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Supplementary Figure 1. P–P plot of EIGENSTRAT test statistics.
The empirical distribution of EIGENSTRAT test statistics closely matches 
a theoretical χ2 distribution.



Supplementary Table 1: Simulations using K axes of variation 

 K = 1  K = 2           K = 5 K = 10 

Random SNPs 0.0001 0.0001 0.0001 0.0001 

Differentiated SNPs 0.0001 0.0001 0.0001 0.0001 

Causal SNPs 0.4923 0.4916 0.4891 0.4860 

 

Proportion of associations reported as significant by EIGENSTRAT adjusting along the top K 

axes of variation, for various values of K.  
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Supplementary Table 2: Simulations using M SNPs 

M False positive rate Correlation of top axis 

100 0.0826 68.4% 

200 0.0079 80.9% 

500 0.0016 90.8% 

1,000 0.0007 94.8% 

2,000 0.0002 97.4% 

5,000 0.0001 99.0% 

10,000 0.0001 99.5% 

20,000 0.0001 99.7% 

50,000 0.0001 99.9% 

100,000 0.0001 99.9% 

 

Proportion of associations falsely reported as significant by EIGENSTRAT at highly 

differentiated candidate SNPs for various values of M, the number of random SNPs used to 

infer population structure.  The correlation between the top axis of variation and population 

membership across samples is also reported. 
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Supplementary Table 3: Simulations of Pritchard and Donnelly 

(a) 

M χ2 GC SA EIGENSTRAT 

50 0.016 0.008 0.012 0.010 

200 0.016 0.008 0.009 0.008 

1,000 0.016 0.007 0.009 0.008 

 

(b) 

M χ2 GC SA EIGENSTRAT 

50 0.449 0.334 0.362 0.432 

200 0.449 0.351 0.285 0.430 

1,000 0.449 0.355 0.281 0.433 

 

Proportion of associations reported as significant by Armitage trend χ2 statistic, Genomic 

Control (GC), Structured Association (SA) and EIGENSTRAT for various values of M, the 

number of random SNPs used to infer population structure.  For each value of M, we report 

the proportion of SNPs at which each method reports a causal association with P-value less 

than 0.01.  Results are given for (a) random candidate SNPs and (b) causal candidate SNPs. 
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Supplementary Table 4: Simulations with no stratification and n subpopulations 

n χ2 GC SA EIGENSTRAT 

3 0.446 0.435 0.279 0.449 

5 0.443 0.435 0.225 0.452 

10 0.450 0.440 0.166 0.448 

 

Proportion of associations reported as significant by Armitage trend χ2 statistic, Genomic 

Control (GC), Structured Association (SA) and EIGENSTRAT for causal candidate SNPs, 

assuming no systematic ancestry differences between cases and controls, and using 1,000 

random SNPs to infer population structure.  For each value of n, the number of subpopulations 

used to generate data, we report the proportion of causal candidate SNPs at which each 

method reports a causal association with P-value less than 0.01.   
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Supplementary Table 5: Stratification correction at rs10511418 using M SNPs 

M EIGENSTRAT Correlation of top axis 

1,000 29.85 78.6% 

2,000 20.45 89.5% 

5,000 16.10 95.7% 

10,000 18.14 98.0% 

20,000 14.45 99.0% 

50,000 11.22 99.7% 

100,000 12.27 99.95% 

116,204 11.61 100.00% 

 

Association statistics reported by EIGENSTRAT at the candidate SNP rs10511418 for various 

values of M, the number of random SNPs used to infer population structure.  The correlation 

between the top axis of variation and the axis inferred using all SNPs is also reported. 

 

 

 

 

 

 

 

 

 



Supplementary Note 

1. Distribution of EIGENSTRAT statistics 

As described in the main text, we computed EIGENSTRAT statistics for random candidate 

markers which were simulated under a model with systematic ancestry differences between 

cases and controls. We analyzed EIGENSTRAT statistics at 100,000 random candidate 

markers to verify that they follow a χ2 distribution with 1 degree of freedom.  

