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Abstract9

A popular approach to learning about admixture from population genetic data10

is by computing the allele-sharing summary statistics known as f -statistics. Com-11

pared to some methods in population genetics, f -statistics are relatively simple, but12

interpreting them can still be complicated at times. In addition, f -statistics can13

be used to build admixture graphs (multi-population trees allowing for admixture14

events), which provide more explicit and thorough modeling capabilities but are15

correspondingly more complex to work with. Here, I discuss some of these issues16

to provide users of these tools with a basic guide for protocols and procedures. My17

focus is on the kinds of conclusions that can or cannot be drawn from the results of18

f4-statistics and admixture graphs, illustrated with real-world examples involving19

human populations.20
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Introduction22

f -statistics (Reich et al., 2009; Patterson et al., 2012) are a widely used toolkit for making23

inferences about phylogeny and admixture from population genetic data, particularly in24

humans. The statistics measure correlations in allele frequencies among sets of two, three,25

or four populations. Observed values reflect degrees of shared ancestry and can serve as a26

means for testing hypotheses regarding population split orders and past gene flow events27

under historical models.28

As compared to some other common methods in population genetics, f -statistics are29

quite simple and flexible, but interpreting them is not always straightforward. Addition-30

ally, one of the primary applications of f -statistics is in building admixture graphs (i.e.,31

phylogenetic trees augmented with admixture events) with more than four populations,32

which introduces a greater level of complexity. In this note, I hope to clarify some of these33

potential difficulties and provide a range of tips for practitioners. Some of the topics have34

been addressed previously but are covered here as well for the sake of completeness.35

f-statistics and admixture36

Basic definitions and properties37

More complete introductions to f -statistics have been published elsewhere (Reich et al.,

2009; Patterson et al., 2012; Lipson et al., 2013; Peter, 2016; Soraggi and Wiuf, 2019),

but the following are some basics that are used in other sections of the paper. The

most general definition is that of the f4-statistic f4(A, B; C, D), which measures the

average correlation in allele frequency differences between (i) populations A and B and

(ii) populations C and D (i.e., (pA − pB) ∗ (pC − pD), for allele frequencies p, typically

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2020                   doi:10.20944/preprints202003.0237.v2

https://doi.org/10.20944/preprints202003.0237.v2


averaged over many biallelic single-nucleotide polymorphisms [SNPs]). This f4-statistic

is the same as the (perhaps more familiar) D-statistic up to a normalization factor. If

the four populations are related by the (unrooted) phylogeny ((A, B),(C, D)), then the

expected value of f4(A, B; C, D) will be zero, while the expected values of f4(A, C; B,

D) and f4(A, D; B, C) will be positive. (When I refer to expectations of f -statistics, I

mean with respect to the random noise in real data—typically assumed to be normally

distributed—caused by sampling finite numbers of independent SNPs and individuals.)

Simple algebra shows that

f4(A,B;C,D) = f4(C,D;A,B),

f4(A,B;C,D) = −f4(B,A;C,D) = −f4(A,B;D,C),

f4(A,B;C,D) = f4(A,C;B,D) + f4(A,D;C,B).

The other two basic definitions are of the f2- and f3-statistics, which can be formulated38

as f2(A, B) = f4(A, B; A, B) and f3(A; B, C) = f4(A, B; A, C).39

The most important usage for f -statistics is in the context of admixture. If a popu-40

lation C has a mixture of ancestry derived from sources C ′ and C ′′ in proportions α and41

(1 − α), then in expectation,42

f4(A, B; C, D) = αf4(A, B; C ′, D) + (1 − α)f4(A, B; C ′′, D).43

Expected values of f -statistics can be visualized in terms of overlapping paths in an44

admixture graph (Fig. 1; see also Patterson et al. (2012); Peter (2016); Soraggi and Wiuf45

