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Long DNA segments shared between two individuals, known as
identity-by-descent (IBD), reveal recent genealogical connections.

Here we introduce ancIBD, amethod for identifying IBD segments in
ancient human DNA (aDNA) using a hidden Markov model and imputed
genotype probabilities. We demonstrate that ancIBD accurately
identifies IBD segments >8 cM for aDNA data with an average depth of
>0.25x for whole-genome sequencing or >1x for 1240k single nucleotide
polymorphism capture data. Applying ancIBD to 4,248 ancient Eurasian
individuals, we identify relatives up to the sixth degree and genealogical
connections between archaeological groups. Notably, we reveal long IBD
sharing between Corded Ware and Yamnaya groups, indicating that the
Yamnaya herders of the Pontic-Caspian Steppe and the Steppe-related
ancestry in various European Corded Ware groups share substantial
co-ancestry within only afew hundred years. These results show that
detecting IBD segments can generate powerful insights into the growing
aDNArecord, both on asmallscale relevant to life storiesand on alarge scale
relevant to major cultural-historical events.

Some pairs of individuals share long, nearly identical genomic seg-
ments, so-called IBD segments, that must be co-inherited from a
recent common ancestor because recombination during each meiosis
leads to the rapid break-up of these segments. Consequently, long
IBD segments provide an ideal signal to probe recent genealogical
connections and have been used as a distinctive signal for a range
of downstream applications such as identifying biological relatives
orinferring recent demography' . Several existing methods iden-
tify IBD segments for single nucleotide polymorphism (SNP) array
or whole-genome sequence data* ® but they require confident dip-
loid genotype calls. These are not achievable for most human aDNA
data because of too low genomic coverage (<5x average coverage
per site) and comparably high error rates due to degraded and short
DNA molecules. So far only a few exceptional applications of IBD

to comparably high-quality aDNA have been published %, First efforts
to identify IBD on the basis of imputed data have been fruitful®*?
but those require higher coverage not routinely available for aDNA.
Importantly, they do not include a systematic evaluation of the IBD
calling pipelines, a critical task given that IBD detection accuracy is
expected to decay for short segments and low-coverage data. Practical
downstream applications, such as demographic modelling, require
information about power, length biases and false positive rates either
toaccountdirectly for these error processes or to identify thresholds
of data quality.

Here, we present and systematically evaluate ancIBD, a method
to detect IBD segments in human aDNA data. In brief, ancIBD starts
from phased genotype likelihoods imputed by GLIMPSE®, which are
thenscreened using a hidden Markov model (HMM) to infer IBD blocks
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Fig.1| Overview of the ancIBD algorithm. a, Sketch of the ancIBD HHM. The
HMM has five states: one background state of no allele sharing and four states
modelling the four possible IBD-sharing states between two phased diploid
genomes. We model phase switch errors within a true IBD segment as a transition
between the four IBD states. b, Visualization of the full pipeline to call IBD.
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reference haplotypes. We note that users can customize these upstream steps;
for example, use other tools to obtain genotype likelihoods or use different
reference panels. Our core software (ancIBD) is then applied to the imputed data
toscreen for IBD. It produces two tables, one listing all inferred IBD segments and
onelisting IBD summary statistics for each pair of individuals.

(Fig. 1). We then identified default parameters that optimize perfor-
mance onso-called 1240k capture data. This set of ~-1.1 million autoso-
mal SNPs is targeted by in-solution enrichment experiments that have
produced more than 70% of genome-wide human aDNA datasets to
date™ ™. Our tests show thatancIBD robustly identifies IBD longer than
8 cMin aDNA data—for SNP capture with at least 1x average coverage
depth (calculated on SNP target) and for whole-genome sequencing
(WGS) as low as 0.25x average genomic coverage.

Results

Identifying IBD with ancIlBD

Our method consists of two computational steps (Fig. 1b). In a pre-
processing step, the aDNA data are first computationally imputed and
phased using a modern reference haplotype panel. In the main step,
we apply a custom HMM to identify IBD segments.

For the preprocessing, we use imputation software that has been
shown to work well for low-coverage data, GLIMPSE", whichwe apply to
aligned sequence data (in.bam format) toimpute genotype likelihoods
atthe 1240k sites, using haplotypesin the 1000 Genome Project as the
reference panel”. Our fullimputation pipeline is described in Supple-
mentary Note 3. Previous evaluation of imputing aDNA data this way
showed thatimputed common variants, which are highly informative
about IBD sharing, are of good quality down to mean coverage depth
aslowas 0.5-1.0x (refs. 18,19).

The details of the main ancIBD HMM are described in Methods.
Briefly, the HMM is based on a total of five hidden states, where one
state models non-IBD and four states the possible ways of IBD sharing
between two phased genomes (Fig. 1a). The emission probabilities are
based on the imputed posterior genotype probability and phasing.
The standard forward-backward algorithm® yields the posterior prob-
ability of beingin one of the four IBD states, which is postprocessed to
obtain the final IBD segment calls.

Evaluating ancIBD

We performed two sets of experiments to evaluate the quality of
IBD calls of ancIBD at various sequencing depths. First, we copied IBD
segments of known length into pairs of genomes (Methods). Second,
we downsampled high-coverage empirical aBDNA data.

Performance on copied-in IBD segments. When applying ancIBD
to the simulated data with copied-in IBD (simulation procedures are
described in Supplementary Note 2 and visualized in Extended Data
Fig.1), we observed that the inferred IBD segments remain accurate
and that their length distribution peaks around the true value for WGS
data down to about 0.25x coverage and for 1240k capture data down

to1x coverage at 1240k ssites (Fig.2). We found that ancIBD on average
overestimates the length of IBD segments but in the recommended
coverage cutoffthe length errors remain within -1 cM (Extended Data
Tables1and?2).

Performance on downsampled aDNA data. To assess performance
on downsampled empirical aDNA data, we used four high-coverage
genomes of ancient individuals, all ~5,000 years old and associated
with the Southern Siberian Afanasievo culture (Supplementary
Note 5)*. When comparing the IBD calls in the downsampled data to
the IBD calls of the original high-coverage data, we found that WGS
substantially outperforms 1240k data of the same coverage. For long
IBD segments (>10 cM) that are particularly informative when detect-
ing relatives, ancIBD achieves high precision and recall (>90%) for all
coverages tested here (WGS data 0.1x to 5x; 1240k data 0.5x to 2x). For
intermediate range segments (8-10 cM), ancIBD maintains reasonable
recall (-80%) at all coverages while having less than 80% precision at
0.5x for 1240k data. Overall, ancIBD yields accurate IBD calling (-90%
orhigher precision) at >0.25x WGS data and >1x 1240k data (Extended
DataFig.2).

