3 lectures on Gunter Lunter’s fastLS

Nick Patterson
Reich Lab (virtually)
October/November 2020

In a remarkable paper Haplotype matching in large cohorts ... (Bioinfor-
matics, 2019)

Lunter gives an algorithm fastLS

that finds the best scoring path (we will define this precisely) through a set of
reference haplotypes in time independent of the size of the reference set.

We will describe our version in detail



The setup

We have a reference array H of haplotypes.

m rows (haplotypes)

n columns (biallelic SNPs)

Pick an allele for each column (reference allele).

Code H(i,j) = 0 if allele for haplotype 7, SNP j matches reference
else H(7,j) = 1.

So H is an m X n binary array.

We define a path
P = (p(bpl .. 'pn—l) 0 < D <m

and this induces a map h(p) to a binary string in the obvious way:.

h(p) = (ho, h1,...) where h; = H(p;, j)



Given a path p and a binary string w = (wy, wy, . . . w,_1) we define the number
of jumps J and garbles G. J is number of columns j with p; # p;—; and G
number of columns j with h(p); # w;. The score S(p, w) is

S =Jp+ Gu

The problem we aim to solve is:

Preprocess H in work O(mn) and storage O(mn). Then given a 0,1,2
valued string =(xg, x1,...T,_1) find two binary strings wy, wo and paths
P1, P2 in work O(n), independent of m such that

X = W1 + Wo
and the score
S = S(p1, w1) + S(p2, wz)
1S minimized.
In fact we don’t quite succeed. Our algorithm appears to be O(n) but I have
no proof for the worst case. I don’t believe Lunter has either.



Preprocessing

We carry out radiz sort, keeping track of the data flow
We imagine a deck of cards. Initially card 7 in the deck has haplotype H (i) and
index ¢

We sort lexicographically, with ties broken by the index. We process columns
in order n — 1,n — 2, ...,0 from right to left.

For column j we go through the deck in order placing in two piles Ay(j), A1(J)
depending on the value of bit j on the card. Then we simply place Ay(j) on
top of A1(j).

By induction the resulting deck is lexicographically ordered on haplotypes from
columns 7 ton — 1.

We refer to deck(j) as the ordering after processing SNP j, with deck(n) as
the initial ordering. This sorts without any pairwise comparisons in work

O(mn)



As we sort we will compute and store:
1. A(j,1) the index of card 7 in the deck after processing SNP j.

2. Let z be card ¢ in deck(j + 1) (z = ¢, when j =n — 1)
LF(j,17) the position of z in deck(j).
Thus LF'(j,*) records the permutation of cards from j + 1 — j.

It’s easy to see that A and LF' can be computed in time O(mn).

We need two other arrays U, V
For each card 7 in deck j + 1 define w(7) to be the bit for SNP j.

U(j,i,x) =min{k > i|lw(k) =z, x=0,1}

We can compute U(j, %, ) in time O(m) by scanning backwards
Boundary condition: U(j,4,x) = m if there is no k > i, w(k) = x Similarly
define

V(j,i,x) =max{k <ilw(k)=z, v=0,1}

Boundary condition: V'(j,4,x) = —1 if there isno k < i, w(k) = x



The Central Routine: [fz

#define YES 1
#define NO O

int
1fx (int col, int s, int e, int x, int *pnews, int *pnewe)
{

int ts, te;

*pnews = m;
*pnewe = -1;

ts = Ulcol] [s] [x] ;
te = V[col] [e] [x] ;



if (feasible (ts, te)) { // tests if interval is possible
*pnews = 1f (col, ts);
*pnewe = 1f (col, te);
return YES;

+

return NO;

+
Call

1fx(col, s, e, x, &news, &newe) ;



Here I(s, e) is an interval on deck(col +1) We claim that I(news, newe) is the
interval on deck(col) containing precisely the indices of I(s, e) where bit(col)
matches x.

Proof: I(ts,te) is the smallest such interval on deck(col + 1) by construction
But conditional on bit(col) the map LF'(k,) maintains the order. the result
follows.



First application

Given this machinery we now give a fast algorithm for (partial) haplotype exact
matching.

Problem.:

Given a haplotype w = (wp, wy, . . . w,) find the longest exact match
H(k,s),H(k,s+1),..., H(k,e) in time independent of m.

The process is very simple.

Seta=0,b=m—1,5s =0.

Forj=we, e1,...0do

Set x = w(j). if [fx(j,a,b, x, pnewa, pnewb) = NO set s = j + 1 and break
pnews, pnewb are pointers to newa, newb

Set a = newa, b = newb

end do

Set k = A(s, a).

H(k,s),H(k,s+1),...is the required haplotype.

This procedure runs in constant time per SNP processed.

Next lecture: fastLS on haploids



