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Mutations that have negative fitness consequences tend to be elimi-
nated from the population. Thus, identifying regions of the genome 
that are depleted of mutations has proven a useful strategy for inter-
preting the significance of de novo variation in developmental disor-
ders1, prioritizing rare disease-associated variants2, and identifying 
genes or noncoding regions of the genome that are under selective 
constraint3,4. The key idea of these approaches is that mutations 
occurring at sites evolving under a neutral model are likely to have 
little effect on reproductive fitness, whereas mutations at intolerant 
sites are more likely to be involved in severe early-onset disorders.

So far, the genetics community has developed a multitude of meth-
ods to assess genetic constraint. These studies have highlighted the 
importance of a carefully calibrated model of the background muta-
tion process to establish a neutral expectation. For instance, Samocha 
et al.1 determine the expected number of de novo variants per gene 
on the basis of a neutral model obtained by counting mutations for 
each possible trinucleotide context in intergenic SNPs. In a different 
approach, fitCons3 aggregates noncoding regions with similar func-
tional annotations and compares observed variation in those regions 
to an expectation obtained from presumably neutral flanking regions. 
Notably, these methods have mainly focused on SNPs and, to a lesser 
extent, on small indels. Currently, computational methods to analyze 
and assess the functional impact of repetitive elements in the genome 
are lacking. Thus, repeat variants are commonly excluded from medi-
cal genetics analyses.

To expand the range of interpretation tools to repeat elements, we 
focused on STRs, also known as microsatellites, in the human genome. 

STRs consist of repeated motifs of 1–6 bp and represent about 1.6 
million loci5, rendering them one of the largest repeat classes. STR 
mutations are responsible for over 30 Mendelian disorders6, many of 
which are thought to arise spontaneously from de novo mutations7,8. 
Emerging evidence suggests that STRs have an important role in com-
plex traits9 such as gene expression10 and DNA methylation11. In 
addition, analyses of cancer cell lines have shown that STR instability 
is a chief clinical sign for tumor prognosis12, but the functional impact 
of these instabilities is largely unknown.

Evaluating genetic constraint requires two fundamental compo-
nents: an accurate mutation model and a deep catalog of existing vari-
ation. Both of these have been difficult to obtain for repetitive regions 
of the genome. Current knowledge of the STR mutation process is 
based on low-throughput studies focusing on an ascertained panel of 
loci that are highly polymorphic. These include genealogical STRs on 
the Y chromosome13,14, approximately a dozen autosomal STRs from 
the CODIS (Combined DNA Index System) set used in forensics, and 
several thousand STRs historically used for linkage analysis15. These 
studies suggest an average mutation rate of approximately 10−3 to 
10−4 mutations per generation13–17. However, these loci likely have 
substantially higher mutation rates than most STRs. Moreover, well-
characterized STRs consist almost entirely of tetra- or dinucleotide 
repeats, which may mutate with different rates and processes in com-
parison to other repeat classes. Finally, STR mutation rate studies 
have been based on small numbers of families and show substantial 
differences regarding absolute mutation rates and mutation patterns 
(Supplementary Table 1).
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Here we developed a framework to measure constraint at indi-
vidual STRs that benefits from a new method to obtain observed 
and expected mutation rates at each locus. We developed a robust 
quantitative model that harnesses population-scale genomic data to 
estimate locus-specific mutation dynamics at each STR by correlating 
local SNP heterozygosity with STR variation. After extensive valida-
tion, we applied this model to estimate mutation rates at more than 
1 million STRs using whole-genome sequencing of 300 unrelated 
samples from diverse populations18. Applying these results, we built 
a model to predict mutation parameters from local sequence fea-
tures and measured constraint at each STR locus. One caveat is that 
our method is primarily applicable to STRs that can be completely 
spanned by short reads and does not accurately describe large expan-
sion mutations observed in conditions such as Huntington’s disease or 
fragile X syndrome. We show that our constraint metric can be used 
to predict the clinical relevance of individual STRs, including those 
in genes with known implications in developmental disorders. This 
framework will likely enable better assessment of the role of STRs in 
human traits and will inform future work incorporating STRs into 
human genetic studies.

RESULTS
A method to estimate local mutation parameters
We first sought to develop a method to estimate mutation param-
eters at each STR in the genome by fitting a model of STR evolu-
tion to population-scale data. A primary requirement of our method 
is a model of the STR mutation process that fits observed variation 
patterns. Motivated by the poor fit of the widely used generalized 
stepwise mutation model (GSM) to our data (Supplementary Note), 
we developed a novel length-biased version of the GSM that closely 
recapitulates observed population-wide trends (Supplementary  
Figs. 1 and 2, and Supplementary Note), including a saturation of 
the STR molecular clock over time. Our model includes three param-
eters:  denotes the per-generation mutation rate,  describes the 
strength of the directional bias of mutation, and p paramaterizes the 
geometric mutation step size distribution. Recently, we developed 
a method called MUTEA that employs a similar model to precisely 
estimate individual mutation rates for Y-chromosome STRs (Y-STRs) 
from population-scale sequencing of unrelated individuals. MUTEA 
models STR evolution on the underlying SNP-based Y phylogeny19. 
We found good concordance (r2 = 0.87) between MUTEA and tradi-
tional trio-based methods and high reproducibility (r2 = 0.92) across 
independent data sets. However, the main limitation of this approach 
is that it requires full knowledge of the underlying haplotype geneal-
ogy, which is difficult to obtain for autosomal loci.