Comparing to other methods. Several recent publications have
applied softwares designed to detect IBD in high-quality present-day
data on imputed aDNA data (for example, using GLIMPSE)*'°. We
compared the performance of ancIBD to such methods, using the
downsampled empirical aDNA data described above.

Softwares to call IBD can be classified into two categories, ones
that require prior phasing and ones that use unphased data as input.
The former search for long, identical haplotypes, while the latter pri-
marily use, directly orimplicitly, the signal of ‘opposing homozygotes’
(twosamples being homozygous for different alleles), which are lacking
inIBD segments.

In preliminary tests, we found that methods that require
phasing information have very low power to detect IBD in imputed
aDNA data, potentially because of high switch error rates in imputed
ancient genomes'®, which is an order of magnitude higher than what
is attainable for phasing Biobank-scale modern data?.

Therefore, we focus our detailed comparison on two methods that
do not require phasing information, IBIS* and IBDseq?. IBIS detects
IBD segments by screening for genomic regions with few opposing
homozygotes. Our results on downsampled aDNA data show that this
method mostly maintains higher precision at the expense of a lower
recall, particularly at lower coverages. Despite keeping precision at
>90%, for segments >8 cM, IBIS recall drops to ~-50% for ~1x 1240k data
(Extended DataFig. 2).
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Fig.2|Performance of ancIBD on simulated IBD segments. a, Power and

segment length errors. We copied-in IBD segments of lengths 4, 8,12,16 and
20 cMinto synthetic diploid samples. We simulated shotgun-like and 1240k-like

data (Supplementary Note 2) and visualize false positive, power and length
bias for 2x,1x,0.5x and 0.25% coverage (rows). For each parameter set and

IBD length, we simulated 500 replicates of pairs of chromosome 3, each pair
withasingle, randomly placed, copied-in IBD segment. The power (or recall)

of detecting IBD segments of each simulated lengthisindicated in the text
next to the corresponding grey vertical bar. Results for other coverages are

shownin Supplementary Fig. 4. b, False positive rate. We downsampled high-

quality empirical aDNA data without IBD segments (Supplementary Table 6)
to establish false positive rates of IBD segments for various coverage and IBD

lengths (Supplementary Note 7). The y axis shows the mean number of false

positive IBD segments per pair of chromosome 3 in each length bin (bin width
0.25 cM). To contextualize these false positive rates, we also depict expected IBD

sharing assuming various constant population sizes (dotted lines, calculated as
described inref. 58). If the false positive rate is on a similar order of magnitude

orlarger than expected for a population of that effective population size (N,),
individual IBD calls of that length for that coverage and demographic scenario

arelikely to be false positives.
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Fig. 3 | Inferring biological relatives in the aDNA record using long IBD
inferred with ancIBD. a, Inferred IBD among pairs of 4,248 ancient Eurasian
individuals. The plot visualizes both the count (y axis) as well as the summed
length (xaxis) of all IBD >12 cM long. For comparison, we colour-code pairs on
the basis of relatedness estimates from pairwise mismatch rates (PMR) that can
detect up to third-degree relatives (Supplementary Note 9). We also annotate
new relatives found by ancIBD, indicated by at least three very long IBD segments
(>20 cM) typical of up to sixth-degree relatives. b, Simulated IBD among pairs of
relatives. For eachrelative class, we simulated 100 replicates using the software
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ped-sim”, as described in Supplementary Note 8. As in a, we depict the summed
length and the count of all IBD at least 12 cM long. ¢, Inferred IBD among four
ancient English Neolithic individuals, who lived about 5,700 years ago and

were entombed at Hazleton North long cairn. A full pedigree was previously
reconstructed using first- and second-degree relatives inferred using pairwise
SNP matching rates®®. We depict all IBD at least 12 cM long. The four individuals
were genotyped using 1240k aDNA capture (112438, 3.7x average coverage on

target; 112440, 2.1x; 113896, 1.1x; 112439, 6.7x).

IBDseq was designed for WGS data. It works by computing
likelihood ratios of IBD and non-IBD states for each marker and then
identifies IBD segments by searching for regions with high cumulative
scores. Our results on downsampled empirical ancient aDNA data
indicate that precisionandrecall of IBDseq drop substantially at lower
coverages, achieving <50% precision for ~-1x 1240k data, a coverage
regime typical for mostaDNA samples (Supplementary Figs.16 and 17).

Detecting close and distant relatives with ancIBD

Toshowcase the utility of IBD segments to detect biological relatives, we
appliedancIBD to aset of 4,248 published ancient Eurasianindividuals.
Sample quality filtering and downstream bioinformatic processing
are described in Methods. When plotting the total sum and the total
count of IBD segments longer than 12 ¢cM, we find that the pattern of

IBD sharing (Fig. 3a) closely mirrors simulated IBD sharing between
various degrees of relatives (using the software ped-sim?) (Fig. 3b). A
first-degree relative cluster becomes apparent, witha parent-offspring
cluster (where the whole genome is in IBD) and a full-sibling cluster.
The parent-offspring cluster in the simulated IBD dataset consists of
one point, asexpected because parent and offspring share each of the
22 chromosomes fully IBD. In the inferred IBD dataset, the apparent
parent-offspring cluster is spread out more widely, including also
individuals with more than 22 IBD segments—the reason for thisis that
sporadically very long IBD are broken up by artificial gaps and if they
aretoobig they are not merged by the default gap merging of ancIBD.
Overall this effect remains modest and in the parent-offspring cluster
the totalnumber of inferred IBD segmentsisin most cases only slightly
elevated beyond the expected 22.
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Fig. 4 |Inferred IBD segments between various Eneolithic and Bronze Age
West Eurasian Groups. We visualize IBD segments 12-16 cM long (for IBD
sharingin other length classes see Extended Data Fig. 3). We applied ancIBD to
identify IBD segments between all pairs of 304 West Eurasian ancient individuals
(all previously published data; Supplementary Table 3) organized into 24
archaeological groups. The number in the parenthesis indicates the sample size
for each archaeological group. For each pair of groups, we plot the fraction of all
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possible pairs of individuals that share at least one IBD 12-16 cM long, which we
obtained by dividing the total number of pairs that share such IBD segments by
the total number of all possible pairs: between two different groups of n,and n,
individuals, one has nn, pairs, while within a group (on the diagonal in the figure)
of sizenonehasn(n -1)/2 pairs. LN, Late Neolithic; BAC, Battle Axe Culture;

C, Chalcolithic; TRB, Trichterbecherkultur (Funnelbeaker culture);

GAC, Globular Amphora Culture.