(2019)). In the case of admixture, the above equation can be used to derive the expectation46

in terms of a weighted sum of path-overlaps involving each source (Fig. 1C). Thus, if C47

is admixed, the typical expected value of f4(A, B; C, D) will be a branch length times a48

mixture proportion (Fig. 1C).49
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Figure 1. Expected values of f4-statistics under specified admixture graph models. (A)
The expected value of f4(A, B; C, D) is given by the intersection between the path from
A to B with the path from C to D. Under the model shown, E[f4(A, B; C, D)] = 0.
(B) The expected value of f4(A, D; B, C) is given by the intersection between the path
from A to D with the path from B to C. Under the model shown, E[f4(A, D; B, C)] =
y. (C) With population C admixed, the path from B to C can be decomposed into two
components. Under the model shown, with a proportion of α B-related ancestry and
1 − α D-related ancestry, the former yields a path (lighter red) that has a weight of α
but does not intersect the path from A to D, while the latter yields a path (darker red)
that has a weight of 1 − α and intersects the path from A to D over the branch with
length y. In total, E[f4(A, D; B, C)] = (1 − α)y.

Unlike FST (and normalized D-statistics, at least approximately), the values of f -50

statistics (including branch lengths in admixture graphs that are defined in f -statistic51

units, as in Fig. 1) depend on the absolute allele frequencies of the SNPs used to calculate52

them (cf. Lipson et al. (2013)). For example, adding fixed sites to the SNP set will shrink53

f -statistics toward zero. As a result, when comparing multiple f -statistics, it is important54

that each one should be computed on the same set of SNPs (or as similar as possible). In55

applications involving ancient DNA, where missing data is common, I typically make the56

assumption that the SNPs covered for each individual or population are a random subset57

with respect to allele frequency. By contrast, comparisons across different genotyping58

arrays are likely to be biased.59
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Interpreting non-zero f4-statistics60

If a set of four populations are unadmixed relative to each other, then some permutation61

of them will yield an f4-statistic of zero (in expectation), as in Fig. 1A. Equivalently, if all62

three permutations of f4-statistics for a certain set of four populations are (significantly)63

non-zero, then at least one of the populations must be admixed; this is one of the most64

common signals of admixture used in the literature. In this paper, I will use the example65

of a quartet consisting of four present-day human populations: Mixe (from Mexico), Han66

Chinese, French, and Baka (hunter-gatherers from Cameroon). The common ancestral67

population of all Native Americans is known to have been admixed with approximately68

70% ancestry from an eastern Eurasian lineage and 30% from a western Eurasian lineage69

(Fig. 2) (Raghavan et al., 2014). Thus, in the context of this quartet, Mixe can be modeled70

as admixed with ancestry related to Han (∼70%) and to French (∼30%). I computed the71

three possible f4-statistics for the quartet and obtained significantly non-zero values, with72

the signs as expected based on the known history (Table 1). (These and all results in73

the paper are computed from previously published whole-genome sequence data (Mallick74

et al., 2016; Fan et al., 2019), on a set of ∼1.1 million autosomal SNPs (Mathieson et al.,75

2015), using the implementation in ADMIXTOOLS (Patterson et al., 2012), including76

standard errors estimated by block jackknife.)77
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Figure 2. Major human lineages used for examples in the paper, represented by Baka
(African), French (western Eurasian), Mixe (Native American), and Han (eastern
Eurasian). Setting aside other complexities in the histories of these populations, the
admixture event being modeled involves eastern and western Eurasian lineages
contributing ancestry to Native Americans (Raghavan et al., 2014). See Figs. 3A and 5A
for fitted models using this correct topology.

Table 1. Observed f4-statistics (values and Z-scores for difference from zero)
for the example populations.

Populations f4(A, B; C, D)
A B C D Value Z-score
Mixe Baka Han French 0.011 27.1
Mixe French Han Baka 0.013 35.8
Mixe Han Baka French -0.0025 -8.9