To analyze the mutation rates of autosomal STRs, we extended 
MUTEA to analyze pairs of haplotypes. The key insight of our muta-
tion rate estimation procedure is that different classes of mutations 
provide orthogonal molecular clocks (Fig. 1). Consider a pair of hap-
lotypes consisting of an STR and its surrounding sequence. The SNP 
heterozygosity is a function of the time to the most recent common 
ancestor (TMRCA) of the haplotypes and the SNP mutation rate. On 
the other hand, the squared difference between the numbers of repeats 
of the two STR alleles (allele squared distance, or ASD) is a separate 
function of the TMRCA. The distribution of ASD values observed for 
a given TMRCA is determined by our STR mutation model. Using 
known parameters of the SNP mutation process, we can estimate the 
local TMRCA and calibrate the STR molecular clock15.

Our method takes as input unphased STR and SNP genotypes and 
returns maximum-likelihood estimates of STR mutation param-
eters. The TMRCA is approximated by local SNP heterozygosity 

using a pairwise sequentially Markovian coalescent model20 (Online 
Methods). ASD is calculated directly from a diploid STR genotype as 
the squared difference in the number of repeats of each allele. Our 
maximum-likelihood framework allows us to estimate parameters 
at a single STR or jointly across many loci. A potential caveat is that 
haplotype pairs may have shared evolutionary history and thus are not 
statistically independent, which is not expected to bias our estimates 
but will artificially shrink standard errors. To account for this non- 
independence, we adjust standard errors by calibrating to ground-truth 
simulated and capillary electrophoresis data sets (Supplementary  
Fig. 3 and Supplementary Note).

Validating parameter estimates
We first evaluated our estimation procedure on STR and SNP geno-
types simulated on haplotype trees using a wide range of mutation 
parameters. To evaluate our method on unphased diploid data, we 
formed a set of 300 ‘diploids’ by randomly selecting leaf pairs and 
recording the TMRCA and STR allele lengths. To test the effects 
of genotyping errors, we simulated ‘stutter’ errors using the model 
described in Willems et al.19 and used the expectation–maximization 
framework we developed previously21 to estimate per-locus stutter 
noise and correct for STR genotyping errors.

Our method obtained accurate per-locus estimates for  for most 
biologically relevant parameter ranges (Fig. 2a). Notably, estimates 
for p and  were less precise (Supplementary Fig. 4), and downstream 
analyses thus focused on mutation rates. The main limitation of our 
method is an inability to capture low mutation rates. Informative esti-
mates could be obtained for rates >10−6. This presumably stems from 
the low number of total mutations observed (median of 1 mutation for 

 = 10−6 in 300 samples). Aggregating loci or analyzing larger sample 
sizes gives higher power to estimate low mutation rates due to the 
higher number of total mutations observed. By analyzing loci jointly, 
we could accurately estimate mutation rates down to 10−6 with 30 or 
more loci and 10−7 with 70 or more loci (Fig. 2b). As expected, infer-
ring and modeling stutter errors correctly removed biases induced by 
stutter errors (Supplementary Fig. 5).

We next evaluated the ability of our method to obtain mutation rates 
from population-scale sequencing of Y-STRs, whose mutation rates 
have previously been characterized. We analyzed 143 males sequenced 
to 30–50× by the Simons Genome Diversity Project18 (SGDP) and 
1,243 males sequenced to 4–6× by the 1000 Genomes Project22. We 
used all pairs of haploid Y chromosomes as input to our maximum-
likelihood framework. We compared our results to two different 
mutation rate estimates: our previous MUTEA method19 and a study 
that examined approximately 2,000 father–son duos13. We found that 
our mutation rate estimates were consistent across sequencing data 
sets (r = 0.90; two-tailed P = 1.5 × 10−18; n = 48) (Supplementary Fig. 
6). Encouragingly, our rate estimates were similar to those reported 
by MUTEA on the SGDP data set (r = 0.89; two-tailed P = 5.9 × 10−15;  
n = 41) (Fig. 2c). Furthermore, our estimates were significantly cor-
related with those reported by Ballantyne et al.13 (r = 0.78; two-tailed 
P = 2.0 × 10−9; n = 41) (Supplementary Fig. 6), a substantial improve-
ment over results obtained using a traditional stepwise mutation 
model (r = 0.37; two-tailed P = 0.0150; n = 41), validating our choice 
of mutation model.

Finally, we evaluated our method on a subset of well-characterized  
autosomal diploid loci. We first analyzed the forensics CODIS mark-
ers, which have well-characterized mutation rates estimated across 
more than a million meiosis events (see URLs). Mutation rates 
were concordant with published CODIS rates (r = 0.90; two-tailed  
P = 0.00016; n = 11) (Supplementary Fig. 7). We also compared to  
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di- and tetranucleotide mutation rates previously estimated by Sun 
et al. by aggregating data from 1,634 loci in 85,289 Icelanders15. 
Mutation rates were in strong agreement (Fig. 2d and Supplementary 
Fig. 8), which is especially encouraging given that the STR genotypes 
in Sun et al. were obtained using an orthogonal capillary electro-
phoresis method.

Genome-wide characterization of the STR mutation process
Next, we applied our mutation rate estimation method across the 
genome. We analyzed 300 individuals from diverse genetic back-
grounds sequenced to 30–50× coverage by the SGDP Project18. We 
aligned reads to the hg19 reference genome using BWA-MEM23, and 
the resulting alignments were used as input to lobSTR24 (Online 
Methods). High-quality SNP genotypes were obtained from our 
previous study18. We used these as input to PSMC20 to estimate the 

local TMRCA between haplotypes of each diploid individual. For 
each locus, we adjusted genotypes for stutter errors (Online Methods, 
Supplementary Fig. 9, and Supplementary Table 2) and used adjusted 
genotypes as input to our mutation rate estimation technique. After 
filtering (Online Methods), 1,251,510 STR loci with an average of 
249 calls/locus remained for analysis. Results were concordant with 
mutation rates predicted by extrapolating MUTEA to autosomal loci 
(r = 0.71; two-tailed P < 1 × 10−16; n = 480,623) (Supplementary  
Fig. 10), suggesting that our mutation rate estimation is robust even 
in the case of unphased genotype data from modest sample sizes.