Further, we observe two clear second-degree relative clusters that
correspond to biological great-parent grandchildren and aunt/uncle-
niece/nephew relationships. Half-siblings are expected to formagradi-
ent between these two clusters, with their average position depending
onwhether the shared parentis maternal (on average more butshorter
shared segments) or paternal (fewer but longer shared segments)”.

In the simulated data, IBD clusters for third-degree and more
distant relatives increasingly overlap (Fig. 3b) and the empirical IBD
distribution follows this gradient (Fig. 3a). Owing to this biological
variation in genetic relatedness, it is not possible to uniquely assign
individuals to specific relative clusters beyond third-degree relatives
even if the exact IBD is known. However, these pairs with multiple

long shared segments still unambiguously indicate very recent bio-
logical relatedness. Most biological relatives up to the sixth degree
will share two or more long IBD segments®. For instance, we identified
twolong IBD segmentsinasixth-degree relative from Neolithic Britain
(Fig. 3¢), a relationship that was previously reconstructed from a
pedigree of first-degree and second-degree relatives identified using
average pairwise genotype mismatch rates®. In most human popula-
tions, pairs of biologically unrelated (that is, related at most by tenth
degree) individuals share only sporadically single IBD segments® %,
Thus, the sharing of many long IBD segments provides adistinct signal
for identifying close genealogical relationships that we can detect
with ancIBD.
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long, indicated as a dark blue bar). We also plot opposing homozygotes (upper
grey dots), whose absence is a necessary signal of IBD. Only SNPs where both
markers have animputed genotype probability >0.99 are plotted. c, Plot of all
inferred IBD segments longer than 12 cM. d, Histogram of inferred IBD segment
lengths, as well as theoretical expectations for various types of relatives
(calculated using formulas described in ref. 29). Panels b-d were all created using
default plotting functions bundled into the ancIBD software package.

Recent links among Eneolithic and Bronze Age groups
Because recombination acts asarapid clock (the probability of anIBD
segment of length [cM persisting for t generations declines quickly as
exp(—t x [/50)), the rate of sporadic sharing of IBD segments probes
genealogical connections between groups of individuals only a few
hundredyears deep, for example, for modern Europeans® To showcase
how detecting IBD segments with ancIBD canreveal such connections
between ancient individuals, we applied our method to a set of previ-
ously published ancient West Eurasian aDNA data dating to the Late
Eneolithic and Early Bronze Age (Supplementary Table 3). This period,
from 3,000 t0 2,000 BCE, was characterized by major gene flow events,
where ‘Steppe-related’ ancestry had a substantial genetic impact
throughout Europe (for example, refs. 30,31), leading to widespread
genetic admixtures and population turnover as far west as Britain®
and Iberia®. Applying ancIBD to the relevant published aDNA record
of 304 ancient Western Eurasians organized into 24 archaeological
groups (Supplementary Table 3), we find several intriguing links. Many
of those connections were previously proposed and suggested
by admixture tests; however, the sharing of long IBD segments now
provides definitive evidence for recent co-ancestry and biological
interactions, tethering groups together closely in time.

We found that several nomadic Steppe groups associated with
the Yamnaya culture that date to around 3,000 BCE share comparably

large amounts of IBD with each other (Fig. 4). This late Eneolithic to
Early Bronze Age culture of pastoralnomads, whoinhabited the Western
Eurasian Pontic-Caspian Steppe often buried their death in tumuli
(Kurgans) and were among the first people to use wagons, are suggested
tohave hadakeyroleinthe early spread of Indo-Europeanlanguages®.
Notably, the Yamnaya IBD cluster includes also individuals associated
with the contemporaneous Afanasievo culture thousands of kilometres
east, an Eneolithic archaeological culture near the Central Asian Altai
mountains. This signal of IBD sharing confirms the previous archaeolog-
ical hypothesis that Afanasievo and Yamnaya are closely linked despite
the vast geographic distance from Eastern Europe to Central Asia*.
A genetic link has already been evident from genomic similarity and
Y haplogroups®-**; however, the time depth of this connection remained
unclear. We now identify IBD signals across all length scales, includ-
ing several shared IBD segments even longer than 20 cM (Extended
Data Fig. 3). Such long IBD links must be recent as recombination
ends an IBD segment ~20 cM long on average every five meiosis. This
long IBD sharing signal, at the same level as between various Yamnaya
groups (Fig. 4), therefore clearly indicates that ancient individuals
from Afanasievo contexts descend from people who migrated at most
afewgenerations earlier across vast distances of the Eurasian Steppe.

Increased individual mobility in Eneolithic and Early Bronze
Age Eurasian Steppe groups is also reflected in a pair of individuals
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associated with the Afanasievo culture that were buried 1,410 km apart,
oneinpresent-day Central Mongolia and one in Southern Russia, who
share several long IBD segments (Fig. 5a,c). We identified four IBD
segments 20-40 cM long, adistinctive signal of close biological relat-
edness typical of about fifth-degree relatives (Fig. 5¢,d). Previous
work showed that both individuals have a genetic profile typical for
Afanasievo individuals and here this close biological link demonstrates
thatatleast oneindividualin the chain of relatives between them must
have travelled several hundreds of kilometres in their lifetime.
Moreover, there are several intriguing observations regarding
individuals associated with the Corded Ware culture, an important
archaeological culture that appears across avast area of Eastern, Cen-
tral and Northern Europe between 3,000 and 2,400 BCE. Previous
aDNA research showed Corded Ware groups to be the first people
of these regions to carry high amounts of a distinct ancestry found
in Eurasian Steppe pastoralists such as the Yamnaya, admixed with
previous Final Neolithic farmer cultures®*****, Using IBD, we find that
individuals from diverse Corded Ware cultural groups, including from
Sweden (associated with the Battle Axe culture), Russia (Fatyanovo) and
East/Central Europe share high amounts of long IBD with each other
and also have IBD sharing up to 20 cM with various Yamnaya groups
(Fig. 4 and Extended Data Fig. 3a,b,c). We find a distinctive IBD signal
with the so-called Globular Amphora culture, in particular from Poland
and Ukraine, who were Copper Age (Eneolithic) farmers around
3,000 BCE not yet carrying Steppe-like ancestry***’, This IBD link to
Globular Amphoraappears for all Corded Ware groups in our analysis,
including from as far away as Scandinavia and Russia (Fig. 4), which
indicates thatindividuals related to Globular Amphora contexts from
Eastern Europe must have had a major demographic impact early on
inthe genetic admixtures giving rise to various Corded Ware groups.