In this case, there is prior knowledge available about the admixture in Mixe, but in78

general, without additional information, the existence of such a quartet does not identify79

which of the four populations is admixed. Here, for example, it could also be that Han is80

admixed with most of its ancestry related to Mixe but a small amount related to Baka,81

and likewise for the other two (see further discussion in the admixture graph sections82

below). In real-world applications, it can also be true that more than one population is83

admixed, making the interpretation more complicated. Sometimes, in fact, two admixture84
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events together can cause an f4-statistic to be close to zero and thereby mask the signal85

of admixture (at first glance).86

Another observation is that as depicted in Fig. 1, f4-statistics are not only zero or87

non-zero but also carry quantitative information about amounts of shared drift between88

populations. One implication is that populations sharing more drift (i.e., yielding longer89

intersecting paths in an admixture graph) will have greater-magnitude f4-statistics asso-90

ciated with them. For example, in the trees of Fig. 1B–C, if one replaced population D91

with a population D′ that split halfway between D and the root of the tree, then the92

expected magnitude of f4(A, B; C, D′) would be smaller, since the length of the shared93

drift branch would now be less than y. As a result, under the model in Fig. 1C, one could94

use the fact that f4(A, B; C, D) > f4(A, B; C, D′) to conclude that D is a better proxy95

than D′ for the ancestry in C (the component with proportion 1−α). However, this pro-96

cedure is complicated by the fact that if the D-related source was in fact itself admixed,97

with ancestry related to X and Y , then the f4-statistic can sometimes be maximized by98

X or Y instead of by D, even though one would consider D to be a better proxy (Pickrell99

et al., 2014). It is also good to remember that if a certain signal is weak compared to100

the noise in the data—for example, if one were testing for admixture in C and the shared101

drift branch length y was short—then one may not have enough power to identify it.102

Finally, f -statistics can be subject to certain kinds of biases and batch effects (to103

varying degrees, as with other methods) arising from SNP ascertainment, sample type104

and processing (ancient versus present-day, sequencing platform, etc.), and other aspects105

of the data, so it is important to keep such factors in mind when interpreting results.106

For ancient DNA data, challenges include C-to-T errors induced by postmortem deami-107

nation (Hofreiter et al., 2001), as well as short fragment lengths and (often) low coverage,108

which can exacerbate reference bias (Günther and Nettelblad, 2019). All of these effects109
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can cause ancient individuals to appear artificially closely related to one another and to110

certain other populations (e.g., deep outgroups). In general, statistics f4(A, B; C, D) in111

which A and C share a data type and B and D share a different data type are most prone112

to this kind of artifact.113

Admixture graphs: modeling and inference procedure114

Fitting an admixture graph with qpGraph115

In addition to their stand-alone usage, f -statistics can serve as a means to fit admixture116

graphs from allele frequency data. (Other kinds of statistics can also be used to fit117

admixture graphs, but I will not discuss such methods in detail here; see Discussion.) In118

this context, an admixture graph consists of an ordering of population splits, positions119

of admixture events, branch length parameters, and mixture proportions. Given the first120

two, the third and fourth can be inferred by solving a system of equations (linear in121

terms of the branch lengths) in which observed f -statistic values are matched to their122

expectations in terms of the model parameters. For example, one such equation for the123

model in Fig. 1B would be f2(B, C) = x+ y + z. With n populations, there are 3 ×
(
n
4

)
124

possible f4-statistics, 3×
(
n
3

)
possible f3-statistics, and

(
n
2

)
possible f2-statistics, but many125

of these are linearly dependent; for example, f4(A, B; C, D) = f3(A; B, D) − f3(A; B,126

C). In fact, there are a total of
(
n
2

)
linearly independent f -statistic equations, or in other127

words, f -statistics form a vector space of dimension
(
n
2

)
. Possible choices of basis include128

(1) the set of all f2-statistics, and (2) the set of all f2- and f3-statistics with a given129

population in the first position.130

The software I typically use to build admixture graphs is qpGraph (also referred to as131

