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A positively selected FBN1 missense variant 
reduces height in Peruvian individuals

Samira Asgari1,2,3,4,5, Yang Luo1,2,3,4,5, Ali Akbari4,6, Gillian M. Belbin7,8,9, Xinyi Li1,2,3,4,5,  
Daniel N. Harris10,11, Martin Selig12, Eric Bartell4,5,13, Roger Calderon14, Kamil Slowikowski1,2,3,4,5, 
Carmen Contreras14, Rosa Yataco14, Jerome T. Galea15, Judith Jimenez14, Julia M. Coit16, 
Chandel Farroñay14, Rosalynn M. Nazarian12, Timothy D. O’Connor10,17, Harry C. Dietz18,19,  
Joel N. Hirschhorn4,6,13,20, Heinner Guio21, Leonid Lecca14, Eimear E. Kenny7,8,9,  
Esther E. Freeman22, Megan B. Murray16 & Soumya Raychaudhuri1,2,3,4,5,23 ✉

On average, Peruvian individuals are among the shortest in the world1. Here we show 
that Native American ancestry is associated with reduced height in an ethnically 
diverse group of Peruvian individuals, and identify a population-specific, missense 
variant in the FBN1 gene (E1297G) that is significantly associated with lower height. 
Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in 
homozygous individuals). To our knowledge, this is the largest effect size known for a 
common height-associated variant. FBN1 encodes the extracellular matrix protein 
fibrillin 1, which is a major structural component of microfibrils. We observed less 
densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of 
individuals who were homozygous for G1297 compared with individuals who were 
homozygous for E1297. Moreover, we show that the E1297G locus is under positive 
selection in non-African populations, and that the E1297 variant shows subtle 
evidence of positive selection specifically within the Peruvian population. This variant 
is also significantly more frequent in coastal Peruvian populations than in populations 
from the Andes or the Amazon, which suggests that short stature might be the result 
of adaptation to factors that are associated with the coastal environment in Peru.

With average heights of 165.3 cm and 152.9 cm for men and women, 
respectively, Peruvian individuals are among the shortest people in 
the world1. The genetic makeup of Peruvian individuals is shaped by 
admixture between Native American residents of Peru and the incom-
ing Europeans, Africans and Asians who have arrived in Peru since the 
sixteenth century2,3. A previous study of height in South and Latin 
Americans reported that Native American ancestry is correlated with 
shorter height in these populations4; however, this association may 
have been the result of confounding socioeconomic or environmental 
factors that were not captured by socioeconomic covariates in that 
study (education and wealth). Even if the association between Native 
American ancestry and height was driven by genetic factors, the specific 
genes and adaptive processes remain unclear.

To define genetic factors that contribute to height in Peruvian indi-
viduals, we obtained height and genotyping data from 3,134 individuals 

from 1,947 households in Lima, Peru (Methods and Supplementary 
Information section 1). We inferred the proportion of Native American 
ancestry in each individual (Extended Data Fig. 1) and observed a nega-
tive correlation between height and the proportion of Native American 
ancestry (Pearson’s correlation coefficient (r) = −0.28, 95% confidence 
interval = −0.31–0.25, P = 9.3 × 10−58) (Fig. 1a and Supplementary Infor-
mation section 2). Native American ancestry remained significantly 
associated with decreased height after adjusting for age, sex, African 
and Asian ancestry proportions and a random household effect, as a 
proxy for unmeasured environmental factors, and a kinship matrix to 
account for genetic relatedness and population structure (P = 7.2 × 10−43, 
effect size = −14.75 cm for 100% Native American versus 100% European 
ancestry, s.e.m. = 1.06, Fig. 1b).

To identify variants that cause this effect, we performed a 
genome-wide association study (GWAS). We observed associations 
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at five highly linked single-nucleotide polymorphisms (SNPs) within 
a single locus that overlapped with the gene FBN1 (15q21.1, P < 5 × 10−8) 
(Extended Data Fig. 2a). One SNP, rs200342067 (minor allele frequency 
(MAF) = 4.72%, effect size = −2.22 cm, s.e.m. = 0.36, P = 6.8 × 10−10), is 
a missense variant (E1297G) whereas the other four SNPs are intronic 
(Fig. 1c and Extended Data Table 1). Accounting for additional covari-
ates, such as population principal components or identity-by-descent5, 
did not affect the association results (Supplementary Information 
section 3).

To replicate this association, we genotyped an independent cohort 
of Peruvian individuals (n  =  598) (Methods and Supplementary 
Information section 1) and observed a similar allele frequency and 
effect size for rs200342067 in the replication cohort (MAF = 4.52%, 
effect size = −1.70 cm, s.e.m. = 0.82, P = 0.04) (Table 1). Meta-analysis 
of the discovery and replication cohorts increased the significance 
of the association (effect size = −2.14 cm, s.e.m. = 0.33, P = 9.2 × 10−11) 
(Table 1). We also tested the association of rs200342067 with inverse 
normally transformed height in data from the Genetic Investigation 
of Anthropometric Traits (GIANT)6 and Population Architecture using 
Genomics and Epidemiology (PAGE)7 studies, two publicly available 
datasets of Hispanic/Latino individuals. Although the allele frequen-
cies were lower in these datasets (<1.15%), we observed similar effect 

sizes across cohorts (effect sizes (s.e.m.) for discovery, replication, 
PAGE and GIANT cohorts, respectively, were −0.25 (0.04), −0.20 (0.10), 
−0.12 (0.07) and −0.44 (0.22)) (Table 1). Meta-analysis of these cohorts 
further increased the strength of the association (effect size = −0.22 
(s.e.m. = 0.03), P = 9.8 × 10−12) (Table 1 and Fig. 1d). These results confirm 
that the association between rs200342067 and height is not driven by 
statistical fluctuation or genotyping artefacts specific to the discovery 
cohort. We did not find any additional associations in the gene-based 
analysis of rare (MAF < 1%) or common variants (Supplementary Infor-
mation section 4).

Previous large-scale height GWAS, which were performed predom-
inantly in Europeans, have identified 3,290 independent common 
height-associated variants8. To assess the predictive power of these 
European-biased variants in the Peruvian population, we generated 
polygenic risk scores (PRSs) using conditional effect sizes of 2,993 com-
mon height-associated variants that were present in our cohort (Meth-
ods and Supplementary Information section 5). Greater PRS values 
were associated with increased height (Pearson’s r = 0.22, 95% confi-
dence interval = 0.18–0.25, P = 2.7 × 10−34) (Fig. 1e). The estimated genetic 
heritability h( )g

2  of height was similar for Peruvian individuals (hg
2 = 57.6%, 

s.e.m. = 9.7) and Europeans (hg
2 = 62.5%)9; however, previously identified 

height-associated variants explained only 6.1% (95% confidence 
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Fig. 1 | Genetic architecture of height in the Peruvian population. a, Height 
is negatively correlated with the proportion of Native American ancestry 
(n = 3,134 individuals, Pearson’s r = −0.28, 95% confidence interval = −0.31–
0.25, t = −16.36, d.f. = 3,132, P = 9.3 × 10−58, two-sided one-sample Student’s 
t-test). Points show the median for a decile of Native American ancestry (x axis) 
and the average height for that decile ( y axis). Error bars indicate the range (x 
axis) and s.e.m. ( y axis). b, Increased Native American ancestry is associated 
with lower height after adjusting for age, sex, African and Asian ancestry 
proportions, and household as a proxy for socioeconomic factors and genetic 
relatedness (n = 3,134 individuals). *Household effect size is calculated as the 
s.d. of the intercept of the model. The effect sizes for African (AFR), Asian (ASI) 
and Native American (NAT) ancestry are given relative to European ancestry.  
P values were calculated using two-sided χ2 difference tests. c, Locus-specific 
Manhattan plot of −log10-transformed GWAS P values. One locus on 
chromosome 15 passed the genome-wide significance threshold (P < 5 × 10−8, 
n = 3,134 individuals). P values were calculated using two-sided Wald tests. Dots 

show variants coloured according to their linkage disequilibrium with 
rs200342067 (total number of variants tested = 7,756,401, number of variants 
shown = 3,176). d, rs200342067 showed a similar MAF, direction of effect  
and effect size in an independent cohort of Peruvian individuals (n = 598 
individuals) and two independent cohorts of Latino/Hispanic individuals 
(n = 31,214 and 10,776 individuals, respectively). Squares show the effect size of 
rs200342067 on inverse normally transformed height; the dashed blue line 
indicates the meta-analysis effect size; the diamond shows the meta-analysis 
s.e.m.; and the error bars indicate the 95% confidence intervals. The size of the 
cohort and the MAF of rs200342067 are shown in parentheses (left) and the 
effect sizes (95% confidence intervals) are shown on the right.  
e, Height is positively correlated with PRSs (n = 3,134 individuals, Pearson’s 
r = 0.22, 95% confidence interval = 0.18–0.25, t = 12.36, d.f. = 3,132, P = 2.7 × 10−34, 
two-sided one-sample Student’s t-test). Points indicate the median for a PRS 
decile (x axis) and the average height for that decile ( y axis). Error bars show the 
range (x axis) and s.e.m. ( y axis).
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interval = 4.6–7.8, P = 6.7 × 10−45) of height phenotypic variance in our 
cohort compared with 24.6% (95% confidence interval = 22.0–27.2) in 
the original European cohort.