Discussion

We have introduced ancIBD, a method to detect IBD segments opti-
mized for aDNA data. The algorithm follows a long line of work using
probabilistic HMMs to screen for IBD segments*’~**. When compared to
other methods to detect IBD (IBIS®, IBDseq**, Germline*, Germline2*
and hapIBD*), ancIBD maintains a balanced performance between
precision and recallin the low-coverage regime typical for aDNA data.
Arecent method KIN* fits transitions between IBD states to identify
relatives up to the third degree but does not identify sporadic IBD
segments which are typical of more distant relatives or are useful for
demographicinference.

We optimized the default parameters of ancIBD towards perfor-
mance on imputed 1240k variants, an SNP set widely used in human
aDNA. We also recommend downsampling imputed WGS data to this
SNP set because using all common 1000 Genome SNPs only marginally
improves performance (Supplementary Note 6). Our benchmarks have
demonstrated that ancIBD robustly detects IBD longer than 8 cM, for
WGS datadown to 0.25x and 1240k data down to 1x average coverage
depthon1,240k SNPs. That WGS data performbetter than 1240k data at
the same coverage depth ontarget SNPsis not surprising because WGS
data cover the entire genome while 1,240k capture data are depleted
for off-target data. But imputation at 1240k sites uses all SNPs in the
1000 Genome dataset, thus providing more off-target data leads to
substantially improved imputation quality. We found that WGS data
can be imputed at roughly three times lower coverage equally as well
as 1240k data (Supplementary Fig. 5), consistent with findings from
ref.19. This observationis relevant for choosing aDNA data generation
strategies where IBD segment calling is of interest.

We showcased two main applications for identifying long IBD
segments within human aDNA. First, ancIBD reveals biological rela-
tives up to the sixth degree as such pairs distinctively share multiple
long IBD segments®. Allele sharing-based methods commonly used
in aDNA studies*®*” are generally limited to detecting relatives only
up to the third degree because they average over the genome and do

not identify signals due to only a few shared IBD segments that make
up only a small part of the genome. However, they can be applied
to substantially lower coverage than ancIBD. Similarly, KIN* can be
applied tolower coverage than ancIBD but s also limited to detecting
relatives up to the third degree.

Second, identifying IBD segments with intermediate coverage
aDNAdataunlocks a powerful way toinvestigate fine-scale genealogical
connections of past human populations. Sharing of long haplotypes
establishes bounds on the number of generations separating pairs of
individuals, which adds information beyond average single-locus cor-
relation statistics that have beenthe workhorse of aDNA studies to date.
To showcase this potential, we have used ancIBD to generate evidence
forthe origins of the people culturally associated with the Corded Ware
culture. Corded Ware groups of Eastern, Central and Northern Europe
were identified to be among the first cultures affected by large-scale
gene flows starting 3,000 BCE which spread a distinct ancestry found
in pastoralists of the Pontic-Caspian Steppes across Europe®°~*2, Our
analysis of long IBD segments reveals that the quarter of Corded
Ware Complex ancestry associated with earlier European farmers can
be pinpointed to people associated with the Globular Amphora
culture of Eastern Europe, who carry no Steppe-like ancestry yet,
while the remaining three-quarters must share recent co-ancestry
with Yamnaya Steppe pastoralists in the late third millennium BCE.
This direct evidence that most Corded Ware ancestry must have
genealogicallinks to people associated with Yamnaya culture spanning
on the order of at most a few hundred years is inconsistent with the
hypothesis that the Steppe-like ancestry in the Corded Ware primarily
reflects an origin in as-of-now unsampled cultures genetically similar
to the Yamnayabut related to them only a millennium earlier.

Several extensions could improve ancIBD. Both SNP density in
the 1240k and 1000 Genome SNP set varies substantially along the
genome?’. We have found that false positive rate negatively corre-
lates with SNP density (Supplementary Fig. 9) and designed a filter
to mask genomic regions with high false positive rates of long IBD
(Supplementary Fig. 9). Focusing exclusively on regions of high SNP
density could enable one to call IBD with shorter lengths. We also note
that we have imputed ancient data using a modern reference haplo-
type panel, which yields decreasing imputation and phasing perfor-
mance the older the sample'*®, Future efforts to include high-quality
ancient genomes into reference haplotype panels or to use
modern reference panels substantially larger than 1000 Genomes
will probably improve the quality of imputed ancient genomes
and thus also boost the performance of ancIBD. We note that ancIBD
takesimputed dataasinput, thus future improvements of imputation
software or reference panels can be easily integrated by updating
the preprocessing step.

Our algorithm infers the presence of at least one shared IBD seg-
mentbetween two diploid individuals butin practice both pairs or even
three or all four haplotypes can be shared. Here, we deliberately kept
the model simple toimprove robustness and runtime. Importantly, we
believe that detecting the presence of one IBD segment alone suffices
for most practical applications. Double IBD sharing, often termed
IBD2, occurs mostly in full siblings, who on average share half of their
genome length in a single IBD and one additional quarter in a double
IBD. In this case, the sum of IBD length alone distinguishes full sib-
lings from parent-offspring pairs (who distinctively have their whole
genome in IBD) and from second-degree relatives (separate clusters
in Extended Data Fig. 4). Beyond full siblings, having overlapping IBD
segments on different haplotype pairs only rarely occurs in practice®.
Only inspecial cases, such as distinguishing double first cousins from
other second-degree relatives, identifying double IBD can be useful.
In that case, we recommend directly screening for identical imputed
genotypesinIBD segments.

One promising extension is calling IBD segments on X chromo-
somes. Genetic males have only one copy of it, while females have

Nature Genetics | Volume 56 | January 2024 | 143-151

149


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-023-01582-w

two, which causes sex-specific inheritance and recombination pat-
terns (for example, males must have inherited their X chromosomes
from their mothers). Therefore, IBD sharing on the X chromosome
can provide information about sex-specific relatedness and demog-
raphy*. Our work here focused on the autosomes that make up most
of the human genome; however, one can in principle apply ancIBD to
imputed female X chromosomes. To call IBD on the X in pairs involv-
ing males, one could adapt the state space of ancIBD in a technically
straightforward way. Another potential application of IBD segments
is to improve the dating of ancient samples by using recombination
clocks to tether samples in time. Future work to refine carbon-14 dat-
ing, amethod widely used for determining the age of human remains,
can build upon existing Bayesian methods to incorporate external
information into such dates® .

Detecting IBD segments in modern DNA has yielded fine-scale
insights into the recent demography of present-day populations,
allowing researchers toinfer population size dynamics***, genealogical
connections between various groups of people>***° and the geographic
scale of individual mobility>*. In principle, such analysis can also be
applied to aDNA. It is particularly encouraging that the number of
sample pairs that can be screened for IBD segments grows quadrati-
cally with the sample size, while the number of ancient genomes used
inaDNA studies itselfis currently quickly growing®. This rapid scaling
will provide aDNA researchers with a powerful way to address demo-
graphic questions about the human past. We believe that the method
to detect IBD in aDNA presented here marks only a first step towards
creating the next generation of demographicinference tools, resulting
inunprecedented insights into the human past.