ADMIXTUREGRAPH) (Patterson et al., 2012). In qpGraph, the user manually specifies132
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the topology of the model, and the program then solves for the optimal values of the133

parameters. In theory, one might wish to search the entire space of all topologies and134

parameter values (for a given number of admixture events) to find the best-fitting model,135

but the size of the space (exponential in the number of populations) makes this impractical136

for larger graphs (Leppälä et al., 2017). The set of basis statistics used for fitting is the137

set (2) alluded to in the previous paragraph, with the first population listed in the input138

file as the “base” population.139

In its standard mode, qpGraph attempts to minimize the quantity S(G) = 1/2(g −140

f)′Q−1(g− f), known as the “score” of the model, where f is the vector of observed basis141

f -statistics (of length
(
n
2

)
), g is the vector of predicted f -statistics under the model, and142

Q is the (estimated) covariance matrix of the statistics. Assuming multivariate normal143

errors, the score gives the negative log-likelihood of the model; it measures the total144

amount by which the system of f -statistic equations (one for each basis statistic) fails to145

be satisfied, taking into account the empirical correlation among the statistics (see also146

the next section on fit quality). To help insure that Q−1 does not become unstable, one147

can use the “diag” input parameter to add a small number (“diag: 0.0001” works well148

in my experience, but smaller values may be sufficient as well) to the diagonal entries of149

Q. The program can also be run using simple least-squares optimization without the Q150

matrix by specifying “lsqmode: YES,” but in this case highly correlated statistics will be151

treated as independent for the sake of the fitting, and the score will no longer represent152

a log-likelihood, both of which make the full objective function preferable. Other input153

parameters I typically set are “outpop: NULL” (meaning no specified outgroup population154

in which SNPs are required to be polymorphic) and “lambdascale: 1” (leaving the f -155

statistics in typical units rather than scaling into approximate FST ). More extensive156

descriptions of the qpGraph software can be found in Patterson et al. (2012) and in the157
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ADMIXTOOLS package repository (https://github.com/DReichLab/AdmixTools), and158

of the f -statistic-based admixture graph inference process more generally in Lipson et al.159

(2013); Leppälä et al. (2017).160

By default, qpGraph utilizes the set of SNPs that have genotype calls for at least one161

individual in each population in the model. With low-coverage data (for example, in some162

ancient DNA applications), this can result in losing the majority of the sites in the initial163

data set. The program allows an option to use all SNPs instead (“allsnps: YES” or “use-164

allsnps: YES,” in which case each basis statistic is computed on as many sites as possible165

for the two or three populations involved), but this mode can give unreliable results, in166

particular when the base population is highly diverged from the other populations in the167

model. To the best of my knowledge, this effect is caused by greater absolute noise when168

estimating larger-magnitude basis statistics, such that the small relative fluctuations in169

empirical f -statistics caused by modest changes in the SNP set become substantial in170

the context of the admixture graph. In my own work, my preference has always been171

to avoid using the all-SNPs option. If this causes an undesirable loss of coverage, then172

the best approach given the current implementation of qpGraph is probably to set as the173

base a population that (a) is not highly diverged from the others in the model, and (b)174

preferably has multiple individuals with diploid data (again to reduce the magnitudes of175

the statistics). Research is currently underway aiming to develop an improved all-SNPs176

methodology.177

Parameters and constraints178

An important consideration is whether the system of equations used to infer the param-179

eters of an admixture graph is over- or under-determined. As mentioned above, a model180

with n populations has
(
n
2

)
linearly independent constraints (i.e., equations). In the ab-181
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sence of admixture, there are 2n − 3 parameters, which is the number of branches in an182

unrooted binary tree with n leaf nodes (with the settings I have described, qpGraph results183

should not depend on where the root of a graph is specified). Converting a population184

from unadmixed to admixed adds two parameters: one for the mixture proportion and185

one for the split position of the new source of ancestry. Thus, with a admixture events,186

the total number of free parameters is 2n+ 2a− 3. One point to note is that in the case187

of an admixed population with two unsampled sources (which is the typical scenario), the188

three branch lengths surrounding the admixture event (in Fig. 3A, from the node “East1”189

to “East2,” from “West1” to “West2,” and from “pAM1” to Mixe) cannot be determined190

individually but instead form a single compound parameter α2x+(1−α)2y+z (where α is191

the mixture proportion, x and y are the branch lengths to the two corresponding sources,192

and z is the terminal branch length). The only exception (to my knowledge) is the case193

in which at least three populations are included that can be modeled as having different194

proportions of ancestry from the same two sources, which allows the branch lengths to be195

