives an algorithm fastLS

that finds the best scoring path (we will define this precisely) through a set of

reference haplotypes in time independent of the size of the reference set.

We will describe our version in detail

1



The setup

We have a reference array H of haplotypes.

m rows (haplotypes)

n columns (biallelic SNPs)

Pick an allele for each column (reference allele).

Code H(i, j) = 0 if allele for haplotype i, SNP j matches reference

else H(i, j) = 1.

So H is an m× n binary array.

We define a path

p = (p0, p1 . . . pn−1) 0 ≤ pi < m

and this induces a map h(p) to a binary string in the obvious way.

h(p) = (h0, h1, . . .) where hj = H(pi, j)

2



Given a path p and a binary string w = (w0, w1, . . . wn−1) we define the number

of jumps J and garbles G. J is number of columns j with pj 6= pj−1 and G

number of columns j with h(p)j 6= wj. The score S(p,w) is

S = Jρ + Gµ

The problem we aim to solve is:

Preprocess H in work O(mn) and storage O(mn). Then given a 0, 1, 2

valued string =(x0, x1, . . . xn−1) find two binary strings w1,w2 and paths

p1,p2 in work O(n), independent of m such that

x = w1 + w2

and the score

S = S(p1,w1) + S(p2,w2)

is minimized.

In fact we don’t quite succeed. Our algorithm appears to be O(n) but I have

no proof for the worst case. I don’t believe Lunter has either.

3



Preprocessing

We carry out radix sort, keeping track of the data flow

We imagine a deck of cards. Initially card i in the deck has haplotype H(i) and

index i

We sort lexicographically, with ties broken by the index. We process columns

in order n− 1, n− 2, . . . , 0 from right to left.

For column j we go through the deck in order placing in two piles A0(j), A1(j)

depending on the value of bit j on the card. Then we simply place A0(j) on

top of A1(j).

By induction the resulting deck is lexicographically ordered on haplotypes from

columns j to n− 1.

We refer to deck(j) as the ordering after processing SNP j, with deck(n) as

the initial ordering. This sorts without any pairwise comparisons in work

O(mn)

4



As we sort we will compute and store:

1. A(j, i) the index of card i in the deck after processing SNP j.

2. Let z be card i in deck(j + 1) (z = i, when j = n− 1)

LF (j, i) the position of z in deck(j).

Thus LF (j, ?) records the permutation of cards from j + 1→ j.

It’s easy to see that A and LF can be computed in time O(mn).

We need two other arrays U, V

For each card i in deck j + 1 define w(i) to be the bit for SNP j.

U(j, i, x) = min{k ≥ i|w(k) = x, x = 0, 1}
We can compute U(j, ?, ?) in time O(m) by scanning backwards

Boundary condition: U(j, i, x) = m if there is no k ≥ i, w(k) = x Similarly

define

V (j, i, x) = max{k ≤ i|w(k) = x, x = 0, 1}
Boundary condition: V (j, i, x) = −1 if there is no k ≤ i, w(k) = x

5



The Central Routine: lfx

#define YES 1

#define NO 0

int

lfx (int col, int s, int e, int x, int *pnews, int *pnewe)

{

int ts, te;

*pnews = m;

*pnewe = -1;

ts = U[col][s][x] ;

te = V[col][e][x] ;

6



if (feasible (ts, te)) { // tests if interval is possible

*pnews = lf (col, ts);

*pnewe = lf (col, te);

return YES;

}

return NO;

}

Call

lfx(col, s, e, x, &news, &newe) ;

7



Here I(s, e) is an interval on deck(col+1) We claim that I(news, newe) is the

interval on deck(col) containing precisely the indices of I(s, e) where bit(col)

matches x.

Proof: I(ts, te) is the smallest such interval on deck(col+ 1) by construction

But conditional on bit(col) the map LF (k, ?) maintains the order. the result

follows.

8



First application

Given this machinery we now give a fast algorithm for (partial) haplotype exact

matching.

Problem:

Given a haplotype w = (w0, w1, . . . we) find the longest exact match

H(k, s), H(k, s + 1), . . . , H(k, e) in time independent of m.

The process is very simple.

Set a = 0, b = m− 1, s = 0.

For j = e, e-1, . . . 0 do

Set x = w(j). if lfx(j, a, b, x, pnewa, pnewb) = NO set s = j + 1 and break

pnews, pnewb are pointers to newa, newb

Set a = newa, b = newb

end do

Set k = A(s, a).

H(k, s), H(k, s + 1), . . . is the required haplotype.

This procedure runs in constant time per SNP processed.

Next lecture: fastLS on haploids

9


