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A recent study reported that a 32-base-pair deletion in the CCR5 
gene (CCR5-∆32) is deleterious in the homozygous state in humans. 
Evidence for this came from a survival analysis in the UK Biobank 
cohort, and from deviations from Hardy–Weinberg equilibrium at 
a polymorphism tagging the deletion (rs62625034). Here, we carry 
out a joint analysis of whole-genome genotyping data and whole-
exome sequencing data from the UK Biobank, which reveals that 
technical artifacts are a more plausible cause for deviations from 
Hardy–Weinberg equilibrium at this polymorphism. Specifically, 
we find that individuals homozygous for the deletion in the 
sequencing data are under-represented in the genotyping data due 
to an elevated rate of missing data at rs62625034, possibly because 
the probe for this single-nucleotide polymorphism overlaps with 
the ∆32 deletion. Another variant, which has a higher concordance 
with the deletion in the sequencing data, shows no associations with 
mortality. A phenome-wide scan for effects of variants tagging this 
deletion shows an overall inflation of association P values, but iden-
tifies only one trait at P < 5 × 10-8, and no mediators for an effect on 
mortality. These analyses show that the original reports of a reces-
sive deleterious effect of CCR5-∆32 are affected by a technical arti-
fact, and that a closer investigation of the same data provides no 
positive evidence for an effect on lifespan.

CCR5-∆32 is a deletion in the coding region of the CCR5 gene, 
and homozygous deletion of CCR5-∆32 (∆32/∆32) has been 
reported to confer resistance against human immunodeficiency 
virus infections in humans1–3. A recent study (now retracted4) sug-
gested that ∆32/∆32 individuals have a 21% increased mortality 
rate, and that the increased mortality rate leads to deviations from 
Hardy–Weinberg equilibrium (HWE) at this site4,5. Here, we re-
analyze the data on which these results were based, and find that 
the variant that most closely tags ∆32/∆32 shows no evidence for 
an effect on mortality or a deviation from HWE. Our findings show 
that the previously reported effect on mortality was probably spuri-
ous and that the observed deviation from HWE was caused by a 
technical artifact.

Our work consists of four parts. First, we investigate which 
variants are most accurately tagging ∆32. Second, we re-examine 
the evidence for deviation from HWE at these variants. Third,  
we re-examine the evidence for effects on mortality at these  
variants. Fourth, we extend previous association tests to identify 
phenotypes that could potentially mediate an effect of ∆32/∆32  
on mortality.

The original study by Wei and Nielsen (now retracted4) inves-
tigated potential deleterious effects of ∆32/∆32 using genetic data 
and mortality data from the UK Biobank resource. The genotyped 
single-nucleotide polymorphism (SNP) rs62625034 was used as a 
proxy for ∆32. However, in an article posted on his online blog6,  
S. Harrison showed that the results do not replicate at the nearby 
correlated SNP rs113010081. Building on this, we compare two 
genotyped and two imputed variants with the CCR5-∆32 dele-
tion as called in the recently released UK Biobank exome sequenc-
ing data (rs333_sequenced), which we treat as the ground truth 
(Supplementary Tables 1 and 2). The genotyped SNP rs113010081 
is a better proxy for ∆32 than rs62625034, as indicated by a 
higher concordance across all genotype classes (+/+, ∆32/+ and 
∆32/∆32), as well as higher sensitivity and specificity to distinguish 
∆32/∆32 from +/+ and ∆32/+ (Fig. 1, Extended Data Figs. 1 and 2 
and Supplementary Tables 3 and 4). In addition, the three genotype 
classes show better separation in the probe intensity scatter plots 
(Fig. 1). rs113010081 was not used as a proxy for ∆32 in the origi-
nal study due to its high missingness (10.3%). However, the overall 
high missingness rate is caused by the absence of this variant from 
the UK BiLEVE Axiom array, which was used to genotype the first 
~10% of genotyped samples in the UK Biobank. On the UK Biobank 
Axiom array, which was used for the remaining ~90% of samples, 
this variant has a missingness rate of 0.08%, while rs62625034 has 
a missingness rate of 3.6%. Thus, the genotypes of rs113010081 
provide a better proxy for ∆32 than those for rs62625034. As the 
imputed variants tested here are less correlated with ∆32 than the 
two genotyped variants, we refer to the genotyped variants unless 
otherwise specified.