Online content
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Methods

Ethics

No new aDNA data were generated for this study and we only analysed
previously published and publicly available aDNA data. Identifying
biological kin is a standard analysis in the aDNA field. Permission for
aDNA work onthe archaeological samples was granted by the respec-
tive excavators, archaeologists, curators and museum directors of the
sites. These permissions are part of the original publications (listed in
Supplementary Table1).

The HMM

The ancIBD HMM makes use of the imputed genotype probabilities and
phase information output by GLIMPSE and, for each pair of samples,
runs aforward-backward algorithm®® to calculate the posterior prob-
abilities of being in an IBD state at each marker (Fig. 1). These prob-
abilities are then postprocessed to call IBD segments. In the following
sections, we describe thisHMM (Fig.1a) in detail, in particular its states,
the model for emission and transition probabilities, the calling of IBD
segments and postprocessing and its implementation.

Throughout, we assume biallelic variants and denote the two
individuals we screen for IBD as 1 and 2 and their phased haplotypes
as (1A, 1B) and (2A, 2B). The HMM screens each of the 22 autosomal
chromosomes from beginning to end independently, thus it suffices
to describe the HMM applied to one chromosome.

Hidden states. Our HMM has five hidden states s=0,1,...,4. The first
state s = 0 encodes a non-IBD state, while the four states s=1,2,3,4
encode the four possibilities (1A/2A, 1A/2B, 1B/2A, 1B/2B) of sharing
an IBD allele between the haplotypes of two diploid genomes (1A,1B)
and (2A,2B) (Fig.1a). We note that we do not model IBD sharing beyond
asingle pair of haplotypes (where both pairs of or more than three
haplotypes share arecent common ancestor). These cases occur only
rarely in practice*” and our goal here is to identify long tracts of IBD.

Transition probabilities. To calculate the 5 x 5 transition probabilities
Tto change states fromone to the followingloci, denotedby/and [ +1,
we make use of the genetic map distances obtained fromalinkage map,
thatisamap of the position using Morgans as the unit of length (1Mis
the genomic map span over which the average number of recombina-
tionsinasingle generationis1).

Asinref. 29, we specify the transition probabilities viaa 5 x 5 infini-
tesimal transition rate matrix Q, fromwhich each transition probabil-
ity matrix A, is obtained through matrix exponentiation using the
genetic distancer;betweenlociland [ +1

A =exp(@Qxrp.

Here, Qis defined by the following three rate parameters: the rate to
jump from the non-IBD state into any of the four IBD states (IBDin), the
ratetojump fromany of the IBD states to the non-IBD states (IBDout) and
theratetojump fromany of the IBD states to another one (IBDswitch):

IBDin IBDin IBDin IBDin

IBDout IBDswitch IBDswitch IBDswitch

Q = | IBDout IBDswitch IBDswitch IBDswitch |, )

IBDout IBDswitch IBDswitch IBDswitch

IBDout IBDswitch IBDswitch IBDswitch

where the diagonal elements are defined as Q;= -3} .,Q; such that the
rows of Qsumto zero asrequired for atransition rate matrix. The rate
IBDswitch models phasing errors, as a transition from one IBD state to
another means that a different haplotype pair is shared. We note that
the probability of the IBD state jumping from 1A/2A to 1B/2B would
require phase switch errors to occur in both individuals at the same

genomiclocation, whichis highly unlikely; however, we set the transi-
tion matrix between all four IBD states symmetric as this allowed us to
implement a substantial computational speed up.

Emission probabilities

Single-locus emission probabilities. To define the emission model
of the HMM, we need to specify P(D|s), the likelihood of the genetic
data for the five HMM states s = 0,1,...,4 at one locus. Throughout, we
denote reference and alternative alleles as O and 1, respectively, and
the corresponding genotype as g € {0,1}. The observed data D of our
emission model will be the haploid dosage, which is the probability
of aphased haplotype carrying an alternative allele, here denoted for
each haplotype has

Xx,=P(g,=1), he{lA1B,2A,2B}.

First, we explain how we approximate the two haploid dosages for
asingleimputed diploid individual 1. We have to use an approximation
as GLIMPSE only outputs the most likely phased diploid genotype
GT €{0]0, 01,10, 1|1} as well as three posterior genotype probabilities
GP for each of the unphased diploid genotypes, denoted by the num-
ber of alternative alleles as 0,1,2. We first approximate the posterior
probabilities for the four phased states, here denoted as Py, Py, Pio
and P,,. The two homozygote probabilities P,, and P, are obtained
trivially from the corresponding unphased genotype probabilities
GP, as no phase information is required for homozygotes. To obtain
probabilities of the two phased heterozygotes states, Py, and Py,
we use a simple approximation. Let p,, p,, p, denote the posterior
probability for each of the three possible diploid genotypes. If the
maximum-likelihood unphased genotype is heterozygote, that is
max(po, Py, P5) = P1, We set Py = py, P,y =0if GT=0[1and Py =0, P,y = p;
if GT =1]0. If the maximum-likelihood unphased genotype is a homo-
zygote, thatismax(p,, p;, p») = Do Or p,and thus thereis no phase infor-
mation for the heterozygote genotype available, we set Py, = P, = p./2.
Having obtained the four probabilities for the possible phased geno-
types, we can calculate the two haploid dosages as:

Xip =Py + Py )

Xig = Py + Poy. ©)

When calling IBD segments between two individuals 1and 2, we use
this approach to obtain all four haploid dosages and denote them for
haplotypes 1A, 1B, 2A, 2B as (X, Xi5, X4, X28)-

Setting those four haploid dosages as the observed data
D = (X1, X15, X5, Xo5) at ONne locus, we can now calculate the likelihood
P(D|s) foreach of the five HMM states s = 0,1,...,4. We start by summing
over all possible unobserved latent phased genotypes g = (g, S5
Zou, Sop), Yielding in total 16 possible combinations of reference and
alternative alleles, denoted together as G = {0,1} x {0,1} x {0,1} x {0,1}:

P(DIs =) = ) P(DIg)P(gs = D). )
geyg

For the term P(D|g), applying Bayes rule yields:

P(gID) x (D)

PDIg) = =25

P(D) remains a constant factor across all states, which can be
ignored because posterior probabilities of an HMM remain invariant
to constant factorsin the likelihood. We arrive at:

P(g|D)

POIs=0) = Y, o 2 P(gls = ). s)
2 g
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We now approximate the three quantities on the right-hand side
of equation (5) for a given set of genotypes g.