Per-locus mutation rates for each repeat motif length varied over 
several orders of magnitude, ranging from 10-8 to 10−2 mutations per 
locus per generation (Supplementary Fig. 11 and Supplementary 
Table 3). Median mutation rates were highest for homopolymer loci 
(log10 ( ) = −5.0) and decreased with the length of the repeat motif, 
with most pentanucleotides and hexanucleotides below our detection 
threshold. Interestingly, homopolymers also showed markedly higher 
length constraint than other loci, suggesting an increased pressure 
to maintain specific lengths. Step-size distributions also differed by 
repeat motif length. Homopolymers (median p = 1.00) and, to a lesser 
extent, repeats with motif lengths 3–6 (median p = 0.95) almost always 
mutate by a single repeat unit. On the other hand, dinucleotides are 
more likely to mutate by multiple units at once, consistent with previ-
ous studies15. Overall, our results highlight the diverse set of influ-
ences on the STR mutation process and suggest that there is limited 
utility to citing a single set of STR mutation parameters.

A framework for measuring STR constraint
Encouraged by the accuracy of our per-locus autosomal parameter 
estimates, we sought to create a framework to evaluate genetic con-
straint at STRs by comparing observed to expected mutation rates. 
Our framework relies on generating robust predictions of per-locus 
mutation rates based on local sequence features and comparing 
the departure of the observed rates from this expectation (Fig. 3a). 
STRs whose observed mutation rates are far lower than expected are 
assumed to be under selective constraint and thus more likely to have 
negative fitness consequences.

We began by evaluating whether local sequence features can accu-
rately predict STR mutation rates. We examined the relationship 
between STR mutation rate and a variety of features, including total 
STR length, motif length, replication timing, and motif sequence 
(Supplementary Fig. 12). While all features were correlated with 
mutation rate (Supplementary Table 4), total uninterrupted repeat 
sequence length and motif length were by far the strongest predic-
tors, as has been previously reported by many studies15,19. These 
features were combined into a linear regression model to predict 
per-locus mutation rates. We stringently filtered the training data to 
consist of presumably neutral (intergenic) loci with the best model 
performance. Analysis was restricted to STRs with motif lengths of  
2–4 bp with reference length 20 bp and small standard errors (Online 
Methods), as this subset showed mutation rates primarily in the range 
that our model can detect. Using this filtered set of markers, a linear 
model explained 65% of variation in mutation rates in an independent 
validation set (Fig. 3b).

We next developed a metric to quantify constraint at each STR 
by comparing observed to expected mutation rates. Our constraint 
metric is calculated as a Z score, taking into account errors in both the 
predicted and observed values (Online Methods). Negative Z scores 
denote loci that are more constrained than expected, and vice versa. 
Constraint scores for loci with detectable mutation rates followed 
the expected standard normal distribution (Supplementary Fig. 13). 
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Figure 1 Estimating STR mutation parameters from diploid data.  
(a) SNPs and STRs give orthogonal molecular clocks. The tree represents 
an example evolutionary history of an STR locus. Red dots denote STR 
mutation events and blue dots represent SNP mutation events; black 
branches denote an observed diploid locus, consisting of two haplotypes 
from the tree. Bolded nucleotides represent sequence differences between 
the two haplotypes. (b) Correlating local TMRCA with STR genotypes 
allows per-locus mutation rate estimation. For each diploid STR call, we 
use SNP heterozygosity to estimate the TMRCA of the surrounding region 
and compute the squared difference between the two STR alleles. Our 
STR mutation model describes the expected ASD for a given TMRCA  
(solid black line). 
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However, loci with mutation rates below our detection threshold of 
10−6 mutations/generation do not have reliable standard error esti-
mates and had downward-biased scores. Nevertheless, these loci are 
informative of a constraint signal in cases where the predicted muta-
tion rate is high but the observed rate is below our detection thresh-
old. Thus, rather than analyzing distributions of raw constraint scores, 
we binned scores by deciles and examined enrichments for functional 
annotations in each bin. For comparison, we also calculated mutation 
rates and constraint scores assuming a generalized stepwise model 
(Online Methods) and found that mutation rates and constraint scores 
were similar (r = 0.88 and r = 0.56 for mutation rates and constraint 
scores, respectively). All constraint scores analyzed below were cal-
culated using the length-constrained model.

STR constraint scores give insights into human phenotypes
Observed Z scores are concordant with biological expectations across 
genomic features. Introns, intergenic regions, and 3  UTRs closely 
matched neutral expectation (Fig. 3c). On the other hand, STRs in 
coding exons showed significantly reduced estimated mutation rates 
in comparison to the null model. These trends were recapitulated in 
the expected mutation rates (Fig. 3d), suggesting that STRs under 
constraint are also under evolutionary pressure to maintain sequence 
features contributing to lower mutability. Additional analysis of STR 
constraint in coding regions is given in the Supplementary Note and 
Supplementary Figure 14. In contrast to strong levels of constraint 
in coding exons, the STRs that we had previously identified to act as 
expression quantitative trait loci (eQTLs)10 showed a marked lack of 

constraint, consistent with observations in the Exome Aggregation 
Consortium (ExAC) data set25 showing that highly constrained genes 
are depleted for eQTLs.