solved for individually.196

Even if the inequality
(
n
2

)
≥ 2n + 2a − 3 is satisfied for an admixture graph as a197

whole, there can be some parameters that are not uniquely determined because of rep-198

etition across the different equations caused by multiple populations in phylogenetically199

equivalent positions. Further discussion of this phenomenon can be found in the example200

sections below. Additionally, having sufficient constraint to estimate parameters is not201

entirely a yes-or-no proposition. A model can have enough populations in distinct posi-202

tions to be able to estimate a mixture proportion, but if two of the populations are only203

slightly separated, then the precision of the estimate will generally be lower. Similarly,204

if one of the populations providing the constraint is itself admixed, then the power will205

often be reduced.206
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Fit quality207

To my knowledge, no absolute measure of model fit has been developed for admixture208

graphs, but there are several ways to evaluate how well a given model fits the data209

(this is an area of active study; see also Lipson and Reich (2017); Lipson et al. (2017);210

Leppälä et al. (2017); Flegontov et al. (2019); Shinde et al. (2019); Lipson et al. (2020)).211

The following discussion is tailored for qpGraph, but the ideas also apply more generally.212

First, the program returns a list of residual poorly-predicted f -statistics and their Z-scores213

(drawn from the set of all possible f -statistics, not only those in the basis), which can214

give a good sense for the performance of the model and some idea of which populations215

are responsible for the greatest inaccuracies. There is no general rule for what threshold216

constitutes a significantly non-zero residual; the situation is complicated because there217

are many statistics being tested simultaneously, but many of those are also correlated218

with each other.219

Deviations between model predictions and the observed data can be caused either by220

an incorrectly specified topology or un-modeled admixture. In the first case, assuming that221

the program does not get stuck at a local optimum, it will try to move the populations as222

close as possible to their correct positions but will be constrained by the input topology.223

Thus, an incorrectly specified split order usually manifests as an inferred length-zero224

internal branch; when such branches (i.e., trifurcations) appear in the results, the order of225

splits should be adjusted and re-tried. (The default qpGraph visualization output rounds226

branch lengths to the nearest integer, so some non-zero-length but very short branches227

may initially appear as zero.) As noted in the f -statistics section above, however, one228

may not have sufficient power to resolve short branches, so some sets of three lineages may229

be found to be statistically consistent with forming a trifurcation, with all three possible230

split orders having similar fit quality.231

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2020                   doi:10.20944/preprints202003.0237.v2

https://doi.org/10.20944/preprints202003.0237.v2


In the case of un-modeled admixture, the observed deviations could potentially reflect232

admixture in one of multiple different populations. Often one can gain information by233

examining the full list of residuals and noting which populations occur repeatedly. An-234

other approach is to remove one population from the model and see if the fit improves,235

although even if it does, that could imply either that the population in question had un-236

modeled admixture or that it provided a constraint enabling the detection of un-modeled237

admixture among the other populations.238

The score of the final graph is also returned as an output from the program, so it can239

be used to compare the fit quality of different models with the same set of populations,240

preferring the one with the lower score. (If the equations being fit were independent,241

then one could apply a chi-squared test for the overall fit, but in practice they are heavily242

correlated. qpGraph returns a naive degrees of freedom count and p-value alongside the243

score, but they are not well calibrated.) As above, while this approach provides a useful244

heuristic, evaluating statistical significance is complicated, and I do not have a rigorous245

set of recommendations. One recent direction that seems promising is using the score to246

compare alternative models with the same populations and same number of admixture247

events. In that case, the score difference can be interpreted in an AIC/BIC framework,248

with the likelihood difference as a Bayes factor (Leppälä et al., 2017; Flegontov et al., 2019;249