When testing for deviations from HWE, we confirm that 
rs62625034 shows a highly significant deviation from HWE, 
caused by a deficiency of individuals with two copies of the rare 
(deletion-tagging) allele (Supplementary Table 5). However, neither 
rs113010081 nor rs333_sequenced shows a significant deviation 
from HWE under a chi-squared HWE test. rs62625034 does show 
a significant HWE deviation, even in the subset of samples with 
sequencing data, which shows that a difference in power does not 
cause this discrepancy.

The missingness rate of rs62625034 differs by ∆32 genotype class, 
as called in the sequencing data (17.3, 4.6 and 2.9% for ∆32/∆32, 
∆32/+ and +/+, respectively; Fig. 1). The HWE deviation at this 
SNP is fully explained by this bias in missingness (Supplementary 
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Table 6). Individuals with missing data at rs113010081 are not simi-
larly biased with respect to rs333_sequenced (Fig. 1). The nonran-
dom missingness of rs62625034 with respect to ∆32 may be caused 
by the fact that the probe for this SNP overlaps with the deletion 
region but matches it only imperfectly (Fig. 1).

We carried out a simulation study showing that for two vari-
ants in high linkage disequilibrium, strong deviations from HWE 
at one variant, but not the other, cannot be induced by ascertaining 
samples on one variant alone (Extended Data Fig. 3). However, cor-
related ascertainment on both variants (which can occur through 
technical artifacts) can create this pattern.

When analyzing survival rates, we recapitulate the findings of Wei 
and Nielsen4,5, and find that for rs62625034, carriers of two copies of 
the rare allele tend to have a lower survival rate (Fig. 1, Extended 
Data Fig. 1 and Supplementary Table 7). However, none of the other 
tested variants shows any association with survival rate. The fact 
that the highly correlated rs113010081 SNP shows no association 
with survival, and the small number of deaths per year on which the  
signal is based (Fig. 1), make this finding uncompelling. The power 
to detect a 20% increased mortality rate at this SNP at a 0.05 signifi-
cance level is only 75% (Extended Data Fig. 4 and Supplementary 
Information), which means that we cannot rule out that the deletion 
does affect survival based on the available data. We note that samples 

with missing genotypes at rs113010081 have greatly increased mor-
tality rates (P = 2.7 × 10−32) due to a batch effect that is described in 
the Supplementary Information.

To identify phenotypes that could potentially mediate an effect of 
∆32/∆32 on mortality, we tested 3,911 phenotypes for associations 
with ∆32/∆32, tagged by rs113010081. We identify ‘lymphocyte 
count’ as the only trait that is significant at a P value smaller than the 
classic threshold for declaring genome-wide statistical significance: 
5 × 10−8 (Supplementary Table 8 and Extended Data Figs. 5 and 6). 
At less stringent P value thresholds, we find associated phenotypes 
that are similar to the previously reported associations from addi-
tive tests (Supplementary Tables 8 and 9). These are consistent with 
the role of C–C chemokine receptor type 5 in the immune system, 
and suggest that ∆32/∆32 has effects besides conferring resistance 
to human immunodeficiency virus. However, we do not observe, on 
any diseases, effects that are large enough to explain a substantially 
increased mortality rate (Supplementary Information).