The lower predictive power of the PRS calculated based on a European 
GWAS in a non-European population could be the result of differences 
in factors related to population demography (such as linkage disequilib-
rium, allele frequency, sex and age composition)10–12, non-transmitted 
genetic factors (such as the genetic makeup of the parent13 and peers14), 
non-genetic factors (such as environmental exposure15) or genetic 
interactions with non-genetic factors16. In line with previous reports11,12, 
we observed that the European-biased PRS explains a larger proportion 
of height phenotypic variance in individuals with a high proportion of 
European ancestry compared with individuals with a low proportion 
of European ancestry, suggesting that the reduced effect of PRS in 
Peruvian individuals may—at least in part—be related to genetic dif-
ferences (Supplementary Information section 5).

Of previously identified common height-associated variants, 99% 
have effect sizes of less than 0.5 cm per allele6 (Fig. 2a). By contrast, 
rs200342067 reduces height by 2.2 cm per allele and explains 0.9% of 
height phenotypic variance in our cohort (Extended Data Fig. 2b). This 
effect size is comparable to a few other extremely rare (MAF < 0.5%) 
height-associated variants that are believed to be under purifying 
selection6,8. In the 1000 Genomes Project17, rs200342067 is specific 
to Mexican (MAF = 0.78%) and Peruvian (MAF = 4.12%) populations. 
However, the genomic region that overlaps with rs200342067 is under 
a hard selective sweep in some European, south Asian, east Asian and 
South American populations18,19 (Supplementary Information sec-
tion 6). This observation led us to the hypothesis that rs200342067 
might have risen in frequency in the Peruvian population as a result 
of positive selection.

To test this hypothesis, we used integrated Selection of Allele 
Favoured by Evolution (iSAFE) analysis20 to search for variants under 
positive selection in a 1.2-megabase (Mb) region around rs200342067. 
The top positive selection signal was from rs12441775 (Fig. 2b), 
an intronic variant in FBN1 with unknown function. The derived 
rs12441775*G allele has a much higher frequency in all non-African pop-
ulations than African populations (derived allele frequency (DAF) = 58% 
(interquartile range (IQR) = 51–64) in non-African populations versus 4% 
(IQR = 1–5) in African populations)17 (Extended Data Fig. 3). This allele 
shows evidence of positive selection (measured using integrated hap-
lotype score18,19 (iHS) and extended haplotype homozygosity21 (EHH) 
statistics) in European, south Asian and South American populations 
including the Peruvian population (DAF = 61%, iHS = −2.16) (Fig. 2c, 
Extended Data Fig. 3 and Supplementary Information section 6) sug-
gesting an out-of-Africa positive selection on rs12441775.

As rs12441775 is located 77 kilobases (kb) upstream of rs200342067, 
we considered that the increased frequency of rs200342067 in the Peru-
vian population may be the result of positive selection at rs12441775. 

Notably, rs12441775*G (derived/major) and rs200342067*C (derived/
minor) alleles are out of phase with each other and rarely co-occur on 
the same extended haplotypes. In our cohort, only 3% (9 out of 297) 
of the haplotypes that carried the rs200342067*C allele (allele fre-
quency = 4.7%) also carried rs12441775*G (allele frequency = 64.8%) 
(Fig. 2d and Supplementary Information section 6). Therefore, posi-
tive selection at rs12441775 cannot explain the increased frequency of 
rs200342067*C in Peruvians.

The presence of strong positive selection at haplotypes that carry 
the rs200342067*T allele prevents the detection of potentially weaker 
selection signals in haplotypes carrying the rs200342067*C allele using 
methods such as iHS18 or pairwise nucleotide diversity (π)22. However, 
if rs200342067*C is under independent positive selection, the length 
of the haplotype sequence carrying this allele is expected to be longer 
than the sequence of haplotypes carrying other derived alleles with 
similar allele frequencies in neutral regions of the genome23. Indeed, 
we observed that haplotypes carrying rs200342067*C are longer 
than 99.2% of haplotypes with similar alleles in the neutral genomic 
regions (n = 2,380 variants, n = 3,134 individuals and 6,268 haplo-
types) (Fig. 2e and Methods). Excluding the nine haplotypes that 
carry both rs200342067*C and rs12441775*G alleles does not change 
this result (Extended Data Fig. 4). Similarly, haplotypes that carry the 
rs200342067*C allele are longer than 100% of haplotypes simulated 
under a neutral demographic model that matches the population 
history of Peru (Methods and Extended Data Fig. 5). Taken together, 
these results suggest that the rs200342067*C allele is under positive 
selection independent of rs12441775*G. Almost all other missense vari-
ants in FBN1 are under purifying selection, causing this gene to have 
a significantly lower burden of missense variants than expected (z 
score = 5.53, P = 3.2 × 10−8, Exome Aggregation Consortium (ExAC), 
n = 60,706 individuals)24.

The selection signal at rs200342067*C is weaker than rs12441775*G. 
This difference may be due to the difference in the age of the alleles 
(484 (95% confidence interval = 373–605) versus 2,382 (95% confi-
dence interval = 2,286–2,479) generations old25 for rs200342067*C 
and rs12441775*G, respectively). It is also not clear whether the same 
evolutionary pressures are driving selection at both alleles. We also 
note that the positive selection signal at rs200342067 is weaker than 
known examples of recent hard selective sweeps (such as SLC24A5 or 
LCT)19. Whereas alleles under strong positive selection have |iHS| values 
of >219, the iHS value for rs200342067 is −1.5. This value is more extreme 
than previously reported19 iHS values of 95.3% variants with a similar 
DAF and local recombination rate in the Peruvian population (Extended 
Data Fig. 6a). Similarly, the EHH for rs200342067 is more extreme than 
the EHH of 97.5% variants with a similar DAF and recombination rates 
in our cohort (Extended Data Fig. 6b, c).

FBN1 is 266 kb downstream of SLC24A5 (Fig. 1c), a well-known 
example of positive selection due to its role in skin pigmentation26,27. 

Table 1 | Replication of rs200342067 association with height

Phenotype Cohort n rs Allele 1 Allele 2 MAF (%) Effect size S.e.m. z score Wald test P value

Height (cm) Discovery 3,134 rs200342067 C T 4.72 −2.22 0.36 −6.17 6.8 × 10−10

Replication 598 rs200342067 C T 4.52 −1.70 0.82 −2.07 0.04

Meta-analysis −2.14 0.33 −6.48 9.2 × 10−11

Inverse normally 
transformed 
height

Discovery 3,134 rs200342067 C T 4.72 −0.25 0.04 −6.25 4.1 × 10−10

Replication 598 rs200342067 C T 4.52 −0.20 0.10 −2.00 0.05

PAGE 31,214 rs200342067 C T 0.37 −0.12 0.07 −1.71 0.09

GIANT 10,766 rs200342067 C T 1.15 −0.44 0.22 −2.00 0.05

Meta-analysis −0.22 0.03 −6.81 9.8 × 10−12

We replicated the association between rs200342067 and height in an independently collected cohort (n = 598 individuals). We also tested the association of rs200342067 with inverse normally 
transformed height in two publicly available datasets of Hispanic/Latino individuals (PAGE and GIANT, n = 31,214 and 10,776 individuals, respectively) and observed a similar direction of effect 
and effect size in these independent cohorts. P values are from two-sided Wald tests. Numbers are rounded to two decimal places.
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However, positive selection at rs200342067 is unlikely to be the 
result of selection at extended haplotypes that contain positively 
selected alleles in SLC24A5, as there is no linkage between variants 
that overlap FBN1 and variants that overlap SLC24A5 (r2 < 0.05). We 
also investigated the structure of the haplotypes with rs1426654*A, 
a SLC24A5 allele associated with light skin pigmentation26,28 that is 
known to be under positive selection29 specifically; we observed that 
rs200342067*C and rs1426654*A are out of phase with each other and 
almost never co-occur on the same extended haplotypes. Only 4% 
(12 out of 297) of haplotypes that carried the rs200342067*C allele 
(allele frequency = 4.7%) also carried the rs12441775*G allele (allele 
frequency = 17.9%) (Fig. 2d and Supplementary Information section 6). 
Moreover, FBN1 and SLC24A5 are in different topologically associat-
ing domains, suggesting that rs200342067 (or other FBN1 variants) 
are unlikely to have been selected owing to long-range regulatory 
effects on SLC24A5.

As adaptation to the local environment can drive considerable allele 
frequency shifts, we compared the frequency of rs200342067 among 
150 individuals who were recruited separately from our cohort through 
the Peruvian Genome Project3 (PGP) from three different geographical 

regions in Peru: the coast (n = 46), Amazon (n = 28) and Andes (n = 76). 
The rs200342067 variant is more frequent in the individuals from the 
coast compared to individuals from the Andes or Amazon (MAF = 9.7%, 
1.7% and 0%, respectively; coastal versus non-coastal Fisher’s exact test 
P = 0.0005) (Fig. 2f and Supplementary Information section 7). Allele 
frequency differences as extreme as this are observed in less than 0.7% 
of all variants (n = 9,381,550 variants) (Fig. 2f) and in less than 1.1% of 
variants that were matched on DAF and local recombination rate to 
rs200342067 (n = 2,062 variants) (Extended Data Fig. 6d). We also used 
Bayenv230 to check the deviation of rs200342067 from a neutral popu-
lation structure model after correction for population stratification. 
The deviation of rs200342067 from the neutral population structure 
was more extreme than 91.7% of variants in the same DAF and recom-
bination bin (n = 2,062 variants) (Methods and Extended Data Fig. 6e). 
Among coastal populations, the Moches population—who are from the 
north coast of Peru—had an especially high frequency of rs200342067 
(n = 21, minor allele count = 4, MAF = 9.5%). Notably, the average height 
of the Moches people is far below the average height in Peru (158 cm 
and 147 cm for Moches men and women31 versus 164 cm and 152 cm 
for Peruvian men and women measured in the same year1), suggesting 
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haplotypes). d, Stacked bar plot of the rs200342067, rs12441775 and rs1426654 
haplotypes in our cohort (n = 6,268 haplotypes). Only 3% of the haplotypes that 
carry the rs200342067*C allele (red arrow) also carry the rs12441775*G allele 