Shinde et al., 2019). The same idea could also be applied in cases with unequal numbers250

of free parameters—for example, adding one admixture event and testing whether the251

score improvement is significant. However, defining the change in degrees of freedom is252

not straightforward in this situation: as noted above, a new admixture event creates two253

additional parameters in the model, but that does not account for whether the admixture254

comes from a pre-specified source or from a source that is allowed to be located anywhere255

in the graph. Finally, the score can additionally be used to compute confidence intervals256
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on parameters (by considering the likelihood as a function of a single branch length or257

mixture proportion value), although it is worth keeping in mind that the results are258

model-dependent.259

Admixture graphs: examples260

One of the strengths of f -statistic-based admixture graphs is that they are computation-261

ally tractable enough that programs such as qpGraph can accommodate a large number262

of populations and admixture events. Sometimes though it can be difficult to digest all263

of the information in large admixture graph models and to analyze their behavior. For-264

tunately, the main principles of admixture graph fitting can be illustrated with simpler265

examples, which, in particular, carry over directly to larger models by considering subsets266

of four and five populations.267

Four populations268

The first examples I will present are four-population admixture graphs containing Mixe,269

Han, French, and Baka. Given the observed non-zero f4-statistics in Table 1, there must270

be at least one admixture event present in order to fit the data. However, in light of the271

discussions above about determining which population is admixed and about parameters272

and constraints in admixture graphs, it would be expected that these models should be273

insufficiently constrained to determine which population is admixed. Indeed, they have274 (
4
2

)
= 6 constraints but 2(4) + 2(1)− 3 = 7 free parameters. Confirming this expectation,275

perfectly fitting models (i.e., sets of branch length and mixture proportion parameters276

such that the six basis f -statistics are predicted exactly, yielding S(G) = 0) can be277

obtained with Mixe specified as admixed (Fig. 3A) as well as with any of the other three278
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populations (incorrectly) specified as admixed instead (Fig. 3B–D).279

Example1.graph ::  Bak  Mix  Bak  Mix  0.104479  0.104493  0.000014 0.001079 0.013 

Baka_DG

Han_DG French_DG
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Figure 3. Four-population admixture graphs modeling (A) Mixe, (B) Baka, (C) Han,
or (D) French as admixed. All four versions provide perfect fits to the data (exact
agreement between observed and predicted f -statistics). In this and all following figures,
branch lengths (in f -statistic units, multiplied by 1000) are rounded to the nearest
integer.
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Interestingly, in some scenarios, the admixed population can be determined even with280

only four populations in the model: if a negative f3-statistic can be formed for some281

triple, then the population in the first position of the statistic (i.e., population A if f3(A;282

B, C) < 0) must be admixed. To give an example, I replaced Mixe with Kyrgyz in the283

four-population model. With Kyrgyz modeled as admixed, the fit is perfect as before284

(Fig. 4A). With Baka modeled as admixed, however, the fit is very poor, with residuals285

up to Z = 27 (Fig. 4B). The most extreme residual is the statistic f3(Kyrgyz; Han,286

French), which has an observed value of -0.0064 (Z = 27 for difference from zero) and287

can only be negative if Kyrgyz is admixed (i.e., in the position of the test population in288

a “three-population test” for admixture (Reich et al., 2009; Patterson et al., 2012)).289
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Figure 4. Four-population admixture graphs with Kyrgyz in place of Mixe, modeling
either (A) Kyrgyz or (B) Baka as admixed. The first provides a perfect fit to the data,
whereas the second has residuals up to Z = 27.

Another note is that in these examples, I have been focusing on the primary signal290

of deep eastern/western Eurasian admixture in Mixe. The other populations are also291
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admixed in their own ways; for example, all of the non-Africans have small proportions292

of Neanderthal ancestry, and Baka are admixed with ancestry related to nearby Bantu-293

speaking farmers (Fan et al., 2019). However, the first signal is not evident in the data294

without deeper outgroups present, and the second without other African populations.295

Conversely, if the model contained several sub-Saharan African populations plus Mixe as296

the lone non-Africans, then the primary signal in our examples here would not be visible.297

In some ways, this inability to detect certain admixture events is beneficial, as it means298

that models can be constructed so as to focus on events of interest while ignoring some299

that are outside the desired scope of the work.300

Five populations301

In general, in order to be able to solve for the parameters of an admixture graph including302

one admixture event, it is necessary to use at least five populations, providing
(
n
2