In summary, our analyses show no evidence that ∆32/∆32 indi-
viduals have increased mortality rates. Similar findings have also 
been reported in other recent manuscripts7–9. This provides a case 
example of the subtle pitfalls that can produce false positive results, 
even in an extraordinarily high-quality and relatively uniformly 
generated dataset such as the UK Biobank.
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Fig. 1 | Survival rates for individuals with zero, one and two copies of the rare allele for two variants tagging the CCR5-∆32 deletion. a,b, Cumulative 
survival rates show that the evidence for increased mortality of individuals homozygous for the variant allele in rs62625034 (a) does not replicate in 
rs113010081 (b). One-sided P values are from a Cox proportional hazard model comparing survival rates of individuals with zero or one allele(s) with those 
with two alleles. c,d, Non-cumulative survival rates for rs62625034 (c) and rs113010081 (d), which show the large year-to-year variability in the data 
caused by small sample counts. Numbers indicate how many ∆32/∆32 individuals died in each year or age. e,f, Distribution of genotypes at rs62625034 
(e) and rs113010081 (f) (including missing genotypes) conditioned on rs333_sequenced genotypes. The total count for each row is shown to the right. 
Missing data are strongly correlated with genotype class for rs62625034, which fully explains the deviation from HWE at this site. No such bias is present 
at rs113010081. Numbers are based only on samples genotyped on the UK Biobank Axiom array, as rs113010081 data are only available for this array. 
g,h, Allele intensity clusters for UK Biobank genotyping data, showing the poorer separation of genotype classes for rs62625034 (g) compared with 
rs113010081 (h). i, Different haplotypes at the CCR5-∆32 locus. Black nucleotides differ from the reference. The site of the very rare SNP rs62625034 
(G > T) is located within the ∆32 deletion. Due to the sequence similarity at the 3′ end, the probe tags the deletion instead. However, the rs62625034 
probes match the reference genotype better than the deletion, leading to higher missingness in the presence of the deletion. NC, no call.
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Reporting Summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All the data used in this study are available with the permission of 
the UK Biobank.
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Extended Data Fig. 1 | Survival analysis. Survival rates for individuals with 0, 1, or 2 copies of the rare allele or No Call (NC) for variants tagging the  
CCR5-∆32 deletion. First row: Cumulative survival rates. Numbers are one-sided p-values of a Cox proportional hazard model which compares survival 
rates of individuals with 0 or 1 alleles to those with 2 alleles. Second row: non-cumulative survival rates. Third row: Number of individuals who have died in 
any given year with 2 copies of rare allele (see also Supplementary Table 7).
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Extended Data Fig. 2 | concordance analysis. Confusion matrix for different markers with missing data. The last column of the first panel shows that 
individuals with missing genotype at rs62625034 are enriched for ∆32/∆32 according to rs333_sequenced. This can lead to a violation of HWE at 
rs62625034. All white British samples of UK Biobank WES data shared with UK Biobank Axiom array data are used in this figure.
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Extended Data Fig. 3 | HWe p-values of linked variants. Simulated HWE Chi-squared p-values at two variants with minor allele frequency of 11% with r2 
of 0.95, in a sample of 400,000 individuals. Both variants are initially in HWE. We then remove a subset of samples which are homozygous for the rare 
allele at SNP 1. This leads to a deviation from HWE at SNP 1, but it also leads to a similar deviation from HWE at SNP 2. Only simultaneous selection acting 
in the opposing direction on SNP 2, or technical artifacts which create a dependence of missingness in one SNP on genotype in the other SNP explain a 
situation where HWE p-values are very different at both SNPs. Error bars denote the 5th and 95th percentile out of 100 replicates in each bin.
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Extended Data Fig. 4 | Power analysis. Power to detect effects on mortality of a genotype with the frequency of ∆32/∆32 in a sample of the same total 
size and mortality rate as the cohort studied here, as a function of relative risk. The power to detect a 20% increase in mortality rate at a 0.05 significance 
level is 75%.
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Extended Data Fig. 5 | Odds ratios against sample prevalence. Odds ratios (e𝛽) for all case-control phenotypes in five variants as a function of sample 
prevalence. Colors represent uncorrected p-values. Open circles represent case-control phenotypes with 10 or fewer cases in ∆32/∆32 individuals. Only 
phenotypes with more than five cases in ∆32/∆32 individuals are shown.
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Extended Data Fig. 6 | QQ-plot of the associations. QQ-plot of the associations across all phenotypes. Each variant is plotted in a different color. Only 
phenotypes with more than five cases in ∆32/∆32 individuals are shown.
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