(allele frequency = 64.8%) and only 4% carry rs1426654*A (allele 
frequency = 17.9%). The x axis shows the indicated SNPs, and the y axis shows 
the number of haplotypes with the derived or alternate allele of rs200342067, 
rs12441775, and rs1426654.The red arrow and the black line indicate the 
haplotypes carrying rs200342067*C allele. e, EHH plots for haplotypes 
carrying the rs200342067*C allele (red line, n = 297 haplotypes) compared with 
haplotypes carrying 2,380 variants that overlap the neutral regions of the 
genome and have a similar DAF to rs200342067*C (4.7 ± 1%; grey lines) in our 
cohort. Haplotypes carrying the rs200342067*C allele are longer than 99.2% of 
the haplotypes carrying similar alleles in the neutral genomic regions.  
f, Histogram of Fisher’s exact test results comparing the extent of allele 
frequency differences between coastal (n = 46 individuals) and non-coastal 
(n = 104 individuals) regions in Peru. The x axis shows the −log10-transformed  
P value of the two-sided Fisher’s exact test (n = 9,381,550 variants); the y axis 
shows the variant count in millions; the dashed blue line shows the 99th 
percentile; the solid red line shows the −log10-transformed P value of 
rs200342067 (0.7th percentile, P = 0.0005, two-sided Fisher’s exact test).
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that rs200342067 may have been selected as a result of adaptation to 
factors associated with the coastal environment.

To ensure that the association between rs200342067 and height in 
the Peruvian population is not driven by population structure and strati-
fication between individuals from different geographical regions, we 
performed a principal component analysis in the PGP cohort3 (n = 150) 
using a set of common variants (MAF ≥ 5%) and used SNP loadings from 
the principal component analysis in the PGP cohort to infer population 
principal components in our cohort (n = 3,134) (Methods and Supple-
mentary Information section 7). Correction for these principal com-
ponents did not change the effect size or the strength of the observed 
association between rs200342067 and height (n = 3,134, MAF = 4.72%, 
effect size = −2.30 cm, s.e.m. = 0.36, P = 3.0 × 10−10), confirming that the 
observed association between rs200342067 and height is not a result 
of confounding population structure.

The rs200342067 variant changes the conserved T (major/ancestral) 
allele to a C (minor/derived) allele in exon 31 of FBN1 (g.48773926T>C) 
(Extended Data Fig. 7). This change substitutes a large, negatively 
charged glutamic acid for a glycine, the smallest amino acid in fibrillin 1, 
encoded by FBN1 (FBN1(E1297G)). Fibrillin 1 is an extracellular matrix 
glycoprotein that serves as the structural backbone of force-bearing 
microfibrils in elastic and non-elastic tissues32 and is also involved in 
tissue development, homeostasis and repair by interacting with trans-
forming growth factor (TGFβ) and other growth factors32. Although 
the clinical importance of FBN1(E1297G) is not known, other fibrillin 1 
mutations cause nine dominantly inherited Mendelian diseases33. Most 
of these diseases include skeletal anomalies and changes in skin elastic-
ity33. To investigate the possible clinical consequences of FBN1(E1297G), 
we performed dermatological and rheumatological clinical exams on 
11 individuals from our cohort: 2 homozygous (C/C) individuals, 2 het-
erozygous (C/T) individuals and 7 matched controls with the reference 
(T/T) genotype (Methods). Although the musculoskeletal examination 
revealed no differences between individuals, one individual with the 
C/C genotype had a notably thicker skin as assessed in a total body 
skin examination and appeared older than the stated age. The other 
individual with the C/C genotype had no clinically abnormal cutaneous 
findings and none of the C/T or T/T individuals had an abnormal skin 
exam (Supplementary Information section 8).

We also obtained skin biopsies from two individuals with the 
rs200342067 C/C genotype (alternate homozygous) and two with 
rs200342067 T/T genotypes (reference homozygous, Methods). We 
matched each individual with the C/C genotype with individuals with 
the T/T genotype based on age, sex and ancestry proportions. Immuno-
histochemical staining showed that the individuals with C/C genotype 
had shorter microfibrillar projections from the dermal–epidermal 
junction into the superficial (papillary) dermis as well as less fibrillin 1 
deposition in the deeper dermis (Methods and Extended Data Fig. 8). 
Scanning electron microscopy analyses showed that individuals with 
the C/C genotype have less densely packed microfibrils with irregular 
edges and with microfibrils embedded in less dense collagen bundles, 
confirming the abnormal appearance of fibrillin 1 observed in immu-
nohistochemical analysis of the skin biopsies (Fig. 3 and Extended 
Data Fig. 9). Together, these experiments suggest that rs200342067 
alters the amount and architecture of microfibrillar deposits in the  
skin.

Whereas all of the reported mutations in FBN1 causing short stat-
ure phenotypes occur in the TGFβ-binding domains, mutations in the 
calcium-binding epidermal growth factor (cbEGF) domains of FBN1 
predominantly lead to Marfan or Marfan-like syndromes34. Notably, 
missense mutations in the cbEGF domains 11–18 of fibrillin 1 encoded 
by exons 24–32 of FBN1 (also known as the neonatal region) (Extended 
Data Fig. 7) have previously been associated with severe neonatal forms 
of Marfan syndrome, mortality within the first two years of postnatal 
life and poor disease prognosis in adults33,35. To our knowledge, the 
E1297G mutation is the first mutation in the neonatal region of fibrillin 1 

that leads to short stature, in contrast to the tall stature common in 
individuals with Marfan syndrome.

The FBN1(E1297G) mutation is located in the cbEGF domain 17 of 
fibrillin 1, between a conserved cysteine (FBN1(C1296)) that is involved 
in forming a disulfide bond with FBN1(C1284) and a conserved aspara-
gine (FBN1(N1298)) that is involved in calcium binding36 (Extended 
Data Fig. 7 and Supplementary Information section 8) and may have 
a role in calcium binding37. Calcium binding at the cbEGF domains of 
fibrillin 1 stabilizes the protein by making the microfibrils more rigid 
and protecting them from degradation by proteases38. The short, frag-
mented and less packed phenotype seen in the skin of individuals with 
the rs200342067 C/C genotype compared with individuals with the T/T 
genotype (Fig. 3 and Extended Data Figs. 8, 9) might reflect the higher 
susceptibility of mutated fibrillin 1 to proteolysis compared with the 
wild-type protein. The few previous studies that have reported amino 
acid changes at positions similar to FBN1(E1297G) in other fibrillin 1 
cbEGF-like domains have associated this change with Marfan syn-
drome34, highlighting the importance of domain context for studying 
the molecular effect of FBN1 mutations39,40. Understanding the cellular 
mechanisms that connect FBN1(E1297G) to microfibril structures and 
height requires further functional studies (Supplementary Informa-
tion section 8).

Common variants with large effect sizes on height might increase in 
frequency in a population as a result of positive selection. A study of 
height in Sardinian islanders found an intronic variant in KCNQ1, which 
encodes a voltage-gated potassium channel, that reduces height by an 
average of 1.8 cm (rs150199504, MAF = 7.7%, MAF in central European 
population = 0.67%); the authors of the study suggested that this vari-
ant is positively selected in Sardinians as a result of adaptation to the 

T/T C/C

c d

a b

Fig. 3 | Electron microscopy of fibrillin 1 in the skin. a, c, Electron microscopy 
images of the dermal–epidermal junction of samples obtained from two 
individuals with the rs200342067 T/T genotype (a, 60-year-old woman;  
c, 30-year-old woman). b, d, Electron microscopy images of the dermal–
epidermal junction of samples obtained from two individuals with the 
rs200342067 C/C genotype who were matched for age, sex and ancestry 
proportions with individuals in a and c, respectively (b, 64-year-old woman;  
d, 35-year-old woman). Individuals with the C/C genotype have short, 
fragmented and less densely packed microfibrils with irregular edges and their 
microfibrils are embedded in less dense collagen bundles compared with the 
individuals with the T/T genotype. Red arrowheads show edges of microfibril 
bundles. Magnification, 11,000×. Scale bars, 1 μm.
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island environment41. A study of signatures of genetic adaptation in 
Greenland Inuits found an intronic variant in FADS3, which encodes 
a protein involved in fatty acid metabolism, that reduces height by 
1.9 cm, possibly due to the influence of fatty acid composition on the 
regulation of growth hormones (rs7115739, DAF = 62.7–81.9%, DAF in 
the central European population = 2.9–3.6%); the authors of the study 
suggested that this variant is positively selected in Greenland Inuits as 
a result of adaptation to as fat-rich diet42. Similarly, it is plausible that 
short stature in Peruvian individuals is the result of adaptation to the 
factors associated with the coastal environment. It is also possible that 
other FBN1-related traits such as changes in the performance of the 
cardiovascular system have offered an evolutionary advantage in this 
population. Understanding the exact adaptive processes that could 
have caused the selection of rs200342067 in the Peruvian population 
is a challenging task and requires further investigation.

In addition to its implications in medical and population genetics, 
this study highlights the importance of large-scale genetic studies 
in underrepresented and founder populations. Our findings show 
that genetic studies in different populations can uncover previously 
undescribed trait-associated variants with large effects in functionally 
relevant genes. Similar studies in diverse populations are required 
to capture the extent of human genetic diversity and to expand the 
benefits of genetic research to all human populations.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment 
unless otherwise noted.