First, assuming Hardy-Weinberg equilibrium, P(g) is calculated
asthe product of the four corresponding allele frequencies of (either
porl-pdepending onthe respective allelein gbeing 0 or 1). In prac-
tice, we obtain p fromthe allele frequencies in the reference panel.

Second, we approximate P(g|D) as the product of the four prob-
abilities of each of the haplotypes (1A,1B) and (2A,2B) being reference
or alternative. We assume that diploid genotype probabilities can be
approximated as products of the respective haploid dosages, which we
empirically verified on GLIMPSE imputed data (Supplementary Fig. 20).
Using the haploid dosages (x5, X5, X4, X,5) as calculated above yields:

reD)= ]

JE{1A,1B,2A,2B}

(g + 1 — g —x)]. (6)

Third, to approximate P(g|s = i) we again assume Hardy-Weinberg
probabilities which yield a product of factors p or 1-p (listed in
Supplementary Note 1). For the four IBD states, the two shared
alleles constitute one shared draw. Consequently, there are only three
instead of four independent factors and genotype combinations g
where the shared genotype would be different have O probability.

Plugging these three approximations into equation (5) now gives
P(D|s) foreachstates=0,1,... 4.

For the background state (s = 0) we have P(g) = P(g|s = 0) and thus
these factors cancel out in equation (5). Using that } ,P(g|D) =1, we
arrive at:

P(D|s = 0)=1. @)

The four IBD states (s=1,2,3,4) are calculated analogously with
asimple rearrangement of the haplotype order. Thus, it suffices to
describe s=1, the state where the two first phased genotypes, 1A and
2A, are identical. For the two nonshared alleles the Hardy-Weinberg
factors cancel outasins= 0. After some rearranging (Supplementary
Note1), we obtain:

1 1
P(D|s =1) = =xaXon + —— (1 = x30)1 — X24)- 8
(D ) paXaa 1—p( 1a)( 24) (8)

Postprocessing: calling IBD segments
To call IBD segments, we use the posterior probability of beingin the IBD
states obtained via the standard HMM forward-backward algorithm?,
which takes as input the transition rates (equation (1)) and emission
probabilities (equations (7) and (8)). Our method then screens for con-
secutive markers where the posterior probability of beingin the non-IBD
state h =0 remains below a prespecified threshold. We determine the
startof aninferred IBD segment by locating the first SNP whose posterior
decreases below the threshold and the end by the first SNP whose poste-
rior rises above the threshold. For each such genomicregion longer than
aprespecified minimum length cutoff, one IBD segment is recorded.
A postprocessing step commonly applied when detecting IBD is
to merge two closely neighbouring IBD segments®®. This step aims to
remove spurious gaps within one true IBD segment, which can appear
tobe caused by low density of SNPs or sporadic genotypingerrors. The
rationaleis that, under most demographic scenarios, sharing oflong IBD
isvery rare and thus two IBD segments are unlikely to occur nextto each
other by chance*’.Removingartificial gapsisimportant for determining
thelength of an IBD segmentand therefore in particular for downstream
methodsthat use the lengths of IBD segments as arecombination clock.
In our implementation, we merge all gaps where both IBD are longer
thanathreshold length and separated by a gap of amaximum length.
By examining rates of IBD segments across the genome when
inferringIBD inalarge set of empirical aDNA data, we observed exces-
sive rates of IBD sharingin genomic regions with very low SNP density.

Thissignalis probably driven by false positive IBD segments. We found
thatfiltering IBD segments with an average SNP density of 1240k SNPs
below 220 per centimorgan largely attenuates this signal. Additionally,
we designed a set of genomic masks to filter 13 regions with generally
highlevels of IBD sharing (Supplementary Note 5 and Supplementary
Fig. 9) that cover about 8% of the genome, with most masked regions
involving centromeres and telomeres. The human-specific masking is
optional, the SNP density filter is applied by default by ancIBD.

Setting default parameters of ancIBD

In the following, we describe how we chose the default parameters
of ancIBD. In principle, users can specify any SNP set as input but
our goal was to obtain default parameters that are optimized
for imputed genotype likelihoods at the 1240k SNP set, as most
published human aDNA data consists of in-solution DNA capture
experiments enriching for this SNP set.

First, we simulated a dataset including ground-truth IBD sharing
by using haplotypes in the 1000 Genome Project panel”. We simulated
chromosome 3 by stitching together short haplotypes 0.25 cM long
copied from reference individuals labelled as TSI (Tuscany, Italy) and
then copied IBD segments of various lengths (4, 8,12,16 and 20 cM)
into 100 pairs of mosaic genomes (described in detail in Supplemen-
tary Note 2 and Extended Data Fig. 1). This approach, following ref. 2,
yields a set of diploid genotype data with exactly known IBD. Such a
haplotype mosaicremoveslongIBD segmentsin the1000 Genome data
while also maintaining most of the local haplotype structure. To obtain
datatypical foraDNA sequencing, we matched genotyping errors and
probabilities observed within downsampled high-coverage empirical
aDNA dataand added phase switch errors (Supplementary Note 2).

We then applied ancIBD for a range of parameter combinations
andrecorded performance statistics (Supplementary Tables 4 and 5).
The final parameters that we set as default values (listed in Extended
Data Table 3) are chosen to work well for a broad range of coverages
and IBD lengths. Throughout this work, we use these settings but,
in our implementation, each parameter can be changed to a
nondefault value by the user.

Implementation and runtime

We implemented several computational speed-ups to improve the
runtime of our algorithm. First, the forward-backward algorithm is
coded in the Cython module to make use of the increased speed of a
precompiled C function within our overall Python implementation.
Second, our algorithmuses arescaled version of the forward-backward
algorithm® which avoids computing logarithms of sums that would
be computationally substantially more expensive than products and
additions. Finally, we make use of the symmetry of the four IBD states. As
the transition probabilities between those are fully symmetric, we can
reduce the transition matrix froma5 x 5to a3 x 3 matrix by collapsing
thethree other IBD statesinto asingle ‘other IBD’ state. After the expo-
nentiation of the 3 x 3 matrix, the original 5 x 5 transition matrixis recon-
structed by dividing up the jump rates using the original symmetry.

We use the Python package scikit-allel (v.1.2.1) to transform the VCF
output of GLIMPSE to an HDF5 file, a data format that allows efficient
partial access to data®, for example we can effectively load data for
any subset of individuals.