 

We first produced a P-P plot of our empirical distribution against a theoretical � 2 distribution 

(Supplementary Fig. 1 online). The P-P plot indicates the empirical versus theoretical 

proportion of values exceeding any given threshold. The visual fit seems entirely satisfactory. 

 

We checked the tail of the distribution. Under a theoretical χ2 distribution, we would expect 

5% of values to exceed the threshold X = 3.841. In our empirical distribution, 5,116 of 100,000 

values exceed this threshold. Under binomial sampling with frequency 5%, the two-sided P-

value of this event is 0.09, which is not significant. We further checked the 5,116 points 

greater than X = 3.841 for a fit to the theoretical χ2 distribution. A one-sample Kolmogorov-

Smirnov test gives a P-value of 0.2, which is not significant. 

 

2. Simulations of Pritchard and Donnelly 

We compared EIGENSTRAT, Genomic Control and Structured Association by duplicating 

the simulations of Pritchard and Donnelly1. These simulations were based on 200 cases and 

200 controls from three subpopulations, with the numbers of cases from each subpopulation 
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fixed at 50, 50, 100 and the number of controls at 66, 67, 67. Subpopulation allele frequencies 

were drawn from beta distributions with mean p and variances 0.01p(1–p), 0.02p(1–p) and 

0.04p(1–p) respectively, where the ancestral allele frequency p is uniform on [0.1,0.9]. Results 

were averaged over 20 simulated data sets of M random SNPs (M = 50, 200 or 1,000) used to 

infer population structure before testing for association at 500 candidate loci each; the results 

for Genomic Control represent average rates after simulating 10,000 sets of M loci to estimate 

an inflation factor. For each method, a significant association is reported if a P-value less than 

0.01 is obtained.  

 

We first tested what proportion of random candidate SNPs generate a spurious association. 

Results for the χ2 statistic, Genomic Control, Structured Association and EIGENSTRAT are 

reported in Supplementary Table 3a online, which shows that each method is effective in 

correcting for stratification at random candidate SNPs. These results are generally consistent 

with Pritchard and Donnelly1, except that the false positive rate for the uncorrected χ2 statistic 

is slightly lower; much of this can be attributed to our use of the Armitage trend χ2 statistic2 

recommended by Devlin and Roeder3 in lieu of an allelic 2 × 2 χ2 statistic. 

 

We next tested what proportion of causal candidate SNPs generate a true association, 

assuming a multiplicative risk model with a disease risk factor of 1.5 for the causal allele. 

Results for the uncorrected χ2 statistic, Genomic Control, Structured Association and 

EIGENSTRAT are reported in Supplementary Table 3b online, which shows that 

EIGENSTRAT achieves superior power. Results for Genomic Control and Structured 

Association are virtually identical to those reported by Pritchard and Donnelly1.  
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We repeated the analysis of causal candidate SNPs with both the number of cases and the 

number of controls from each subpopulation fixed at 66, 67, 67, eliminating the systematic 

ancestry differences between cases and controls. For M = 1,000, we see that Structured 

Association loses power in this scenario, while Genomic Control and EIGENSTRAT do not 

(Supplementary Table 4 online). Thus, Genomic Control loses power only when 

stratification is present, whereas Structured Association loses power even in the absence of 

stratification. We repeated the experiment using 200/n cases and 200/n controls from each of n 

= 5 or n = 10 subpopulations, with subpopulation allele frequencies generated using mean p 

and variance equal to cp(1–p) where c = 0.05/n, 2×0.05/n, …, 0.05 for the respective 

subpopulations. We found that Structured Association, but not Genomic Control or 

EIGENSTRAT, suffers a further loss in power as the number of dimensions of underlying 

population structure increases (Supplementary Table 4 online). 