Study participants
Discovery cohort. The individuals in the discovery cohort (the LIMAA 
cohort) are a subset of 4,002 individuals who were recruited in Lima, 
Peru, to study the genetics of tuberculosis in the Peruvian population43. 
The catchment area included 12 of the 43 districts of metropolitan Lima, 
Peru and 3.3 million inhabitants. This catchment area reflects a mix of 
urban and peri-urban areas and informal settlements44. Participants 
were recruited in any of the 106 public health centres in the catchment 
area. Informed written consent was obtained from all participants. The 
study protocol was approved by the Harvard School of Public Health’s 
Institutional Review Board (IRB) and the Research Ethics Committee 
of the National Institute of Health of Peru.

Replication cohort. We recruited 889 individuals from the same catch-
ment area as the discovery cohort. Similar to the discovery cohort, we 
followed the guidelines of the Harvard School of Public Health’s IRB and 
the Research Ethics Committee of the National Institute of Health of 
Peru guidelines and obtained informed consent from all participants.

Phenotype
In both the discovery and replication cohorts, height in centimetres 
was measured by trained healthcare staff upon recruitment of study 
participants. We excluded individuals who were under 19 years of age, 
individuals without height measurements and individuals with a meas-
ured height that was ±3.5 s.d. away from the population average from 
the cohort. In addition to height, the sex, age and tuberculosis status of 
the individuals were also collected. We also collected household-level 
socioeconomic factors on housing quality, water supply and sanita-
tion45 and summarized these factors using principal component analy-
sis (PCA)45 to calculated household-level composite socioeconomic 
scores. The continuous socioeconomic scores were then categorized 
into tertiles corresponding to low, middle and upper socioeconomic 
groups45.

Genotyping and quality control
Discovery cohort. We collected genotyping data for 4,002 individuals 
from 2,272 households in Lima, Peru, using a customized Affymetrix 
Axiom array. The array details, as well as the genotyping quality control, 
phasing and imputation have been described in detail in a previous 
publication43; in brief, we designed an approximately 720,000 marker 
array based on exome-sequencing data from 116 Peruvian individuals 
to optimize for population-specific rare and coding variants. Out of 
4,002 recruited individuals, 22 individuals were excluded during quality 
control because there was more than 5% of the genotype data missing, 
an excess of heterozygous genotypes (±3.5 s.d.), a duplication with 
identity-by-state of >0.9 or individuals with tuberculosis had an age at 
diagnosis of over 40 years of age43. We further excluded 846 individuals 
from the analysis: individuals younger than 19 years of age, individuals 
without height measurements and individuals with a measured height 
that was ±3.5 s.d. away from the population average. The final cohort 
for the current study included 3,134 individuals from 1,947 households. 
We used GRCh37 as the reference genome for all our genetic analyses.

Replication cohort. We collected genotyping data for 889 individuals 
from 273 households in the same population and catchment area as 
our discovery cohort. We collected blood using the Whatman protein 
saver cards (Dried Blood Spot cards) (Sigma-Aldrich, WHA10534320). 

We extracted genomic DNA from the collected blood and genotyped 
all samples using the Illumina Multi-Ethnic Genotyping Array (MEGA). 
rs200342067 is included on the MEGA array and was directly genotyped 
in all individuals. We used PLINK (version 1.90b3w) to estimate the level 
of genotyping missingness and the proportion of heterozygous vari-
ants per individual. Height data were not available for 127 individuals. 
Moreover, 164 individuals were excluded as they were under 19 years 
of age. The final cohort included 598 individuals from 242 households.

Genetic relatedness matrix and kinship estimation
To avoid spurious association results, it is important to account for 
both recent genetic relatedness, such as family structure (kinship), 
and more distant genetic relatedness, such as population structure. 
To this end, we used GEMMA46 (version 0.96), with default options, 
to generate a genetic relatedness matrix (GRM) after removing rare 
variants (MAF ≤ 1%), regions with known long-range linkage disequilib-
rium47 and variants in high linkage disequilibrium (r2 > 0.2 in a window 
of 50 kb and a sliding window of 5 kb). We used PLINK (version 1.90b3w) 
for pruning the genotypes. We generated a separate GRM following 
the same steps for the Peruvian individuals that were included in the 
replication cohort.

Many kinship estimation methods perform under the assumption 
of sampling from a single population with no underlying ancestral 
diversity. Kinship estimates are inflated when this assumption is vio-
lated48. In the presence of population structure and admixture, methods 
that replace population allele frequencies with ancestry-specific allele 
frequencies are preferred48. We used PC-Relate49 implemented in the 
GENESIS R package (version 2.6.1) to estimate the kinship coefficients 
between individuals. This method uses ancestry representative princi-
pal components to correct for population structure before calculating 
the kinship coefficients. For this analysis, we removed rare variants 
(MAF < 1%), regions with known long-range linkage disequilibrium47 
and variants in high linkage disequilibrium (r2 > 0.2 in a window of 50 kb 
and a sliding window of 5 kb). Individuals were considered unrelated if 
their estimated kinship coefficients were ≤0.0625, corresponding to 
second-degree genetic relatedness or further. In total, 476 individuals 
had kinship coefficients of >0.0625.

Next, we inferred pairwise identity-by-descent (IBD) segments 
between the individuals in our cohort using Refined IBD5. Refined 
IBD uses a haplotype dictionary to find exact short matches between 
phased haplotypes from different individuals and then expand these 
matches to identify long, nearly identical IBD segments between these 
individuals50. Refined IBD then evaluates candidate IBD segments with 
a probabilistic approach to assess the strength of evidence for IBD and 
reports the segment above a threshold as IBD segments. To calculate 
IBD segments using Refined IBD, we first used PLINK (version 1.90b3w)51 
on quality-controlled genotypes (n = 677,675 markers) to generate one 
VCF file per chromosome. We then used the Refined IBD function5 
implemented in Beagle (version 4.1) to phase these genotypes and to 
calculate IBD segments in our cohort (n = 3,134). We used Refined IBD 
with nthreads = 8, overlap = 3000, default options for other parameters 
and genetic maps from HapMap II (build GRCh37/hg19) (provided on 
the Beagle website: https://faculty.washington.edu/browning/beagle/
b4_1.html). Finally, we calculate the proportion of IBD by dividing the 
length of IBD segments by the length of diploid GRCh37 autosomal 
chromosomes excluding GRCh37 gap regions such as the centromere 
(also called the accessible genome, 5.7 × 109 bp). We used the Pearson 
correlation coefficient in R (version 3.4) to compare the GENESIS and 
Refined IBD results.

The PGP
In some analyses, we used whole-genome sequencing data from the 
PGP3 cohort. This previously described cohort3 includes 150 Peru-
vian individuals who were recruited separately from our cohort from 
three different geographical regions in Peru: coast (n = 46), Amazon 
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(n = 28) and Andes (n = 76). Individuals were assigned to different Native 
American groups from the three geographical regions, as described 
previously3, as follows: “Native American population cohort partici-
pants were recruited from the Matzes, Uros, Afroperuvians, Chopccas, 
Moches, Q’eros, Nahuas, and Matsiguenka populations. We applied 
three criteria to optimize individuals to best represent the Native Ameri-
can populations: (i) the place of birth of the participant and that of his 
or her parents and grandparents, (ii) their last names (only those cor-
responding to the region), and (iii) age (eldest to mitigate effects of the 
last generation). Participants of the mestizo population cohorts were 
recruited from the cities Iquitos, Puno, Cusco, Trujillo, and Lima and 
were randomly selected. The Afroperuvians were sampled as a Native 
American population; however, for all analyses, we treated them as 
a mestizo group due to their expected admixture between multiple 
ancestries.”

Difference in allele frequency of rs200342067 between the 
coastal and non-coastal regions
We compared the extent of the difference in allele frequency between 
individuals from the coastal regions in Peru (n = 46) and individuals that 
were not from the coastal regions in Peru (n = 104) using a two-sided 
Fisher’s exact test (n = 9,381,550 variants). Next, to ensure we adequately 
controlled for population structure, we used Bayenv2 (version 2.0)30 
to calculate a covariance matrix between the coastal and non-coastal 
populations using 63,758 SNPs with MAF > 10% in the PGP cohort3 using 
the default options. We then used Bayenv2 (version 2.0)30 to calculate 
standardized allele frequencies and XTX statistics, a population dif-
ferentiation statistic that is designed to detect variant level deviations 
from the neutral patterns of population structure while correcting for 
population structure30, for rs200342067 as well as the 2,062 randomly 
selected SNPs that were matched in MAF and local recombination rate 
to rs200342067 (described in detail in ‘Selecting variants in the same 
DAF and recombination bin as rs200342067’) and using the default 
options in Bayenv2.

PCA
To obtain principal components within the LIMAA cohort, we merged 
our genotype data with data from the continental populations of phase 
3 of the 1000 Genomes Project17 and genotype data from Siberian and 
Native American populations from a previously published study52  
by matching chromosomes, positions and reference and alternate 
alleles. After merging the datasets, variants with an overall MAF < 1% 
were excluded. We used GCTA53 (version 1.26.0) to perform the PCA. 
We used PLINK (version 1.90b3w)51 for linkage disequilibrium pruning, 
merging and quality control. The merged dataset included 34,936 
variants.