The average runtime of ancIBD (v.0.5) for a pair of imputed indi-
viduals on all 22 autosomes is about 25 s when using a single Intel
Xeon E5-2697 v.3 CPU with 2.60 GHz (Extended Data Fig. 5). As the
number of pairs in a sample of n individuals grows as n(n —1)/2, the
runtime scales quadratically when screening all pairs of samples for
IBD (Extended DataFig. 5). However, we note that due to the speed of a
HMM forward-backward algorithm with five statesrequiring only afew
multiplications and additions per locus, alarge fraction of runtime per
pairisdue toloading the data (Extended Data Fig. 5). Thus, an efficient
strategy is toload a set of individuals into memory jointly, as then the
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loading time scales only linearly with the number of samples. This
strategy,implemented inancIBD, leads to hugely improved runtime per
pair of samplesin cases where many samples are loaded into memory
andscreened for pairwise IBD (Extended DataFig. 5). We observed that
for batches of size 50 samples and when screening all 50 x 49/2 =1,225
pairs for IBD, the average runtime of ancIBD per imputed pair for all 22
chromosomes reducesto~0.75 s. The asymptotic limit per sample pair,
which is the runtime of the HMM and postprocessing, is about 0.35 s
onour architecture.

Empirical data analysis

We applied ancIBD to alarge set of previously published aDNA data of
ancient Eurasians (using the bioinformatic processing described in
the AADR dataset”). After filtering to all individuals with geographic
coordinatesin Eurasia dating within thelast 45,000 years and sufficient
genomic coverage for robustIBD calling we obtained afinal set of 4,248
unique ancient individuals (Supplementary Table 1). As the coverage
cutoff, we required at least 70% of the 1240k SNPs on chromosome 3
having max(GP) (defined as the maximum among the three posterior
genotype probabilities of 0/0,0/1,1/1) exceeding 0.99. This metric was
chosenbecauseit canbe easily calculated onimputed data for various
datatypes. It corresponds to the coverage cutoff for ancIBD described
above, as the relationship between coverage and this metric is mono-
tonic (Supplementary Fig.19). Our imputation pipelineis describedin
detailin Supplementary Note 3. We then screened each of the 9,020,628
pairs of ancient genomes with ancIBD. To optimize runtime we grouped
the genomesintobatches of400 and thenranall possible pairsbetween
two batches after loading the two batches into memory (thisapproach
isimplemented intheinanclIBD software package). For each pair with
detected IBD, we collected IBD statistics into a summary table (see
Supplementary Table 2 for pairs of published individuals).

Statistics and reproducibility

For empirical aDNA data analysis presented in this work, we used
4,248 published samples originating from Eurasia dated within the
last 45,000 years and passing the coverage requirement. No statistical
method was usedto predetermine the sample size. All simulation exper-
iments depending on probabilistic random draws were performed
with many independent replicates to analyse statistical uncertainty.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

No new DNA data were generated for this study. The reference panel
data that we used for imputation (phased haplotypes from the 1000
Genomes dataset) are publicly available at http://ftp.1000genomes.
ebi.ac.uk/voll/ftp/release/20130502/. The four high-coverage
genomes used in empirical downsampling experiments were previ-
ously published” and are available at https://reich.hms.harvard.
edu/ancient-genome-diversity-project. The Hazleton samples can be
downloaded through the European Nucleotide Archive under acces-
sion PRJEB46958. Raw sequencing data of the published West Eurasian
ancient individuals are publicly available as described in the original
publications (Supplementary Table 1). The AADR resource includ-
ing the metadata we used are publicly available at https://reich.hms.
harvard.edu/allen-ancient-dna-resource-aadr-downloadable-
genotypes-present-day-and-ancient-dna-data. We deposited atable of all
inferred IBD segments between the 4,248 ancient individuals at https://
zenodo.org/record/8417049.Source dataare provided with this paper.

Code availability
APython packageimplementing the method is available on the Python
Package Index (https://pypi.org/project/ancIBD/) and can beinstalled

through pip. Online documentation is available at https://ancibd.
readthedocs.io/en/latest/index.html. Code developed for simulating
data, analysis and data visualization presented in this study is avail-
ableatthe GitHub repository https://github.com/hringbauer/ancIBD.
External softwares used in this study were obtained as follows: beftools
(1.14-26-g018607e), https://samtools.github.io/bcftools/; samtools
(v.1.13), http://www.htslib.org/; GLIMPSE (v.1.1.1), https://odelaneau.
github.io/GLIMPSE/glimpsel/; ibis (v.1.20.9), https://github.com/
williamslab/ibis; ped-sim (v1.4), https://github.com/williamslab/ped-sim;
IBDseq (r1206), https://faculty.washington.edu/browning/ibdseq.html;
hapIBD (v.1.0, 1.0, 23Apr20.f1a), https://github.com/browning-lab/
hap-ibd; GERMLINE2 (v.1.0), https://github.com/gusevlab/germline2;
GERMLINE (1.5.3), http://gusevlab.org/projects/germline/; scikit-allel
(v.1.2.1), https://pypi.org/project/scikit-allel/; Cython (v.0.29.14),
https://pypi.org/project/Cython/.
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Extended Data Fig. 1| Pipeline to simulate IBD segment data. We visualize our
steps to simulate IBD segment data (see detailed description in Supplementary
Note 2). Starting from TSI (Tuscany) high-quality reference haplotypes in the
1000 Genome panel (A), we created haplotype mosaics (B) as any long IBD
segment is removed from those. We then copied over IBD segments of the target
length (C). We grouped two mosaic haplotypes to obtain diploid individuals

but to simplify visualization here we do not depict the second haplotype per
individual. (D): To create data typical for imputed low-coverage aDNA, we
matched each genotype to arandom matching genotype in a panel of aDNA
diploid genotypes called from high-coverage aDNA (either 1240k or WGS

aDNA data). We then downsampled the high-coverage aDNA panel to the target
coverage, imputed genotype probabilities and copied those back to each match.
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segments between all pairs of groups and visualize the fraction of pairs that share
atleast one IBD for each pair of populations and for the four different IBD length
bins.
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Extended Data Fig. 4 | Downsampling of Hazelton pedigree samples. We
downsampled allindividuals from a previously published English Neolithic
pedigree® with coverage at least 1x both to 1x and 0.75x. For each coverage, we
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Therefore, not all dots are independent pairs of relatives; they may be the same
pair downsampled with different random seeds. The relationship annotations are
obtained from Supp. Table 5 of ref. 26. All relatives more distant than 3rd degree