Constraint can provide a useful metric to prioritize potential patho-
genic variants and interpret the role of individual loci in human condi-
tions. Notably, this metric is most sensitive to early-onset disorders, 
as mutations involved in later-onset disorders generally do not affect 
fitness and are thus expected to follow neutral patterns. Additionally, 
constraint is most sensitive to deleterious mutations following domi-
nant inheritance patterns, because recessive mutations are eliminated 
at much slower rates. Consistent with this theory, STRs implicated in 
early-onset dominant diseases show significantly higher constraint 
than expected (Fig. 4). We focused on STRs that can be genotyped 
from high-throughput sequencing data and are involved in congenital 
disorders. Notably, this excludes most large repeat expansions such as 
those involved in Huntington’s disease or fragile X syndrome. First, we 
examined polyalanine and polyglutamine tracts in RUNX2. Even mild 
expansion of four glutamine residues has been shown to result in con-
genital cleidocranial dysplasia (MIM 119600)26,27. Both repeats showed 
constrained mutation rates, with the polyglutamine repeat in the most 
constrained bin (Z = −11.3). Next, we tested a polyalanine expansion in 
HOXD13, which causes a severe form of synpolydactyly (MIM 186000). 
Again, a mild expansion (seven additional residues) has been shown to 
be pathogenic28. This repeat was on the boundary of the most severe 
constraint bin (Z = −10.9). As a negative control, we also tested con-
straint at the CODIS loci used in forensics, which have been specifically 
ascertained for their high polymorphism rates and are likely neutral. As 
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expected, the CODIS markers have weak constraint scores and exhibit 
slightly higher mutation rates than expected (Z > 0) (Fig. 4).

More broadly, we found that protein-coding STRs are highly 
enriched in genes that are involved in developmental processes 
(Fisher’s exact test P = 1.88 × 10−36; nfg (STR-containing genes)  
= 1,133; nbg (all protein-coding genes) = 20,913). Consistent with this 
result, three of the ten most highly constrained coding STRs in our 
data set are in genes with previously reported developmental disor-
ders following autosomal dominant inheritance patterns that have 

yet to be associated with pathogenic STRs: GATA6 (congenital heart 
defects; MIM 1600001), SOX11 (mental retardation; MIM 615866), 
and BCL11B (immunodeficiency 49; MIM 617237) (Supplementary 
Table 5). On the other hand, we found that pathogenic STRs of late-
onset STR-expansion disorders such as spinocerebellar ataxias were 
not highly constrained and showed mutation rates very close to pre-
dicted values (Fig. 4). These disorders often do not occur until the 
fourth or fifth decade of life29 and thus are not expected to be under 
strong purifying selection. Taken together, these results suggest that 
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with missense constraint score >3 as reported by ExAC. ”eSTRs” denotes STRs previously identified by Gymrek et al.10 to be associated with gene expression.
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STR constraint scores will provide a useful metric by which to pri-
oritize rare pathogenic variants involved in severe developmental 
disorders.

To facilitate use by the genomics community, genome-wide results 
of our mutational constraint analysis are provided in BED format (see 
“Data availability”), which can be analyzed with standard genomics 
tools such as BEDTools30.

DISCUSSION
Metrics for quantifying genetic constraint by comparing observed 
to expected variation have provided a valuable lens to interpret the 
impact of de novo SNP variants. These methods have been widely 
used for applications including quantification of the burden of  
de novo variation in neurodevelopmental disorders1,31, identifica-
tion of individual genes constrained for missense or loss-of-function  
variation25, and, more recently, measurement of constraint in noncoding  
elements4,32. However, the mutation rate at SNPs is sufficiently low 
that any given nucleotide has a low probability of being covered by 
a polymorphism, even in very large data sets of human variation  
(for example, a data set of more than 60,000 exomes contained about 1 
polymorphism per 8 nt25). Thus, the information obtained from SNP 
variation is never sufficient to provide a direct measurement of the likely 
evolutionary constraint on a particular mutation. In contrast, the much 
higher mutation rate at STRs makes it possible to precisely measure con-
straint on a per-locus basis, even with as few as 300 whole genomes.

We combined a deep catalog of STR variation18 with a novel model 
of the STR mutation process to develop an accurate method for meas-
uring per-locus STR mutation parameters. We used this method to 
estimate individual mutation rates for more than 1 million STRs in 
the genome. Observed STR mutation rates vary over several orders of 
magnitude, suggesting that it is not useful to cite a single mutation rate 
for all STRs. Median genome-wide mutation rates were far lower than 
previously reported15–17,33. This is consistent with the fact that most 
well-studied STR panels were specifically ascertained for their high 
heterozygosity, which is needed for traditional STR applications such 

as forensics or genetic linkage analysis. Our estimates confirm many 
known trends in STR mutation, such as the dependence of mutation 
rate on total STR length and the tendency of dinucleotide repeats to 
mutate in larger units than tetranucleotide repeats15. Moreover, this 
large data set allows us to exclude the possibility that certain sequence 
features, such as local GC content, have a strong role in determining 
STR mutation rates.

By comparing observed to expected mutation rates, we showed 
that we can measure genetic constraint at individual loci and use 
our constraint metric to prioritize potentially pathogenic variants. 
Notably, our approach provides a biologically agnostic means to assess 
the importance of individual loci, as it relies entirely on observed 
genetic variation. Although our analyses focused on STRs, the frame-
work developed here can be easily extended to any class of repetitive 
variation for which accurate genotype panels are available. In future 
studies, we envision that this work will provide a much needed frame-
work to interpret the dozens of de novo variants at STRs and other 
repeats arising in each individual, especially in the context of severe 
early-onset disorders. Beyond analyzing de novo variation, accurate 
models of STR mutation will enable scans for STRs under selection34, 
help identify rapidly mutating markers for forensics or genetic geneal-
ogy19,35, and improve statistical methods for incorporating STRs into 
quantitative genetics studies.