To ensure we adequately controlled for population structure and 
differences in ancestry that might exist within the different geographi-
cal regions of Peru, we also calculated the principal components of 
the LIMAA cohort (n = 3,134) projected into the principal component 
space of the PGP cohort3 (n = 150). To do this, we selected 247,940 
common (MAF ≥ 5%) variants that were shared between the PGP and 
LIMAA cohorts. We then calculated the principal components in the 
PGP cohort using the EIGENSOFT (version 6.1.4)54 smartpca function. 
Finally, we used the SNP loadings from the smartpca analysis to project 
the individuals from the LIMAA cohort to the principal component 
space of the PGP cohort using the SNPWEIGHTS (version 2.1) software55. 
We used ANOVA (R version 3.4) to test the association of the first ten 
principal components of the PGP cohort with coast–non-coast status. 
We tested the association between the principal components of the 
LIMAA cohort with the Native American ancestry proportion, height, 
or rs200342067 minor allele count using the linear mixed model imple-
mented in lme4qtl56 (R version 3.4), with age and sex as fixed effects 
and a genetic relatedness matrix to account for genetic relatedness 
(calculated using GEMMA46 version 0.96) as random effect.

Global ancestry inference
We used ADMIXTURE57 (version 1.3) at K = 4 clusters for global ancestry 
inference. The choice of four ancestral populations for ADMIXTURE 
analysis was based on the demographic history of Peru and previous 
studies of Peruvian population structure2–4. We used the merged dataset 
described above as input for the ADMIXTURE analysis. We used PLINK 
(version 1.90b3w)51 to exclude variants with a genotyping missingness 
rate of >5% and to perform linkage disequilibrium pruning by removing 
the markers with r2 > 0.1 with any other marker within a sliding window 
of 50 markers per window and an offset of 10 markers.

Correlation between global ancestry proportions and height
We used the R package lme4qtl56, a linear mixed model framework, 
to measure the correlation between global ancestry proportions 
and height. We included the following covariates in the base model: 
age, sex, African and Asian ancestry proportions, as well as a GRM to 
account for population structure and genetic relatedness generated 
using PC-Relate49, which is implemented in the GENESIS R package 
(version 2.6.1). We repeated this analysis after adding a random effect 
to account for the individual’s household as a proxy for unmeasured 
environmental factors. Finally, to ensure we adequately controlled 
for environmental factors, we randomly assigned height to individu-
als within each household 10,000 times and recalculated the Native 
American ancestry effect size using the base model to generate an 
empirical null distribution. We compared the null distribution with 
the observed Native American ancestry effect size from the original 
data to generate an empirical permutation P value.

Common variant association analysis
In the discovery cohort, imputed SNPs with an imputation quality 
score r2 < 0.4, Hardy–Weinberg equilibrium P < 10−5 or a missing rate 
per SNP > 5% were excluded. After filtering, 7,756,401 SNPs were left for 
further association analyses. We used GEMMA46 (version 0.96) to per-
form the single variant GWAS, with age, sex and a GRM generated using 
GEMMA46 (version 0.96) as covariates. We repeated the association for 
chromosome 15 by adding one or more of the following covariates: 10 
principal components, 20 principal components, socioeconomic status, 
African global ancestry proportion, Asian global ancestry proportion 
and European global ancestry proportion. To ensure we adequately 
controlled for population structure, we also repeated the association 
test between height (cm) and rs200342067 with age, sex, 10 principal 
components derived from projecting the LIMAA cohort into the prin-
cipal component space of the PGP cohort3 (see ‘PCA’ for details), and a 
GRM generated using GEMMA46 (version 0.96). To ensure that our choice 
of GRM did not affect the association between rs200342067 and height, 
we repeated the association analysis using two new GRMs. First, a GRM 
calculated using PC-Relate49, with age, sex and 10 principal components 
as fixed covariates. Second, a GRM calculated using Refined IBD5 with 
age, sex and 10 principal components as fixed covariates. All association 
P values are reported as two-sided Wald test P values.

To ensure that local (per chromosome) relatedness patterns such as 
autozygosity segments did not bias the relatedness, we generated 23 
GRMs, leaving one chromosome out in each GRM using PC-Relate49 and 
repeated the association for all post-quality-control imputed variants 
on each chromosome using a GRM generated without that chromo-
some. Age, sex and 10 principal components were included as additional 
covariates in this analysis.

For the replication analysis in the Peruvian population, we used the 
minor allele count information of rs200342067, directly genotyped 
on the Illumina MEGA array, from 598 Peruvian individuals (see ‘Rep-
lication cohort’ for details). Similar to the discovery cohort, we tested 
the association of rs200342067 with height (cm) using a linear mixed 
model framework implemented in GEMMA46 (version 0.96) with age, 
sex and a GRM (calculated using GEMMA) as covariates.
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Additional replication cohorts
PAGE. The PAGE study is a meta-analysis of multiple existing major 
population-based cohorts7. The cohorts included in PAGE height study 
include the BioMe biobank (BioMe), the Hispanic Community Health 
Study/Study of Latinos (HCHS/SOL), The Multiethnic Cohort (MEC) 
and the Women’s Health Initiative (WHI)7. Height in centimetres was 
measured by trained clinic staff in the SOL and WHI studies at the time 
of enrolment. In the MEC and BioMe studies, height was self-reported 
by questionnaire. Individuals with height measurements that were 
±6 s.d. from the mean (based on sex and race), individuals who were 
younger than 18 years of age and women who were pregnant were 
excluded from the height GWAS analysis in PAGE. To get comparable 
phenotypes between different cohorts, PAGE uses inverse normal 
transformation of sex-specific height residuals adjusted for age as the 
dependent variable in a linear mixed model that includes self-identified 
ancestry, study, study centre and 10 principal components (measured 
from unrelated individuals) as fixed effects and a genetic relatedness 
matrix (using GENESIS58) as a random effect7. Detailed information 
about the phenotype and statistical analysis of the PAGE cohort has 
been published previously7. We used the summary statistics from 
31,214 Hispanic and Latino individuals from the PAGE study in our 
replication analysis.

GIANT. The exome array study of the GIANT consortium is a 
meta-analysis of 147 studies comprising 458,927 adult individuals6. 
Height in centimetres was corrected for age and the genomic princi-
pal components, as well as any additional study-specific covariates 
(for example, recruiting centre) in a linear regression separately by 
sex. For family-based studies, sex was included as a covariate in the 
model. In addition, residuals for case–control studies were calculated 
separately. Similar to the PAGE cohort, GIANT uses the inverse normal 
transformation of calculated residuals as the dependent variable in an 
ancestry-specific linear mixed model that corrects for cryptic related-
ness using a kinship matrix in each cohort separately followed by a 
meta-analysis of the results. Detailed information about the phenotype 
and statistical analysis of the GIANT cohort has been published previ-
ously6. We used the summary statistics from 10,776 Hispanic individuals 
from the GIANT study in our replication analysis.

Meta-analysis
We used the meta R package59 (version 4.9-3) to perform an inverse 
variance-based meta-analysis using summary statistics from the height 
GWAS in the LIMAA discovery cohort and the Peruvian replication 
cohort in which the measured phenotype was the height (cm). To 
perform the meta-analysis using the GIANT6 and PAGE7 cohorts, we 
repeated our association analysis in both the discovery and the repli-
cation cohorts as described above with age, sex and a GRM generated 
using GEMMA46 (version 0.96) as covariates and inverse normally trans-
formed height as the dependent variable. We used summary statistics 
from these analyses as well as summary statistics form the GIANT6 and 
PAGE7 cohorts to perform an inverse variance-based meta-analysis 
using the meta R package59.

Heritability analysis
We used GREML analysis in GCTA60 (version 1.26.0) to calculate the 
amount of variance in height explained by all common variants 
(MAF > 1%). We included 423,108 variants from 2,667 unrelated individu-
als in this analysis with age, sex and the first 10 principal components 
as covariates in the analysis. To calculate height heritability for each 
sex, we repeated the heritability analysis in men and women separately.

PRS analysis
Out of 3,290 previously reported independent genome-wide signifi-
cant variants8, 2,993 were present in our cohort. We constructed PRSs 

for each individual using height-increasing effect sizes of these 2,993 
previously published height-associated variants8 as follows:

∑ n βPRS = ,j
i

m

ij i
−1

in which βi is the reported conditional effect size for variant i in the 
European population, nij is the allele count of variant i in individual j 
in our Peruvian cohort, and m is the total number of variants used in 
the construction of the PRS. We calculated the amount of variance 
explained (r2) using lm function in R (version 3.4) with height residuals 
adjusted for age, sex and a GRM generated using GEMMA46 (version 
0.96) to account for relatedness and cryptic population structure as the 
dependent variable and PRS as the explanatory variable. Out of 3,290 
previously reported independent genome-wide significant variants8, 
2,388 reached genome-wide significance in an unconditional analysis. 
We repeated the PRS calculation using the unconditional effect sizes 
of 2,195 of these variants that were also present in our cohort. We used 
the cocor package in R (version 1.1-3) to test the significance of the dif-
ference between the amount of variance explained using different PRS.

For the sex-specific analysis, we first calculated height residuals in 
each sex separately after adjustment for age and a GRM generated using 
GEMMA46. We then calculated the r2 using lm(), with height residuals as 
the dependent variable and PRS as the explanatory variable for each 
sex separately. For the analysis of individuals with high or low European 
ancestry proportions, we separated the cohort into individuals with 
high European ancestry proportions (top quartile) and low European 
ancestry proportions (first, second and third quartiles) and calcu-
lated height residuals after adjustment for age, sex and a GRM gener-
ated using PC-Relate49 to account for relatedness but not population 
structure. We then calculated the r2 using the lm function, with height 
residuals as the dependent variable and PRS as the explanatory variable 
in each group separately.

Gene-based association analysis
We used SKAT61 (version 1.3.2.1) for gene-based association testing 
of rare (MAF < 1%) variants. Null distributions were generated using 
SKAT_NULL_emmaX, which incorporates kinship structure in the calcu-
lation of SKAT parameters and residuals. Age and sex were included as 
covariates. The statistical significance threshold was set at P < 2.5 × 10−6, 
which is the Bonferroni correction threshold for 20,000 protein-coding 
genes. For common variants (MAF ≥ 1%), we used fastBAT analysis in 
GCTA62 to perform gene-based association testing using GWAS sum-
mary statistics.