 

3. Level of population structure in European American data set 

In the European American data set, the ratio between the top eigenvalue of the covariance 

matrix χ and the average of all eigenvalues of χ is equal to 2.61. Letting N be the number of 

samples, this quantity is roughly equal to 1 + N FST in the case of two discrete subpopulations 

each of size N/2, assuming that FST is small and the number of SNPs is large (N.J.P., A.L.P. 

and D.R., unpublished data). Setting N = 449 (excluding outliers) and solving for FST, we 

obtain FST = 0.0036. Alternately, if we assume that each sample is an admixture of two 

populations, with admixture proportions uniform on [0,1], then the mean square difference in 

ancestry across all pairs of individuals decreases by a factor of 3, thus requiring a value of FST 
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= 0.0108 between the underlying populations. Figure 2 suggests that the truth is somewhere 

in between these two scenarios. 

 

4. Application to Campbell et al. data set 

We applied our method to a data set of European American samples discordant for the height 

phenotype. Campbell et al.4 demonstrated that the association between the Lactase (LCT) SNP 

and the height phenotype in this data set is spuriously due to stratification. After genotyping a 

subpanel of 368 samples at 178 markers, they further observed that Genomic Control and 

Structured Association find no evidence of any population structure in the subpanel, and thus 

cannot correct for this stratification. 

 

Our usual definition of outliers as individuals whose ancestry was at least 6 standard deviations 

from the mean on one of the top 10 inferred axes of variation yielded one outlier individual 

who, strikingly, explained more than half of the variance along the top axis of variation. 

We observed that the outlier individual is an FY*O homozygote at the Duffy marker; this 

allele is fixed in sub-Saharan Africans but virtually absent elsewhere5, suggesting that the 

outlier may have substantial African ancestry. Indeed, using 43 Campbell et al. markers which 

were also typed in our African American admixture map6, we determined that the outlier has 

85 +– 5% African ancestry. (In detail, we inferred the posterior distribution of the genomewide 

African vs. European ancestry of the individual using a model that computes the joint 

likelihood of the individual’s genomewide ancestry θ and the true unobserved African and 

European allele frequencies Ai and Ei at each SNP i. The joint likelihood incorporates, at each 

SNP, both the probability of the individual’s genotype and the probability of binomially 
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sampling the counts in the admixture map, conditional on θ, Ai and Ei. Inference was 

performed via MCMC7.) 

 

We computed top axes of variation with the genetic outlier removed from the data. We 

checked to see if any of the top 10 axes of variation inferred by EIGENSTRAT is correlated to 

grandparent-ancestry labels (northwest European, southeast European, or European American 

of unknown ancestry) collected by Campbell et al. as part of their study. We found that the 

second axis is 35% correlated to northwest European vs. southeast European ancestry in the 

147 samples of known ancestry (P-value = 2 ×10–4 after correction for multiple hypothesis 

testing), and 28% correlated to southeast European ancestry vs. northwest European or 

unknown ancestry in all 368 samples (P-value = 8 ×10–7). Although the correlation to true 

ancestry is highly significant, it is only a partial correlation. Thus, EIGENSTRAT fails to 

correct for stratification, reporting a chisq association statistic virtually equal to the 

uncorrected chisq statistic, yielding a P-value of 0.003 on the subpanel of 368 samples. Based 

on our simulations, EIGENSTRAT’s inability to infer an accurate axis and correct for 

stratification using only 178 random background markers is not surprising; nevertheless, the 

method’s ability to detect a previously undetected African outlier and to detect within-Europe 

population structure with partial accuracy is encouraging. 