Our mutation rate estimation method and constraint metric face 
several limitations. First, estimating mutation rates in several hun-
dred samples is only accurate for mutation rates down to approxi-
mately 10−6 mutations per locus per generation. Loci with slower 
mutation rates produce biased results, limiting our ability to predict 
and measure mutation rates at a large number of loci, including the 
majority of protein-coding STRs. While we can detect general signals 
of constraint for slowly mutating STRs, larger sample sizes will allow 
for more accurate constraint scores and, thus, more informative pri-
oritization. Second, our method analyzes pairs of haplotypes rather 
than the entire evolutionary history of a locus. Although this has the 
advantage of allowing estimation across unphased data, it discards 

CODIS: D19S433

ATXN7

–8.0 –7.0 –6.0 –5.0 –4.0 –3.0 –2.0 –1.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

–8.0 –7.0 –6.0 –5.0 –4.0 –3.0 –2.0 –1.0

log10 ( )

0.0

0.2

0.4

0.6

0.8

1.0

–8.0 –7.0 –6.0 –5.0 –4.0 –2.0 –1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

−15 −10 −5 0 5 10

Z score

CODIS

Pathogenic
(early onset)

Pathogenic
(late onset)

Expected 
Estimated  

F
re

qu
en

cy

F
re

qu
en

cy

F
re

qu
en

cy

TPOX (2:1,493,425)
a b
CFS1PO (5: 149,455,887)

D19S433 (19:30,417,141)

DS7S820 (7:83,789,542)

D16S539 (16:86,386,308)

D5S818 (5:123,111,250)

D8S1179 (8:125,907,115)

TH01 (11:2,192,318)

D13S317 (13:82,722,160)

D3S1358 (3:45,582,231)

RUNX2 (6:45,390,419)

HOXD13 (2:176,957,786)

RUNX2 (6:45,390,487)

JPH3 (16:87,637,889)

ATXN7 (3:63,898,361)

CACNA1A (19:13,318,673)

PPP2R2B (5:146,258,291)

ATN1 (12:7,045,880)

–3.0

log10 ( )

log10 ( )

RUNX2: PolyQ

Figure 4 Constraint scores can be used for STR prioritization. (a) Z scores for example loci. Black indicates CODIS forensics markers and blue indicates 
known pathogenic STRs. For each STR, the CODIS marker or gene name is given and the chromosomal location (GRCh37) is indicated in parentheses. 
(b) Example distributions of estimated versus expected mutation rates. Left, a CODIS STR (D19S433), which is a presumably neutral STR. Middle, a 
highly constrained polyglutamine (PolyQ) repeat encoded in RUNX2 for which a mild expansion is implicated in cleidocranial dysplasia, an early-onset 
disorder. Right, a polyglutamine repeat encoded in ATXN7, implicated in spinocerebellar ataxia type 7, a late-onset disorder, which is accordingly not 
highly constrained.
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valuable information present in the full haplotype tree and limits the 
scope of the models that can be considered. For example, it precludes 
modeling allele-length-specific mutation rates, which requires esti-
mating ancestral states on the full haplotype tree. Finally, there are 
additional aspects of the STR mutation process not modeled here. 
Our method focuses on short, stepwise mutations occurring at rela-
tively stable STRs. Unstable expansions, such as those occurring in 
trinucleotide-repeat disorders, likely mutate by different models. Our 
model also ignores the effect of sequence interruptions and putative 
interactions between alleles, both of which have been hypothesized 
to influence STR mutation patterns19,36.

Future bioinformatic advances will likely overcome many of these 
issues and improve the precision of our estimates. In particular, while 
our method works on unphased data, phased STR and SNP haplotypes 
would allow analysis of the entire haplotype tree at a given locus, 
as is done by MUTEA, improving our accuracy and allowing us to 
consider a broader range of mutation models. Additionally, our cur-
rent tools are limited to STRs that can be spanned by short reads and 
thus exclude many well-known pathogenic loci such as those involved 
in trinucleotide-repeat-expansion disorders. We envision that long-
read and synthetic long-read technologies will both enable analysis 
of a broader class of repeats and provide an additional layer of phase 
information. Finally, larger sample sizes will allow more accurate 
analysis of constraint for slowly mutating loci. Taken together, these 
advances will provide a valuable framework for interpreting mutation 
and selection at hundreds of thousands of STRs in the genome and 
will help prioritize STR mutations in clinical studies.

URLs. NIST CODIS mutation rates, http://www.cstl.nist.gov/str-
base/mutation.htm; ExAC downloads, http://exac.broadinstitute.
org/downloads; Go Annotation tools (goatools), https://github.com/
tanghaibao/goatools; Statsmodels, http://www.statsmodels.org/.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS
We thank N. Patterson, M. Daly, Y. Wan, and A. Goren for helpful discussions.  
D.R. was supported by NIH grants GM100233 and HG006399 and is a Howard 
Hughes Medical Institute investigator. M.G. was supported by NIH/NIMH grant 
1U01MH105669-01. Y.E. holds a Career Award at the Scientific Interface from the 
Burroughs Wellcome Fund. This study was supported in part by National Institute 
of Justice grant 2014-DN-BX-K089 (Y.E., T.W., M.G.) and by a generous gift from 
Paul and Andria Heafy (Y.E.).

AUTHOR CONTRIBUTIONS
M.G., D.R., and Y.E. conceived the study. M.G. prepared the initial manuscript and 
performed analyses. T.W. developed the likelihood-maximization procedure and 
helped design analyses. All authors contributed to the development of the mutation 
model and mutation rate estimation technique.

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details are available in the online 
version of the paper.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1. Samocha, K.E. et al. A framework for the interpretation of de novo mutation in 
human disease. Nat. Genet. 46, 944–950 (2014).

2. Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S. & Goldstein, D.B. Genic 
intolerance to functional variation and the interpretation of personal genomes. PLoS 
Genet. 9, e1003709 (2013).

