Formulae for the weighted Jackknife

Nick Patterson

July 21 2005

This is just a short writeup of easy results on the weighted Jackknife, taken from [1]. We suppose we have \(n \) observations split into \(g \) groups. Group \(j \) has size \(m_j \) so that

\[
\sum_{j=1}^{g} m_j = n
\]

Suppose that \(\hat{\theta} \) is an estimator of \(\theta \), on the whole data set and that \(\hat{\theta}_{-j} \) is the corresponding estimator of \(\theta \) after removing group \(j \). We first define a Jackknifed estimate of \(\theta \):

\[
\hat{\sigma} = g\hat{\theta} - \sum_{j=1}^{g} \frac{(n-m_j)\hat{\theta}_{-j}}{n}
\]

\[
= \sum_{j=1}^{g} (\hat{\theta} - \hat{\theta}_{-j}) + \sum_{j=1}^{g} \frac{m_j\hat{\theta}_{-j}}{n}
\]

(1)

\(\hat{\sigma}^2 \) This estimate will be in practice close to \(\hat{\theta} \) but can be shown in some cases to reduce bias. As a sanity check, if \(\hat{\theta} \) and \(\hat{\theta}_{-j} \) all equal \(c \) then \(\hat{\sigma} = c \). In particular, if \(\theta \) is a vector of probabilities summing to 1 then \(\hat{\sigma} \) will also be. We now give an estimate \(\hat{\sigma}^2 \) for the variance \(\sigma^2 \) of \(\hat{\theta} \). Write \(h_j = n/m_j \). Define a pseudovalud \(\tau_j \) by

\[
\tau_j = h_j\hat{\theta} - (h_j - 1)\hat{\theta}_{-j}
\]

(3)

Then

\[
\hat{\sigma}^2 = \frac{1}{g} \sum_{j=1}^{g} \frac{(\tau_j - \hat{\theta})^2}{h_j - 1}
\]

(4)

If \(\theta \) is a vector quantity then similar formulae can be given for the covariance.

Technically \(\hat{\sigma}^2 \) is an estimate of the variance of \(\hat{\theta} \) not of \(\hat{\theta} \) and it would be preferable to use \(\hat{\theta} \) as the basic estimator. This is often not done.

References