Positive selection analyses
iSAFE analyses. We used SHAPEIT2 (version v2.r837) to phase the 
imputed genotypes for chromosome 15 for all the individuals in our 
cohort (n = 3,134). We then used iSAFE20 (version v1.0.4) software, avail-
able at https://github.com/alek0991/iSAFE with the following options: 
MaxRank = 300, MaxFreq = 0.85, and enabling the IgnoreGaps flag to 
detect variants under positive selection in a 1.2-Mb window around 
rs200342067.

EHH analyses. We used selscan63 (version 1.2.0a) to calculate EHH21 in 
our cohort (n = 3,134) or in the simulated data. The analysis was restrict-
ed to variants with MAF > 1%. For all variants, including rs200342067, we 
calculated EHH in a 2-Mb window around the variant. For EHH, we inter-
polated the genetic position based on the average recombination rate of 
the chromosome to get a comparable measure of haplotype length be-
tween positively selected regions, regions under neutral selection and 
simulated data. To ensure that the EHH calculation at rs200342067*C is 
not biased due to selection at the nearby selected locus rs12441775*G, 
we repeated the EHH calculation for at rs200342067*C after removing 
the nine haplotypes that had both rs200342067*C and rs12441775*G 

https://github.com/alek0991/iSAFE


(updated MAF for rs200342067*C = 4.6%). For integrated EHH val-
ues, we calculated the area under the EHH curve. The global map of 
rs12441775*G was generated using the Geography of Genetic Variants 
(GGV) browser64 (http://www.popgen.uchicago.edu/ggv).

Comparing EHH of rs200342067 with similar variants under neu-
tral selection. We selected 2,380 variants that overlapped the previ-
ously published putative neutral regions of the genome23 and had a 
similar DAF to the rs2003420678*C allele in our cohort (4.7 ± 1%). We 
calculated EHH for these variants using selscan63 (version 1.2.0a) and 
compared the EHH decay plots as well as the integrated EHH values 
for rs2003420678*C and these variants. In a second step, we removed 
the nine haplotypes that carried rs12441775*G from our cohort and 
repeated the EHH analysis using 2,309 variants that overlapped the 
previously published putative neutral regions of the genome23 and 
had a similar DAF to the updated frequency of the rs2003420678*C 
allele (AF = 4.6 ± 1%).

Selecting variants in the same DAF and recombination bin as 
rs200342067. We restricted the analysis to biallelic variants, the 
ancestral allele was assigned using the ‘ancestral allele’ information 
provided in the 1000 Genomes Project17. We calculated the derived 
allele frequency of each common variant (MAF > 1%) in the Peruvian 
individuals from the 1000 Genomes Project17 (n = 85). We also inter-
polated the genetic position of each common variant (MAF > 1%) using 
the 1000 Genomes Project17 phase 3 genetic maps. The recombination 
rate was calculated as follows: genetic position (cM)/physical position 
(Mb). Variants on each chromosome were divided into 100 DAF bins 
and 20 recombination bins. The DAF for rs200342067 in the Peruvian 
individuals from the 1000 Genomes Project17 is 4.1% (DAF bin 4) and its 
recombination rate is 1.4 (recombination bin 5). For comparison with 
rs200342067, we selected 2,062 variants that were in the same DAF and 
recombination bin as rs200342067 and that were at least 1 Mb apart 
(that is, independent).

iHS analyses. iHS18 values for the Peruvian individuals and other 
populations from the 1000 Genomes Project17 were obtained from a 
previously published study19 (http://coruscant.itmat.upenn.edu/data/
JohnsonEA_iHSscores.tar.gz).

Testing the extent of rs200342067 MAF difference between the 
coastal and non-coastal regions
Fisher’s exact test. We used minor allele counts for rs200342067 as 
well as 2,062 independent variants matched in DAF and local recom-
bination rates to rs200342067 (see ‘Selecting variants in the same 
DAF and recombination bin as rs200342067’) in populations from the 
coastal regions (n = 46) or non-coastal regions (that is, the Andes and 
Amazon, n = 104) of the Peruvian Genome Project cohort3, to perform 
Fisher’s exact tests in R (version 3.4).

XTX analysis. We used Bayenv 2.0 (version 2.0)30 to calculate a covari-
ance matrix between the coastal and non-coastal populations using 
63,758 SNPs with MAF > 10% in the PGP cohort3. We then used Bayenv 
2.0 (version 2.0)30 to calculate standardized allele frequencies and 
XTX statistics for rs200342067 as well as all the 2,062 SNPs randomly 
selected SNPs that were matched in DAF and local recombination rate 
to rs200342067.

Simulation of haplotypes under a neutral demographic model
We used msprime (version 0.7.3)65, a coalescent model with recombina-
tion, to simulate 2,000 Peruvian individuals with the recombination 
map from HapMap Project66 1,000 times. We adapted and constructed 
the population structures from the previously proposed out-of-Africa 
model67 with parameters previously inferred from the 1000 Genomes 
Project17. To mirror the Peruvian migration history, we created a 

three-way admixture event around 500 years (25 generations) ago. We 
used the 1000 Genomes Project17 phase 3 genetic maps for chromosome 
15 to interpolate chromosomal recombination rate in our simulation. 
We set the admixture to have 80% Native American, 16% European and 
4% African ancestry, inferred from the LIMMA cohort. We compared 
the integrated EHH values for 1,000 simulated variants that had similar 
DAF to rs200342067 (DAF = 4.7 ± 1%) and overlapped the same region 
on the simulated chromosome (physical position 48,773,926 ± 20 kb) 
with the integrated EHH value of rs200342067 in our cohort (n = 6,628 
haplotypes). We repeated the analysis for two putative neutral regions 
on chromosome 15 in the simulated data (n = 2,000 haplotypes) and 
compared the integrated EHH values with the integrated EHH values 
for two variants, rs17580697 (DAF = 4.6%) and rs305008 (DAF = 4.6%), 
which overlapped these neutral regions of chromosome 1523 in our 
cohort (n = 6,628 haplotypes).

Mutation age
We used the pre-calculated mutation age estimates based on the 1000 
Genomes Project populations17 from the human genome dating server 
(https://human.genome.dating/)25.

Three-dimensional structure of the FBN1 cbEGF domain 17
The three-dimensional structure was obtained based on homology with 
fibrillin 1 cbEGF domains 12 and 13 (Protein Data Bank (PDB) 1LMJ)36.

Clinical examination
Clinical examination was approved by the local IRB. Individuals with 
the T/T genotype (controls) were matched with cases (individuals with 
the C/C and C/T genotypes) for sex, age ±5 years, Native American 
ancestry proportion ±0.05 and European ancestry proportion ±0.05. 
A board-certified rheumatologist performed a musculoskeletal exam 
and history, including a detailed musculoskeletal history with review 
of systems, past medical history, medication history, social history and 
family history; vital signs; range of motion on knees, wrists, elbows, 
index fingers, middle fingers and hips; joint exam of hands for bony 
changes, synovitis or other abnormalities; joint exam of knees, feet 
and spine for instability, bony changes, inflammation or other abnor-
malities. A board-certified dermatologist performed a standardized 
total body skin exam. This includes an examination of the skin of the 
face, eyelids, ears, scalp, neck, chest, axillae, abdomen, back, buttocks, 
genitalia, upper extremities, lower extremities, hands, feet, digits, 
nails, lips, mouth, mucosae and lymph nodes. We also obtained skin 
biopsies for two individuals with the C/C genotype and two age-, sex- 
and ancestry-matched individuals with the T/T genotype. Biopsies 
were obtained 5 cm lateral to the umbilicus (in clinically normal skin) 
to assess histological differences associated with genotype.

Histology
Following Harvard Medical School IRB approval, samples were obtained 
by skin punch biopsy as routinely performed by a Massachusetts 
General Hospital (MGH) dermatologist and placed inside specimen 
jars containing 10% neutral buffered formalin. The specimens were 
shipped by courier to the Massachusetts General Hospital at ambient 
temperature, placed into tissue cassettes, processed routinely and 
paraffin-embedded tissue blocks were prepared at the Histopathology 
Research Core of the Massachusetts General Hospital. One glass slide 
stained with haematoxylin and eosin was prepared for each block and 
additional unstained 5-μm thick sections cut from the tissue blocks 
were placed onto Fisher superfrost slides (protein-coated).

Immunohistochemical analysis
Anti-fibrillin-1 antibody staining was performed using the citrate buffer 
antigen retrieval technique. Appropriate negative-control sections 
(primary antibody omitted to monitor for background staining) and 
positive-control sections (human placental tissue known to express the 
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antigen, as recommended by the manufacturer) were evaluated. Tissue 
sections were manually stained with rabbit polyclonal anti-fibrillin-1 
antibody (FBN1, dilution 1:250, HPA021057, MilliporeSigma) and coun-
terstained with haematoxylin following deparaffinization of 5-μm cut 
sections. Antigen expression in dermal fibroblasts was assessed by a 
board-certified pathologist for each specimen in a blinded fashion.