3. Gulko, B., Hubisz, M.J., Gronau, I. & Siepel, A. A method for calculating probabilities 
of fitness consequences for point mutations across the human genome. Nat. Genet. 
47, 276–283 (2015).

4. di Iulio, J. et al. The human functional genome defined by genetic diversity. Preprint 
at. bioRxiv http://dx.doi.org/10.1101/082362 (2016).

5. Willems, T., Gymrek, M., Highnam, G., Mittelman, D. & Erlich, Y. The landscape 
of human STR variation. Genome Res. 24, 1894–1904 (2014).

6. Mirkin, S.M. Expandable DNA repeats and human disease. Nature 447, 932–940 
(2007).

7. Houge, G., Bruland, O., Bjørnevoll, I., Hayden, M.R. & Semaka, A. De novo 
Huntington disease caused by 26–44 CAG repeat expansion on a low-risk haplotype. 
Neurology 81, 1099–1100 (2013).

8. Amiel, J., Trochet, D., Clément-Ziza, M., Munnich, A. & Lyonnet, S.  
Polyalanine expansions in human. Hum. Mol. Genet. 13, R235–R243  
(2004).

9. Press, M.O., Carlson, K.D. & Queitsch, C. The overdue promise of short tandem 
repeat variation for heritability. Trends Genet. 30, 504–512 (2014).

10. Gymrek, M. et al. Abundant contribution of short tandem repeats to gene expression 
variation in humans. Nat. Genet. 48, 22–29 (2016).

11. Quilez, J. et al. Polymorphic tandem repeats within gene promoters act as modifiers 
of gene expression and DNA methylation in humans. Nucleic Acids Res. 44,  
3750–3762 (2016).

12. Hause, R.J., Pritchard, C.C., Shendure, J. & Salipante, S.J. Classification and 
characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 
1342–1350 (2016).

13. Ballantyne, K.N. et al. Mutability of Y-chromosomal microsatellites: rates, 
characteristics, molecular bases, and forensic implications. Am. J. Hum. Genet. 
87, 341–353 (2010).

14. Burgarella, C. & Navascués, M. Mutation rate estimates for 110 Y-chromosome 
STRs combining population and father–son pair data. Eur. J. Hum. Genet. 19, 
70–75 (2011).

15. Sun, J.X. et al. A direct characterization of human mutation based on microsatellites. 
Nat. Genet. 44, 1161–1165 (2012).

16. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 
2, 1123–1128 (1993).

17. Ellegren, H. Heterogeneous mutation processes in human microsatellite DNA 
sequences. Nat. Genet. 24, 400–402 (2000).

18. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 
diverse populations. Nature 538, 201–206 (2016).

19. Willems, T., Gymrek, M., Poznik, G.D., Tyler-Smith, C. & Erlich, Y. Population-scale 
sequencing data enable precise etimates of Y-STR mutation rates. Am. J. Hum. 
Genet. 98, 919–933 (2016).

20. Li, H. & Durbin, R. Inference of human population history from individual whole-
genome sequences. Nature 475, 493–496 (2011).

21. Willems, T. et al. Genome-wide profiling of heritable and de novo STR variations. 
Nat. Methods 14, 590–592 (2017).

22. 1000 Genomes Project Consortium. An integrated map of genetic variation from 
1,092 human genomes. Nature 491, 56–65 (2012).

23. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

24. Gymrek, M., Golan, D., Rosset, S. & Erlich, Y. lobSTR: a short tandem repeat profiler 
for personal genomes. Genome Res. 22, 1154–1162 (2012).

25. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 
536, 285–291 (2016).

26. Mastushita, M. et al. A glutamine repeat variant of the RUNX2 gene causes 
cleidocranial dysplasia. Mol. Syndromol. 6, 50–53 (2015).

27. Shibata, A. et al. Characterisation of novel RUNX2 mutation with alanine tract 
expansion from Japanese cleidocranial dysplasia patient. Mutagenesis 31, 61–67 
(2016).

28. Goodman, F.R. et al. Synpolydactyly phenotypes correlate with size of expansions 
in HOXD13 polyalanine tract. Proc. Natl. Acad. Sci. USA 94, 7458–7463 
(1997).

29. La Spada, A.R. & Taylor, J.P. Repeat expansion disease: progress and puzzles in 
disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

30. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics 26, 841–842 (2010).

31. Michaelson, J.J. et al. Whole-genome sequencing in autism identifies hot spots for 
de novo germline mutation. Cell 151, 1431–1442 (2012).

32. Telenti, A. et al. Deep sequencing of 10,000 human genomes. Proc. Natl. Acad. 
Sci. USA 113, 11901–11906 (2016).

33. Huang, Q.Y. et al. Mutation patterns at dinucleotide microsatellite loci in humans. 
Am. J. Hum. Genet. 70, 625–634 (2002).

34. Haasl, R.J. & Payseur, B.A. Microsatellites as targets of natural selection. Mol. Biol. 
Evol. 30, 285–298 (2013).

35. Ballantyne, K.N. et al. Toward male individualization with rapidly  
mutating Y-chromosomal short tandem repeats. Hum. Mutat. 35, 1021–1032 
(2014).
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ONLINE METHODS
STR mutation model. We model STR mutation using a discrete version of 
the Ornstein–Uhlenbeck process described in detail in the Supplementary 
Note. Our model assumes that STR mutations occur at a rate of  mutations 
per locus per generation according to a step-size distribution with first and 
second moments

E a a a ai i i i1 |

E a a ai i i1
2 2|

 

where ai is the length of the STR allele after mutation i and ai+1 is the length 
after mutation i + 1. This implies that long alleles (>0) tend to decrease back 
toward 0 and short alleles (<0) tend to increase toward 0. For all analyses, all 
alleles are assumed to be relative to the major allele, which is set to 0.