downsampled 10 times, each with different random seeds, to create 10 replicates.  are depicted as hollow dots.
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Extended Data Fig. 5| Runtime Benchmarks of ancIBD. To benchmark
runtimes, we applied ancIBD on empirical ancient DNA datain .hdf5 format
imputed at 1240k sites. We used the imputed hdf5 file from the Eurasian
application (Fig. 3), choosing samples and pairs at random. Left: For each sample
pair, allautosomes are screened for IBD. In one experiment all pairs of samples
were runindependently, leading to a linear dependency on pair number, as
expected. Inasecond experiment, all samples were loaded into memory and
then each sample pair was screened for IBD. The apparent sub-linear behaviour
isdueto the fact thatloading n samples scales slower than the actual runtime of
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n(n -1)/2sample pairs. Right: We depict the runtimes normalized per sample
pair when screening all pairs of sample batches of various sizes for IBD. We
visualize the loading time (the time it takes to load the hdf5 genotype data
into memory), the preprocessing time (including preparing the transition and
emission matrix), as well as the runtime of screening for IBD that includes the
forward-backward algorithm as well as postprocessing. Due to the decrease

in the impact of the time to load the data, which scales linearly with batch size
while the number of sample pair scales quadratically, we observe substantially
increased runtimes per pair.
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Extended Data Table 1| Inferred segment length in simulated WGS-like data

4cM 8M 12cM 16cM  20cM
2x 4270 8.286 12.297 16.279 20.297
Ix 4341 8.351 12334 16.311 20.349
0.75x 4.382 8.388 12.391 16.350 20.370
0.5x 4.448 8.469 12454 16.422 20.431
0.25x 4.686 8.664 12.682 16.663 20.652
0.1x 5.182 9.657 13.755 17.957 21.606

For each of the simulated IBD lengths (4cM, 8cM, 12cM, 16cM, 20cM) with WGS-like data quality at various coverages, the table shows the inferred segment length averaged over 500

independent replicates.
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Extended Data Table 2 | Inferred segment length in simulated 1240k-like data

4cM 8M 12cM 16cM  20cM
2x 4559 8592 12572 16.551 20.528
Ix 4825 8961 12956 17.000 20.860
0.75x 5.005 9.270 13.281 17.442 21.242
0.5x 5.196 10.003 14.287 18.391 22.094
0.25x 5.699 11.526 17.112 21.209 26.062
0.1x 6.017 12.002 19.161 25.150 30.370

For each of the simulated IBD lengths (4cM, 8cM, 12cM, 16¢cM, 20cM) with 1240k-like data quality at various coverages, the table shows the inferred segment length averaged over 500

independent replicates.
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Extended Data Table 3 | Parameters of ancIBD HMM and default values

Parameter Value Description [Unit]

HMM

ibd_in 1 Transition rate out of non-IBD state [per Morgan]
ibd_out 10 Transition rate out of IBD states [per Morgan]
ibd_jump 400 Transition rate between IBD states [per Morgan]
min_error 0.001 Cap Min. Probabilitiy of diploid genotype Error [rate]
P Sample/1000G Allele Frequencies (AF)

Post-Processing

cutoff_post 0.99 Minimum Posterior on IBD state for IBD segment call
min_cm 2 Minimum Length IBD segment to call [centimorgan]
snp_cm 220 Minimum SNP density in IBD [per centimorgan]
max_gap 0.0075 Maximum Gap to merge [Morgan]

All parameters that can be set in our implementation. The default values are chosen to work well (low FP, high power, little length bias and variance) for a broad range of WGS and

1240k aDNA data.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Data collection  All custom code used to prepare the data is available on https://github.com/hringbauer/anclIBD. To prepare the data we used "bcftools/1.14"
to filter SNPs, "GLIMPSE 1.1.1" to impute genotype probabilities, and the Python package "scikit allele/1.2.1" to transform vcf data to hdf5
data that serves as input for our new software. A detailled description of the data preprocessing steps is given in the Methods section of the
manuscript.

Data analysis All custom code used to analyze the data is available on https://github.com/hringbauer/anclBD. Morover, the new software used to analyze
the data is available as Python package "ancIBD" (https://pypi.org/project/hapROH/) that can be installed with pip.

Relevant published software we used (including versions):
bcftools 1.14-26-g018607e; samtools 1.13; GLIMPSE 1.1.1; Python 3.7.4, Python packages: scikit-allele (1.2.1)
Cython (0.29.14)

Software to call IBD we used:
anclBD (the new method presented in this manuscript) 0.5;
ibis v1.20.9; IBDseq r1206; haplBD version 1.0; germline2; germline 1.5.3, hapIBD (1.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

No new DNA data were generated for this study. The reference panel data that we used for imputation (phased haplotypes from the 1000 Genomes dataset) are
publicly available at http://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/. The four high-coverage genomes used in empirical downsampling experiments
were previously published (Wohns et al 2022) and are available at https://reich.hms.harvard.edu/ancient-genome-diversity-project. The Hazleton samples can be
downloaded through the European Nucleotide Archive under accession PRIEB46958. Raw sequencing data of the published Westeurasian ancient individuals are
publicly available as described in the original publications (see Supplementary Table 1). The AADR resource including the metadata we used is publicly available at
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data. We deposited the inferred IBD
segments between the 4,248 ancient individuals at https://zenodo.org/record/8417049.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size In the simulation experiments, we set the number of random replicates (on the order of a few hundreds per parameter set) so that there is
sufficient power to test the overall performance of the method while remaining computationally feasible on a scientific cluster. In the real-
data experiments, the sample set was determined by the number of publicly available ancient DNA samples.

Data exclusions  We used all available ancient DNA data of sufficient quality (meeting the coverage cutoff described in our manuscript).
Replication Our algorithm gives deterministic and therefore replicable results (i.e. on the empirical ancient DNA data analyzed in this work). All
downsampling and simulation experiments to generate data depending on probabilistic random draws were performed with a large number

of independent replicates to analyze statistical uncertainty.

Randomization  The random draws for downsampling and simulation experiments where computationally obtained without any intervention of the respective
analyst. Each such experiment was replicated a large number of times to acount for statistical uncertainty.

Blinding Qur study is purely computational. On empirical and simulated data, our algorithm gives deterministic results - there is no possible bias of the
outcome based on the person running the code.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.qg. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

INNX XX &
OO0OXOO

Dual use research of concern

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pname any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance  We did not generate any new ancient DNA data for this study.
Specimen deposition n/a

Dating methods We used the dates from the compiled dataset, which are a mix of the radiocarbon dates and context dates. For details, see each
original publications.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.




Ethics oversight No ethical approval/guidance was required as this study does not produce any new ancient DNA data.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.
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Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

minninink;

[] Any other significant area




Experiments of concern
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.




Software

Cell population abundance

Gating strategy

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

[ ] Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference
(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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