Electron microscopy on formalin-fixed paraffin-embedded tissues
Areas of interest were identified on slides stained with haematoxylin 
and eosin and matched to the corresponding paraffin blocks. Under 
a dissecting microscope, these areas were cut out using a sharp razor 
blade and placed into glass vials containing 100% xylene. The vials were 
left overnight at room temperature and the xylene was changed the 
following morning. The vials were then left gently rotating for an addi-
tional 3 h before rehydrating for 1 h each in a series of ethanol (100%, 
95%, 70%, 50% and 25%) solutions. Tissues were then rinsed in sodium 
cacodylate buffer and fixed for 1.5 h with our routine glutaraldehyde 
fixative (2.5% GTA, 2.0% PFA, 0.025% calcium chloride, in a 0.1M sodium 
cacodylate buffer pH 7.4). Tissues were further processed in a Leica 
Lynx automatic tissue processor. In brief, tissues were post-fixed with 
osmium tetroxide, dehydrated in a series of ethanol solutions, en bloc 
stained during the 70% ethanol dehydration step for 1 h, infiltrated 
with propylene oxide epoxy mixtures, embedded in pure epoxy and 
polymerized overnight at 60 °C. Thick sections were cut and stained 
with toluidine blue and examined with a light microscope. Thin sec-
tions were cut from representative areas, stained with lead citrate and 
examined with an FEI Morgagni transmission electron microscope. 
Images were captured with an AMT (Advanced Microscopy Techniques) 
2K digital CCD camera.

FBN1 and SLC24A5 Hi-C data
To investigate whether rs200342067 or the other four variants that 
were linked to rs200342067 in our cohort can act as an enhancer for 
SLC24A5, we investigated the H3K27ac marks from the ENCODE dataset 
to search for active enhancer that overlap these variants (data were 
obtained from the ENCODE portal) as well as Hi-C data in published 
cell types68–70 for evidence of a physical interaction between these 
variants and SLC24A5 (3D Genome Browser, http://promoter.bx.psu.
edu/hi-c/view.php).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Genotyping data are available through dbGAP, under accession number 
phs002025.v1.p1.

Code availability
No custom code was used to draw the central conclusions of this work. 
All the software and packages used in this work are included and refer-
enced in the manuscript.
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Extended Data Fig. 1 | Peruvian population structure. a, b, PCA of 
genotyping data from Peruvian individuals included in this study (n = 3,134 
individuals) merged with the data from continental populations from phase 3 
of the 1000 Genomes Project (n = 3,469 individuals) as well as the data from 
Siberian and Native American populations from the previously published 
study52 (n = 738 individuals), which were used as a reference panel (number of 
variants, 34,936). Dots, individuals; colour, populations (AFR, African; AMR, 
South American; EAS, east Asian; SAS, south Asian; EUR, European; SIB, 
Siberian; NAT, Native American). c, Global ancestry analysis using ADMIXTURE 
(K = 4). We observed varying levels of European, African and Asian admixture in 
our cohort (n = 3,134 individuals) with a median proportion of Native American, 
European, African and Asian ancestry per individual of 0.83 (IQR = 0.72–0.91), 
0.14 (0.08–0.21), 0.01 (0.003–0.03) and 0.003 (10−5–0.01), respectively. 
Vertical lines, individuals; colours, genomic proportion of a given ancestry in 
the genome of each individual. ADMIXTURE analysis (K = 4) is done using all 
populations in phase 3 of the 1000 Genomes Project as well as the Siberian and 
Native American populations from the previously published study52, which 
were used as a reference. African (AFR) ancestry includes Yoruba in Ibadan, 
Nigeria, Luhya in Webuye, Kenya, Gambian in Western Divisions in the Gambia, 
Mende in Sierra Leone, Esan in Nigeria, Americans of African Ancestry in 

southwest United States. European (EUR) ancestry includes central European, 
Utah residents (CEPH) with northern and western European ancestry (USA), 
Toscani in Italy, Finnish in Finland, British in England and Scotland, Iberian 
population in Spain. East Asian (EAS) ancestry includes Han Chinese in Beijing, 
China, Japanese in Tokyo, Japan, Southern Han Chinese, Chinese Dai in 
Xishuangbanna, China, Kinh in Ho Chi Minh City, Vietnam. South Asian (SAS) 
ancestry includes Gujarati Indian from Houston, Texas (USA), Punjabi from 
Lahore, Pakistan, Bengali from Bangladesh, Sri Lankan Tamil from the United 
Kingdom, Indian Telugu from the United Kingdom. Puerto Ricans (PUR) from 
Puerto Rico. Colombians (CLM) from Medellin, Colombia. Mexicans (MXL) 
from Los Angeles, California (USA). Peruvian individuals (PEL) from Lima, Peru. 
Altic, Altaic language family, which includes Yakut, Buryat, Evenki, Tuvinians, 
Altaian, Mongolian, Dolgan. North Amerind, northern Amerindian language 
family, which includes Maya, Mixe, Kaqchikel, Algonquin, Ojibwa and Cree. 
Central Amerind, central Amerindian language family, which includes Pima, 
Chorotega, Tepehuano, Zapotec, Mixtec and Yaqui. Andean, Andean language 
family, which includes Quechua, Aymara, Inga, Chilote, Diaguita, Chono, 
Hulliche and Yaghan. A full list of all populations in all language groups has 
been published previously52.



Extended Data Fig. 2 | Association of rs200342067 and height.  
a, Single-variant association analysis (n = 3,134 individuals and 7,756,401 
variants). Dotted red line, genome-wide significance threshold of 5 × 10−8. Five 
SNPs that overlap the coding sequence of FBN1 passed the genome-wide 
significance threshold. We did not observe any inflation in test statistics 
(λ = 1.02). Association P values are from two-sided Wald tests. b, rs200342067 

in heterozygous individuals reduces height by 2.2 cm (4.4 cm in homozygous 
individuals, including 11 individuals with the C/C genotype, 275 the C/T 
genotype and 2,848 the T/T genotype) and could explain 0.9% of the 
phenotypic variance in height in our cohort (n = 3,143 individuals). The x axis 
shows the rs200342067 genotype; the y axis shows the height residuals after 
adjustments for age, sex and a GRM as random effect.
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Extended Data Fig. 3 | rs12441775 DAF (rs12441775*G) and extended 
haplotype structure in the 1000 Genomes Project. a, The derived allele, 
rs12441775*G, has a high frequency in all non-African populations in the 1000 
Genomes Project (average DAF in non-Africans = 58% (IQR = 51–64) and in 
Africans = 4% (IQR = 1–5)). The map is generated using the GGV browser64 
(http://www.popgen.uchicago.edu/ggv). b–h, Haplotypes that carry the 
rs12441775*G (major/derived) allele are longer than haplotypes that carry the 

rs12441775*C (minor/ancestral) allele in non-African populations. Horizontal 
lines, haplotypes; the position of rs12441775 is marked below the haplotype. At 
any given position, adjacent haplotypes with the same colour carry identical 
genotypes between the core SNP (rs12441775) and that site, dashed line 
separates the haplotypes that carry the derived (above the line) and ancestral 
(below the line) alleles.

http://www.popgen.uchicago.edu/ggv


Extended Data Fig. 4 | Haplotypes that carry the rs200342067 allele are 
longer than what is expected under neutral selection. a, Haplotype decay 
around rs200342067 in our cohort (n = 3,134 individuals and 
6,268 haplotypes). The position of rs200342067 is marked below the 
haplotypes. Haplotypes above the dashed line carry rs200342067*C allele 
(derived/minor, n = 297 haplotypes) and haplotypes below the dashed line 
carry the rs200342067*T allele (ancestral/major, n = 5,971 haplotypes).  
b, Integrated EHH of haplotypes carrying the rs200342067*C allele (n = 297 
haplotypes) compared with the integrated EHH of haplotypes carrying 2,380 
variants with similar DAF (4.7 ± 1%) that overlap the neutral regions of the 
genome in our cohort (n = 3,134 individuals). Haplotypes that carry the 
rs200342067*C allele are taller than 99.2% of the haplotypes carrying similar 
variants in neutral regions of the genome. Vertical red line, integrated EHH of 

haplotypes carrying the rs200342067*C allele (integrated EHH = 0.115). c, The 
same as a, but excluding the nine haplotypes that carry both rs200342067*C 
and rs12441775*G alleles. d, EHH decay curves for haplotypes carrying the 
rs200342067*C allele excluding the nine haplotypes that carry both 
rs200342067*C and rs12441775*G alleles (n = 288 haplotypes) compared with 
haplotypes carrying 2,309 variants that have a similar DAF to the updated 
frequency of rs200342067*C (4.6 ± 1%) and that overlap the neutral regions of 
the genome in our cohort (n = 3,134 individuals). Haplotypes with the 
rs200342067*C allele are longer than 99.7% of the haplotypes carrying similar 
variants in the neutral genomic regions. e, Integrated EHH for data shown in d. 
Vertical red line, integrated EHH for haplotypes carrying the rs200342067*C 
but not the rs12441775*G allele (integrated EHH = 0.124).



Article

Extended Data Fig. 5 | Simulation of haplotypes under the neutral 
demographic model. a, PCA plot of principal component (PC)2 versus PC1 for 
simulated individuals (n = 1,000 simulated individuals and 2,000 simulated 
haplotypes). Individuals were simulated using a demographic model matching 
the population history of Peru and under neutral selection. Red dots, simulated 
individuals; other dots, reference populations from the 1000 Genomes 
Project. b, PCA plot of PC3 versus PC1 as described for a. c, We compared the 
integrated EHH of rs200342067*C with the integrated EHH of 1,000 variants 
that had a similar DAF to rs200342067 (DAF = 4.7 ± 1%) and that overlapped the 
same genomic region as rs200342067 on a simulated chromosome 15 (physical 

position, 48,773,926 ± 20 kb). The integrated EHH of rs200342067 is more 
extreme than the integrated EHH observed for any of the variants in the 
simulated data. The x axis shows the integrated EHH; the distribution is the 
integrated EHH of variants in simulated haplotypes (n = 2,000 haplotypes); the 
vertical red line shows the integrated EHH value of rs200342067 in our cohort 
(n = 6,628 haplotypes, integrated EHH = 0.115). d, e, Similar to c for two 
different neutral regions on chromosome 15. Vertical red lines, integrated EHH 
of rs17580697 (d, integrated EHH = 0.012, 76th percentile) and rs305008  
(e; integrated EHH = 0.010, 74th percentile) in our cohort (n = 6,628 haplotypes).