Mutation parameter estimation. We extended the MUTEA framework to 
estimate parameters at diploid loci for which the underlying haplotype tree 
is unknown. For each sample genotyped at locus j, we obtain tij, the TMRCA 
between the two haplotypes of sample i, and a distribution Gij, where Gij (a,b) 
gives the posterior probability that sample i has genotype (a,b). We initially 
assume that haplotype pairs are independent and maximize the following like-
lihood function at locus j

L D P G tj j i ij ij( | ) ( | , )

P G t G a b A a b tij ij a b ij ij( | , ) , (( ) | ),
2

 
where  = { , ,p}, Dj = {(G1j,t1j), (G2j,t2j)… (Gnj,tnj)}, n is the number of sam-
ples, and A(x|t) gives the probability of observing a squared distance of x 
between alleles on haplotypes with a TMRCA of t. We used the Nelder–Mead 
algorithm to minimize the negative of the log-likelihood and imposed bounda-
ries of   [10–8,0.05],   [0,0.9], p  [0.7,1.0].

To compute the function A we first build a transition matrix M of size L × L,  
where L is the number of allowed alleles. M[a,b] gives the probability that allele 
a mutates to allele b in a single generation. Step sizes were set on the basis of 
the model described in the Supplementary Note

M a a k u p p kt t t
k, 1 01

M a a k d p p kt t t
k, 1 01

M a a k kt t, 1 0  

where u pa
t

t1
2

 and d pa
t

t1
2

.

M represents a stochastic process, and thus MT gives transition probabilities 
along a branch T generations long. A single row MT[a,:] gives the expected 
allele frequency spectrum of a locus for which the ancestral allele was a  
and the MRCA was T generations ago. We can use this to derive the prob-
ability of observing a given squared distance between two alleles separated 
by t generations. 

A x t a M a i M a i x
i L x

t t( | , ) , ,
..1

 

In our data, we do not know the ancestral allele a for each pair of haplotypes. 
However, under our model of STR evolution, A does not depend on the ances-
tral allele and so we assume 0 as the ancestral allele for simplicity. Notably, we 
have assumed that haplotype pairs are statistically independent. While this 
does not bias our results, standard errors must be adjusted as described in the 
Supplementary Note.

Estimating mutation parameters using a generalized stepwise model.  
Under a GSM, the ASD should be linearly related to the TMRCA for a pair 
of haplotypes37

( )a a ti j ij
2 2 eff  

where ai and aj are the repeat lengths of the STR alleles on two haplotypes, 
i and j, tij is the TMRCA for that pair of haplotypes, and eff is the effective 
mutation rate. The effective mutation rate is defined as eff m

2  , where  
is the per-generation mutation rate of the locus and step sizes are drawn from 
a distribution with mean 0 and variance m

2 .
For each locus, we calculated eff by regressing ASD on TMRCA and divid-

ing the resulting slope by 2.

Joint estimation of mutation parameters across multiple loci. The MUTEA 
approach can be easily extended to estimate mutation parameters in aggregate 
by jointly maximizing the likelihood across multiple loci at once. 

L D Dj j| ( | )
 

To minimize computation and because  and p tended to be less consistent 
across loci, we first perform per-locus analyses to obtain individual estimates 
for  and p. We then hold these parameters constant at the mean value across 
all loci and only maximize the joint likelihood across .

Simulating SNP–STR haplotypes. We used fastsimcoal38 to simulate coa-
lescent trees for 600 haplotypes using an effective population size of 100,000. 
We then forward-simulated a single STR starting with a root allele of 0 using 
specified values of , , and 

2
2

2 p
p

. 

Mutations were generated according to a Poisson process with rate 
1

 

and following the model described above. We chose 300 random pairs of hap-
lotypes to form diploid individuals to use as input to our estimation method. 
We simulated reads for each locus assuming 5× sequencing coverage, with each 
read equally likely to originate from each allele. Stutter errors were simulated 
using the model described in Willems et al.19 with u = 0.1, d = 0.05, and s = 0.9.  
This indicates that stutter noise causes the true allele to expand or contract with 10% 
or 5% frequency, respectively, and that error sizes are geometrically distributed with 
10% (1 – s) probability of mutating by more than one repeat unit. For estimating 
per-locus parameters, we performed ten simulations with each set of parameters.

Data sets. Previously published mutation rate estimates. MUTEA mutation rate 
and length bias estimates for the 1000 Genomes Project data set were obtained 
from Table S1 in Willems et al.19. De novo Y-STR mutation rate estimates were 
obtained from Table S1 of Ballantyne et al.13. CODIS mutation rates were 
obtained from NIST (see URLs).

Annotations. Local GC content and sequence entropy were obtained from 
the “strinfo” file included in the lobSTR hg19 reference bundle. Missense con-
straint scores were downloaded from the ExAC website (see URLs).

STR genotyping. Profiling STRs from short reads. Raw sequencing reads 
for the SGDP data set were aligned using BWA-MEM23. Alignments were 
used as input to the allelotype tool packaged with lobSTR24 version 4.0.2 
with non-default flags --filter-mapq0 --filter-clipped --max-repeats-in-ends  
3 --min-read-end-match 10 --dont-include-pl --min-het-freq 0.2 --noweb. 
STR genotypes are available on dbVar under accession nstd128. Y-STRs for 
1000 Genomes Project data were previously profiled24 and were preprocessed 
as described in19.

Filtering to obtain high-quality STR calls. Y-STR calls for SGDP were fil-
tered using the lobSTR_filter_vcf.py script available in the lobSTR download 
with arguments --loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8 
--loc-cov 3 --call-cov 3 --call-dist-end 20 --call-log-score 0.8 and ignoring 
female samples. Autosomal samples were filtered using --loc-max-ref-length 
80 --loc-call-rate 0.8 --loc-log-score 0.8 --loc-cov 5 --call-cov 5 --call-dist-end 
20 --call-log-score 0.8.