)
= 10303

constraints for the 2n+ 2a− 3 = 9 free parameters. Concurrently, in contrast to the four-304

population examples above, having five populations present allows one to determine which305

of the populations is admixed, as long as the topological relationships of the populations306

are all unique relative to the true mixing sources. More detail on this last point can307

be found elsewhere (Pease and Hahn, 2015; Lipson and Reich, 2017). A simple version308

of this statement is that, at least in the case of a single admixture event, one four-309

population subset will be unadmixed, whereas the other four subsets will include the310

admixed population. Similarly, in order to solve for a given mixture proportion in a larger311

graph, there must four populations present (aside from the admixed one in question)312

in distinct positions, yielding a non-redundant five-population subgraph; having three313

populations in distinct positions allows one to detect the signal of admixture but not to314

determine the proportion uniquely.315
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As an example, I added Ulchi (from the Amur River Basin of northeastern Asia)316

as a fifth population alongside the four from above. Ulchi splits closer to the eastern317

Eurasian source population for Mixe than does Han, which provides the additional degree318

of constraint. The five-population model is a good fit to the data, but not a perfect one319

(Z = 1.9 for the most significant residual; Fig. 5A). By contrast, if Baka are modeled as320

admixed instead of Mixe, the fit is poor (Z = 4.7; Fig. 5B). I also show an example where321

the topology is incorrectly specified, with Han closer than Ulchi to the eastern Eurasian322

source population for Mixe (Fig. 5C); this version fits poorly (Z = 5.7), and the branch323

connecting the split positions of Ulchi and Han collapses to length zero. If I add a second324

admixture event into the models in Figs. 5A–B, this creates more free parameters (11)325

than constraints, and indeed there are choices of the parameters that yield perfect fits,326

even with Mixe modeled as unadmixed (not shown).327
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Figure 5. Five-population admixture graphs. (A) Standard four-population example
plus Ulchi; all f -statistics are predicted to within 1.9 standard errors of their observed
values. (B) Same five populations, but with Baka modeled as admixed; residual statistics
are present up to Z = 4.7 (C) Same five populations, with Mixe modeled as admixed,
but with the positions of Han and Ulchi reversed; residual statistics are present up to
Z = 5.7. (D) Original four populations plus Hungarian, with Baka modeled as admixed;
all f -statistics are predicted to within 1.2 standard errors of their observed values.

Having five populations present (with a single admixture event) also provides the328
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ability to infer uniquely optimal parameter values. In the four-population example model,329

the initial estimate of eastern Eurasian ancestry in Mixe was 71%, but with the proportion330

manually set at 75%, the fit is still perfect (Fig. 6A). Outside of a certain range of mixture331

proportions (dependent on the values of the branch lengths), the fit will become worse, but332

within a finite interval, the likelihood is entirely flat. In terms of f4-statistics, the observed333

non-zero value is being fit as equal to a branch length in the admixture graph times the334

mixture proportion (as in Fig. 1C), but without additional constraint, that product can335

remain the same while the branch length and mixture proportion covary (where the range336

is determined by bounds on the individual parameter values, e.g., positivity). With five337

populations, however, there is a unique optimal solution; for example, if I set the mixture338

proportion at 70% eastern Eurasian ancestry (as compared to the point estimate of 76%339

in the five-population model), there are residuals up to Z = 2.6 (Fig. 6B), and the score is340

more than 10 units worse. Even in the example above with Kyrgyz (i.e., a four-population341

model where the admixed population can be determined because of a negative f3-statistic;342

Fig. 4), the parameters remain not uniquely determined.343
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Figure 6. Admixture graphs with pre-specified mixture proportion parameters. (A)
Four-population model, with the proportion locked at 75%; the fit is perfect. Note that
the branch lengths shift slightly relative to Fig. 3A. (B) Five-population model, with the
proportion locked at 70%; residual statistics (indicating a need for more eastern
Eurasian ancestry in Mixe) are present up to Z = 2.6.