 

5. Practical Concerns 

Linkage disequilibrium and choice of markers. Genome-wide data sets containing hundreds 

of thousands of markers are likely to exhibit substantial linkage disequilibrium (LD) between 

markers, even in the case of markers chosen to optimally tag all variation in the genome. Thus, 
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inferring population structure from the set of all markers has two potential problems. The first 

problem is that, due to varying levels of LD, some regions will have more redundant markers 

than others and will thus be overrepresented. The second problem is that strong LD at a given 

locus which affects many markers could result in an axis of variation which corresponds to 

genetic variation specifically at that locus, rather than to genome-wide ancestry. Nonetheless, 

we recommend inferring population structure using all markers. This recommendation is based 

on an analysis of HapMap8 data which suggests that these potential problems will not affect 

results in practice, even on a data set with over 3 million markers. Specifically, we computed 

principal components using data from 45 Chinese and 45 Japanese individuals at 3,351,221 

markers from Phase II HapMap. We repeated the computation keeping only 1 of every s 

markers, based on order along each chromosome, for various values of s (s = 1, 2, 5, 10). 

Correlation of the top axis of variation to population label (Chinese or Japanese) was 0.983, 

0.983, 0.982 and 0.982 respectively in the four runs. Correlation between the top axis of 

variation from one run and the top axis of variation from a different run was greater than 0.999 

for any pair of runs. Thus, different weighting of different regions due to different levels of LD 

does not significantly affect results. In each of the four runs, only one statistically significant 

axis of variation (N.J.P., A.L.P. and D.R., unpublished data) was observed. Thus, statistically 

significant axes arising from strong LD at a specific locus do not occur. 

 

In theory, it is appropriate to exclude a candidate marker from the set of markers used to infer 

population structure and correct for possible stratification at the candidate marker. However, in 

genome-wide association studies involving hundreds of thousands of markers, it is not 

practical to separately infer population structure using all markers except the candidate marker, 
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for each choice of candidate marker. It is possible to alleviate this problem by inferring 

population structure for several different subsets of markers which each contain a majority of 

markers, with each candidate marker absent (along with nearby linked markers) from at least 

one of the subsets. However, in large data sets with > 100,000 markers, we instead recommend 

simply using all markers to infer population structure. Our results suggest that in data sets with 

> 100,000 markers, axes of variation and the resulting stratification correction are robust to 

inclusion or exclusion of candidate markers (see Results).  

 

Assay effects. It is advisable to check for correlations between each axis of variation and assay 

variables such as amount of missing data per sample or plate membership. Large correlations 

are indicative of assay effects, which often occur in real data (see below). 

 

Removal of outliers. We describe an outlier removal procedure which we believe to be 

reasonable (see Methods), but other outlier removal methods may be used instead. As data sets 

grow very large, sensitivity to detect outlier effects will increase. Because nearly all 

individuals are likely to have at least a small fraction of “unusual” ancestry, investigators will 

need to carefully weigh the desire to avoid samples with unusual ancestry against the desire to 

maximize power. 

 

Cryptic relatedness. If cryptic relatedness is a concern, investigators may wish to preprocess 

the data by applying existing methods to detect cryptically related individuals9 and selecting a 

maximal subset of unrelated individuals for subsequent analysis. 
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Residual confounding. If investigators are concerned as to whether residual confounding 

could remain after applying the EIGENSTRAT correction, a conservative and careful approach 

would be to test this by applying Genomic Control to the results of EIGENSTRAT. We note 

that applying EIGENSTRAT first to correct for population stratification will generally retain 

higher power and reduce spurious associations at highly differentiated SNPs, relative to the 

exclusive application of Genomic Control (see Results). 

 

6. Extensions of our approach 

Quantitative traits. Though we have focused on case/control phenotypes, extension of our 

method to quantitative traits is straightforward. One simply starts with phenotypes pj which 

represent continuous-valued quantitative traits (instead of 0 or 1), then performs the adjustment 

for ancestry as described previously (see Methods). 

 

Non-multiplicative disease models. Though we have focused on multiplicative disease 

models, extension of our method to other disease models is straightforward. Given possible 

genotypes aa:aA:AA, one can evaluate the dominant (respectively, recessive) model for the A 

allele by using genotype values 0:1:1 (respectively, 0:0:1) instead of the standard genotypes 

values 0:1:2. The adjustment for ancestry then follows as described previously (see Methods). 