Calculating local TMRCA. As described in Mallick et al.18, we used the pair-
wise sequential Markovian coalescent (PSMC)20 to infer local TMRCAs across 
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the genome in each sample. For each region overlapping an STR, we calculated 
the geometric mean of the upper and lower heterozygosity estimates returned 
by PSMC. We scaled heterozygosity to TMRCA on the basis of the genome-
wide average PSMC estimate (0.00057) of a French sample with a previously 
estimated genome-wide average TMRCA of 21,000 generations15. To accom-
modate errors in this scaling process, final mutation rate estimates were scaled 
to match the mean values of published de novo rates (see below).

Pairwise Y-chromosome analysis. For each pair of SGDP Y chromosomes, 
we first calculated the pairwise sequence heterozygosity. We then scaled this 
to TMRCA using the relationship ti = hi/2 YSNP, where hi is the heterozygosity 
of pair i and YSNP is the Y-chromosome SNP mutation rate. YSNP was set to 
2.1775 × 10−8 as reported by Helgason et al.39. For the 1000 Genomes Project 
set, we obtained a Y phylogeny that was built by the 1000Y analysis group40. 
We scaled the tree using a method described previously19. For each data set, 
we used pairwise TMRCA and ASD estimates as input to our maximum-
likelihood procedure.

Scaling mutation parameters. Our TMRCA estimates, and thus mutation 
rate estimates, scale linearly with the choice of SNP mutation rate. To account 
for this and to compare estimates between data sets, we scaled our mutation 
rates by a constant factor such that the mean STR mutation rates between 
data sets were identical. Genome-wide estimates are scaled on the basis of the 
comparison with CODIS rates.

Measuring STR constraint. Predicting mutation rates from local sequence 
features. We trained a linear model to predict log10 mutation rates from local 
sequence features including GC content, replication timing, sequence entropy, 
motif sequence, motif length, total STR length, and uninterrupted STR length. 
The model was built using presumably neutral intergenic loci, with 75% of 
the loci reserved for training and 25% for testing. While all features were 
correlated with mutation rates, the best test performance was achieved using 
only motif length and uninterrupted STR length. Models were built using the 
python Statsmodels package (see URLs).

Model training was restricted to STRs whose mutation rates could be reli-
ably estimated. We filtered STRs with total reference length <20 bp, as the 

majority of shorter STRs returned biased mutation rates at the optimization 
boundary of 10−8. We further filtered STRs with standard errors equal to  
0, >0.1, or undefined (usually indicating that the lower optimization bound-
ary of 10-8 was reached). However, these loci were included in testing and in 
downstream analysis, as the majority of coding STRs fell into this category.

Calculating Z scores. Constraint scores are calculated for each locus i as 

Z
E

i
i i

i iSE var[ ] / /2 2 2

 

where i is the observed mutation rate, SE[ i] is the standard error of the 
observed mutation rate, E[ i] is the predicted mutation rate, and var[ i] is 
the variance of the prediction. In all cases, i refers to the log10 mutation rate, 
with the log10 notation omitted for simplicity.

Constraint score analysis. GO analysis was performed using goatools 
 (see URLs). OMIM disease annotations were accessed on 8 December 2016.

Code availability. Code used in this study is available at https://github.com/
gymreklab/mutea-autosomal.

Data availability. Per-locus mutation parameters are available at https://s3-
us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_
v2.bed.gz. The file format is described in https://s3-us-west-2.amazonaws.
com/strconstraint/readme_v2.txt. 

A Life Sciences Reporting Summary is available.

37. Garza, J.C., Slatkin, M. & Freimer, N.B. Microsatellite allele frequencies in humans 
and chimpanzees, with implications for constraints on allele size. Mol. Biol. Evol. 
12, 594–603 (1995).

38. Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator of 
genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 
27, 1332–1334 (2011).

39. Helgason, A. et al. The Y-chromosome point mutation rate in humans. Nat. Genet. 
47, 453–457 (2015).

40. Poznik, G.D. et al. Punctuated bursts in human male demography inferred from 
1,244 worldwide Y-chromosome sequences. Nat. Genet. 48, 593–599 (2016).

©
 2

01
7 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
, p

ar
t o

f S
pr

in
ge

r 
N

at
ur

e.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.

https://github.com/gymreklab/mutea-autosomal
https://github.com/gymreklab/mutea-autosomal
https://s3-us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz
https://s3-us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz
https://s3-us-west-2.amazonaws.com/strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz
https://s3-us-west-2.amazonaws.com/strconstraint/readme_v2.txt
https://s3-us-west-2.amazonaws.com/strconstraint/readme_v2.txt

	Interpreting short tandem repeat variations in humans using mutational constraint
	RESULTS
	A method to estimate local mutation parameters
	Validating parameter estimates
	Genome-wide characterization of the STR mutation process
	A framework for measuring STR constraint
	STR constraint scores give insights into human phenotypes

	DISCUSSION
	Methods
	ONLINE METHODS
	STR mutation model.
	Mutation parameter estimation.
	Estimating mutation parameters using a generalized stepwise model.
	Joint estimation of mutation parameters across multiple loci.
	Simulating SNP–STR haplotypes.
	Data sets.
	Calculating local TMRCA.
	Pairwise Y-chromosome analysis.
	Scaling mutation parameters.
	Measuring STR constraint.
	Code availability.
	Data availability.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Estimating STR mutation parameters from diploid data.
	Figure 2 Accurate estimation of STR mutation parameters from simulated data.
	Figure 3 A framework for measuring STR constraint.
	Figure 4 Constraint scores can be used for STR prioritization.


	Button 2.Page 1: 
	Button 4.Page 1: 