Finally, in Fig. 5D, I show a model with the original four populations plus Hungarian344

instead of Ulchi. Although there are five populations present, French and Hungarian can345

be modeled as sister groups, so equations relating parameters in the graph to statistics346

of the form f2(French, X) and f2(Hungarian, X) are linearly dependent (up to their347

terminal branch lengths) and hence do not contribute fully independent constraints. This348

can be seen in the results, as Baka can successfully be modeled as the admixed population349

(with residuals up to Z = 1.2 reflecting small observed asymmetries between French and350

Hungarian). This contrasts with Ulchi, which has a distinct phylogenetic position from351

Han (relative to the other populations in the model) and thus adds new constraints352
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(although it is worth noting again that a population with only a slightly different position353

adds constraint but only weakly).354

Discussion355

Most of the material in this paper pertaining to admixture graphs has been presented356

from the perspective of the qpGraph software, but other methods are also available, using357

both different kinds of data and different fitting schemes. At the level of mathematical358

formulation, the results have assumed that models are fit based on a distance metric359

(specifically, f -statistics). As an alternative example, the TreeMix algorithm (Pickrell360

and Pritchard, 2012) is based on a maximum-likelihood framework in terms of allele fre-361

quency covariances, although the information captured is the same; see Peter (2016) for362

the equivalence and a thorough exploration of alternative interpretations of f -statistics in363

terms of population genetic models. There are also methods that use richer summaries of364

the data (for example, the full joint allele frequency spectrum) to infer more complicated365

demographic models that are similar in form, or in some cases essentially identical, to ad-366

mixture graphs—for example, ∂a∂i (Gutenkunst et al., 2009), G-PhoCS (Gronau et al.,367

2011), fastsimcoal2 (Excoffier et al., 2013), and momi2 (Kamm et al., 2019). The mathe-368

matical underpinnings of such methods are quite different from those based on f -statistics,369

and so the results presented here do not pertain to them. The choice of which program to370

use can depend on aspects of the particular application such as the data set (e.g., number371

of populations, whole-genome sequencing versus genotyping array, etc.) and the desired372

level of complexity and parametrization. Even more generally, of course, numerous other373

approaches exist to model population genetic structure beyond phylogenetic trees with374

gene flow. While it may sometimes be possible to evaluate empirically the suitability of375
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an admixture graph for a given problem—for example, by exploring whether any graph376

of a reasonable size provides a good fit to the data—the choice of model is ultimately at377

the discretion of the analyst.378

Within the class of f -statistic-based (or equivalent) admixture graph methods, there379

are different approaches to automation and the selection of which populations to model as380

admixed. qpGraph leaves the choice of how many admixture events to include (and which381

populations are admixed) up to the user; some guidelines pertaining to this choice have382

been discussed above. For smaller models, it can also be possible to search some or all of383

the full graph space (Shinde et al., 2019) to determine best-fitting topologies for a given384

number of admixture events (for example, using the similar admixturegraph R implemen-385

tation (Leppälä et al., 2017) and AdmixtureBayes (Nielsen, 2018); other techniques are386

the subject of ongoing work). MixMapper (Lipson et al., 2013) provides an intermediate387

level of automation by attempting to infer an unadmixed sub-model and then fitting one388

or two admixed populations onto this scaffold. With a small set of populations, this can389

sometimes be a useful approach, but it can largely be recapitulated within qpGraph, and390

the software does not support large models with more admixture events. At the most391

automated end of the spectrum is TreeMix (Pickrell and Pritchard, 2012), which only392

asks the user to supply the list of populations and the number of admixture events and393

then returns a single inferred model. The advantage of this strategy is that the program394

does all of the work of building the graph, which is especially useful if one has limited395

prior knowledge about the populations. The main drawback, in my view, is that the way396

the program builds the graph is by starting with an optimal mixture-free tree and then397

adding admixture events to account for deviations between the predictions of the tree398

model and the observed data. Depending on the true histories of the populations, this399

approach can be successful, but it can also increase the chances of falling into local optima400
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imposed by the initial tree (especially if many populations are admixed; see (Lipson et al.,401

2013)). Additionally—as in other methods—the choice of how many admixture events to402

include, which can sometimes be difficult, is still left to the user.403

In my experience, I have found f -statistics and admixture graphs to be very useful404

tools for learning about phylogeny and admixture. I hope that this guide will help others405

to get the most out of these tools in a range of real-world applications.406
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