Extended Data Fig. 6 | Comparison of different selection statistics for 
rs200342067 and other variants with a similar DAF and recombination 
rate. a, Distribution of iHS for 2,062 independent variants (that are at least 1 Mb 
apart) matched in DAF and local recombination rate to rs200342067. iHS 
values are calculated for Peruvian individuals in the 1000 Genomes Project 
(n = 85 individuals) and were obtained from a previously published study19. Red 
line, iHS of rs200342067 (iHS = −1.5; 4.7th percentile); green and blue lines, 
fifth and first percentile of the iHS distribution. b, EHH decay curves for 
rs200342067 (red line) as well as haplotypes that carry 2,062 independent 
variants (at least 1 Mb apart) matched in DAF and local recombination rate to 
rs200342067 in our cohort (n = 6,268 haplotypes (grey lines)). c, Distribution 
of integrated EHH for haplotypes shown in b, haplotypes carrying the 
rs200342067*C allele are longer than 97.5% of haplotypes that carry similar 
variants. The x axis shows the integrated EHH; the red line indicates the 
integrated EHH of the rs200342067*C allele (integrated EHH = 0.115).  

d, Histogram of Fisher’s exact test results comparing the extent of allele 
frequency differences between coastal (n = 46 individuals) and non-coastal 
(n = 104 individuals) regions in Peru for 2,062 independent variants that were 
matched in DAF and local recombination rate to rs200342067. the x axis shows 
the −log10-transformed P values from the two-sided Fisher’s exact test; the 
dashed blue and green vertical lines show the 99th and 95th percentiles, 
respectively; the solid red line indicates the −log10-transformed P value of the 
two-sided Fisher’s exact test (P= 0.0005) for rs200342067 (1.1% percentile).  
e, Bayenv2 XTX statistics, a measure of deviation from neutral patterns of 
population structure, for 2,062 independent variants that were matched in 
DAF and local recombination rate to rs200342067. The x axis shows the XTX 
statistics; the red line indicates the XTX value for rs200342067 (XTX = 2.13; 
8.3th percentile); the green and blue lines show the fifth and first percentile of 
the XTX distribution, respectively.
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Extended Data Fig. 7 | Genomic context of rs200342067 FBN1(E1297G).  
a, Schematic of FBN1, exons are shown as black bars. Exon 31 (ENSE00001753582) 
is shown in red. b, The FBN1 exon 31 sequence and PhyloP per-nucleotide 
conservation score based on multiple sequence alignment of 100 vertebrate 
species (obtained using the GRCh37 assembly conservation track of the UCSC 
genome browser). The T>C change due to rs200342067 occurs in a conserved 
nucleotide. c, Schematic of fibrillin 1 (ENST00000316623.5). Fibrillin 1 consists 
of the following domains: N- and C-terminal domains (black rectangles), 
EGF-like domains (stripped rectangles), hybrid domains (black pentagons), 
TGFβ-binding domains (grey ovals), a proline-rich domain (white hexagon) and 
43 calcium-binding cbEGF-like domains (white rectangles). cbEGF domain 17, 
which is affected by rs200342067 FBN1(E1297G), is shown in red; E1297G is 

located between a conserved cysteine FBN1(C1296) involved in forming a 
disulfide bond with FBN1(C1284) and a conserved asparagine FBN1(N1298) 
involved in calcium binding. d, The sequence of FBN1(cbEGF) domain 17 of 
fibrillin 1 and the three-dimensional structures of cbEGF domains 17 and 18 (the 
three-dimensional structure was obtained based on homology with the 
previously published36 cbEGF domains 12 and 13 of fibrillin 1 (PDB 1LMJ). 
rs200342067 changes the glutamic acid, a large amino acid with a negatively 
charged side chain, to glycine, the smallest amino acid with no side chain 
(shown in red). The side chains are shown for rs200342067 (red spheres), as 
well as the calcium-interacting residues (beige sticks) and the cysteine residues 
involved in disulfide bonds (yellow sticks). A calcium ion is shown in green.



Extended Data Fig. 8 | Immunohistochemical staining of fibrillin 1.  
a, b, Fibrillin 1 staining of skin biopsies from two individuals with the 
rs200342067 C/C genotype. c, d, Fibrillin 1 staining of skin biopsies from two 
individuals with the T/T genotype matched for age, sex and ancestry 
proportions. Individuals with the C/C genotype have less fibrillin 1 deposition 

in the dermal extracellular matrix and shorter microfibrillar projections  
from the dermal–epidermal junction into the superficial (papillary) dermis 
(red arrows, 20×) as well as less fibrillin 1 deposition in the deeper dermis.  
Two magnification are shown, the red rectangles in the first column  
(20× magnification) are magnified in the second column (60×).
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Extended Data Fig. 9 | Electron microscopy of fibrillin 1 in skin. a, c, Electron 
microscopy images of the dermal–epidermal junction in samples from two 
individuals with the rs200342067 T/T genotype. b, d, Electron microscopy 
images of the dermal–epidermal junction in samples from two individuals with 
the rs200342067 C/C genotype who are matched for age, sex and ancestry 
proportions. Individuals with the C/C genotype have short, fragmented and 

less densely packed microfibrils with irregular edges (red arrows) and their 
microfibrils are embedded in less dense collagen bundles (yellow arrows) 
compared with individuals with the T/T genotype. Two magnification are 
shown, the white rectangles in the first column (4,400× magnification; green 
scale bars, 2 μm) are magnified in the second column (11,000× magnification; 
yellow scale bars, 1 μm).



Extended Data Table 1 | SNPs that overlap the 15q15–21.1 locus

In our height GWAS (n = 3,134 individuals), one locus reached the genome-wide significance threshold (P < 5 × 10−8). This locus overlaps with FBN1 on chromosome 15 and includes five tightly 
linked SNPs. One SNP, rs200342067, is a missense variant and the other four are intronic variants. Association P values are from two-sided Wald tests. Numbers are rounded to two decimal 
places. se, standard error.
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of 4,002 samples using the apt-genotype-axiom (Luo Y et al, Nat Commun, 2019). Genotyping of the replication cohort samples was 
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GenomeStudio software.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Discovery cohort: We collected genotyping data for 4,002 individuals from 2,272 households.  The sample size is provided in the 
corresponding figure captions in the main manuscript and supplementary information files. 
Replication cohort: We collected genotyping data for 789 individuals from 273 households. he sample size is provided in the corresponding 
figure captions in the main manuscript and supplementary information files. 
 Genetic studies of complex traits, including height, have identified novel associations with sample sizes ranges from a few hindered to 
hundreds of thousands. However, As far as we are aware, this is the largest study of height in the Peruvian population.

Data exclusions Discovery cohort: Out of 4002 recruited individuals, 22 individuals were excluded during quality control due to missing more than 5% of the 
genotype data, excess of heterozygous genotypes (±3.5 SD), duplicated with identity-by-state > 0.9, or TB cases with aga-at-diagnosis above 
40. We further excluded 846 individuals from the analysis: individuals below 19 years of age, individuals without height measurement, and 
individuals with a measured height ±3.5 SD away from the population average. The final cohort for the current study included 3,134 from 
1,947 households. 
Replication cohort: Height data were not available for 27 individuals. Moreover, 164 individuals were excluded due to age < 19 years old. The 
final cohort included 598 individuals from 242 households. 
The exclusion criteria based on genotyping quality is per-established by previous genetic studies of complex traits, also it is customary in 
genetic studies of anthropometric traits to include only adults as children and adolescents measurmenst are subject to future change. 

Replication Replication cohort: Height data were not available for 27 individuals. Moreover, 164 individuals were excluded due to age < 19 years old. The 
final cohort included 598 individuals from 242 households. 
We also tested the association of rs200342067 in two publicly available datasets of Hispanic/Latino individuals, PAGE and GIANT, to replicate 
our association signal. 
Our replication attempts were successful. 

Randomization We used permutation analysis to test the association between the Native American ancestry and height. As individuals within the same 
household share the same environment, household serves as a proxy for unmeasured environmental factors. to correct for these factors,  
randomly reassigned heights within each household 10,000 times, and recalculated the effect size for Native American ancestry in each 
round, to make an empirical null distribution. 

Blinding blinding was not relevant as no subset of individulas received any different treatment

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used  rabbit polyclonal anti-fibrillin 1 antibody (FBN1, dilution 1:250, HPA021057, MilliporeSigma, St. Louis, MO)

Validation antibody was validated by the Human Protein Atlas (HPA) project (www.proteinatlas.org) usig orthogonal RNAseq. Orthogonal 
validation is an enhanced validation method where the antibody staining is verified by a non-antibody based method. Here, the 
antibody staining was compared to RNA-Seq data for the same samples. This antibody has also been used successfully in prior 
publications: https://www.sigmaaldrich.com/catalog/product/sigma/hpa021057?lang=en&region=US
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Population characteristics Height in centimeters, gender, age, socioeconomic status were collected. Also as the recruitment was originally for a TB study 
individuals’ TB status were collected. Please see methods for details of collected covariates. 

Recruitment Participants were collected in any of the 106 public health centers. Blood samples were collected from individuals following 
institutional IRB guidelines and with informed consent from participants. Recruitment site was a large catchment area of Lima, 
Peru that included 20 urban districts and approximately 3.3 million residents. Clinical examination was approved by the local IRB 
committee.

Ethics oversight Harvard  Medical School

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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