 

Targeted disease association studies. Though we have focused on genome-wide association 

studies in which a large number of SNPs are used to infer accurate axes of variation, there is 

also a desire to correct for stratification in targeted disease association studies in which a much 

smaller number of markers are genotyped. A possible plan in such studies is to genotype 
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samples at a preselected set of ancestry informative markers (in addition to candidate disease 

markers), then infer axes of variation using the ancestry informative markers. The choice of 

ancestry informative markers will depend on the population being studied. Our methods will 

likely prove useful in identifying ancestry informative markers for use in future targeted 

disease studies, however the identification and validation of ancestry informative markers 

requires caution, as a marker’s observed informativeness in a particular sample (488 European 

Americans) may exceed true informativeness in the entire population (all European 

Americans) since sample sizes of only hundreds of individuals may be dominated by sampling 

error in the case of very subtle ancestry effects. 

 

Nonlinear methods. Though we have focused on linear methods, axes of variation inferred by 

EIGENSTRAT could be incorporated as covariates in the context of nonlinear methods such as 

logistic regression. 

 

Additional covariates. Additional covariates (such as age, gender or environmental factors) 

can be incorporated by computing residuals of (linear or nonlinear) regressions corresponding 

to the covariate(s). If the covariates are correlated to each other or to ancestry, multivariate 

regressions should be used, in lieu of the univariate regressions we have described. 

 

Geographical information. If geographic information on the samples is available (for 

example, geographic information on within-Europe ancestry), analyzing the correspondence 

between axes of variation and geographic labels may facilitate a geographic interpretation of 

the axes of variation, and will indicate whether the geographic labels contain information 
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which is not already encoded in the axes of variation. If so, the geographic labels can be 

included as additional covariates (see above). We note that, in addition to ancestry, geographic 

labels could be correlated to environmental factors. 

 

Ancestry-dependent risk. Though we have focused on the case where the risk conferred by a 

disease allele is independent of ancestry, EIGENSTRAT can be extended to model ancestry-

dependent risk1 by incorporating as covariates one or more ancestry-modulation terms, equal 

to the product of ancestry-adjusted genotype and ancestry along a given axis of variation. 

 

7. Assay effects 

For each of the top 10 axes of variation and for each subset of the set of 6 plates genotyped 

using the Affymetrix 100K array, we computed the correlation across samples between that 

axis and plate membership in that subset. We also computed the correlation across samples 

between each axis and the proportion of missing data. We observed that the third axis of 

variation is 58% correlated with membership in plates 1,2,3,6 versus 4,5 (P-value < 10–12 after 

correcting for 320 hypotheses tested) and 38% correlated with the proportion of missing data 

(P-value < 10–12 after correcting for 10 hypotheses tested). We determined that this axis is the 

result of a large number of SNPs that have both a higher rate of heterozygotes and a higher rate 

of missing data on plates 4,5 versus plates 1,2,3,6. These findings are suggestive of laboratory 

effects; possible explanations include differences in sample collection and preparation or 

differences in genotyping procedure. An important question is whether to remove from the 

data set the large number of SNPs, characterized by higher than average rate of missing data, 

which give rise to this axis; this risks discarding valuable data and missing true positive 



Page 11 

findings10. We recommend this step only in the event of an axis attributable to laboratory 

effects that leads to a strong bias between cases and controls, risking an even greater power 

loss when correcting for this bias. 

 

The existence of an axis of variation strongly correlated to the proportion of missing data 

highlights EIGENSTRAT’s treatment of missing data: although axes of variation arising from 

missing data effects should be regarded as spurious if the underlying goal is to detect true 

population structure, correcting along such axes is entirely appropriate in the context of disease 

studies, in which the goal is to prevent spurious associations due either to population structure 

or to laboratory effects. 
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